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Fermion coupling to loop quantum gravity: Canonical formulation
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In the model of a fermion field coupled to loop quantum gravity, we consider the Gauss and the
Hamiltonian constraints. According to the explicit solutions to the Gauss constraint, the fermion spins and
the gravitational spin networks intertwine with each other so that the fermion spins contribute to the volume
of the spin network vertices. For the Hamiltonian constraint, the regularization and quantization procedures
are presented in detail. By introducing an adapted vertex Hilbert space to remove the regulator, we propose
a diffeomorphism covariant graph-changing Hamiltonian constraint operator of the fermion field. This
operator shows how fermions move in the loop quantum gravity spacetime and simultaneously influences
the background quantum geometry. Moreover, as an innovation of our work, introducing the vertex Hilbert
space also fixes issues so that a densely defined symmetric Hamiltonian constraint operator can be

obtained.
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I. INTRODUCTION

The real physical world consists of spacetime and matter.
According to general relativity, “spacetime tells matter how
to move; matter tells spacetime how to curve” [1], which
should also be carried out in the quantum theory. Loop
quantum gravity (LQG) [2-6], as a background-indepen-
dent and nonperturbative quantum gravity theory, sets the
stage for incorporating matters into quantum spacetime. In
[7-11], the Brown-Kuchar model of gravity coupled to dust
as well as the Rovelli-Smolin model of gravity coupled to
massless Klein-Gordon field is quantized. In [12,13], a
minimal coupling of fermions and Yang-Mills fields to
covariant LQG dynamics is proposed. The quantum theory
of spinor fields coupled to LQG is well understood [14-20].
In [21], a systematic procedure to couple the standard model
to the canonical LQG is proposed and further developed in
[17,22,23]. With the present paper, by employing the
procedure in [21], we investigate the Gauss and the
Hamiltonian constraint in the model of fermion field
coupled to LQG. In particular, the Gauss constraint is
solved explicitly and the Hamiltonian constraint is regular-
ized and quantized by introducing the so-called vertex
Hilbert space to remove the regulator.

In the classical model of gravity coupled to the fermion
field. The gravity action S; can be formulated optionally
with the first-order formulation (see, e.g., [2,24] for the
Palatini-Host action) or the second-order formulation (see,
e.g., [5,25] for Hilbert-Einstein action). In the pure gravity
case, these two formulations are equivalent to each other
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up to boundary terms, while for the case with the fermion
field coupled, the equivalency is no longer valid. For the
first-order formulation, S is a functional of an SL(2, C)
connection, and the fermion field will be coupled to it
directly. As a consequence, the fermion field will result in
an on shell torsion term in the connection. However, for
the second-order formulation, the fermion field will be
coupled to the torsion-free spin connection compatible
with the tetrad. Thus, there is no torsion involved in this
formulation. In the current paper, even though we adopt
the second-order formulation for discussion, the results
for the first-order formulation can be obtained analo-
gously. Moreover, since no extra field is introduced for
deparametrization in our model, the dynamics will be
governed by the Hamiltonian constraint H[N| with lapse
functions N rather than the physical Hamiltonian. Then a
problem arises: the Hamiltonian constraint operator can-
not be defined in the diffeomorphism invariant space. This
problem will be solved by, for instance, the master
constraint framework [26,27] or the deparametrization
framework [10,11]. In these frameworks, one finally
needs to consider the Hamiltonian constraint operator
with a constant lapse function or some dynamical lapse
function. These operators can be constructed directly with

—

the Hamiltonian constraint operators H[N|. Thus, one can
only focus on how to define well the Hamiltonian

—

constraint operators H[N] without loss of generality,
which is a main task of the current work.

The phase space of the fermion field coupled to gravity is
composed of fields (A%, Ef , W, 1) on the spatial manifold
¥, where Al is an SU(2) connection, E?, the canonical

conjugate to Al, is a densitized triad field, ¥ denotes the
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fermion field, and IT is the canonical momentum conjugate
to ¥ [2,28,29]. With the variables (AZ,E?), the gravita-
tional Hilbert space is constructed by using the spin
networks [30-32]. Therein the Hamiltonian constraint of
pure gravity as well as variables representing the geometric
observables are regularized and promoted to operators, and
properties of the operators are well studied [26,27,33—43].
The pure-gravity Hamiltonian constraint comprises of the
curvature of the connection A. The curvature, as an
operator, will attach loops on graphs of the spin network
states. In some regularization strategies, the final operator is
the limit as the loops shrink to a point. Then, the vertex
Hilbert space is necessarily introduced to define the limit
[44-48]. In general, a vertex Hilbert space is a Hilbert space
averaged with diffeomorphisms preserving some particular
vertices. Thus, elements in a vertex Hilbert space are
partially diffeomorphism invariant. In the current work,
the Hamiltonian constraint of fermion is also regularized by
introducing some regulator so that the fermion Hamiltonian
constraint is the limit of the regularized version as the
regulator approaches 0. In order to define this limit, we also
need to introduce an adapted vertex Hilbert space. The
vertex Hilbert space can do more than just defining limit in
this work. As shown in Sec. IV B, the regularized fermion
Hamiltonian constraint is split into H_adding its complex
conjugate. Then, H; can be quantized into an operator

}7(3) which is cylindrical consistent and diffeomorphism

— —

covariant. However, the adjoint of H(5), denoted by H(5) "
is not densely defined. Actually, as shown in Sec. IV B,
acting on some particular states associated to a graph y, the

—

operator H () can change y by erasing a segment e(8) of an
edge e C y. Using y’ to denote the graph of y with e(5)

erased by H(5), H ((5)T, acting on a state ¥, associated to y/,
will add an edge &(6) to y/, where &(6) is arbitrary edge
connecting the end points of e(8). Thus, there will be
infinitely many ways to add &(6) to y/, and the resulting
states are orthogonal to each other. Consequently, the result

of H (S)T‘Pyr is not normalizable, i.e., ¥, is not in the

domain of I-T(E)T This problem will be fixed by introduc-
ing the vertex Hilbert space to define limit. In the vertex

—

Hilbert space, lims_oH(5) will be defined properly as an
operator A} The action of A; performs in a way that a
projection is left multiplied in A} as a factor. If AIL acting
on these particular states, erases segments, then the
projection will annihilate the resulting states, so that the
adjoint of A; is densely defined. Actually, the same issue
also exists in defining the gravitational Hamiltonian con-
straint operator with certain regularization strategy, and can
be fixed with the same mechanism [41].

