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In the model of a fermion field coupled to loop quantum gravity, we consider the Gauss and the
Hamiltonian constraints. According to the explicit solutions to the Gauss constraint, the fermion spins and
the gravitational spin networks intertwine with each other so that the fermion spins contribute to the volume
of the spin network vertices. For the Hamiltonian constraint, the regularization and quantization procedures
are presented in detail. By introducing an adapted vertex Hilbert space to remove the regulator, we propose
a diffeomorphism covariant graph-changing Hamiltonian constraint operator of the fermion field. This
operator shows how fermions move in the loop quantum gravity spacetime and simultaneously influences
the background quantum geometry. Moreover, as an innovation of our work, introducing the vertex Hilbert
space also fixes issues so that a densely defined symmetric Hamiltonian constraint operator can be
obtained.
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I. INTRODUCTION

The real physical world consists of spacetime and matter.
According to general relativity, “spacetime tells matter how
to move; matter tells spacetime how to curve” [1], which
should also be carried out in the quantum theory. Loop
quantum gravity (LQG) [2–6], as a background-indepen-
dent and nonperturbative quantum gravity theory, sets the
stage for incorporating matters into quantum spacetime. In
[7–11], the Brown-Kuchar model of gravity coupled to dust
as well as the Rovelli-Smolin model of gravity coupled to
massless Klein-Gordon field is quantized. In [12,13], a
minimal coupling of fermions and Yang-Mills fields to
covariant LQG dynamics is proposed. The quantum theory
of spinor fields coupled to LQG is well understood [14–20].
In [21], a systematic procedure to couple the standard model
to the canonical LQG is proposed and further developed in
[17,22,23]. With the present paper, by employing the
procedure in [21], we investigate the Gauss and the
Hamiltonian constraint in the model of fermion field
coupled to LQG. In particular, the Gauss constraint is
solved explicitly and the Hamiltonian constraint is regular-
ized and quantized by introducing the so-called vertex
Hilbert space to remove the regulator.
In the classical model of gravity coupled to the fermion

field. The gravity action SG can be formulated optionally
with the first-order formulation (see, e.g., [2,24] for the
Palatini-Host action) or the second-order formulation (see,
e.g., [5,25] for Hilbert-Einstein action). In the pure gravity
case, these two formulations are equivalent to each other

up to boundary terms, while for the case with the fermion
field coupled, the equivalency is no longer valid. For the
first-order formulation, SG is a functional of an SLð2;CÞ
connection, and the fermion field will be coupled to it
directly. As a consequence, the fermion field will result in
an on shell torsion term in the connection. However, for
the second-order formulation, the fermion field will be
coupled to the torsion-free spin connection compatible
with the tetrad. Thus, there is no torsion involved in this
formulation. In the current paper, even though we adopt
the second-order formulation for discussion, the results
for the first-order formulation can be obtained analo-
gously. Moreover, since no extra field is introduced for
deparametrization in our model, the dynamics will be
governed by the Hamiltonian constraint H½N� with lapse
functions N rather than the physical Hamiltonian. Then a
problem arises: the Hamiltonian constraint operator can-
not be defined in the diffeomorphism invariant space. This
problem will be solved by, for instance, the master
constraint framework [26,27] or the deparametrization
framework [10,11]. In these frameworks, one finally
needs to consider the Hamiltonian constraint operator
with a constant lapse function or some dynamical lapse
function. These operators can be constructed directly with

the Hamiltonian constraint operators dH½N�. Thus, one can
only focus on how to define well the Hamiltonian

constraint operators dH½N� without loss of generality,
which is a main task of the current work.
The phase space of the fermion field coupled to gravity is

composed of fields ðAi
a; Eb

j ;Ψ;ΠÞ on the spatial manifold
Σ, where Ai

a is an SU(2) connection, Eb
j , the canonical

conjugate to Ai
a, is a densitized triad field, Ψ denotes the
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fermion field, and Π is the canonical momentum conjugate
to Ψ [2,28,29]. With the variables ðAi

a; Eb
j Þ, the gravita-

tional Hilbert space is constructed by using the spin
networks [30–32]. Therein the Hamiltonian constraint of
pure gravity as well as variables representing the geometric
observables are regularized and promoted to operators, and
properties of the operators are well studied [26,27,33–43].
The pure-gravity Hamiltonian constraint comprises of the
curvature of the connection A. The curvature, as an
operator, will attach loops on graphs of the spin network
states. In some regularization strategies, the final operator is
the limit as the loops shrink to a point. Then, the vertex
Hilbert space is necessarily introduced to define the limit
[44–48]. In general, a vertex Hilbert space is a Hilbert space
averaged with diffeomorphisms preserving some particular
vertices. Thus, elements in a vertex Hilbert space are
partially diffeomorphism invariant. In the current work,
the Hamiltonian constraint of fermion is also regularized by
introducing some regulator so that the fermion Hamiltonian
constraint is the limit of the regularized version as the
regulator approaches 0. In order to define this limit, we also
need to introduce an adapted vertex Hilbert space. The
vertex Hilbert space can do more than just defining limit in
this work. As shown in Sec. IV B, the regularized fermion
Hamiltonian constraint is split into HCϵ adding its complex
conjugate. Then, HCϵ can be quantized into an operatordHðδÞ which is cylindrical consistent and diffeomorphism

covariant. However, the adjoint of dHðδÞ, denoted by dHðδÞ†,
is not densely defined. Actually, as shown in Sec. IV B,
acting on some particular states associated to a graph γ, the

operator dHðδÞ can change γ by erasing a segment eðδÞ of an
edge e ⊂ γ. Using γ0 to denote the graph of γ with eðδÞ
erased by dHðδÞ, dHðδÞ†, acting on a stateΨγ0 associated to γ0,
will add an edge ẽðδÞ to γ0, where ẽðδÞ is arbitrary edge
connecting the end points of eðδÞ. Thus, there will be
infinitely many ways to add ẽðδÞ to γ0, and the resulting
states are orthogonal to each other. Consequently, the result

of dHðδÞ†Ψγ0 is not normalizable, i.e., Ψγ0 is not in the

domain of dHðδÞ†. This problem will be fixed by introduc-
ing the vertex Hilbert space to define limit. In the vertex

Hilbert space, limδ→0
dHðδÞ will be defined properly as an

operator Â†
F. The action of Â†

F performs in a way that a
projection is left multiplied in Â†

F as a factor. If Â†
F, acting

on these particular states, erases segments, then the
projection will annihilate the resulting states, so that the
adjoint of Â†

F is densely defined. Actually, the same issue
also exists in defining the gravitational Hamiltonian con-
straint operator with certain regularization strategy, and can
be fixed with the same mechanism [41].
The usual Hamiltonian analysis tells Π† ¼ ffiffiffi

q
p Ψ with

q≡ j detðEÞj. In the quantum theory, this equation is

expected to be realized in an appropriate form. In other
words, one might require that the adjoint of the operator Π̂
is related to the operator Ψ̂ via Π̂† ¼ cffiffiffiqp bΨ. Then, contra-
diction appears because in our quantum theory

ffiffiffi
q

p
will

become an operator rather than some background c-
number. This can be seen as follows. Considering a
nontrivial real-valued function fðAÞ of the connection

Ai
a, one has 0 ¼ ½Π̂; dfðAÞ� on one hand, but, on the other

hand, ½Π̂; dfðAÞ�† ¼ ½ dfðAÞ; Π̂†� ¼ ½ dfðAÞ; ˆffiffiffiqp Ψ̂� ≠ 0. The
two results do not coincide. To overcome this inconsis-
tency, the author in [21] introduces the Grassman-valued
half-densities Ψ̃ ≔ ffiffiffi

q4
p Ψ and Ψ̃† to define the phase

space of fermion. Moreover, in order to do the quantiza-
tion, the smeared version of Ψ̃ by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δðx; yÞp

, i.e.,R
d3y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δðx; yÞp

Ψ̃ðyÞ, is also introduced by [21]. With the
smeared variables, the fermion sector is quantized and the
resulting quantum theory carries out the diffeomorphsm-
invariance feature.
It will be useful to compare our work with the known

models of fermions in LQG. Among these models, a typical
one is to introduce the path observables (see, e.g., [14–16])
each of which combines the holonomy along a path α and
the fermions at the ends of α. These path variables form a
closed algebra under the Poisson bracket so that the
quantum theory is obtained by quantizing this algebra.
Another typical model is the one employed in the current
work (see, e.g., [17]). As aforementioned, this model
considers the algebra formed by

R
d3y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δðx; yÞp

Ψ̃ðyÞ, which
leads to a fermionic Fock space as the Hilbert space for
fermions. Our work develops this model from the following
aspects. At first, our work studies the Gauss constraint in
details. We not only give the exact solutions to the Gauss
constraint but also study the physical pictures resulting
from these solutions. Second, for the Hamiltonian con-
straint of the fermion field, we propose a different regu-
larization strategy than that in [21]. Additionally, the vertex
Hilbert space is introduced, not only for removing the
regulator in the regularized Hamiltonian constraint but also

for fixing the issues on the adjoint of dHðδÞ, so that a densely
defined symmetric Hamiltonian constraint operator can be
obtained.
This paper is organized as follows. In Sec. II the classical

theory of gravity coupled to fermion field is introduced
briefly. In Sec. III we introduce some basic notions of the
kinematical Hilbert space of pure gravity and revisit the
construction of the fermion kinematical Hilbert space. In
Sec. IV, the Gauss constraint and the Hamiltonian con-
straint are regularized and quantized, where the adapted
vertex Hilbert space is introduced and some physical results
are discussed. Finally, in Sec. V, we summarize the
remarkable results and propose some outlooks for further
works.
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II. CLASSICAL THEORY OF GRAVITY COUPLED
TO FERMION

Let M denote the spacetime manifold, which is homeo-
morphism to R × Σ with Σ being the spatial manifold.
Given a four-dimensional vector space V, let ηIJ be the
Minkowski metric on it. A tetrad field eIμ gives the metric
gμν ¼ ηIJeIμeJν on M. The curvature of gμν defines the
Einstein-Hilbert action in terms of the tetrad fields,

SH½e� ¼
1

2κ

Z
M

d4xR½e�; ð2:1Þ

where κ ¼ 8πG. Let ΓI
μJ denote the spin connection

compatible with the tetrad so that

deI þ ΓI
J ∧ eJ ¼ 0: ð2:2Þ

The model of gravity coupled to the fermion field is
described by the action

S½e;Ψ� ¼ SH½e� −
i
2

Z
M

d4xeðΨ̄γIeμI∇μΨ − c:c:Þ; ð2:3Þ

where γI denotes the gamma matrices satisfying
γIγJ þ γJγI ¼ 2ηIJ1, and the covariant derivative of Ψ is

∇μΨ ¼ ∂μΨ −
1

4
ΓI
μJγ

IγJΨ: ð2:4Þ

Performing the 3þ 1 decomposition and doing canoni-
cal transformation [5], we get the gravitational canonical
pair ðAi

a; Ea
i Þ. The Poisson brackets between them are

fAi
aðxÞ; Eb

j ðyÞg ¼ κβδbaδ
i
jδðx; yÞ; ð2:5Þ

where β is the Barbero-Immirzi parameter. For the fermion
field, we split the Dirac fermion Ψ into its chiral compo-
nents and follow the argument in [21] to introduce the half
densities on Σ,

ξ ≔
ffiffiffi
q4

p
Ψ−; ν ¼ ffiffiffi

q4
p

Ψþ; ð2:6Þ

with Ψ� ¼ 1�γ5

2
Ψ. Detailed Hamiltonian analysis (see

Appendix A) tells us that the conjugate moments to ξ
and ν are their complex conjugates, and the anti-Poisson
brackets are

fξAðxÞ; ξ†BðyÞgþ ¼ −iδABδðx; yÞ;
fνAðxÞ; ν†BðyÞgþ ¼ −iδABδðx; yÞ ð2:7Þ

for all A;B ¼ �1=2.
The dynamics of this model is encoded in the Gauss

constraint Gm, the diffeomorphism constraint Ha and the
Hamiltonian constraint H, which are

Gm ¼ 1

κβ
DaEa

l þ
1

2
ðξ†σmξþ ν†σmνÞ;

Ha ¼
1

κβ
Eb
i F

i
ab þ

i
2
fξ†Daξ − ðDaξÞ†ξþ ν†Daν − ðDaνÞ†νg þ βKm

a Gm;

H ¼ HG þ 1

2
ffiffiffi
q

p
�
iðξ†Ea

i σ
iDaξ − ðDaξÞ†Ea

i σ
iξÞ − βEa

i K
i
aξ

†ξ −
1

β
ð1þ β2ÞDaEa

i ξ
†σiξ − βEa

i Daðξ†σiξÞ

− iðν†Ea
i σ

iDaν − ðDaνÞ†Ea
i σ

iνÞ þ βEa
i K

i
aν

†ν −
1

β
ð1þ β2ÞDaEa

i ν
†σiν − β

1ffiffiffi
q

p Ea
i Daðν†σiνÞ

�
: ð2:8Þ

Here, HG denotes the scalar constraint of pure gravity,

HG ¼ 1

2κ
ffiffiffi
q

p Ea
i E

b
j ðFm

abϵm
ij − 2ð1þ β2ÞKi

½aK
j
b�Þ: ð2:9Þ

III. LOOP QUANTIZATION OF THE THEORY:
KINEMATICS

A. The kinematical Hilbert space of pure gravity

In LQG, besides a fixed differentiability class Cm with
m ≥ 1, a semianalytic structure on Σ is also necessary [49].
Then all local maps, differmorphisms, submanifolds, and
functions thereon are assumed to be Cm and semianalytic.

Particularly, an edge is a semianalytic curve embedded in Σ.
A graph is a collection of edges fe1;…; eng where these ek
intersect each other at most at the ending points. Given a
graph γ ⊂ Σ, let EðγÞ denote the set of its edges and VðγÞ,
its vertices. The number of elements in EðγÞ [VðγÞ,
respectively] is denoted by jEðγÞj [jVðγÞj, respectively].
A cylindrical function Ψ of the Ashtekar connection A is a
function that can be written in the form

ΨðAÞ ¼ ψγðhe1ðAÞ;…; henðAÞÞ ð3:1Þ

where ψγ∶ SUð2ÞjEðγÞj → C is a complex function on
SUð2ÞjEðγÞj and heðAÞ ∈ SUð2Þ is the parallel transport
along an edge e with respect to a given connection A,
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heðAÞ ¼ P exp

�
−
Z
e
A

�
¼ 1þ

X∞
n¼1

ð−1Þn
Z

1

0

dtn

×
Z

tn

0

dtn−1 � � �
Z

t2

0

dt1Aðt1Þ � � �AðtnÞ: ð3:2Þ

Given a cylindrical function Ψ with respect to a graph γ, it
can always be rewritten via another graph γ0 ⊃ γ. Therefore,
for two cylindrical functions Ψð1Þ and Ψð2Þ with respect to
graphs γ1 and γ2, respectively, one can always find another
graph γ3 with γ3 ⊃ γ1, γ3 ⊃ γ2, and rewriteΨð1Þ andΨð2Þ by
some functions ψ ð1Þ

γ3 and ψ ð2Þ
γ3 , respectively, on SUð2ÞjEðγ3Þj.

Then the inner product of Ψð1Þ and Ψð2Þ is

hΨð1ÞjΨð2Þi ¼
Z
SUð2Þn

dμHðgÞψ ð1Þ
γ3 ðg1;…;gnÞψ ð2Þ

γ3 ðg1;…;gnÞ;

ð3:3Þ

where n ¼ jEðγ3Þj and dμH is the Haar measure on SUð2Þn.
Equation (3.3) defines a measure dμAL on the quantum
configuration space A. Thus (3.3) is always rewritten as

hΨð1ÞjΨð2Þi ¼
Z
A
dμALðAÞΨð1ÞðAÞΨð2ÞðAÞ: ð3:4Þ

The space of cylindrical functions is denoted by Cyl. The
Hilbert space HG of the pure gravity is the completion of
Cyl with the inner product define in (3.4).
Given a graph γ, the space of cylindrical functions with

respect to γ is denoted by Cylγ. The Cauchy completion of
Cylγ with respect to (3.3) is denoted by HG;γ. As shown in
[3], HG;γ admits the spin network decomposition

HG;γ ¼ ⨁
j⃗;⃗l

Hj⃗;⃗l
G;γ; ð3:5Þ

where j⃗ ¼ fj1; j2;…; jjEðγÞjg assigns to each edge of γ an

irreducible representation of SU(2), and ⃗l ¼ fl1;…; ljVðγÞjg,
to each vertex of γ an irreducible representation. Consider
the assignments j⃗0 such that each representation is non-
trivial. Besides, let ⃗l0 denote assignments of irreducible
representations to vertices of γ, which are nontrivial at each
spurious vertex of γ, where a vertex v is spurious if it is
bivalent, and if the edges ei and eiþ1, which meet at v are
such that ei∘eiþ1 is itself an semianalytic (i.e., v just serves
to split and edge). Then, we define H0

G;γ as

H0
G;γ ¼ ⊕

j⃗0 ;⃗l0
Hðj⃗0 ;⃗l0Þ

G;γ : ð3:6Þ

Thanks to H0
G;γ , the space Cyl can be decomposed as1

Cyl ¼ ⨁
γ
H0

G;γ ⊕ C: ð3:7Þ

The multiplication operatorDι
abðheÞ acts on a cylindrical

function ΨðAÞ ¼ ψγðhe1ðAÞ;…; henðAÞÞ as

ðDι
abðheÞΨÞðAÞ ¼ Dι

abðheðAÞÞψγðhe1ðAÞ;…; henðAÞÞ;
ð3:8Þ

where Dι
abðheðAÞÞ denotes the Wigner-D matrix of

heðAÞ ∈ SUð2Þ. Moreover, the derivative operators Ĵv;ei ,
for i ¼ 1, 2, 3, and v being source point se of e or the target
point te of e, act on Ψ as

ðĴv;ej ΨÞðAÞ ¼

8>>><>>>:
i ddt

����
t¼0

ψγðhe1 ;…;heetτj ;…;henÞ; v¼ se;

i ddt

����
t¼0

ψγðhe1 ;…;e−tτjhe;…;henÞ; v¼ te;

ð3:9Þ

where τj ¼ −iσj=2 with σj being the Pauli matrices. With

the operator Ĵv;ej , we can define an operator Ĵx;½e�j such that

Ĵx;½e�j Ψ ¼
X
e0∈½e�

Ĵx;e
0

j Ψ; ∀Ψ ∈ Cyl; ð3:10Þ

where [e] is a maximal family of curves beginning at x ∈ Σ
such that each two curves overlap on a connected initial
segment containing x.

B. Loop quantization of the fermion field

From now on, we will only focus on the single Weyl
component ξ. However, everything works similarly for the
other chiral component ν. To quantize the fermion field, we
follow [21] to use the modified symplectic structure

fθAðxÞ; θ†BðyÞgþ ¼ −iδABδx;y; A; B ¼ � 1

2
; ð3:11Þ

where, with comparison to (2.7), the Dirac delta δðx; yÞ is
changed to the Kronecker delta δx;y. This change indicates
the following canonical transformation from ξ to θ:

θðxÞ ¼
Z
Σ
d3y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δðx; yÞ

p
ξðyÞ;

ξðxÞ ¼
X
y∈Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δðx; yÞ

p
θðyÞ: ð3:12Þ

1For elements in an infinite direct sum, we require that all but
finitely many components are zero.
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To prove the relation (3.12), one used the function
fϵðx; yÞ ≔ χϵðx; yÞ=ϵ3 to regularize the Dirac delta function
[21], where χϵ is

χϵðx; yÞ ≔
8<: 1;

P3
a¼1

ðxaÞ2 þ ðyaÞ2 ≤
�
ϵ
2

	
2

0; otherwise:
;

According to (3.12), ξðxÞ will be singular for regular θðxÞ.
This scenario contradicts that ξðxÞ is smooth as a classical
field. To have a consistent understanding of this formu-
lation, one interprets the singular fields ξðxÞ as defining the
quantum configuration space of the fermion field so that
θðxÞ is a regular-field coordinate of this quantum configu-
ration space.
As in pure LQG, the quantization starts by introducing

the cylindrical functions. Before doing so, we will first
introduce a convenient field ζA as

ζAðxÞ ¼
1ffiffiffi
ℏ

p θAðxÞ; A ¼ � 1

2
: ð3:13Þ

1. The cylindrical functions of the fermion field

A fermionic graph γF is a finite subset of Σ with jγFj
elements. Elements in γF are called fermionic vertices. An

orientation of γF is a surjection n ↦ vðnÞF ∈ γF with
1 ≤ n ≤ jγFj. The surjection endows the elements in γF
with an order. Given an oriented graph γF, we have a family
of Grassmann numbers fζ†�1

2

ðvFÞgvF∈γF , which will be

renamed to ρ†n with 1 ≤ n ≤ 2jγFj such that

ρ†2i−1≡ ζ†1
2

ðvðiÞF Þ; ρ†2i≡ ζ†−1
2

ðvðiÞF Þ; 1≤ i≤ jγFj: ð3:14Þ

Then a function Ψ of ζ† with respect to γF takes the general
form

Ψðζ†Þ¼f0þ
X2jγFj
n¼1

X
1≤i1<i2<���<in≤2jγF j

fi1���inρ
†
i1
ρ†i2 ���ρ†in ; ð3:15Þ

where f0 and fi1���in are complex numbers. Functions taking
the form (3.15) are called the (fermionic) cylindrical
functions of ζ†. The space of cylindrical functions of ζ†

will be denoted by CylF.
According to (3.15), each cylindrical function with

respect to γF can be identical with a vector

fγF ¼ ðf0; ffi1���ing1≤i1<i2<���<in≤2jγFjÞ ∈ C22jγF j
:

Moreover, for a cylindrical function Ψ expressed via
fγF ∈ C22jγF j

, there always exists a lager graph γ0F ⊃ γF

such that Ψ is rewritten via some f0γ0F ∈ C2
2jγ0

F
j
. Thus, given

two functions Ψ1;Ψ2 ∈ CylF on γF1 and γF2, respectively,
we can find another graph γ0F containing both γF1 and γF2

to rewriteΨ1 andΨ2 with f
ð1Þ
γ0F
; fð2Þγ0F

∈ C2
2jγ0

F
j
. Then the inner

product of Ψ1 and Ψ2 is given by

hΨ1;Ψ2i ¼
Z

dμðρ1ρ†1Þdμðρ2ρ†2Þ � � � dμðρ2jγ0F jρ
†
2jγFj0 ÞΨ

†
1Ψ2;

ð3:16Þ

with dμðρnρ†nÞ ¼ dρ†ndρneρnρ
†
n . By applying (3.16), one can

verify

hΨ1;Ψ2i ¼ ðfð1Þγ0F
Þ†fð2Þγ0F

: ð3:17Þ

Moreover, even though the graphs γ0F containing both γF1
and γF2 are not unique, Eq. (3.16) is independent of the
choice of γ0F since

R
dμðρnρ†nÞ ¼ 1. Indeed, Eq. (3.16)

defines a measure dμHðζ†ζÞ on CylF† ⊗ CylF, and will be
rewritten as

hΨ1;Ψ2i ¼
Z

dμHðζζ†ÞΨ†
1Ψ2: ð3:18Þ

The fermion Hilbert space HF is the completion of CylF
with the inner product defined by (3.18), i.e.,

HF ¼ CylF: ð3:19Þ

On CylF, a type of operators are the multiplication

operators dζ†vF;A given by

ðdζ†vF;AΨÞðζ†Þ ¼ ζ†AðvFÞΨðζ†Þ; ∀Ψ ∈ CylF: ð3:20Þ

Another type of operators are the derivative operators ζ̂vF;A,
acting on Ψ ∈ CylF as

ðζ̂vF;AΨÞðζ†Þ ¼
�

∂

∂ζ†AðvFÞ
Ψ
�
ðζ†Þ; ∀Ψ∈CylF: ð3:21Þ

It is easy to verify that dζ†vF;A and ζ̂vF;A are adjoint to each
other, i.e.,

dζ†vF;A ¼ ζ̂†vF;A; ð3:22Þ

which realizes the real condition. Moreover, one has

½ζ̂vF;A; ζ̂†v0F;B�þ ¼ ζ̂vF;Aζ̂
†
v0F;B

þ ζ̂†v0F;B
ζ̂vF;A ¼ δABδvFv0F ; ð3:23Þ

which implements the Poisson brackets (3.11) by defining

θ̂AðvFÞ ¼
ffiffiffi
ℏ

p
ζ̂vF;A: ð3:24Þ
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2. The spin network states of fermion field

Given a graph γF, the space of the fermionic cylindrical
functions with respect to γF is a finite-dimensional Hilbert
space, denoted by HF;γF. Considering a graph γF ¼ fvFg
which is a component of a single vertex, one has the space
HF;fvFg ≡HvF consisting of functions

Ψðζ†Þ ¼ a00 þ a10ζ
†
1
2

ðvFÞ þ a01ζ
†
−1
2

ðvFÞ
þ a11ζ

†
1
2

ðvFÞζ†−1
2

ðvFÞ: ð3:25Þ

The inner product of ΨðiÞðζ†Þ ¼ aðiÞ00 þ aðiÞ10ζ
†
1
2

ðvFÞ þ
aðiÞ01ζ

†
−1
2

ðvFÞ þ aðiÞ11ζ
†
1
2

ðvFÞζ†−1
2

ðvFÞ with i ¼ 1, 2 is

hΨð1Þ;Ψð2Þi ¼
X

i;j∈f0;1g
ðað1Þij Þ�að2Þij : ð3:26Þ

For convenience, we introduce the Dirac bra-ket notation
ji; jivF (i, j ¼ 0, 1) to denote the stateΨij, whereΨij are the

states given by Ψ00ðζ†Þ ¼ 1, Ψ10ðζ†Þ ¼ ζ†1
2

ðvFÞ, Ψ01ðζ†Þ ¼
ζ†−1

2

ðvFÞ and Ψ11ðζ†Þ ¼ ζ†1
2

ðvFÞζ†−1
2

ðvFÞ. Then the states

ji; jivF form an orthonormal basis of HvF , i.e.,

vFhi1; j1ji2; j2ivF ¼ δi1i2δj1j2 : ð3:27Þ

The action of ζ̂vF;A and ζ̂†vF;A for A ¼ � 1
2
on HvF reads

ζ̂†
vF;

1
2

j0; i2ivF ¼ j1; i2ivF ; ζ̂†
vF;

1
2

j1; i2ivF ¼ 0; ∀ i2 ¼ 0; 1;

ζ̂vF;12j0; i2ivF ¼ 0; ζ̂vF;12j1; i2ivF ¼ j0; i2ivF ; ∀ i2 ¼ 0; 1;

ζ̂†
vF;−1

2

ji1; 0ivF ¼ ð−1Þi1 ji1; 1ivF ; ζ̂†
vF;−1

2

ji1; 1ivF ¼ 0; ∀ i1 ¼ 0; 1;

ζ̂vF;−1
2
ji1; 0ivF ¼ 0; ζ̂vF;−1

2
ji1; 1ivF ¼ ð−1Þi1 ji1; 0ivF ; ∀ i1 ¼ 0; 1: ð3:28Þ

For the general case where γF ⊂ Σ consists of more than
one vertices, we first associate to each vF ∈ γF the Hilbert
space HvF . Then, fixing an orientation of γF, one has the
tensor product space

HF;γF ¼ H
vð1ÞF

⊗ H
vð2ÞF

⊗ � � � ⊗ H
vjγF j
F
: ð3:29Þ

An orthonormal basis of HF;γF is composed of the vectors

ji1; i2;…; i2jγF ji ≔ ji1; i2ivð1ÞF
⊗ ji3; i4ivð2ÞF

⊗ � � � ⊗ ji2jγFj−1; i2jγFjivðjγF jÞ
F

; ð3:30Þ

with ik ∈ f0; 1g for all 1 ≤ k ≤ 2jγFj. Indeed, the vector
ji1; i2;…; i2jγFji refers to the cylindrical function Ψ⃗i ¼
ρ†i1ρ

†
i2
� � � ρ†in with respect to γF. It is worth noting that

the definition of HF;γF depends on the orientation of γF,
since ζ†AðvFÞ are Grassmann numbers. This fact can be
illustrated more explicitly with the following example.