The usual Hamiltonian analysis tells IT" = Vq¥ with
g =|det(E)|. In the quantum theory, this equation is

expected to be realized in an appropriate form. In other
words, one might require that the adjoint of the operator 11

is related to the operator WviaIlf = \//\5 P Then, contra-
diction appears because in our quantum theory /g will
become an operator rather than some background c-
number. This can be seen as follows. Considering a
nontrivial real-valued function f(A) of the connection

Al one has 0 = [fI, ﬂg)] on one hand, but, on the other

hand, [I1, f(A)]" = [f(4),TT'] = [f(A),\/g¥] #0. The
two results do not coincide. To overcome this inconsis-
tency, the author in [21] introduces the Grassman-valued
half-densities ¥ := q¥ and ¥’ to define the phase
space of fermion. Moreover, in order to do the quantiza-
tion, the smeared version of ¥ by /é(x,y), ie.,

[ d3y\/8(x,y)¥(y), is also introduced by [21]. With the
smeared variables, the fermion sector is quantized and the
resulting quantum theory carries out the diffeomorphsm-
invariance feature.

It will be useful to compare our work with the known
models of fermions in LQG. Among these models, a typical
one is to introduce the path observables (see, e.g., [14—16])
each of which combines the holonomy along a path « and
the fermions at the ends of a. These path variables form a
closed algebra under the Poisson bracket so that the
quantum theory is obtained by quantizing this algebra.
Another typical model is the one employed in the current
work (see, e.g., [17]). As aforementioned, this model
considers the algebra formed by [ d*y+/5(x, y)®(y), which
leads to a fermionic Fock space as the Hilbert space for
fermions. Our work develops this model from the following
aspects. At first, our work studies the Gauss constraint in
details. We not only give the exact solutions to the Gauss
constraint but also study the physical pictures resulting
from these solutions. Second, for the Hamiltonian con-
straint of the fermion field, we propose a different regu-
larization strategy than that in [21]. Additionally, the vertex
Hilbert space is introduced, not only for removing the
regulator in the regularized Hamiltonian constraint but also

—

for fixing the issues on the adjoint of H(§5), so that a densely
defined symmetric Hamiltonian constraint operator can be
obtained.

This paper is organized as follows. In Sec. II the classical
theory of gravity coupled to fermion field is introduced
briefly. In Sec. III we introduce some basic notions of the
kinematical Hilbert space of pure gravity and revisit the
construction of the fermion kinematical Hilbert space. In
Sec. 1V, the Gauss constraint and the Hamiltonian con-
straint are regularized and quantized, where the adapted
vertex Hilbert space is introduced and some physical results
are discussed. Finally, in Sec. V, we summarize the
remarkable results and propose some outlooks for further
works.

124025-2



FERMION COUPLING TO LOOP QUANTUM GRAVITY: ...

PHYS. REV. D 105, 124025 (2022)

II. CLASSICAL THEORY OF GRAVITY COUPLED
TO FERMION

Let M denote the spacetime manifold, which is homeo-
morphism to R x £ with X being the spatial manifold.
Given a four-dimensional vector space V, let 5;; be the
Minkowski metric on it. A tetrad field e}, gives the metric
9 = nyele] on M. The curvature of g,, defines the
Einstein-Hilbert action in terms of the tetrad fields,

Sule] :%{ /M d*xR[e], (2.1)

where x = 87G. Let F,’l ; denote the spin connection
compatible with the tetrad so that

de! +TI; nel =0. (2.2)

The model of gravity coupled to the fermion field is
described by the action

Sle,¥] = Syle] —%/ d*xe(Py'efV,¥ —c.c.), (2.3)

M

where y! denotes the gamma matrices satisfying
'y’ +y'y" = 25"/ 1, and the covariant derivative of ¥ is
|

I 1. .
G, = —D,E¢ —ﬁ—i(cf'amf—i— vio,v),

1
V”‘I‘ =09,¥ - Zr‘lldylyf‘{’. (2.4)
Performing the 3 + 1 decomposition and doing canoni-
cal transformation [5], we get the gravitational canonical
pair (A}, E?). The Poisson brackets between them are
{AL(x). E} (y)} = kp8}0(x. y), (2.5)
where f is the Barbero-Immirzi parameter. For the fermion
field, we split the Dirac fermion ¥ into its chiral compo-
nents and follow the argument in [21] to introduce the half
densities on X,
E=yq¥_.  v=Yq¥.. (2.6)
with ¥, = %W‘I‘ Detailed Hamiltonian analysis (see
Appendix A) tells us that the conjugate moments to &

and v are their complex conjugates, and the anti-Poisson
brackets are

{&a(x), 512()’)}+ = —ibpp(x,Y),
{VA(X)vVI;()’)h = —i4p6(x,y)

for all A,B = +1/2.

The dynamics of this model is encoded in the Gauss
constraint G,,, the diffeomorphism constraint H, and the
Hamiltonian constraint H, which are

(2.7)

Kp
o= Lﬁ” A AEDLE = (D)€ + 4 Dy = (D)'w) + LG,
feter 21% i(§'E{0' D& = (D£)' Ef0'é) — PEJKLETE = [lj (1+ p)D,EE 0 — PESD,(76°¢)

‘ . , 1 o 1 .
—i(W'E%'D,v — (D) E¢o'v) + BESK v Y — 5 (1+ D, Eévi e’y — ﬁ7E?Da (Vio'v)|.
q

Here, H; denotes the scalar constraint of pure gravity,

1
H =
¢ 2k\/q

E{EY(Fle, =2(1+ f1)K[ K}).  (2.9)

III. LOOP QUANTIZATION OF THE THEORY:
KINEMATICS

A. The kinematical Hilbert space of pure gravity

In LQG, besides a fixed differentiability class C™ with
m > 1, a semianalytic structure on X is also necessary [49].
Then all local maps, differmorphisms, submanifolds, and
functions thereon are assumed to be C" and semianalytic.