Consider another orientation n → ṽðnÞF of γF such that

ṽð1ÞF ¼vð2ÞF ; ṽð2ÞF ¼vð1ÞF ; ṽðkÞF ¼vðkÞF ; ∀k≥3: ð3:31Þ

Then, under the new orientation, we have the tensor-
product Hilbert space H̃F;γF possessing the basis

gji1; i2;…; i2jγF ji ≔ ji1; i2iṽð1ÞF
⊗ ji3; i4iṽð2ÞF

⊗ � � � ⊗ ji2jγFj−1; i2jγFjiṽðγFÞ
F

: ð3:32Þ

By definition, gji1; i2;…; i2jγF ji refers to the cylindrical
function

Ψ⃗̃i ¼ ρ†i3ρ
†
i4
ρ†i1ρ

†
i2
� � � ρ†in ¼ ð−1Þði1þi2Þði3þi4ÞΨ⃗i0 ; ð3:33Þ

where ⃗i0 ¼ fi3; i4; i1; i2;…; i2jγF jg. Equation (3.33) gives
the equivalence relation between HF;γF and H̃F;γF

gji1; i2;…; i2jγFji ¼ ð−1Þði1þi2Þði3þi4Þji3; i4; i1; i2;…; i2jγFji:
ð3:34Þ

This equivalence relation can be analogously defined
between the tensor product spaces with different orienta-
tions. The fermionic Hilbert space with respect to γF is
actually space of equivalence classes associated with this
equivalence relation.
Indeed, the extra sign in (3.34) can be systematically

obtained by introducing the notion of graded objects. One
can refer to Appendix B and the reference therein for more
details on the this notion. In our work, the Hilbert spaces
HvF are graded. The degree dði1; i2Þ of each ji1; i2ivF is

dði1; i2Þ ¼ i1 þ i2 mod 2: ð3:35Þ

The operator algebra on HvF is also graded. By definition,

the degrees of the operators ζ̂vF;A and ζ̂†vF;A are

dðζ̂vF;AÞ ¼ 1 ¼ dðζ̂†vF;AÞ: ð3:36Þ
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A general principle to deal with these graded objects is that,
whenever we swap two items, an additional sign appears by
the rule xy ¼ ð−1ÞdðxÞdðyÞyx. Following this rule, we can
obtain the identity (3.34) manifestly.
Given a vertex vF, let Hirr

vF be the subspace of HvF
spanned by j0; 1ivF, j1; 0ivF and j1; 1ivF . Then the Hilbert
space Hirr

F;γF
with respect to γF is defined as

Hirr
F;γF

¼ ⊗
vF∈γF

Hirr
vF ; ð3:37Þ

such that CylF can be decomposed as

CylF ¼ ⨁
γF

Hirr
F;γF

⊕ C: ð3:38Þ

The kinematical Hilbert space H of the entire system is
the tensor product of HG and HF, i.e.,

H ¼ HG ⊗ HF: ð3:39Þ

A densely subspace Cyltot of H is

Cyltot ¼ Cyl ⊗ CylF: ð3:40Þ

The states in Cyltot will be called the cylindrical states. To
obtain a cylindrical state, one needs a graph γ ¼ γG ∪ γF,
where the gravitational graph γG is constituted of edges and
their ending points as vertices, and the fermionic graph γF
contains only vertices. To define a state with respect to γ,
besides the data for a (gauge variant) LQG spin network
state, one also needs to assign to each fermionic vertex vF a
state ji1ðvFÞ; i2ðvFÞivF with i1ðvFÞ; i2ðvFÞ ∈ f0; 1g. In
principle, a fermionic vertex vF can be located anywhere,
regardless of the given gravitational graph γG. However, if
vF is chosen as point in e ∈ EðγGÞ but vF ∉ VðγGÞ, then
we can always split e at vF to define a new graph γ̃G. Then
vF becomes a vertex of γ̃G. Moreover, because of γG ⊂ γ̃G,
every cylindrical function with respect to γG can be
rewritten by using γ̃G. Thus, it is sufficient to consider
those graphs γ ¼ γG ∪ γF where each fermionic vertex vF
satisfies either vF ∈ VðγGÞ or vF ∉ γG. Then, in VðγGÞ,
there could be bivalent vertices which is a fermionic vertex.
These vertices serve to split edge. Thus, by (3.6), they are
just spurious vertices. However, in contrast to (3.6), we can
put trivial SU(2) representation at these vertices to decom-
pose the Hilbert space with respect to graphs. More
precisely, let Γo be the set of graphs γ ¼ γG ∪ γF where
each fermionic vertex vF satisfies either vF ∈ VðγGÞ or
vF ∉ γG. Consider the assignments j⃗0 to EðγÞ such that
each representation is nontrivial. Besides, let ⃗l0 denote
assignments of irreducible representations to vertices of γ
that are nontrivial at each fake vertex of γG where a vertex
v ∈ VðγGÞ is fake if v ∉ γF and it is spurious as defined in
(3.6). Then, we define

Hirr
G;γG

≔ ⊕
j⃗0 ;⃗l0

Hj⃗0 ;⃗l0

G;γG
; ð3:41Þ

which gives us the Hilbert space Hirr
γ as

Hirr
γ ¼ Hirr

G;γG
⊗ Hirr

F;γF
: ð3:42Þ

Then we have the decomposition

Cyltot ¼ ⨁
γ∈Γo

Hirr
γ ⊕ C: ð3:43Þ

IV. THE CONSTRAINT OPERATORS FOR
GRAVITY COUPLED TO FERMION FIELD

A. The Gauss constraint

Classically, the Gauss constraint G½λ� reads

G½λ� ¼
Z
Σ
d3xλm

�
1

κβ
DaEa

m þ 1

2
ξ†σmξ

�
: ð4:1Þ

It is straightforward to quantize it as the operator

dG½λ� ¼ X
v

λmðvÞĜv;m; ð4:2Þ

with

Ĝv;m ¼ ℏ
X
½e�

Ĵv;½e�m þ ℏζ̂†v;A
ðσmÞAB

2
ζ̂v;B: ð4:3Þ

Let us use Ĵ v;m to denote the second term in (4.3), namely

Ĵ v;m ¼ ζ̂†v;A
ðσmÞAB

2
ζ̂v;B: ð4:4Þ

On the fermionic Hilbert spaceHv at vertex v, the action of
Ĵ v;m reads

Ĵ v;mj0; 0iv ¼ 0; Ĵ v;mj1; 1iv ¼ 0;

Ĵ v;mðj1; 0iv; j0; 1ivÞ ¼ ðj1; 0iv; j0; 1ivÞ
σm
2
: ð4:5Þ

According to (4.5), the operators Ĵ v;m for all m ¼ 1, 2, 3
behave as the angular moment operators. Thus, the operator
Ĵ v;m generates an SU(2) action on Hv as

u⊳jϕiv ¼ ð j1; 0iv; j0; 1iv Þu
�
ϕ10

ϕ01

�
þ ϕ00j0; 0iv þ ϕ11j1; 1iv: ð4:6Þ
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where jϕiv ¼
P

ij ϕijji; jiv and u ∈ SUð2Þ. Therefore, Hv

becomes a reducible representation space of SU(2). The one-
dimensional space spanned by either j0; 0iv or j1; 1iv is the
trivial representation space, and the two-dimensional space
spanned by j0; 1iv and j1; 0iv is the 1=2-representation
space where j0; 1iv and j1; 0iv serve as the standard basis
according to (4.5). This fact leads to the decomposition

Hv ≡H0 ⊕ H0 ⊕ H1=2; ð4:7Þ

where Hj denotes the j-representation space of SU(2).
For a graph γ ¼ γG ∪ γF, a spin je is assigned to the edge

e ⊂ γG. Then at each vertex v ∈ VðγÞ there is the Hilbert
space

Htot
v ¼ ⊗

e starts from v
Hje ⊗ ⊗

e0 targets v
H�

je0
⊗ Hv; ð4:8Þ

where H�
j denotes the dual space of Hj. On Htot

v , the
infinitesimal SU(2) action gives the Gauss constraint. Thus,
the solution space to the Gauss constraint is

HGau ¼ ⊗
x∈VðγÞ

InvðHtot
v Þ; ð4:9Þ

where InvðHtot
v Þ ⊂ Htot

v is the SU(2)-invariant subspace. To
see InvðHtot

v Þ more precisely, let us assume all edges at v
are outgoing without loss of generality. Then we have

Htot
v ¼ ⊗

e at v
Hje ⊗ Hv: ð4:10Þ

Given an order of the edges at v, one can choose an
orthonormal basis of ⊗

e at v
Hje composed of vectors

jk2; k3;…; kn;Mi satisfying

X3
i¼1

ðLðlÞ
i Þ2jk2; k3;…; kn;Mi ¼ klðkl þ 1Þjk2; k3;…; kn;Mi; ∀ l ¼ 2;…; n

LðnÞ
3 jk2; k3;…; kn;Mi ¼ Mjk2; k3;…; kn;Mi;

LðnÞ
1 jk2; k3;…; kn;Mi ¼

X
s¼�1

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkn − sMÞðkn þ sM þ 1Þ

p
jk2; k3;…; kn;M þ si;

LðnÞ
2 jk2; k3;…; kn;Mi ¼

X
s¼�1

−is
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkn − sMÞðkn þ sM þ 1Þ

p
jk2; k3;…; kn;M þ si; ð4:11Þ

with L̂ðlÞ
i ≔

P
l
k¼1 Ĵ

v;ek
i . Let us define InvðHðvÞ

G Þ ⊂ ⊗
e at v

Hje as the subspace spanned by jk2; k3;…; kn−1; 0; 0i for all possible
k2; k3;…; kn−1. One has

LðnÞ
i jk2; k3;…; kn−1; 0; 0i ¼ 0; ∀ i ¼ 1; 2; 3: ð4:12Þ

Moreover, with the vectors jk2; k3;…; kn−1; 1=2;Mi, we define

jk2; k3;…; kn−1itot ¼
1ffiffiffi
2

p
����k2; k3;…; kn−1;

1

2
;
1

2



⊗ j0; 1iv −

1ffiffiffi
2

p
����k2; k3;…; kn−1;

1

2
;−

1

2



⊗ j1; 0iv: ð4:13Þ

Then one has

ðLðnÞ
i þ Ĵ v;iÞjk2; k3;…; kn−1itot ¼ 0; ∀ i ¼ 1; 2; 3: ð4:14Þ

Let Hinv ⊂ Htot
v denote the subspace spanned by jk2; k3;…; kn−1itot for all possible k2; k3;…; kn−1. Then InvðHtot

v Þ can be
decomposed as

InvðHtot
v Þ ¼ ðInvðHðvÞ

G Þ ⊗ j0; 0ivÞ ⊕ ðInvðHðvÞ
G Þ ⊗ j1; 1ivÞ ⊕ Hinv; ð4:15Þ

where InvðHðvÞ
G Þ ⊗ ji1; i2iv is the space composed of

vectors jψi ⊗ ji1; i2i for all jψi ∈ InvðHðvÞ
G Þ.

Let v be a n-valence gauge invariant fermionic vertex,
where the ith edge ei is assigned to a spin ji. According to the

decomposition (4.15), the gauge invariant Hilbert space
InvðHtot

v Þ contains a subspace Hinv, isometric to the gauge
invariant Hilbert space of a (nþ 1)-valence pure-gravity
vertex where the ith edge for 1 ≤ i ≤ n is assigned to spin ji,
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and the (nþ 1)th, the spin 1=2. Then once we consider the
volume operator at v, this extra spin 1=2 will also have
contribution. Since the extra spin 1=2 originates from the
fermion filed, one gets an intuitive picture that fermion field
contributes to the volume of a vertex. Moreover, a n-valence
vertex in pure-LQG is always regarded as a polyhedron
whose faces are dual to the edges. The flux operators Ĵv;ei
associated to each edge e have the geometric interpretation of
the area vector of the dual face. Then the pure-LQG Gauss
constraint is just the closure condition

P
e Ĵ

v;e
i ¼ 0 ensuring

that the faces can form a closed polyhedron. Now, the
fermion field is involved. Then the Gauss constraint (4.3)
implies X

e

Ĵv;ei ¼ −Ĵ v;i; ð4:16Þ

where the right-hand side does not vanish in general. Thus,
the faces dual to the edges could not give a closed polyhedron
for states in Hinv. By (4.16), the area defect of this unclosed
polyhedron is filled by Ĵ v;i, i.e., the fermion spin at the vertex
(see [22] for more details on the fermion spin). A direct
consequence of the above discussion is that the volume of a
three-valence vertex with fermion does not vanish any more
for states in Hinv. Let ji with i ¼ 1, 2, 3 be the spins on the
edges. Then the states in Hinv are spanned by jkitot ≡ jki
with k ¼ j3 � 1=2. The action of the operator q̂123, the
operator proportional to the square of the volume operator
[3], on jki reads

hkjq̂123jkþ 1i ¼ −i
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2kþ 1Þð2kþ 3Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj1 − j2 þ kþ 1Þð−j1 þ j2 þ kþ 1Þðj1 þ j2 − kÞðj1 þ j2 þ kþ 2Þ

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
j3 −

1

2
þ kþ 1

��
−j3 þ

1

2
þ kþ 1

��
j3 þ

1

2
− k

��
j3 þ

1

2
þ kþ 2

�s
: ð4:17Þ

Then we have �
j3 −

1

2

����q̂123����j3 þ 1

2



¼ i

1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j1 þ 2j2 − 2j3 þ 1Þð2j1 − 2j2 þ 2j3 þ 1Þ

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−2j1 þ 2j2 þ 2j3 þ 1Þð2j1 þ 2j2 þ 2j3 þ 3Þ

p
: ð4:18Þ

Since the associated Hilbert space is two dimensional, the
whole Hilbert space is the eigenspace of the volume

operator κ0βl
3=2
p

2
ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffijq̂123j

p
with eigenvalue

Vv ¼
κ0βl

3=2
p

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�����j3 − 1

2

����q̂123����j3 þ 1

2


����
s

: ð4:19Þ

B. The Hamiltonian constraint

As discussed in [17,21], the smeared Hamiltonian
constraint in terms of θAðxÞ is

HF½N� ≔
X
x∈Σ

NðxÞHFðxÞ; ð4:20Þ

where HFðxÞ is given by

HF ¼ i
1

2
ffiffiffi
q

p ðθ†Ea
i σ

iDaθ − ðDaθÞ†Ea
i σ

iθÞ

− β
1

2
ffiffiffi
q

p Ea
i K

i
aθ

†θ −
1þ β2

β

1

2
ffiffiffi
q

p DaEa
i θ

†σiθ

− β
1

2
ffiffiffi
q

p Ea
i Daðθ†σiθÞ: ð4:21Þ

Fix a coordinate system xa on Σ and a positive number ϵ.
Divide Σ into a family Cϵ of cells such that each cell C ∈ Cϵ
is cubic with the coordinate volume less than ϵ3, and that
different cells can only share points on their boundaries.
Given a graph γ ¼ γG ∪ γF, for each cell C ∈ Cϵ, let γC
denote γ ∩ C. Since the limit ϵ → 0 will be considered
eventually, we will assume that ϵ is small enough such that
γC ≠ ∅ is one of the following types (see Fig. 1):

(i) the type-A graph: γC is composed of a single edge;
(ii) the type-B graph: γC is composed of a single

fermionic vertex without connecting any edges;
(iii) the type-C graph: γC is composed of edges inter-

secting a single vertex.
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For each cell C ∈ Cϵ, let us define

Hð1Þ
C ¼

Z
C
d3xNðxÞðDaθÞ†ðxÞEa

i ðxÞσiθðxÞ;

Hð2Þ
C ¼

Z
C
d3xNðxÞEa

i ðxÞKi
aðxÞθ†ðxÞθðxÞ;

Hð3Þ
C ¼

Z
C
d3xNðxÞDaEa

i ðxÞθ†ðxÞσiθðxÞ; ð4:22Þ

and introduce

HCϵ ¼
X
C∈Cϵ

1

VC

�
−iHð1Þ

C −
β

2
Hð2Þ

C −
1þ β2

2β
Hð3Þ

C − βHð1Þ
C

�
;

ð4:23Þ

where the volume VC of C is VC ¼ R
C d

3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðEÞjp

. Then
HF½N� is the limit of 1

2
HCϵ adding its complex conjugate as

ϵ → 0, i.e.,

HF½N� ¼ 1

2
lim
ϵ→0

ðHCϵ þ c:c:Þ: ð4:24Þ

To quantize HCϵ , we need to promote

H̃ðiÞ
C ¼ 1

VC
HðiÞ

C ; i ¼ 1; 2; 3; C ∈ Cϵ; ð4:25Þ

to an operator. As known in LQG, the volume operator is
not invertible. We thus need to regularize V−1

C as in [39] to
be V−1

C ¼ ð
ffiffiffiffiffiffiffiffi
V−1
C

p
Þ2 with

ffiffiffiffiffiffiffiffi
V−1
C

q
¼ κ00

4 × 8

6

�
2

κβ

�
3 X
e;e0;e00 at v

ϵðe; e0; e00Þtr

× ðh−1e fhe; VCgh−1e0 fhe0 ; VCgh−1e00 fhe00 ; VCgÞ;
ð4:26Þ

where ϵðe; e0; e00Þ ¼ 0;�1 depending on the orientation of
e ∧ e0 ∧ e00, and κ00 is a constant to remove the dependence

of partition. Then, the operator
d̃
HðiÞ

C is given by

d̃
HðiÞ

C ¼
dffiffiffiffiffiffiffiffi
V−1
C

q
ĤðiÞ

C

dffiffiffiffiffiffiffiffi
V−1
C

q
; ð4:27Þ

where ĤðiÞ
C will be discussed latter, and the operator dffiffiffiffiffiffiffiffiV−1

C

p
reads

dffiffiffiffiffiffiffiffi
V−1
C

q
¼ κ00

4× 8

6

�
2

iℏκβ

�
3X
v inC

X
e;e0;e00 atv

ϵðe;e0; e00Þ

× trðh−1e ½he; V̂C�h−1e0 ½he0 ; V̂C�h−1e00 ½he00 ; V̂C�Þ: ð4:28Þ

Here there are several issues on dffiffiffiffiffiffiffiffiV−1
C

p
. At first, dffiffiffiffiffiffiffiffiV−1

C

p
actually acts on states ψγC with respect to the graph
γC ¼ γ ∩ C. Given a state ψγC , according to (3.43), there
is a unique graph PðγCÞ ⊂ γC such that ψγC ∈ Hirr

PðγCÞ. The
summation in (4.28) over v ∈ C actually means the
summation over v ∈ VðPðγCÞÞ, and the summation over
e; e0; e00 means the summation over e; e0; e00 ∈ EðPðγCÞÞ.
As a consequence, for γC being a type-A or type-B graph,

one has dffiffiffiffiffiffiffiffiV−1
C

p
ψγC ¼ 0, and for γC being a type-C graph

with the vertex vC, one has

dffiffiffiffiffiffiffiffi
V−1
C

q
ψγC ¼ κ00

4× 8

6

�
2

iℏκβ

�
3 X
e;e0;e00∈EðPðγCÞÞ

ϵðe;e0; e00Þtr

× ðh−1e ½he; V̂vC �h−1e0 ½he0 ; V̂vC �h−1e00 ½he00 ; V̂vC �ÞψγC ;

ð4:29Þ

where V̂vC is the volume operator introduced in [35].

According to this result, the operator dffiffiffiffiffiffiffiffiV−1
C

p
at the most

right of
d̃
HðiÞ

C will annihilate the states with respect to the
type-A and type-B graphs. Hence, only the states on type-C
graphs is needed to be considered. From now on, γC will be
referred to as the type-C graphs until otherwise stated. The
vertex for the edges in γC intersecting will be denoted
by vC.
Let us begin with the operator

d̃
Hð1Þ

C . Replacing Ea
i ðxÞ by

−iκℏβδ=δAi
aðxÞ in Hð1Þ

C in (4.22), we can quantize Hð1Þ
C as

FIG. 1. Different types of graphs where in the lower left panel is
a type-C graph with a fermionic vertex and, the lower right panel,
a type-C graph with a gravitational vertex.
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Ĥð1Þ
C ¼−iκℏβ

Z
C
d3xNðxÞ dðDaθÞ†ðxÞσiθ̂ðxÞ

δ

δAi
aðxÞ

: ð4:30Þ

Note that we put the derivative δ
δAi

aðxÞ at the most right so that

the resulting operator is cylindrical consistent, i.e., the

results of states acted by the resulting operator do not
depend on the edges taking trivial representation. Given an
edge e∶ ½0; δ� → C of γC with eð0Þ ¼ vC, let Ueðt; 0; AÞ
denote the parallel transport from eð0Þ to eðtÞ along e.
Thus, Ueðt; 0; AÞ satisfies

d
dt
Ueðt; 0;AÞ ¼ −AaðeðtÞÞ_eaðtÞUðt; 0;AÞ; and Uð0; 0;AÞ ¼ I: ð4:31Þ

Defining he ≔ Uðδ; 0;AÞ, one has, for any fiaðxÞ,Z
d3xfiaðxÞ

δ

δAi
aðxÞ

he ¼ −
Z

δ

0

dτfiaðeðτÞÞ_eaðτÞUeðδ; τ; AÞτiUeðτ; 0; AÞ: ð4:32Þ

Thus, we get

−iκℏβ
Z
C
d3xNðxÞdDaθ

†ðxÞσiθ̂ðxÞ δ

δAi
aðxÞ

he ¼ κℏβNðseÞðθ̂†ðteÞhe − θ̂†ðseÞÞσiθ̂ðseÞĴv;ei he; ð4:33Þ

where we used

δ × _eaðt1ÞðDaθÞ†ðeðt1ÞÞ ¼ θ†ðeðt1 þ δÞÞUeðt1 þ δ; t1;AÞ − θ†ðeðt1ÞÞ þOðδ2Þ: ð4:34Þ

Then, for a state ΨC with respect to γC, one has

Ĥð1Þ
C ΨC ¼ κℏβNðvCÞ

X
e∈γC

ðθ̂†ðteÞhe − θ̂†ðvCÞÞσiθ̂ðvCÞĴvC;ei ΨC; ð4:35Þ

which gives
d̃
Hð1Þ

C acting on ΨC as

d̃
Hð1Þ

C ΨC ¼ κℏβNðvCÞ
X
e∈γC

dffiffiffiffiffiffiffiffi
V−1
C

q
ðθ̂†ðteÞhe − θ̂†ðvCÞÞσiθ̂ðvCÞĴvC;ei

dffiffiffiffiffiffiffiffi
V−1
C

q
ΨC: ð4:36Þ

For the second term
d̃
Hð2Þ

C , one has

Ĥð2Þ
C ¼

Z
C
d3xNðxÞEa

i ðxÞKi
aðxÞθ†ðxÞθðxÞ: ð4:37Þ

Taking advantage of the Thiemann’s trick to quantize the
pure-gravity Hamiltonian constraint in LQG [5], one hasZ
C
d3xfðxÞEa

i ðxÞKi
aðxÞ ¼

1

2κβ2

�Z
C
d3xfðxÞHEðxÞ; VC


;

ð4:38Þ

where HEðxÞ is the Euclidean part of the pure-gravity
Hamiltonian constraint, i.e.,

HEðxÞ ¼
ϵijkFi

abðxÞEa
j ðxÞEb

kðxÞffiffiffiffiffiffiffiffiffi
qðxÞp :

Thus, Hð2Þ
C is quantized as

Ĥð2Þ
C ¼ 1

2iκℏβ2
½NðvCÞĤE;vC θ̂

†ðvCÞθ̂ðvCÞ; V̂vC �; ð4:39Þ

where ĤE;vC denotes the Euclidean part of the pure-gravity
Hamiltonian constraint operator at vC, and V̂vC , the volume

operator at vC. Equation (4.39) leads to the operator
d̃
Hð2Þ

C
given by

d̃
Hð2Þ

C ¼ 1

2iκℏβ2
NðvCÞ

ffiffiffiffiffiffiffiffidV−1
vC

q
ðĤE;vCV̂vC − V̂vCĤE;vCÞθ̂†ðvCÞ

× θ̂ðvCÞ
ffiffiffiffiffiffiffiffidV−1
vC

q
: ð4:40Þ

Finally, for the third term
d̃
Hð3Þ

C , we have
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Ĥð3Þ
C ΨC ¼ κℏβNðvCÞ

�X
e at vC

ĴvC;ei

�
θ̂†ðvCÞσiθ̂ðvCÞΨC;

ð4:41Þ

by taking advantage of the Gauss constraint operator of the

pure gravity. Thus
d̃
Hð3Þ

C reads

d̃
Hð3Þ

C ΨC ¼ κℏβNðvCÞ
dffiffiffiffiffiffiffiffi
V−1
C

q �X
e at vC

ĴvC;ei

�

× θ̂†ðvCÞσiθ̂ðvCÞ
dffiffiffiffiffiffiffiffi
V−1
C

q
ΨC: ð4:42Þ

With (4.36), (4.40), and (4.42), the operator dHCϵ is

ĤCϵ ¼
X
C∈Cð3Þϵ

− i
d̃
Hð1Þ

C −
β

2

d̃
Hð2Þ

C −
1þ β2

2β
d̃
Hð3Þ

C − β
d̃
Hð1Þ

C ; ð4:43Þ

where

Cð3Þϵ ¼ fC ∈ Cϵ; γ ∩ C is type-Cg:
Even though dHCϵ in (4.43) is defined with a partition

structure Cϵ on Σ, this partition structure is indeed not
necessary. One can define an operator equivalent to dHCϵ

with Σ endowed with another structure, which is more
convenient for the further study. To this end, let us first
introduce the following notion.
Definition IV.1 (removable vertex). A vertex v of a

graph γ is removable if it satisfies the following conditions:
(i) v is a bivalence vertex connecting e1 and e2.
(ii) The composition of e1 and e2 as a curve is Cm and

semianalytic.
Given a graph γ, one can obtain another graph kerðγÞ by
removing all of its removable vertices. kerðγÞ will be called
the kernel of γ. Let Γker be the collection of the kernels of all
graphs in Γo. Fix once and for all a parametrization for each
γ ∈ Γker, where a parametrization of a graph is an assignment
to each edge e ∈ EðγÞ a parametrization ½0; 1� ∋ t →
eðtÞ ∈ Σ. For an edge e of a kernel in Γker taking v as an
end point, we can define eðv; δÞ ⊂ e as the segment starting
from v and ending at either eðδÞ for v ¼ eð0Þ or eð1 − δÞ for
v ¼ eð1Þ. Given a graph γ ¼ γG ∪ γF, for each v ∈ VðγGÞ,
mimicking the operator

d̃
HðiÞ

C in (4.36), (4.40), and (4.42), we
define

dH̃ðiÞðv; δ⃗vÞ ¼
dffiffiffiffiffiffiffiffi
V−1
v

q dHðiÞðv; δ⃗vÞ
dffiffiffiffiffiffiffiffi
V−1
v

q
; i¼ 1;2;3; ð4:44Þ

with

dHð1Þðv; δ⃗vÞ ¼ κℏβNðvÞ
X
e at v

ðθ̂†ðteðv;δv;eÞÞheðv;δv;eÞσiθ̂ðvÞ − θ̂†ðvÞσiθ̂ðvÞÞĴv;ei ;

dHð2Þðv; δ⃗vÞ ¼
1

2iκℏβ2
NðvÞðĤE;vV̂v − V̂vĤE;vÞθ̂†ðvÞθ̂ðvÞ;

dHð3Þðv; δ⃗vÞ ¼ κℏβNðvÞ
�X

e at v

Ĵv;ei

�
θ̂†ðvÞσiθ̂ðvÞ; ð4:45Þ

where δ⃗v ¼ fδv;ege at v is a vector of real numbers for each vertex. Taking advantage of these operators, we define

dHðδÞ ≔
X

v∈VðγGÞ
− i dH̃ð1Þðv; δ⃗vÞ −

β

2

dH̃ð2Þðv; δ⃗vÞ −
1þ β2

2β
dH̃ð3Þðv; δ⃗vÞ − β

dH̃ð1Þðv; δ⃗vÞ;