(2.8)

|
Particularly, an edge is a semianalytic curve embedded in X.
A graph is a collection of edges {ey, ..., e, } where these ¢,
intersect each other at most at the ending points. Given a
graph y C Z, let E(y) denote the set of its edges and V(y),
its vertices. The number of elements in E(y) [V(y),
respectively] is denoted by |E(y)| [|V(y)|, respectively].
A cylindrical function ¥ of the Ashtekar connection A is a
function that can be written in the form

W(A) = gy oy (A). ke (A) ()

where y,: SU(2)E®WI - C is a complex function on

SU2)EWI and h,(A) € SU(2) is the parallel transport
along an edge e with respect to a given connection A,

124025-3
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h,(A) = Pexp <—ZA>
:1+i(—1)%ldtn
x[" dtn_l~~-At2dt1A(t1)~~~A(tn). (3.2)

Given a cylindrical function ¥ with respect to a graph y, it
can always be rewritten via another graph y’ O y. Therefore,
for two cylindrical functions ¥") and ¥ with respect to
graphs y; and y,, respectively, one can always find another
graph y5 with y3 D ¥4, 73 D 7,, and rewrite ¥(!) and ¥(?) by
some functions 1//](,;) and 1//%), respectively, on SU(2)/E()l,
Then the inner product of $(!) and ¥ is

<q:(1>|q:<2>>:/

1 2
A (O3 (91 s 90 (G100,
SU2)"

(3.3)

where n = |E(y3)| and duy is the Haar measure on SU(2)".
Equation (3.3) defines a measure du,;, on the quantum
configuration space 4. Thus (3.3) is always rewritten as

(P )y — / Qi (AP (A) O (). (3.4)
A

The space of cylindrical functions is denoted by Cyl. The
Hilbert space H of the pure gravity is the completion of
Cyl with the inner product define in (3.4).

Given a graph y, the space of cylindrical functions with
respect to y is denoted by Cyl,. The Cauchy completion of
Cyl, with respect to (3.3) is denoted by H ,. As shown in
[3], Hg, admits the spin network decomposition

He, = DHE,, (3.5)
il

where j = {J1sJ2s -+ JiE(y)| } assigns to each edge of y an
irreducible representation of SU(2), and 1= {l;,...,1 vl 1
to each vertex of y an irreducible representation. Consider
the assignments 7 such that each representation is non-
trivial. Besides, let 7 denote assignments of irreducible
representations to vertices of y, which are nontrivial at each
spurious vertex of y, where a vertex v is spurious if it is
bivalent, and if the edges e; and e;, |, which meet at v are

such that e;oe;; is itself an semianalytic (i.e., v just serves
to split and edge). Then, we define H; , as

(3.6)

Thanks to H’G’y, the space Cyl can be decomposed as’

Cyl = DMy, ® C. (3.7)
14

The multiplication operator D!, (h,) acts on a cylindrical
function W(A) =y, (h,, (A),....h, (A)) as

(Dgp(he)¥)(A) = Dy (ho(A))wry (he, (A). ... he (A)),
(3.8)

where D!, (h,(A)) denotes the Wigner-D matrix of
h,(A) € SU(2). Moreover, the derivative operators J!*,
fori =1, 2, 3, and » being source point s, of e or the target
point ¢, of e, act on ¥ as

l% l//},(hel,...,heef‘f/,,..,hen>, v=S,,
arnw=1
il (e, hy). V=1,
1=0
(3.9)
where 7; = —ic;/2 with o; being the Pauli matrices. With

the operator j}f‘e, we can define an operator j;’[e] such that

7w =Ny veecyl,  (3.10)
e'ele]

where [e] is a maximal family of curves beginning at x € X
such that each two curves overlap on a connected initial
segment containing Xx.

B. Loop quantization of the fermion field

From now on, we will only focus on the single Weyl
component £&. However, everything works similarly for the
other chiral component v. To quantize the fermion field, we
follow [21] to use the modified symplectic structure

. 1
{04(). 040} = =ibapbyy.  AB==%5.  (3.11)

where, with comparison to (2.7), the Dirac delta 5(x, y) is
changed to the Kronecker delta 6, ,. This change indicates
the following canonical transformation from ¢ to 6:

0(x) = L Py /8(x, y)E(y),
Ex) = \/6(x.y)0(y).

yeX

(3.12)

'For elements in an infinite direct sum, we require that all but
finitely many components are zero.
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To prove the relation (3.12), one used the function
fe(x,y) = ye(x,v) /€ to regularize the Dirac delta function
[21], where y, is

3 2

1’ x4 2 + a\2 < (g)

rety)={ b g XSO
0, otherwise.

According to (3.12), £(x) will be singular for regular 6(x).
This scenario contradicts that &(x) is smooth as a classical
field. To have a consistent understanding of this formu-
lation, one interprets the singular fields &(x) as defining the
quantum configuration space of the fermion field so that
0(x) is a regular-field coordinate of this quantum configu-
ration space.

As in pure LQG, the quantization starts by introducing
the cylindrical functions. Before doing so, we will first
introduce a convenient field 4 as

1

CA(X) = \/%

0,(x), A= i%. (3.13)

1. The cylindrical functions of the fermion field

A fermionic graph yp is a finite subset of £ with |y|
elements. Elements in y are called fermionic vertices. An
orientation of yr is a surjection n > 1;5;") € yr with
1 < n < |yp|.- The surjection endows the elements in yp
with an order. Given an oriented graph y, we have a family

of Grassmann numbers {Cil (vF)}y,ep,» Which will be
2

renamed to p;, with 1 < n < 2|yp| such that
Pria =G ph=C0 ). 1<i<lyel (3.14)

Then a function ¥ of {7 with respect to y takes the general
form

2|7F‘

Y =FfotY. >

n=11<i <iy<-+<i,<2|yp|

fi]...[npj]pjz o ',Djn, (315)

where f and f; ..; are complex numbers. Functions taking
the form (3.15) are called the (fermionic) cylindrical
functions of ¢'. The space of cylindrical functions of &'
will be denoted by Cylg.