¼
X

v∈VðγÞ
− i dH̃ð1Þðv; δ⃗vÞ −

β

2

dH̃ð2Þðv; δ⃗vÞ −
1þ β2

2β
dH̃ð3Þðv; δ⃗vÞ − β

dH̃ð1Þðv; δ⃗vÞ; ð4:46Þ

where δ≡ fδ⃗vgv∈VðγÞ and the second step is a consequence
of the operator

ffiffiffiffiffiffiffiffidV−1
v

q
in dH̃ðiÞðv; δ⃗vÞ. Actually, due

to the operator
ffiffiffiffiffiffiffiffidV−1
v

q
in dH̃ðiÞðv; δ⃗vÞ, dH̃ðiÞðv; δ⃗vÞ with v ∉

γG vanish for all i ¼ 1, 2, 3. Comparing the operators dHðδÞ

and dHCϵ , one can verify easily that dHðδÞ ¼ dHCϵ with a

suitably chosen δ. Hence, we can use dHðδÞ instead of dHCϵ
for our further study. In the rest of the paper, wewill assume
that δv;e is a constant for all v and e for convenience. The
discussion for nonconstant δ can be discussed similarly.
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When the limit of dHðδÞ as δ → 0 is taken, the only nontrivial term in (4.45) one needs to consider is

ĥ1ðv; e; δÞ ≔ θ̂†ðteðv;δÞÞheðv;δÞσiθ̂ðvÞĴv;ei :

By definition, we have

ĥ1ðv; e; δÞðDj
mnðheðv;δÞÞ ⊗ jk1; k2ivÞ

¼ −2WjW1
2

X
J¼j�1

2

X
A;C

ð−1ÞmþA−n−C
� 1

2
1
2

1

j j J

��
j 1

2
J

m A −ðmþ AÞ

��
J 1

2
j

−ðnþ CÞ C n

�
×DJ

mþA;nþCðheðv;δÞÞ ⊗ θ̂CðvÞjk1; k2iv ⊗ θ̂†Aðteðv;δÞÞj0; 0iteðv;δÞ ; ð4:47Þ

where Wj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þð2jþ 1Þp

, ½J1
2

j
1

1
2

J� is the 6j symbol and ð j1m1

j2
m2

j3
m3
Þ denotes the 3j symbol. Equation (4.47) gives us the

picture that the operator ĥ1ðv; e; δÞ moves the fermionic vertex at v to teðv;δÞ ∈ e, and simultaneously change the spin on
eðv; δÞ. To illustrate this statement, let us use a disk • to represent a fermionic vertex and a solid line to represent the edge e.
Then, by omitting the explicit coefficients in the right hand of (4.47), one has
(1) for k1 ¼ 1 ¼ k2,

ð4:48Þ

(2) for k1 ¼ 1 and k2 ¼ 0

ð4:49Þ

(3) for k1 ¼ 0 and k2 ¼ 1

.

ð4:50Þ

According to (4.48)–(4.50), one gets hĥ1ðv; e; δÞψ j
ĥ1ðv; e; δ0Þψi ¼ 0 for δ ≠ δ0, which implies that the limit
of ĥ1ðv; e; δÞ as δ → 0 does not exist. As a consequence,

the limit of dHðδÞ as δ → 0 does not exist, too. However, as

final operator should be define as limδ→0
dHðδÞ, we need to

introduce the vertex Hilbert spaceHvtx which is in the dual

space of Cyltot. Once Hvtx is introduced, dHðδÞ can be

promoted to an operator dHðδÞ� in Hvtx by the duality such

that dHðδÞ� ¼ dHðδ0Þ� for δ ≠ δ0. Then, the limit of dHðδÞ� as
δ → 0 exists. It will be seen below thatHvtx is defined to be
the kinematical Hilbert space averaged by diffeomorphisms
preserving some particular vertices.
Another issue motivating us to introduce the vertex

Hilbert space is that the adjoint operator to dHðδÞ is not
densely defined. To see this, let us investigate the adjoint ofdHð1Þðv; δÞ, a term of dHðδÞ. By definition, for a state Ψγ ∈

Hirr
γ with γ taking v as a vertex, the adjoint dHð1Þðv; δÞ† acts

on it such that for all Φγ0 ∈ H,
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h dHð1Þðv; δÞ†ΨγjΦγ0 i ¼ hΨγj dHð1Þðv; δÞΦγ0 i
¼

X
e∈Eðγ0Þ
e at v

κℏβNðvÞhðĥ1ðv; e; δÞ†

− θ̂ðvÞσiθ̂ðvÞĴv;ei ÞΨγjΦγ0 i; ð4:51Þ

with ĥ1ðv; e; δÞ† ¼ Ĵv;ei θ̂†ðvÞσih−1eðv;δÞθ̂ðteðv;δÞÞ. The subtlety
arises due to the summation over edges of γ0 rather than γ.
Let us consider a stateΨγ with γ shown in Fig. 2. Moreover,
the fermion state of Ψγ at the fermionic vertex teðv;δÞ is
chosen to be aj0; 1iteðv;δÞ þ bj1; 0iteðv;δÞ for some a; b ∈ C.

Then, for each graph γ0 obtained from γ by using an edge
eðv; δÞ to connect the vertex teðv;δÞ and v, dropping the
fermionic vertex teðv;δÞ and adding a fermionic vertex at v
(see the two examples in Fig. 2), one can find a state Φγ0 ∈
Hirr

γ0 such that hðĥ1ðv; e; δÞ† − θ̂ðvÞσiθ̂ðvÞĴv;ei ÞΨγjΦγ0 i ≠ 0,
where e ∈ γ0 is the edge containing eðv; δÞ as a segment.
Because there exist uncountably infinitely many such
graphs γ0 and the states Φγ0 associated to different graphs
are orthogonal to each other, Ψγ is not in the domain ofdHð1Þðv; δÞ†. A similar argument can be made for all of states
in Hirr

γ (including those taking j1; 1iteðv;δÞ at teðv;δÞ), which
implies that the entire Hilbert spaceHirr

γ is not contained in

the domain of dHð1Þðv; δÞ†. Besides, it is manifest that there
are infinitely many such Hilbert spaces that are excluded

from the domain of dHð1Þðv; δÞ†. Actually, according to
(4.47), the operator ĥ1ðv; e; δÞ will change the state taking
spin j ¼ 1

2
on eðv; δÞ to a superposition of states taking

spins j ¼ 0 and 1 on eðv; δÞ. In other words, the operator
ĥ1ðv; e; δÞ can erase the segment eðv; δÞ ⊂ e, which is
indeed the essential reason for the problem of definingdHð1Þðv; δÞ†. It will be shown below that this problem can
also be fixed by introducing the vertex Hilbert space to
define the limit. After taking the limit as δ → 0 in the vertex
Hilbert space, we will get a projection χþðjĴv;ej2Þ [see
(4.84)]. This projection is left multiplied to the operator
corresponding to ĥ1ðv; e; δÞ in Hvtx, and kill the state with
j ¼ 0 on eðv; δÞ.
Finally, let us discuss why we choose HCϵ rather than its

complex conjugate for quantization. Suppose that one
chooses the complex conjugate of HCϵ to do the above
quantization. Then, in the resulting operator, one will get a
term involving ĥ1ðv; e; δÞ† ¼ Ĵv;ei θ̂†ðvÞσih−1eðv;δÞθ̂ðteðv;δÞÞ. In
contrast to ĥ1ðv; e; δÞ, ĥ1ðv; e; δÞ† moves the fermionic
vertex at teðv;δÞ ∈ e to v. Now let us consider the states

ĥ1ðv; e; δÞjψi and ĥ1ðv; e; δ0Þjψi with δ ≠ δ0 for jψi, says,
being Dj

mnðheÞ ⊗ jk1; k2iv. Then, one gets ĥ1ðv; e; δÞ†
ðĥ1ðv; e; δ0ÞjψiÞ ¼ 0 but ĥ1ðv; e; δÞ†ðĥ1ðv; e; δÞjψiÞ ≠ 0.
This result means that ĥ1ðv; e; δÞ† is not diffeomorphism
covariant. Namely, diffeomorphism equivalent states, i.e.,

the states ĥ1ðv; e; δÞjψi and ĥ1ðv; e; δ0Þjψi, could be no
longer diffeomorphism equivalent after acted by ĥ1ðv; e; δÞ†.
This facts leads to a problem that

P
e atv ĥ1ðv; e; δÞ† cannot

be promoted to a well-defined operator in the diffeomor-
phism invariant Hilbert space.

1. The vertex Hilbert space Hvtx

Given a graph γ, we will consider the subgroup of Cm

semianalytic diffeomorphisms which act on VðkerðγÞÞ
trivially, i.e., the diffeomorphisms preserving every vertex
of kerðγÞ. This subgroup will be denoted by DiffVðkerðγÞÞ.
There are two subgroups of DiffVðkerðγÞÞ. The first one,
denoted by Diffγ, preserves γ. The other one, denoted by
Diff0γ , preserves every edge of γ. Hence Diff0γ is a subgroup
of Diffγ. The quotient

GSγ ¼ Diffγ=Diff0γ ð4:52Þ

is the group of graph symmetries of γ. GSγ is a finite group
with order jGSγj. Given a state Ψγ with respect to γ and a
diffeomorphism ϕ, ϕ⋆Ψγ denotes the pullback of Ψ under
ϕ. The averaging with respect to GSγ defines a projection
Pγ∶ Hirr

γ → Hirr
γ ,

FIG. 2. An example of a graph γ (top panel) such that Hirr
γ is

not in the domain of dHð1Þðv; δÞ†, and examples of graphs γ0

(bottom panel) such that h dHð1Þðv; δÞ†ΨγjΦγ0 i ≠ 0. The black
disks represent fermionic vertices.
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Pγ∶ Ψγ ↦
1

jGSγj
X
ϕ∈GSγ

ϕ⋆Ψγ: ð4:53Þ

The averaging with respect to the remaining diffeomor-
phisms DiffVðkerðγÞÞ=Diffγ defines

ηðΨγÞ ≔
X

ϕ∈DiffVðkerðγÞÞ=Diffγ

ϕ⋆PγðΨγÞ

¼ 1

jGSγj
X

ϕ∈DiffVðkerðγÞÞ=Diff0γ

ϕ⋆Ψγ: ð4:54Þ

Obviously, ηðΨγÞ belongs to the algebraic dual space
Cyltot� of Cyltot. Taking advantage the decomposition
(3.43), one can extend η to a well-defined operation on
Cyltot. Let ηðCyltotÞ ⊂ Cyltot� denote the image of Cyltot
under η. The group averaging procedure naturally endows
ηðCyltotÞ with an inner product

ðηðΨγÞ; ηðΨ0
γ0 ÞÞ ¼ ðηðΨγÞjΨ0

γ0 i; ð4:55Þ

where ðηðΨγÞjΨ0
γ0 i, the action of ηðΨγÞ ∈ Cyltot� on Ψγ0 , is

given by

ðηðΨγÞjΨ0
γ0 i ¼

X
ϕ∈DiffVðkerðγÞÞ=Diff0γ

hϕ⋆Ψγ;Ψ0
γ0 i: ð4:56Þ

Here, h·; ·i is the inner product inH. Then the vertex Hilbert
space Hvtx is the completion of ηðCyltotÞ, i.e.,

Hvtx ¼ ηðCyltotÞ: ð4:57Þ

Given a finite subset W ⊂ Σ, let ΓkerðWÞ be the collec-
tion of graphs γ satisfying VðkerðγÞÞ ¼ W. Two graphs

γ; γ0 ∈ ΓkerðWÞ are said to be equivalent, denoted by
γ ∼d γ

0, if there exists a diffeomorphism ϕ ∈ DiffW , i.e.,
a diffeomorphism preserving W, such that ϕðγÞ ¼ γ0. Let
½ΓkerðWÞ� be the quotient space ΓkerðWÞ=∼d, ½γ� ∈
½ΓkerðWÞ� be the equivalence class of γ, and Sirr

γ be the
image of Pγ . Then η∶ Sirr

γ → Hvtx is isometric. By ηðSirr
γ Þ

denoting the image of Sirr
γ under η, one has

ηðSirr
γ Þ ¼ ηðSirr

γ0 Þ; ∀ γ; γ0 ∈ ½γ�: ð4:58Þ

Thus, we can define

ηðSirr
½γ�Þ ≔ ηðSirr

γ0 Þ ð4:59Þ

by choosing arbitrary γ0 ∈ ½γ�. Let FSðΣÞ be the set of finite
subsets of Σ. Then we have

ηðCyltotÞ ¼ ⨁
W∈FSðΣÞ

⨁
½γ�∈½ΓkerðWÞ�

ηðSirr
½γ�Þ ⊕ C: ð4:60Þ

The factor 1=jGSγj in (4.55) ensures that η is an isometric
between Hirr

γ and ηðHirr
γ Þ, i.e.,

ηðCyltotÞ ≅ ⨁
W∈FSðΣÞ

⨁
½γ�∈½ΓkerðWÞ�

Sirr
σð½γ�Þ ⊕ C; ð4:61Þ

where σð½γ�Þ ∈ ½γ� is a representative of [γ] fixed once and
for all.

2. The Hamiltonian operator on Hvtx

Given Ψγ ∈ Sirr
γ , let dHðδÞ� be the dual of dHðδÞ acting on

ηðΨγÞ, i.e.,

ð dHðδÞ�ηðΨγÞjΦγ0 i ¼ ðηðΨγÞj dHðδÞΦγ0 i; ∀ γ0 ∈ Γo; Φγ0 ∈ Hirr
γ0 : ð4:62Þ

The operator dHðδÞ takes the form dHðδÞ ¼ P
v NðvÞ dffiffiffiffiffiffiffiffiV−1

v

p
ÔðvÞ dffiffiffiffiffiffiffiffiV−1

v

p
with ÔðvÞ representing some operator. Due to the

inverse volume operators, we have

lim
δ→0

ð dHðδÞ�ηðΨγÞjΦγ0 i ¼ lim
δ→0

X
v∈VðkerðγÞÞ

NðvÞðηðΨγÞj
dffiffiffiffiffiffiffiffi
V−1
v

q
ÔðvÞ

dffiffiffiffiffiffiffiffi
V−1
v

q
Φγ0 i: ð4:63Þ

Recalling (4.46), we will consider the right-hand term by
term.
Let us begin with the operator dHð1Þðv; δÞ with

v ∈ VðkerðγÞÞ. By (4.63), we need to investigate

Ivðγ0; δÞ ¼ ðηðΨγÞj dHð1Þðv; δÞΦγ0 i ð4:64Þ

for all graphs γ0 taking v as a vertex. By definition, we can

split dHð1Þðv; δÞ into two parts such that

dHð1Þðv; δÞΦγ0 ¼ κℏβNðvÞĥ1ðv; δÞΦγ0 − κℏβNðvÞĥ2ðvÞΦγ0

ð4:65Þ
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with ĥ1ðv; δÞΦγ0 ¼
P

e at v ĥ1ðv; e; δÞΦγ0 and ĥ2ðvÞ ¼P
½e� at v θ̂

†ðvÞσiθ̂ðvÞĴv;½e�i . Substituting (4.65) into (4.64),
we will be concerned about the term

Ið1Þv ðγ0; δÞ ¼ ðηðΨγÞjĥ1ðv; δÞΦγ0 i
¼

X
e∈Eðγ0Þ
e at v

ðηðΨγÞjĥ1ðv; e; δÞΦγ0 i: ð4:66Þ

Substituting (4.54) into (4.66), we get

Ið1Þv ðγ0; δÞ ¼
X
e∈Eðγ0Þ
e at v

X
ϕ∈Diff 0

hĥ1ðv; e; δÞ†ðϕ⋆ΨγÞjΦγ0 i; ð4:67Þ

with Diff 0 ≔ DiffVðkerðγÞÞ=Diffγ for abbreviation, where we
employ ĥ1ðv; e; δÞ† ¼ Ĵv;ei θ̂†ðvÞσih−1eðv;δÞθ̂ðteðv;δÞÞ. Note that
the summation in the right-hand side of (4.67) is over edges
of γ0, while the operator ĥ1ðv; e; δÞ† acts on states asso-
ciated to graphs diffeomorphism to γ. Thus, we cannot get

Ið1Þv ðγ0; δÞ ¼ ðĥ1ðv; δÞ†ηðΨγÞjΦγ0 i naively from (4.67).
Consider the action of ĥ1ðv; e; δÞ† on Dje

meneðheðv;δÞÞ ⊗
Dj0e

m0
en0e

ðheneðv;δÞÞ ⊗ jk1; k2iteðv;δÞ , a general state associated to
the graph feg ∪ fteðv;δÞg, where eneðv; δÞ is the other
segment of e complementing eðv; δÞ. Here and in the rest,
by a state associated to a graph α, we refer to a state inHirr

α .
Acting on the state, the holonomy h−1eðv;δÞ in ĥ1ðv; e; δÞ†
changes the spin je on eðv; δÞ to je � 1

2
. Then, for je ¼ 1

2
,

the spin on eðv; δÞ is changed to 0, i.e., the segment eðv; δÞ
is erased. Thus, for je ¼ 1

2
, acted by the holonomy, the state

becomes a combination of one state associated feg and the
other state associated to feneðv; δÞg. However, the operator
Ĵv;ei in ĥ1ðv; δÞ† will annihilate this one associated to
feneðv; δÞg. Consequently, acted by ĥ1ðv; δÞ†, the resulting
state is still a state associated to feg, regardless of the
change of the fermionic vertices by θ̂†ðvÞ and θ̂ðteðv;δÞÞ.
ϕo⋆Ψγ for some diffeomorphism ϕo is a state associated

to the graph ϕoðγÞ. Let γ̃G and γ̃F denote the gravitational
sector and the fermionic sector of ϕoðγÞ, i.e.,
ϕoðγÞ ¼ γ̃G ∪ γ̃F. Then, the discussion in the last paragraph
tells that ĥ1ðv; δÞ†ϕo⋆Ψγ is a state associated to some
graph whose gravitational sector is γ̃G ∪ eðv; δÞ. Thus,
hĥ1ðv; e; δÞ†ðϕo⋆ΨγÞjΦγ0 i ≠ 0 for Φγ0 ∈ Hirr

γ0 implies
e ⊂ γ̃G ∪ eðv; δÞ, which means either e ⊂ ϕoðγÞ, or
eðv; δÞ⊄ϕoðγÞ but eneðv; δÞ ⊂ ϕoðγÞ.
Let us first consider the case where eðv; δÞ⊄ϕoðγÞ but

eneðv; δÞ ⊂ ϕoðγÞ such that hĥ1ðv; e; δÞ†ðϕo⋆ΨγÞjΦγ0 i ≠ 0.
The hypothesis hĥ1ðv; e; δÞ†ðϕo⋆ΨγÞjΦγ0 i ≠ 0 implies
γ̃G ∪ eðv; δÞ ¼ γ0G where γ0G is the gravitational sector of
γ0. Together with eðv; δÞ⊄ϕoðγÞ, one gets γ̃G ¼ γ0Gneðv; δÞ.
Since eðv; δÞ is a segment of an edge e ⊂ γ0G, teðv;δÞ is a
one-valence vertex in γ̃G. Furthermore, teðv;δÞ is a one-valence
fermionic vertex because of ĥ1ðv; e; δÞ†ðϕo⋆ΨγÞ ≠ 0.

Thus, teðv;δÞ is not a removable vertex; i.e., all of the
diffeomorphisms in Diff 0 preserve this vertex. Now, let us
come to δ0 < δ. If

P
ϕ∈Diff 0 hĥ1ðv; e; δ0Þ†ðϕ⋆ΨγÞjΦγ0 i ¼P

ϕ∈Diff 0 hĥ1ðv; e; δ0Þ†ðϕ⋆ϕo⋆ΨγÞjΦγ0 i still does not vanish,
then there has to be another diffeomorphism ϕ0

o that can
move a fermionic vertex in ϕoðγÞ to teðv;δ0Þ such that

ĥ1ðv; e; δ0Þ†ðϕ0
o⋆ϕo⋆ΨγÞ ≠ 0, and simultaneously preserve

all of the other vertices but not necessarily teðv;δÞ in ϕoðγÞ
such that hĥ1ðv; e; δ0Þ†ðϕ0

o⋆ϕo⋆ΨγÞjΦγ0 i ≠ 0. This can
be done only if ϕ0

o can move teðv;δÞ to teðv;δ0Þ, which
is impossible because teðv;δÞ is preserved by all diffeo-

morphisms in Diff 0. Therefore,
P

ϕ∈Diff 0 hĥ1ðv; e; δ0Þ†
ðϕ⋆ΨγÞjΦγ0 i ¼ 0 for all δ0 < δ. This discussion tells that
for sufficiently small δ, the case with eðv; δÞ⊄ϕoðγÞ but
eneðv; δÞ ⊂ ϕoðγÞ can be excluded. Because we finally need
to consider the limit as δ → 0, choosing a sufficiently small δ
can be done without loss of generality.
For the case with e ⊂ ϕoðγÞ, hĥ1ðv; e; δÞ†ðϕo⋆ΨγÞj

Φγ0 i ≠ 0 requires that the graph of ĥ1ðv; e; δÞ†ðϕo⋆ΨγÞ
is equal to γ0. Since δ is chosen to be sufficiently small, in
the graph γ0 there is no fermionic vertex on the segment
eðv; δÞ ⊂ e ⊂ γ0, and teðv;δÞ ∈ γ0 is also not a fermionic

vertex. Therefore, for hĥ1ðv; e; δÞ†ðϕo⋆ΨγÞjΦγ0 i ≠ 0, there
cannot exist any fermionic vertices in eðv; δÞ ∪ fteðv;δÞg,
where eðv; δÞ and teðv;δÞ now are thought of as a segment

and a vertex in the graph of ĥ1ðv; e; δÞ†ðϕo⋆ΨγÞ. This
conclusion has two meanings. At first, ϕo ∈ Diff 0 must be
the diffeomorphism that moves the closest fermionic vertex
to v in e ∈ γ to teðv;δÞ so that θ̂ðteðv;δÞÞ can kill it. The closest
fermionic vertex to v in e ∈ γ will be denoted by vðv;eÞF , and

Fig. 3 gives an illustration of vðv;eÞF . Second, it means that

the fermion state at vðv;eÞF cannot be j1; 1i
vðv;eÞF

because it

FIG. 3. An example of graphs γ with vðv;eÞF being the closest

fermionic vertex to v in e ∈ EðkerðγÞÞ, and e½vðv;eÞF ; v� ⊂ e is the

edge of γ from v to vðv;eÞF .
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cannot be annihilated completely by θ̂ðtv;δÞ. For the second
point, we introduce a projection P̂vF on the fermion Hilbert
space HvF such that

P̂vF ji1; i2i ¼
�
0; i1 ¼ 1 ¼ i2;

ji1; i2i; otherwise:
ð4:68Þ

The first point makes us decompose ϕo as follows. Let γ⋆ be
the graph of γ0 with vðv;eÞF dropped, and v ∈ γ promoted to a
new fermionic vertex if it is not. Then, we find a diffeo-
morphism ϕ1 ∈ DiffVðkerðγÞÞ=Diffγ⋆ ¼ DiffVðkerðγ⋆ÞÞ=Diffγ⋆
such that ϕ1ðγ⋆Þ ¼ γ0. With ϕ1, we find ϕ2 ∈
Diffϕ1ðγ⋆Þ=Diffγ which moves vðv;eÞF to teðv;δÞ. One thus gets
ϕo ¼ ϕ2∘ϕ1. Introducing ĤvðeÞ as

ĤvðeÞ≔
(
Ĵv;ei θ̂†ðvÞσih−1

e½vðv;eÞF ;v�θ̂ðv
ðv;eÞ
F ÞP̂

vðv;eÞF
; if vðv;eÞF exists

0 otherwise
;

ð4:69Þ

where e½vðv;eÞF ; v� denotes the edge from v to vðv;eÞF . We thus
get

hĥ1ðv; e; δÞ†ðϕo⋆ΨγÞjΦγ0 i ¼ hϕ1⋆ðĤvðeÞΨγÞjΦγ0 i; ð4:70Þ

where the right-hand side is independent of δ, and
ϕ2ðγ0Þ ¼ γ0 is used. Using (4.70), we finally get

lim
δ→0

Ið1Þv ðγ0; δÞ ¼
X

ϕ∈DiffVðγÞ=Diffγ⋆

hϕ⋆ĤvΨγjΦγ0 i; ð4:71Þ

with

ĤvΨγ ¼
X
e at v

ĤvðeÞΨγ; ∀Ψγ ∈ Sirr
γ : ð4:72Þ

Equation (4.71) leads to

lim
δ→0

ðĥ1ðv; δÞ�ηðΨγÞj ¼ ðηðĤvΨγÞj: ð4:73Þ

Finally, taking advantage of limδ→0ĥ
�
2ηðΨγÞ ¼ ηðĥ2ΨγÞ,

we have

lim
δ→0

ð dHð1Þðv; δÞÞ�ηðΨγÞ

¼ κℏβNðvÞη
��

Ĥv −
X
e at v

Ĵv;ei θ̂†ðvÞσiθ̂ðvÞ
�
Ψγ

�
: ð4:74Þ

Now let us consider the operator dHð2Þðv; δÞ. An issue on

defining limδ→0
dHð2Þðv; δÞ is the operator ĤE;v comprisingdHð2Þðv; δÞ. In this paper, we will employ the work [45] to

define ĤE;v in Hvtx. More precisely, ĤE;v is given by

ĤE;v ¼ dffiffiffiffiffiffiffiffiV−1
v

p
ðF̂v þ F̂†

vÞ dffiffiffiffiffiffiffiffiV−1
v

p
with

F̂v ¼ −2
X

e;e0 at v

ϵð_e; _e0Þϵijktrðhαee0 τkÞĴv;ei Ĵv;e
0

k ; ð4:75Þ

where αee0 is a loop tangent to the two edges e and e0 at the
vertex v up to orders ke þ 1 and ke0 þ 1, respectively, with
ke and ke0 being, respectively, the orders of tangentiality of
e and e0 at v (see [45] for more details.) By this definition,
F̂v will change the graph by adding a loop at v and, thus,
F̂†
v, by removing a loop.
A subtlety here is that the vertex Hilbert space defined in

[45] is a little different from ours. In [45], the authors
defines the vertex Hilbert space with diffeomorphisms
preserving VðγÞ while our work considers the diffeomor-
phisms preserving VðkerðγÞÞ. Regardless of this difference,
the operator ĤE;v introduced in [45], for v ∈ VðkerðγÞÞ, is
well defined in our vertex Hilbert spaceHvtx. Indeed, due to

the operator dffiffiffiffiffiffiffiffiV−1
v

p
in dH̃ð2Þðv; δÞ, we do not need to

consider ĤE;v for removable v, i.e., v ∉ VðkerðγÞÞ.
According to this discussion, for v ∈ VðkerðγÞÞ, we have

lim
δ→0

dHð2Þðv;δÞηðΨγÞ

¼ κ1ðvÞ
2iκℏβ2

NðvÞη½ðĤE;vV̂v− V̂vĤE;vÞθ̂†ðvÞθ̂ðvÞΨγ�; ð4:76Þ

where κ1ðvÞ is introduced in [45] to remove the dependence
on the partition.
Finally, for the operator dHð3Þðv; δÞ, since dHð3Þðv; δÞ for

v ∈ VðkerðγÞÞ is independent of δ and DiffVðkerðγÞÞ invari-
ant. We have

lim
δ→0

ð dHð3Þðv; δÞ�ηðΨγÞj ¼ ðηðĤð3Þ
F ðvÞΨγÞj ð4:77Þ

with

Ĥð3Þ
F ðvÞ ≔ κℏβNðvÞ

�X
e at vC

ĴvC;ei

�
θ̂†ðvÞσiθ̂ðvÞ: ð4:78Þ

Let us summarize our results. According to the above
discussion, we have

ÂFηðΨγÞ ≔ lim
δ→0

dHðδÞ�ηðΨγÞ

¼
X

v∈VðγÞ
η

� dffiffiffiffiffiffiffiffi
V−1
v

q
Ĥv

dffiffiffiffiffiffiffiffi
V−1
v

q
Ψγ

�
; ð4:79Þ

where Ĥv is given by
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Ĥv ¼ i dHð1ÞðvÞ − β

2
dHð2ÞðvÞ − 1þ β2

2β
dHð3ÞðvÞ − β dHð1ÞðvÞ;

ð4:80Þ

with

dHð1ÞðvÞ ¼ κ2ðvÞl2
pβNðvÞ

�
Ĥv −

X
e at v

θ̂†ðvÞσiθ̂ðvÞĴv;ei

�
;

dHð2ÞðvÞ ¼ κ1ðvÞ
2il2

pβ
2
NðvÞðĤE;vV̂v − V̂vĤE;vÞθ̂†ðvÞθ̂ðvÞ;

dHð3ÞðvÞ ¼ κ3ðvÞl2
pβNðvÞ

�X
e at v

Ĵv;ei

�
θ̂†ðvÞσiθ̂ðvÞ; ð4:81Þ

according to (4.74), (4.76), and (4.77), respectively.
Here we again introduce the parameters κ2 and κ3 as in
[35] in order to remove the dependence on the partition.
Finally, because of (4.24), we finally define the fermion
Hamiltonian operator ĤF½N� on Hvtx as

ĤF½N� ¼ 1

2
ðÂF þ Â†

FÞ: ð4:82Þ

Let Ĥ0
v on Hvtx be the operator defined by

Ĥ0
vηðΨγÞ ¼ ηðĤvΨγÞ: ð4:83Þ

Then, the only nontrivial term in A†
F is the operator ðĤ0

vÞ†.
By the definition, Ĥv is composed of ĤvðeÞ, which
annihilates the fermionic vertex contained in e and closest
to v. Thus, the operator ðĤ0

vÞ† contains the operators, each
of which is associated to an edge e at v and promotes a
point vF ∈ e to a fermionic vertex such that vF becomes the
closest to v among the fermionic vertices contained in e. To
be more precise, let us define an operator Ĥ#

vðeÞ [refer to
(4.69)] as

Ĥ#
vðeÞ ¼ χþðjĴv;ej2Þθ̂†ðve;vÞheðve;vÞσiθ̂ðvÞĴv;ei ; ð4:84Þ

where χþ denotes the characteristic function of ½3
4
;∞Þ,

jĴv;ej2 ¼ δklĴv;ek Ĵv;el , ve;v ∈ e is an arbitrary point between
v and the closest fermionic vertex to v in e, and eðve;vÞ ⊂ e
is the segment starting from v and ending at ve;v. Here the
factor χþðjĴv;ej2Þ ensures that Ĥ#

vðeÞ cannot erase the
segment eðve;vÞ ⊂ e. In other words, Ĥ#

vðeÞ, acting on a
state with spin 1

2
on eðve;vÞ, will only change the spin 1

2
to 1.