According to (3.15), each cylindrical function with
respect to yr can be identical with a vector

2lrrl
fyF = (fO! {fi1-~-i,,}lgil<i2<-~-<in§2\yF|) eCc.

Moreover, for a cylindrical function W expressed via
Sy € C2"' | there always exists a lager graph y% D yp

. . . 20 .
such that ¥ is rewritten via some f’y, e C*"" . Thus, given
F

two functions ¥, ¥, € Cylg on yr; and yp», respectively,

we can find another graph y}. containing both yr and yr,
to rewrite ¥, and ¥, with fJ(,1 ), f}(,,z) eC?
F F

product of ¥; and ¥, is given by

21y .
“. Then the inner

(W) 9,) = /dﬂ(mpi)dﬂ(pzpi) SR IVAVATSL b 2
(3.16)

with du(p,py) = dphdp,e?». By applying (3.16), one can
verify

(P %) = (£, (3.17)

Moreover, even though the graphs y/ containing both yy;
and yp, are not unique, Eq. (3.16) is independent of the
choice of yj since [ du(p,py) = 1. Indeed, Eq. (3.16)
defines a measure duy ({7¢) on Cylg" ® Cylg, and will be
rewritten as

(¥, = / Qg (I, (3.18)

The fermion Hilbert space H is the completion of Cylg
with the inner product defined by (3.18), i.e.,
Hy = Cylg. (3.19)

On Cylg, a type of operators are the multiplication

operators { lp 4 given by

(Cf;‘l’) (&) =& (vp)P(T), V¥ eCylp (3.20)

Another type of operators are the derivative operators ¢, oA
acting on ¥ € Cylg as

(&;F,A‘P)(CT):( \P)(cT), V¥eCyly. (3.21)

0@4(%)

It is easy to verify that ZF’ 4 and ¢ 4 are adjoint to each
other, i.e.,

A

Copas (3.22)

-
é,vF.A =
which realizes the real condition. Moreover, one has
Copnilly ple =80all, 5480 5C0a =050, (323)
which implements the Poisson brackets (3.11) by defining

éA(UF) = \/ﬁévF,A' (324)

124025-5
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2. The spin network states of fermion field

Given a graph y, the space of the fermionic cylindrical
functions with respect to y is a finite-dimensional Hilbert
space, denoted by Hy,,. Considering a graph yr = {vp}
which is a component of a single vertex, one has the space
Hr {v,y =H,, consisting of functions

P(LT) = ag + alOC;(UF) + amé%(”F)

<tp(l)7 lp(2)>

Dys (2
> (ay)yag.

i.je{0.1}

(3.26)

For convenience, we introduce the Dirac bra-ket notation
i, j), (i, j = 0, 1) to denote the state ¥;;, where \¥;; are the

states given by Woo(¢T) = 1, ¥10(¢7) = C] (vp), Wor (1) =
¢ (vp) and W (CT) = CT(EF)C (UF) Then the states

: . i, j),, form an onhononnal ba51s of H,,, ie.,
+ an‘:% (UF)C_%(UF)' (3.25)
o . v ilins o)y, = 6105 1. 3.27
The inner product of WO (') =al) +a'lel(vp) + pbit-diliz: J2du, = Biisdi, (3-27)
2
agl)f_%(vp) + aill)é’;(vp)(i%(v,:) with i =1, 2 is The action of Z’DF‘A and é’ZF’A for A=+ on H,, reads
~ |
&l 0.ia),, = [1,12),,, EZF‘% L2y, =0, Vi, = 0,1,
5’”’.‘,%|O’ i2>b‘1.~ = O’ ayl_-,% ’ 2 >1;1_. = ) ] >171-" V i2 = 07 17
5;1“ l|ll’0>vF :(_l)il|ilyl>vF7 ézv,_l|ilal>vF =0, Vll =0,1,
2UF,—%|i1’0>/UF :0’ AUF——|l1’ >17p = (_1>i1|i170>1/‘F’ Vll :0’1 (328)

For the general case where y C X consists of more than
one vertices, we first associate to each v € yp the Hilbert
space H,,. Then, fixing an orientation of y,, one has the
tensor product space

Hpy, = van ® va) ® - ® Hu‘;F" (3.29)

An orthonormal basis of H,, is composed of the vectors

i2|}’F|> - |ll’ l2> ® |l% l4>

Q- ® |12‘7F| 1 12|7F‘> ‘VF‘)

i1, oy eee,

(3.30)

with i; € {0, 1} for all 1 <k < 2|yg|. Indeed, the vector

|iv, iy, ..., Dy),) rtefers to the cylindrical function ¥; =

/’:‘Tl /)j2 -~-pjn with respect to yp. It is worth noting that
the definition of Hy ,, depends on the orientation of yp,

since ¢’ (vp) are Grassmann numbers. This fact can be

illustrated more explicitly with the following example.

(n)

Consider another orientation n — 95’ of yr such that

2) =) _

B — @) 58— ¥

=vp’, Yk>3. (3.31)
Then, under the new orientation, we have the tensor-

product Hilbert space 7:[F,yp possessing the basis

i1, ips o apyy)) = |11,12> ® |l3,l4>

®: ® |12|7F|—1’12|7F\>5~§IF>' (3.32)

By definition, |ii, i, ...,
function

ihl,,|) refers to the cylindrical

‘i" ot T

= pLpnpnpl Pl = (1) Ry,

! (3.33)

n

where i = {i3, is, 01, In, ""i2lyF\}' Equation (3.33) gives

the equivalence relation between Hy , and T:KFJF

|i1,i2,..., (—1)(i1+lz) i3+iy) |l3’

i2|7!~‘\ > :
(3.34)

Dy,l) = ig, 01500, en,

This equivalence relation can be analogously defined
between the tensor product spaces with different orienta-
tions. The fermionic Hilbert space with respect to yr is
actually space of equivalence classes associated with this
equivalence relation.

Indeed, the extra sign in (3.34) can be systematically
obtained by introducing the notion of graded objects. One
can refer to Appendix B and the reference therein for more
details on the this notion. In our work, the Hilbert spaces
H,, are graded. The degree d(i,,i,) of each i, 1), is

b(il, 12) = i] + iz mod 2. (335)

The operator algebra on H, is also graded. By definition,

the degrees of the operators & v and ¢ jF 4 are

d(Cyn) =1=0(], ). (3.36)

124025-6
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A general principle to deal with these graded objects is that,
whenever we swap two items, an additional sign appears by
the rule xy = (—=1)**2Wyx, Following this rule, we can
obtain the identity (3.34) manifestly.