Moreover, ve;v is defined such that it becomes closest to v
among the fermionic vertices in e after the action of Ĥ#

vðeÞ.
With Ĥ#

vðeÞ, ðĤ0
vÞ† is given by

ðĤ0
vÞ†ηðΨγÞ ¼ η

�X
e at v

Ĥ#
vðeÞΨγ

�
: ð4:85Þ

Note that even though ve;v is not uniquely determined by its
definition, the operator ðĤ0

vÞ† onHvtx is independent of the
choice of ve;v, due to the averaging operation η. Moreover,
χþðjĴv;ej2Þ is introduced in (4.84) because (4.72) implies

Ĥv ¼
X
e at v

ĤvðeÞχþðjĴv;ej2Þ: ð4:86Þ

Applying Ĥ#
vðeÞ, Â†

F reads

Â†
FηðΨγÞ ¼

X
v∈VðγÞ

η

� dffiffiffiffiffiffiffiffi
V−1
v

q
Ĥ#

v

dffiffiffiffiffiffiffiffi
V−1
v

q
Ψγ

�
; ð4:87Þ

where Ĥ#
v is

Ĥ#
v ¼−i dHð1ÞðvÞ#− β

2
dHð2ÞðvÞ−1þ β2

2β
dHð3ÞðvÞ− β dHð1ÞðvÞ#;

ð4:88Þ

with dHð2ÞvÞ and dHð3ÞðvÞ given in (4.81), and dHð1ÞðvÞ# given
by

dHð1ÞðvÞ# ¼ κ2ðvÞl2
pβNðvÞ

×

�X
e at v

Ĥ#
vðeÞ −

X
e at v

θ̂†ðvÞσiθ̂ðvÞĴv;ei

�
: ð4:89Þ

Let us complete this section with a discussion on the
intuitive picture led by the action of ĤvðeÞ and Ĥ#

vðeÞ. By
definition, Ĥ#

vðeÞ creates a fermionic vertex vF ∈ e so that
vF will be closest to v and carries states aj1; 0i þ bj0; 1i.
Simultaneously, Ĥ#

vðeÞ changes the fermion state ji1; i2iv at
v in such a way that j1; 1iv becomes cj1; 0iv þ dj1; 0iv for
some constant c and d, and αj1; 0iv þ βj0; 1iv for arbitrary
α and β is changed to j0; 0iv. Moreover, because of the
holonomy operator heðve;vÞ and flux operator Ĵv;ei in Ĥ#

vðeÞ,
the spin on the segment eðve;vÞ ⊂ e and the intertwiner at v
are changed. These results can be summarized as that the
operator Ĥ#

vðeÞmoves a fermion at v to vF, and changes the
geometry around v simultaneously. For the operator ĤvðeÞ,
it reverses this procedure. ĤvðeÞ moves a fermion at the

fermionic vertex vðv;eÞF , i.e., the closest fermionic vertex to
v, to the vertex v, and changes the geometry around v
simultaneously. Moreover, because of the projection oper-
ator P̂vF in ĤvðeÞ [see (4.69)], when the fermionic vertex

vðv;eÞF carries a fermion state j1; 1i
vðv;eÞF

, the fermion at vðv;eÞF

cannot be moved by the operator ĤvðeÞ. To see the
consequence of this fact, let us imagine an edge e with

both the source se and the middle point vðv;eÞF being the

fermionic vertices, where vðv;eÞF carries a fermion state, say,
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j1; 0i
vðv;eÞF

. Acted by Ĥ#
seðeÞ, the fermion at se will be moved

to some point v0F between se and vðv;eÞF . Then, acted by
ĤteðeÞ twice, the fermion at v0F will be moved to te. Now,

suppose that vðv;eÞF carries the state j1; 1i
vðv;eÞF

. Then, acted by

Ĥ#
seðeÞ, the fermion at se will be again moved to v0F.

However, the fermion at v0F cannot be moved to te after
acted by ĤteðeÞ, due to the operator P̂

vðv;eÞF
in ĤteðeÞ.

Intuitively, in the second situation, the fermion at se is

confined around se by the fermion state j1; 1i
vðv;eÞF

at vðv;eÞF .

The above picture tells how a fermion moves in loop
quantum spacetime and influences the background quan-
tum geometry in the LQG framework.

V. SUMMATION AND OUTLOOK

This work is concerned about the model of fermion field
coupled to LQG. The Gauss and Hamiltonian constraints in
this model are studied in details. In the solution to the
Gauss constraint, fermion spins and the gravitational spin
network intertwine with each other so that the fermion spins
contribute to the volume of the spin network vertices.
Consequently, the closure condition encoded in the Gauss
constraint will no longer be satisfied for the gauge invariant
state with nonvanishing fermion spins. In other words, the
faces dual to the edges at a fermionic vertex with a
nonvanishing fermion spin could not form a closed poly-
hedron, and the area defect of this unclosed polyhedron is
filled by the fermion spin. Consequently, in contract to
pure-gravity case, a three-valence gauge invariant vertex
with nonvanishing fermion spin will get nonvanishing
volume from the fermion spin. The volume of this type
of vertices is computed in details.
For the Hamiltonian constraint, the regularization and

quantization procedures are presented in details. There are
several remarkable issues on the Hamiltonian constraint
operator. At first, in order to take the limit of the regularized
expression as the regulator approaches 0, we introduce the
vertex Hilbert space. By definition, the vertex Hilbert space
is the space of cylindrical functions averaged with the
diffeomorphisms preserving the unremovable vertices.
Thus, the states in the vertex Hilbert space are partially
diffeomorphism invariant. The vertex Hilbert space is the
dual space to the space of cylindrical functions. Then, the
regularized Hamiltonian operator dHðδÞ can be promoted as

an operator dHðδÞ� therein by duality. Due to the diffeo-
morphism invariant feature of the vertex Hilbert space, the

operators dHðδÞ� for different values of the regulator δ are

identical. Thus, the limit of dHðδÞ� as δ approaches 0 can be
taken. Moreover, by introducing the vertex Hilbert space,
we fix several other problematic issues. Classically, the

Hamiltonian can be divided into two parts asHCϵ adding its
complex conjugate HCϵ . HðδÞ can be promoted to the

operator dHðδÞ which is cylindrical consistent and diffeo-

morphism covariant. However, its adjoint dHðδÞ†, as a
candidate of the operator corresponding to HCϵ , is not

densely defined, because dHðδÞ could change graphs by
erasing some segments of edges in graphs. These problems

on dHðδÞ† are finally solved by introducing the vertex
Hilbert space to define limit. In the vertex Hilbert space, the
operator Â†

F, as the limit of HðδÞ, performs in a way such
that a projection is left multiplied in Â†

F as a factor. Then, if
Â†
F erases segments of edges, the projection will annihilate

the resulting state, so that the adjoint of Â†
F is densely

defined. Finally, in the Hamiltonian constraint operator,
there are the operators Ĥ#

vðeÞ and ĤvðeÞ involved. These
two operators tell how a fermion moves in LQG spacetime
and influences the background loop quantum geometry.
According to our results, the operator Ĥ#

vðeÞ moves a
fermion at the vertex v to a point vF ∈ e so that vF becomes
the closest fermionic vertex to v, and simultaneously
changes the spin on the segment connecting v to vF of
e as well as the intertwiner at v. This procedure will be
reversed by the operator ĤvðeÞ, which moves a fermion,

located at the fermionic vertex vðv;eÞF closest to v in e, to the
vertex v, and simultaneously changes the spin on the

segment connecting v to vðv;eÞF in e as well as the intertwiner
at v. In addition, ĤvðeÞ is defined to contain a projection
operator P̂

vðe;vÞF
. As a consequence of this operator, the

fermion located at, say, se will be confined around se by the

state j1; 1i
vðv;eÞF

located at vðv;eÞF ∈ e.

Even though the current work is concerned about the
graph changing feature, the framework can be easily
adapted to define a graph preserving version of the
Hamiltonian constraint operator. Then one can apply this
graph preserving operator to the lattice model of fermion
coupled to LQG, so that some open issues in lattice
fermion field theory can be employed and studied.
Moreover, the properties of the fermion Hamiltonian
operator are still not well understood although we have
discussed some of them. All of these will be left as our
future works.
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APPENDIX A: HAMILTONIAN ANALYSIS
FOR A FERMION FIELD

Define P� ¼ 1�γ5

2
, one has

P2
� ¼P�; PþP− ¼P−Pþ ¼ 0; P�γμ ¼ γμP∓: ðA1Þ

Therefore, we have

Ψ̄γIeμI P�∇μΨ ¼ ðΨ�Þ†γ0γIeμIΨ�

þ 1

4
ðΨ�Þ†γ0γIeμIωμKLγ

KγLΨ�; ðA2Þ

with Ψ� ≔ P�Ψ. Let us choose the Weyl basis of the γ
matrices

γ0¼
�

0 i12
i12 0

�
; γk¼

�
0 iσk

−iσk 0

�
; γ5¼

�−I2 0

0 I2

�
:

ðA3Þ

Then Ψ� take the form Ψ− ¼ ðψ ; 0ÞT and Ψþ ¼ ð0; ηÞT .
We thus get

Ψ̄γIeμI∇μΨ ¼ −ψ†σ̄IeμI ∂μψ þ 1

4
ψ†σ̄IeμIωμKLσ

Kσ̄Lψ

− η†σIeμI ηþ
1

4
η†σeμIωμKLσ̄

KσLη; ðA4Þ

with σI ¼ ð1; Pauli matrixiÞ and σ̄I ¼ ð1;−Pauli matrixiÞ.

Performing the 3þ 1 decomposition M ¼ R × Σ, one
has

eμI ¼ eνIq
μ
ν − nμnI; ðA5Þ

where qμν is the projection to Σ and nμ ¼ ðtμ − NμÞ=N with
N and Nμ being the lapse function and the shift vector,
respectively, and tμ being some time evolution vector field
given by tμ∂μt ¼ 1. Substituting (A5) into (A4), we have

Ψ̄eμI γI∇μΨ ¼ ðψ†eai σ
iDþ

a ψ − η†eaiD
−
a ηÞ

−
1

N
ðtμ − NμÞðψ†Dþ

μ ψ þ η†D−
μ ηÞ; ðA6Þ

where we defined

D�
a ¼ ∂a þ ðΓm

a ∓ Km
a Þτm≕ ∂a þA�

a : ðA7Þ

Defining

∇a ¼ ∂a þ Γm
a τm ðA8Þ

we can express the action of the fermion field in terms of
Ki

a and ∇a explicitly, which reads

SF ¼ −
i
2

Z
M

d4xðΨ̄γIeμI∇μΨ − c:c:Þ;

¼ i
2

Z
d4x

ffiffiffi
q

p �
ðψ†

∂tψ þ η†∂tη − c:c:Þ þ 2Γtmðψ†τmψ þ η†τmηÞ − Naðψ†∇aψ þ η†∇aη − ð∇aψÞ†ψ − ð∇aηÞ†ηÞ

−
Nffiffiffi
q

p ½ψ†Ea
i σ

i∇aψ − ð∇aψÞ†Ea
i σ

iψ þ 2ψ†½Ea; Ka�ψ − η†Ea
i σ

i∇aηþ ð∇aηÞ†Ea
i σ

iηþ 2η†½Ea; Ka�η�
�
: ðA9Þ

Define ξA ¼ ffiffiffi
q4

p
ψA and νA ¼ ffiffiffi

q4
p

ηA with A ¼ � 1
2
.

Equation (A9) implies the following nonvanishing anti-
Poisson bracket,

fξAðxÞ; ξ†BðyÞgþ ¼ −iδABδðx; yÞ;
fνAðxÞ; ν†BðyÞgþ ¼ −iδABδðx; yÞ: ðA10Þ

For the gravitational parts, the action is

SH ¼ 1

κ

Z
d4x

�
Ea
iLtKi

a þ
1

2
ffiffiffi
q

p NEa
i E

b
jΩ

ij
ab

þ ðt · ΓÞmϵklmKakEa
l þ 2NbEa

i∇½aKi
b�

�
: ðA11Þ

Substituting the expression (A9) and (A11) into the total
action S ¼ SH þ SF, one can obtain the constraints gov-
erning the classical dynamics which are expressed in
terms of ∇a ¼ ∂a þ Γm

a τm. Then taking advantage of
Ai
a ¼ Γi

a þ βKi
a, one can simplify these constraints in

terms of the derivative Da ¼ ∂a þ Ai
aτi. The results are

listed as follows. The total action reads

S ¼ SG þ SF

¼
Z

d4xðsymplectic structure terms

− λmGm − NaHa − NHÞ: ðA12Þ
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The Gaussian constraint is

Gm ¼ 1

κβ
DaEa

l þ
1

2

ffiffiffi
q

p ðψ†σmψ þ η†σmηÞ: ðA13Þ

The vector constraints is

Ha ¼
1

κβ
Eb
i F

i
ab þ

i
2

ffiffiffi
q

p fψ†Daψ − ðDaψÞ†ψ þ η†Daη − ðDaηÞ†ηg þ βKm
a Gm: ðA14Þ

The scalar constraint is

H ¼ HG þ 1

2

�
iðψ†Ea

i σ
iDaψ − ðDaψÞ†Ea

i σ
iψÞ − βEa

i K
i
aψ

†ψ −
1

β
ð1þ β2ÞDaEa

i ψ
†σiψ − β

1ffiffiffi
q

p Ea
i Dað ffiffiffi

q
p

ψ†σiψÞ

− iðη†Ea
i σ

iDaη − ð∇aηÞ†Ea
i σ

iηÞ þ βEa
i K

i
aη

†η −
1

β
ð1þ β2ÞDaEa

i η
†σiη − β

1ffiffiffi
q

p Ea
i Dað

ffiffiffi
q

p
η†σiηÞ

�
; ðA15Þ

where HG denotes the scalar constraint of pure gravity

HG ¼ 1

2κ
ffiffiffi
q

p Ea
i E

b
j ðFm

abϵm
ij − 2ð1þ β2ÞKi

½aK
j
b�Þ: ðA16Þ

APPENDIX B: GRADED VECTOR SPACE AND
GRADED ALGEBRA

We follow the notions given in [50]. A vector space V
overR or C is graded (over Z2) if there are fixed subspaces
V0 and V1 such that V ¼ V0 ⊕ V1. An element v ∈ V is
homogeneous if v is either in V0 or in Vi. For all v ∈ Vi
with v ≠ 0, we define their degree as

dðvÞ ¼ i: ðB1Þ

Given two graded vector space V and W, the space
HomðV;WÞ of homomorphism from V to W is graded.
An element α ∈ HomðV;WÞ is said to be homogeneous
and of dðαÞ provided

α½Vi� ⊂ WiþdðαÞmod 2; ðB2Þ

with α½Vi� denotes the image of α acting on Vi.
An algebra ðA; ·Þ is a graded algebra if A is a graded

vector space and Ai · Aj ⊂ Aiþjmod 2, where Ai · Aj denotes
the space of elements ai · aj for all ai ∈ Ai and aj ∈ Aj. A
graded algebra A is a graded commutative algebra if the
product satisfies

x · y ¼ ð−1ÞdðxÞdðyÞy · x; ðB3Þ

where x; y ∈ A are homogeneous. Any commutative
algebra A is a graded commutative algebra with the
grade A1 ¼ A and A0 ¼ f0g. An example of the graded
commutative algebra is the exterior algebra of some finite
vector space V, i.e.,

A ¼ R ⊕ V ⊕ ðV ∧ VÞ ⊕ ðV ∧ V ∧ VÞ ⊕ � � � ⊕ ⋀
n
V:

ðB4Þ

A is graded as

A0 ¼ ⨁
k¼0

⋀
2k
V; A0 ¼ ⨁

k¼0

⋀
2kþ1

V: ðB5Þ

A graded algebra ða; ½·; ·�Þ is a graded Lie algebra if the
Lie bracket satisfies
(1) ½x; y� ¼ ð−1Þ1þdðxÞdðyÞ½y; x�;
(2) ð−1ÞdðxÞdðzÞ½½x; y�; z� þ ð−1ÞdðyÞdðxÞ½½y; z�; x�þ

ð−1ÞdðzÞdðyÞ½½z; x�; y� ¼ 0.
An operation ∂ on a graded algebra A is called a derivative
if it satisfies

∂ðxyÞ ¼ ð∂xÞyþ ð−1Þdð∂ÞdðxÞxð∂yÞ; ðB6Þ

where dð∂Þ is defined by thinking of it as a homomorphism
on A. It can be checked that the operator ½x; ·� on a graded
Lie algebra A for all x ∈ A is a derivative.
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[15] Hugo A. Morales-Técotl and Carlo Rovelli, Loop space
representation of quantum fermions and gravity, Nucl. Phys.
B451, 325 (1995).

[16] John C. Baez and Kirill V. Krasnov, Quantization of
diffeomorphism-invariant theories with fermions, J. Math.
Phys. (N.Y.) 39, 1251 (1998).

[17] Thomas Thiemann, Kinematical Hilbert spaces for fer-
mionic and Higgs quantum field theories, Classical Quan-
tum Gravity 15, 1487 (1998).

[18] Martin Bojowald and Rupam Das, Fermions in loop
quantum cosmology and the role of parity, Classical
Quantum Gravity 25, 195006 (2008).

[19] Jacob Barnett and Lee Smolin, Fermion doubling in loop
quantum gravity, arXiv:1507.01232.

[20] Rodolfo Gambini and Jorge Pullin, No fermion doubling in
quantum geometry, Phys. Lett. B 749, 374 (2015).

[21] Thomas Thiemann, Quantum spin dynamics (QSD): V.
Quantum gravity as the natural regulator of the hamiltonian
constraint of matter quantum field theories, Classical
Quantum Gravity 15, 1281 (1998).

[22] Refik Mansuroglu and Hanno Sahlmann, Fermion spins in
loop quantum gravity, Phys. Rev. D 103, 066016 (2021).

[23] Refik Mansuroglu and Hanno Sahlmann, Kinematics of
arbitrary spin matter fields in loop quantum gravity, Phys.
Rev. D 103, 106010 (2021).

[24] Sören Holst, Barbero’s hamiltonian derived from a
generalized hilbert-palatini action, Phys. Rev. D 53, 5966
(1996).

[25] Richard Arnowitt, Stanley Deser, and Charles W. Misner,
Dynamical structure and definition of energy in general
relativity, Phys. Rev. 116, 1322 (1959).

[26] Thomas Thiemann, The phoenix project: Master constraint
programme for loop quantum gravity, Classical Quantum
Gravity 23, 2211 (2006).

[27] Muxin Han and Yongge Ma, Master constraint operators in
loop quantum gravity, Phys. Lett. B 635, 225 (2006).

[28] J. Fernando Barbero G., Real ashtekar variables for lorentzian
signature space-times, Phys. Rev. D 51, 5507 (1995).

[29] Abhay Ashtekar, Joseph D. Romano, and Ranjeet S. Tate,
New variables for gravity: Inclusion of matter, Phys. Rev. D
40, 2572 (1989).

[30] Abhay Ashtekar and Jerzy Lewandowski, Representation
theory of analytic holonomy c*-algebras, in Knots and
Quantum Gravity (1994), p. 21.

[31] Jerzy Lewandowski, Topological measure and graph-
differential geometry on the quotient space of connections,
Int. J. Mod. Phys. D 03, 207 (1994).

[32] Abhay Ashtekar and Jerzy Lewandowski, Differential
geometry on the space of connections via graphs and
projective limits, J. Geom. Phys. 17, 191 (1995).

[33] Carlo Rovelli and Lee Smolin, Discreteness of area
and volume in quantum gravity, Nucl. Phys. B442, 593
(1995).

[34] Abhay Ashtekar and Jerzy Lewandowski, Quantum theory
of geometry: I. Area operators, Classical Quantum Gravity
14, A55 (1997).

[35] Abhay Ashtekar and Jerzy Lewandowski, Quantum theory
of geometry II: Volume operators, Adv. Theor. Math. Phys.
1, 388 (1997).

[36] Thomas Thiemann, Quantum spin dynamics (QSD),
Classical Quantum Gravity 15, 839 (1998).

[37] Thomas Thiemann, Quantum spin dynamics (QSD): II. The
kernel of the Wheeler-DeWitt constraint operator, Classical
Quantum Gravity 15, 875 (1998).

[38] Yongge Ma and Yi Ling, bQ operator for canonical quantum
gravity, Phys. Rev. D 62, 104021 (2000).

[39] Jinsong Yang and Yongge Ma, New volume and inverse
volume operators for loop quantum gravity, Phys. Rev. D
94, 044003 (2016).

[40] Jerzy Lewandowski and Hanno Sahlmann, Symmetric
scalar constraint for loop quantum gravity, Phys. Rev. D
91, 044022 (2015).

JERZY LEWANDOWSKI and CONG ZHANG PHYS. REV. D 105, 124025 (2022)

124025-22

https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1142/S0218271807010894
https://doi.org/10.1142/S0218271807010894
https://doi.org/10.1103/PhysRevLett.72.446
https://doi.org/10.1103/PhysRevLett.72.446
https://doi.org/10.1103/PhysRevD.51.5600
https://doi.org/10.1103/PhysRevD.51.5600
https://doi.org/10.1088/0264-9381/27/17/175009
https://doi.org/10.1088/0264-9381/27/17/175009
https://doi.org/10.1103/PhysRevD.82.104038
https://doi.org/10.1103/PhysRevD.82.104038
https://doi.org/10.1088/0264-9381/30/7/075007
https://doi.org/10.1088/0264-9381/30/23/235023
https://doi.org/10.1103/PhysRevLett.72.3642
https://doi.org/10.1016/0550-3213(95)00343-Q
https://doi.org/10.1016/0550-3213(95)00343-Q
https://doi.org/10.1063/1.532400
https://doi.org/10.1063/1.532400
https://doi.org/10.1088/0264-9381/15/6/006
https://doi.org/10.1088/0264-9381/15/6/006
https://doi.org/10.1088/0264-9381/25/19/195006
https://doi.org/10.1088/0264-9381/25/19/195006
https://arXiv.org/abs/1507.01232
https://doi.org/10.1016/j.physletb.2015.08.022
https://doi.org/10.1088/0264-9381/15/5/012
https://doi.org/10.1088/0264-9381/15/5/012
https://doi.org/10.1103/PhysRevD.103.066016
https://doi.org/10.1103/PhysRevD.103.106010
https://doi.org/10.1103/PhysRevD.103.106010
https://doi.org/10.1103/PhysRevD.53.5966
https://doi.org/10.1103/PhysRevD.53.5966
https://doi.org/10.1103/PhysRev.116.1322
https://doi.org/10.1088/0264-9381/23/7/002
https://doi.org/10.1088/0264-9381/23/7/002
https://doi.org/10.1016/j.physletb.2006.03.004
https://doi.org/10.1103/PhysRevD.51.5507
https://doi.org/10.1103/PhysRevD.40.2572
https://doi.org/10.1103/PhysRevD.40.2572
https://doi.org/10.1142/S0218271894000307
https://doi.org/10.1016/0393-0440(95)00028-G
https://doi.org/10.1016/0550-3213(95)00150-Q
https://doi.org/10.1016/0550-3213(95)00150-Q
https://doi.org/10.1088/0264-9381/14/1A/006
https://doi.org/10.1088/0264-9381/14/1A/006
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://doi.org/10.1088/0264-9381/15/4/011
https://doi.org/10.1088/0264-9381/15/4/012
https://doi.org/10.1088/0264-9381/15/4/012
https://doi.org/10.1103/PhysRevD.62.104021
https://doi.org/10.1103/PhysRevD.94.044003
https://doi.org/10.1103/PhysRevD.94.044003
https://doi.org/10.1103/PhysRevD.91.044022
https://doi.org/10.1103/PhysRevD.91.044022


[41] Jinsong Yang and Yongge Ma, New hamiltonian constraint
operator for loop quantum gravity, Phys. Lett. B 751, 343
(2015).

[42] Cong Zhang, Shicong Song, and Muxin Han, First-order
quantum correction in coherent state expectation value of
loop-quantum-gravity hamiltonian: I. Overview and results,
arXiv:2012.14242.

[43] Cong Zhang, Shicong Song, and Muxin Han, First-order
quantum correction in coherent state expectation value of
loop-quantum-gravity Hamiltonian, Phys. Rev. D 105,
064008 (2022).

[44] Emanuele Alesci and Carlo Rovelli, Regularization of the
hamiltonian constraint compatible with the spinfoam dy-
namics, Phys. Rev. D 82, 044007 (2010).

[45] E. Alesci, M. Assanioussi, J. Lewandowski, and I. Mäkinen,
Hamiltonian operator for loop quantum gravity coupled to a
scalar field, Phys. Rev. D 91, 124067 (2015).

[46] Mehdi Assanioussi, Jerzy Lewandowski, and Ilkka
Mäkinen, New scalar constraint operator for loop quantum
gravity, Phys. Rev. D 92, 044042 (2015).

[47] Cong Zhang, Jerzy Lewandowski, and Yongge Ma, Towards
the self-adjointness of a hamiltonian operator in loop quan-
tum gravity, Phys. Rev. D 98, 086014 (2018).

[48] Cong Zhang, Jerzy Lewandowski, Haida Li, and Yongge
Ma, Bouncing evolution in a model of loop quantum
gravity, Phys. Rev. D 99, 124012 (2019).

[49] Jerzy Lewandowski, Andrzej Okolow, Hanno Sahlmann,
and Thomas Thiemann, Uniqueness of diffeomorphism
invariant states on holonomy-flux algebras, Commun. Math.
Phys. 267, 703 (2006).

[50] B. Kostant, Graded manifolds, graded lie groups and
prequantisation, in Differential Geometric Methods in
Mathematical Physics (1975), pp. 177–307.

FERMION COUPLING TO LOOP QUANTUM GRAVITY: … PHYS. REV. D 105, 124025 (2022)

124025-23

https://doi.org/10.1016/j.physletb.2015.10.062
https://doi.org/10.1016/j.physletb.2015.10.062
https://arXiv.org/abs/2012.14242
https://doi.org/10.1103/PhysRevD.105.064008
https://doi.org/10.1103/PhysRevD.105.064008
https://doi.org/10.1103/PhysRevD.82.044007
https://doi.org/10.1103/PhysRevD.91.124067
https://doi.org/10.1103/PhysRevD.92.044042
https://doi.org/10.1103/PhysRevD.98.086014
https://doi.org/10.1103/PhysRevD.99.124012
https://doi.org/10.1007/s00220-006-0100-7
https://doi.org/10.1007/s00220-006-0100-7