Given a vertex vg, let Hffp be the subspace of H,,
0y, ,1),,. Then the Hilbert

s >UF’

space }f{” with respect to yr is defined as
HE, = H%FH;";, (3.37)
such that Cyl; can be decomposed as
Cyl; = @H; F“ @ C. (3.38)

143

The kinematical Hilbert space H of the entire system is
the tensor product of ‘Hs and Hp, i.e.,

H="Hs ® Hp. (3.39)
A densely subspace Cyly, of H is
Cyl;,; = Cyl ® Cyly. (3.40)

The states in Cyl,; will be called the cylindrical states. To
obtain a cylindrical state, one needs a graph y = y5 U v,
where the gravitational graph y is constituted of edges and
their ending points as vertices, and the fermionic graph yp
contains only vertices. To define a state with respect to y,
besides the data for a (gauge variant) LQG spin network
state, one also needs to assign to each fermionic vertex vy a
state |iy(vp), ir(vF)),, with i(vp),ir(vF) € {0,1}. In
principle, a fermionic vertex v can be located anywhere,
regardless of the given gravitational graph y;. However, if
vp is chosen as point in e € E(yg) but vy & V(y¢), then
we can always split e at vy to define a new graph 7. Then
vy becomes a vertex of 75. Moreover, because of y; C 75,
every cylindrical function with respect to ys; can be
rewritten by using 7. Thus, it is sufficient to consider
those graphs y = y5 U yr where each fermionic vertex vy
satisfies either vy € V(yg) or vy & yg. Then, in V(ys),
there could be bivalent vertices which is a fermionic vertex.
These vertices serve to split edge. Thus, by (3.6), they are
just spurious vertices. However, in contrast to (3.6), we can
put trivial SU(2) representation at these vertices to decom-
pose the Hilbert space with respect to graphs. More
precisely, let I', be the set of graphs y = y5 U yr where
each fermionic vertex vy satisfies either vy € V(ys) or

vp & vg. Consider the assignments j to E(y) such that

each representation is nontrivial. Besides, let 7 denote
assignments of irreducible representations to vertices of y
that are nontrivial at each fake vertex of y; where a vertex
v € V(yg) is fake if v € yp and it is spurious as defined in
(3.6). Then, we define

b= %Hg,’m, (3.41)
which gives us the Hilbert space H;‘T as
HY =HE, @ HE, . (3.42)
Then we have the decomposition
Cylit = QHI" @ C. (3.43)

rel,

IV. THE CONSTRAINT OPERATORS FOR
GRAVITY COUPLED TO FERMION FIELD

A. The Gauss constraint

Classically, the Gauss constraint G[4] reads

1 |
G[)] = | &xa" —D,ES + & . 4.1
1= [ (DB + e (1)
It is straightforward to quantize it as the operator
Gl = >4 (0)G .

with

(o )AB

G =h> I+ n,
g

gz B- (43)
Let us use J ».m to denote the second term in (4.3), namely

CT (O-m>AB Cv (44)

On the fermionic Hilbert space H,, at vertex v, the action of
J v.m reads

Toml0.0), =0, T,,/1.1), =0,
O

jl},m(|1’0>ﬂ7 O’ 1>1)) = ( 1’O>l)’ |0’ 1>U)7m'

(4.5)

According to (4.5), the operators T om forallm=1,2,3
behave as the angular moment operators. Thus, the operator
T +.m generates an SU(2) action on H, as

Oelon. ()
o, ) (4.6)

ut>|¢), = (
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where |¢), = > ;i ¢i;li, j), and u € SU(2). Therefore, H,
becomes a reducible representation space of SU(2). The one-
dimensional space spanned by either |0, 0), or |1, 1), is the
trivial representation space, and the two-dimensional space
spanned by |0,1), and [1,0), is the 1/2-representation
space where |0, 1), and |1,0), serve as the standard basis
according to (4.5). This fact leads to the decomposition

H,=Hy & Hy & Hyps (4.7)
where H; denotes the j-representation space of SU(2).
For a graphy = y5 U yr, aspin j, is assigned to the edge
e C yg- Then at each vertex v € V(y) there is the Hilbert
space
ot — ®
v

H,® & H;j, ®H,  (48)

where H; denotes the dual space of H;. On Hy', the

infinitesimal SU(2) action gives the Gauss constraint. Thus,
the solution space to the Gauss constraint is

HOW = @ Inv(H),

xeV(y)

(4.9)

where Inv(HY") C H is the SU(2)-invariant subspace. To
see Inv(HY") more precisely, let us assume all edges at v
are outgoing without loss of generality. Then we have

HY = QH,; ®H,.

eatv

(4.10)

Given an order of the edges at », one can choose an

orthonormal basis of Hj« composed of vectors
eatv

esstarts from v ¢/ targets v \ky, ks, ..., k,, M) satisfying
|
3
STl ks ook MY = Ky + Dl ks ok M), VI=2.0m
i=1
Lk ks, .o ks M) = Mks, ks, ... k. M),
n 1
Lk ks, .. Ky M) = > 5\/(kn —sM)(k, + sM + 1)|ky, ks, ... k. M + 5),
s==+1
LY ko ks, ook MYy = Y %s\/(kn —sM)(ky + M + 1) |ky. ks, ... ks M + 5), (4.11)

s==%1

with lA,f-l) =300 J°. Let us define Inv(H(Gv)) C ® H;, as the subspace spanned by |k,. k3. ..., k,_;, 0, 0) for all possible

eatv

ko, ks, ..., k,_1. One has

L |ky. k3. ..., ky_1.0,0) = 0,
Jku_1,1/2, M), we define

Moreover, with the vectors |k,, k3, ...

Vi=123. (4.12)

1 11 1 11
1250 0 v kz,k3,...,kn_1,2,2> ®[0.1), v kz,k3,...,kn_l,2,—2> ®[1,0),.  (4.13)
Then one has
(L + T ) kaikss o kp ) =0, Vi=1,2,3. (4.14)

Let H;,, C HY" denote the subspace spanned by |k, k3, ...
decomposed as

Inv(HY') = (Inv(Hg)) ®

where InV(Hg)) ® |i1,ir), is the space composed of

vectors |y) ® |ij, ip) for all |y) € InV(H(c?))-

Let v be a n-valence gauge invariant fermionic vertex,
where the ith edge e; is assigned to a spin j;. According to the

,ku_1) o for all possible k,, k3, ...

0.0),) ® (Inv(HY) ®

,k,_1. Then Inv(HY") can be

1’1>v> eall—finvv (415)

|
decomposition (4.15), the gauge invariant Hilbert space
Inv(HY") contains a subspace Hj,,, isometric to the gauge
invariant Hilbert space of a (n + 1)-valence pure-gravity
vertex where the ith edge for 1 < i < n is assigned to spin j;,
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and the (n + D)th, the spin 1/2. Then once we consider the
volume operator at v, this extra spin 1/2 will also have
contribution. Since the extra spin 1/2 originates from the
fermion filed, one gets an intuitive picture that fermion field
contributes to the volume of a vertex. Moreover, a n-valence
vertex in pure-LQG is always regarded as a polyhedron
whose faces are dual to the edges. The flux operators J e
associated to each edge e have the geometric interpretation of
the area vector of the dual face. Then the pure-LQG Gauss
constraint is just the closure condition 3_, J"* = 0 ensuring
that the faces can form a closed polyhedron. Now, the
fermion field is involved. Then the Gauss constraint (4.3)
implies

(4.16)

Sve A
E Ji __jyﬁh
e

—i

where the right-hand side does not vanish in general. Thus,
the faces dual to the edges could not give a closed polyhedron
for states in Hj,,. By (4.16), the area defect of this unclosed
polyhedron is filled by J ».i» 1.€., the fermion spin at the vertex
(see [22] for more details on the fermion spin). A direct
consequence of the above discussion is that the volume of a
three-valence vertex with fermion does not vanish any more
for states in Hj,,. Let j; with i = 1, 2, 3 be the spins on the
edges. Then the states in H;,, are spanned by |k) = |k)
with k = j3 + 1/2. The action of the operator §,,3, the
operator proportional to the square of the volume operator
[3], on |k) reads

(k|go3lk + 1) =

44/ (2k + 1)(2k + 3)

Vi =2+ k+1)(=ji + ja +k+ D)y + J

—k)(j1 +j2+k+2)

1 1 1 1
x \/(j3—§+k+1> (—j3 +§+k+1> (j3+§—k> (j3+5+k+2>,

Then we have

1

(4.17)

di23|jz +

2

1
5373

! - - - -
> ieV @i+ 202 =2js+1)(21 =202+ 2/3+1)

x V/(=2ji + 2ja + 2j3 + 1) (2j) + 2j, + 23 + 3).

Since the associated Hilbert space is two dimensional, the
whole Hilben space is the eigenspace of the volume

operator "ﬁ ” V/1G123| with eigenvalue

Koﬁf3/2 1
1) \/' ]3 +2>'

B. The Hamiltonian constraint

As discussed in [17,21],
constraint in terms of 6,(x) is

61123 (4-19)

the smeared Hamiltonian

= S N(H(x)

xeX

(4.20)

where Hy(x) is given by

(4.18)

1 : ‘
Hp = i2— (0"E¢6'D,0 — (D,0) E¢6'0)

1+ 1 4
- ﬂ—E”K’ 0to — +p ——D,E0'6'0
f B 2/q

- —E“ «(076'0).
h3 N (670'0)

(4.21)

Fix a coordinate system x“ on X and a positive number .
Divide X into a family C,. of cells such that each cell C € C,
is cubic with the coordinate volume less than €, and that
different cells can only share points on their boundaries.
Given a graph y = y5 U yp, for each cell C € C,, let y.
denote y N C. Since the limit ¢ — 0 will be considered
eventually, we will assume that ¢ is small enough such that
vc # @ is one of the following types (see Fig. 1):

(1) the type-A graph: y. is composed of a single edge;

(ii) the type-B graph: y. is composed of a single

fermionic vertex without connecting any edges;
(iii) the type-C graph: y. is composed of edges inter-
secting a single vertex.
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o
type-A type-B
type-C type-C

FIG. 1. Different types of graphs where in the lower left panel is
a type-C graph with a fermionic vertex and, the lower right panel,
a type-C graph with a gravitational vertex.

For each cell C € C,, let us define

HY = L BN (x)(D,0) (x)E¢(x)50(x),
HE = [ SN WEK (6 (00
HY = /C BN (x)D,E4 (x)0" (x)'0(x), (4.22)

and introduce

N (g B 1P e e
HCE—ZV_C<_1HC _EHC _THC —PHc |,
(4.23)
where the volume V¢ of Cis V¢ = [~ d*xy/|det(E)|. Then

Hp[N] is the limit of  H,_adding its complex conjugate as
e —0, ie.,

1
Hg[N] = Elin&(ch +c.c.). (4.24)
To quantize H; , we need to promote
A= L p i—123 cec (4.25)
C VC C > 9 &y Ty € .

to an operator. As known in LQG, the volume operator is
not invertible. We thus need to regularize VE' as in [39] to

be Vz! = (/VT)? with

- 4x8 (23
\/ Ve =« < (@> ”;awe(e,e’,e”)tr

X (hejl{hev VC}he_’l{he’v VC}hg_”l{he”v VC})’
(4.26)

where e(e, €', ¢”) = 0, +1 depending on the orientation of
e A e A e’ and k) is a constant to remove the dependence

of partition. Then, the operator A g) is given by

—_
—

[':I(é) — /VEI [f](é) /VZ‘I’

where A g) will be discussed latter, and the operator \/ V¢!
reads

(4.27)

T 4x8/ 2 \3
V—l:/
c ~kTg <ifu<ﬂ> 2

vinCe,e " atv

x tr(h7 [h, Vel e Vel ho e V). (4.28)

e(e,e,e")

— —

Here there are several issues on \/Vg!. At first, /V¢!
actually acts on states y, . with respect to the graph
yc =y N C. Given a state y,, according to (3.43), there
is a unique graph P(yc) C y¢ such that y, € Hif,r(yc). The
summation in (4.28) over v € C actually means the
summation over v € V(P(y¢)), and the summation over
e,e', ¢’ means the summation over e,¢’,e” € E(P(y¢)).
As a consequence, for y- being a type-A or type-B graph,

one has \/Vglu/y . = 0, and for y. being a type-C graph
with the vertex v, one has

Vily, =x)— ——
c¥re =% g (ihKﬂ> " €E(P(rc))
eee ¢

e(e, e, e )tr

A

X (he_l [hev ch]hg_’l [heU ‘A/Lc}he_”l [he”v V%DW;/@
(4.29)

where \A/vc is the volume operator introduced in [35].

—

According to this result, the operator \/V¢! at the most

—

right of I:I(C’) will annihilate the states with respect to the
type-A and type-B graphs. Hence, only the states on type-C
graphs is needed to be considered. From now on, y~ will be
referred to as the type-C graphs until otherwise stated. The
vertex for the edges in y. intersecting will be denoted
by Ve. —

Let us begin with the operator A (Cl). Replacing E¢(x) by

—ikhp5/6A}(x) in H <Cl )in (4.22), we can quantize H(Cl> as
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A — a 1)
AY = —ixhp /c ExN()(D0) ()00 5 - (430
Note that we put the derivative —%— at the most right so that

5A’()

results of states acted by the resulting operator do not
depend on the edges taking trivial representation. Given an
edge e: [0,8] —» C of yo with €(0) = v¢, let U,(2,0,A)
denote the parallel transport from e(0) to e(r) along e.
Thus, U,(t,0,A) satisfies

the resulting operator is cylindrical consistent, i.e., the
|
d
aUe(t,O;A) =—A,(e(1)e?(t)U(t,0;A), and U(0,0;A) =1 (4.31)
Defining h, = U(5,0;A), one has, for any fi(x),
. o 5 .
/ Exfi(x)—> h, = - / defi (e(2))e () U, (5,7, A)r,U, (¢, 0, A). (4.32)
A4 (x) 0
Thus, we get
— A 1) A
—ikhﬁ/d3xN(x)Da9T(x)a’6’(x) BAL( )he = khpN(s,)(0 (1,)h, — 07 (s,))6'0(s,)T " h,, (4.33)
c a(x
where we used
5 x &9(11)(D0)" (e(t1)) = 07 (e(t1 +8))U. (1) +6.113A) = 0" (e(11)) + O(&). (4.34)
Then, for a state ¥ with respect to y., one has
Yo = knpN(ve) > (07 (1,)h, = 07 (ve))0'0(ve) TP, (4.35)
¢€yc
which gives I:Ig) acting on W as
qfc = kRPN (vc) ) | \/vc Db, =0 (ve))e'0(ve) W,/ . (4.36)
e€yc
— |
£7(2)
For the second term H ', one has Thus, H(cz) is quantized as
(2 _ 3 a i ¥ N 1 A " A
HS = [ @xN(x)E?(x)K,(x)0" (x)0(x). 4.37 2
c /C xN(x)E{ (x) K}, (x)0" (x)0(x) ( ) H(C> _ W[N(UC)HEA:CHT(UC)Q(UC)v VUC]’ (4.39)

Taking advantage of the Thiemann’s trick to quantize the
pure-gravity Hamiltonian constraint in LQG [5], one has

%/;2{ /C d3xf(x)HE(x)vVC}’

(4.38)

/d3Xf<) 4 (K (x) =

where Hg(x) is the Euclidean part of the pure-gravity
Hamiltonian constraint, i.e.,

€iijZh( )EJ (x)E”(x)

Vi

Hg(x) =

where E.v. denotes the Euclidean part of the pure-gravity
Hamiltonian constraint operator at v, and v, .» the volume

operator at vc. Equation (4.39) leads to the operator A (Cz )

given by

(4.40)

Finally, for the third term fl(c3>, we have

124025-11
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HEWe = khpN (vc) < > 7 ) 0" (vc)o'O(ve) Yo,

eatve

(4.41)

by taking advantage of the Gauss constraint operator of the

pure gravity. Thus I:I(g) reads

Hc . = khpN(ve) \/VC <Zﬂ >

eatve

—

VW,

~

x 0% (ve)e'O(ve) (4.42)

With (4.36), (4.40), and (4.42), the operator H_ is

1+ﬁ

2ﬁ /3Hc ;

He =" —iﬁl() s Pa® (4.43)

cec? 2

where

={CeCl.,yn Cis type-C}.

Even though He, in (4.43) is defined with a partition
structure C. on X, this partition structure is indeed not

necessary. One can define an operator equivalent to He,
|

—

H(l)(v; 51}) = KhﬁN(v)Z(é+(te(v.ﬁ,,,g))he(v,é,,_e)o-ié(v)

eatv

1
- 2ikhp?

H®)(v;8,) = khN (v <ZJ”)QT )oi0(v),

eatv

with ~ endowed with another structure, which is more
convenient for the further study. To this end, let us first
introduce the following notion.

Definition IV.1 (removable vertex). A vertex v of a
graph y is removable if it satisfies the following conditions:

(1) v is a bivalence vertex connecting e; and e,.

(i) The composition of ¢; and e, as a curve is C" and

semianalytic.

Given a graph y, one can obtain another graph ker(y) by
removing all of its removable vertices. ker(y) will be called
the kernel of y. Let I}, be the collection of the kernels of all
graphs in I',,. Fix once and for all a parametrization for each
v € I'ker, where a parametrization of a graph is an assignment
to each edge e¢ € E(y) a parametrization [0,1] 37—
e(r) € X. For an edge e of a kernel in I, taking v as an
end point, we can define e(v, 5) C e as the segment starting
from v and ending at either e(5) for v = ¢(0) or e(1 — §) for
v =e(1). Given a graph y = y5 U yp, for each v € V(y5),

mimicking the operator A g> in (4.36), (4.40), and (4.42), we
define

)(v;5,) \/ UHO (0, (v:5,) \/v;, i=1,2.3, (4.44)

with

—0"(0)a'0(v))J}.

N()(Hg,V, = V,H,)0" (0)0(v),

(4.45)

where 6, = {6, }.a, 1S @ vector of real numbers for each vertex. Taking advantage of these operators, we define

veV(re)

=Y - (65,) _§ﬁ<2>(v;5,

veV(y)

where 6 = {gv}ﬂevm and the second step is a consequence

g —

of the operator \/V;! in fl(i)(v'S) Actually, due

to the operator 1/ ;\ in AU (v 5,), H (v 5,) with v &
v vanish for all i = 1, 2, 3. Comparing the operators I-T(E)

L+p% . = S 2
;ﬁﬁ H(S)(y’ﬁt) _ﬁH(])(”951/>7
1+ 4% = I
)=y (w5, = pA (5, (4.46)
[
and Iflc\g, one can verify easily that H/(g) = ﬁc\g with a

suitably chosen 6. Hence, we can use 1-7(3) instead of ﬁc\g
for our further study. In the rest of the paper, we will assume
that 9, , is a constant for all » and e for convenience. The
discussion for nonconstant 6 can be discussed similarly.
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—

When the limit of H(5) as 6 — 0 is taken, the only nontrivial term in (4.45) one needs to consider is

A

By definition, we have

N .

I)l (1}, e; 5)(D£m’l(he(v,5)) ® |kl ’ k2>l’)

= 2W W, > Z(—l)mﬂ*—"—c{

j:jj:% AC

1
2

~
~. =

X D51+A,n+c(he(v,5)> ® 9C(D>|k1v k2>1: ® éj;(te(v,é))

where W; = /j(j +1)(2j + 1), [{{é] is the 6 symbol and (
2

i J2 Js
my my m,

LA P

b1 (v, €36) = 0" (te(1) (0" O(0) T}

J
—(m+A)

J

oo e )

a wi—

1
2
A

0.0), (4.47)

e(v,8)”

) denotes the 3 symbol. Equation (4.47) gives us the

picture that the operator B (v, e;6) moves the fermionic vertex at v to ,(, 5) € e, and simultaneously change the spin on
e(v,8). To illustrate this statement, let us use a disk © to represent a fermionic vertex and a solid line to represent the edge e.
Then, by omitting the explicit coefficients in the right hand of (4.47), one has

(1) for kl =1= k2,

61 (v,e;0) y [1,1) — Z

(2) forky =1 and k, =0

b1 (v, €;6) ) L
(i1,i2)€{(1,0),(0,1)} =

(4.49)

(3) for ky =0 and k, =1

s

b1 (v, e;0) i
(i1,i2)€{(1,0),(0,1)} =

(4.50)

(i1,i2)€{(1,0),(0,1)}

li, i) [i1, i2)

a0+

) o

(i1,i2)€{(1,0),(0,1)} =

(4.48)

|

f&ccording to (4.48)~(4.50), one gets (b, (v,e;8)y]
h,(v,e;8)w) =0 for § # &, which implies that the limit
of h;(v,e;8) as § — 0 does not exist. As a consequence,

—

the limit of H(5) as § — 0 does not exist, too. However, as

—

final operator should be define as lims_oH(5), we need to
introduce the vertex Hilbert space H,, which is in the dual

—

space of Cyly. Once H,y is introduced, H(S5) can be
promoted to an operator H(8)" in H, by the duality such

that H(8)" = H(&')" for 6 # &. Then, the limit of H(5)" as
0 — 0 exists. It will be seen below that H,,, is defined to be
the kinematical Hilbert space averaged by diffeomorphisms
preserving some particular vertices.

Another issue motivating us to introduce the vertex

—

Hilbert space is that the adjoint operator to H (&) is not
densely defined. To see this, let us investigate the adjoint of

- —

H"(v;35), a term of H(5). By definition, for a state ¥, €

H;" with y taking v as a vertex, the adjoint H O (v;6) acts
on it such that for all ®, € H,
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(10 (0:0) 0,0, = (10 (0:5),)
= > kBN () (b (0. e:)"

ecE(y
eatv

—9(v)6i9(v)}f'€)‘l’y|<l>yr}, (4.51)
with By (v, €;8)" = 770" (v)0'h7/, 5 0(te(1.6))- The subtlety
arises due to the summation over edges of ¥’ rather than y.
Let us consider a state ¥, with y shown in Fig. 2. Moreover,
the fermion state of W, at the fermionic vertex 7., s is
chosen to be al0, 1>te(”>5) + b|1,0)te(”ﬁ) for some a,b € C.
Then, for each graph y’ obtained from y by using an edge
e(v,6) to connect the vertex f,(, 5 and v, dropping the
fermionic vertex 7,(,5) and adding a fermionic vertex at v
(see the two examples in Fig. 2), one can find a state ®, €

»" such that ((By (v, €;8)" = 0(v)a'O(v)TV) P, |®,) # 0,
where e € ' is the edge containing e(v, §) as a segment.
Because there exist uncountably infinitely many such
graphs y’ and the states ®, associated to different graphs
are orthogonal to each other, ¥, is not in the domain of

HY (v, 5)T. A similar argument can be made for all of states
in HI™ (including those taking |1, 1) - at £,(,5), Which

implies that the entire Hilbert space Hiy” is not contained in

tﬂ(rﬁ

the domain of H) (v; 5)7. Besides, it is manifest that there
are infinitely many such Hilbert spaces that are excluded

¢"' 7
v it

FIG. 2. An example of a graph y (top panel) such that H;," is

. . T
not in the domain of H("(v;8) , and examples of graphs y’

(bottom panel) such that <H<l>(y;5)Tle|q>,> #0. The black
disks represent fermionic vertices.

from the domain of H<1)(v;5)T. Actually, according to
(4.47), the operator B, (v, e; ) will change the state taking
spin j =1 on e(v,8) to a superposition of states taking
spins j = 0 and 1 on e(v,5). In other words, the operator
B, (v.e;5) can erase the segment e(v,8) C e, which is
indeed the essential reason for the problem of defining

H (1)(12;5)T. It will be shown below that this problem can
also be fixed by introducing the vertex Hilbert space to
define the limit. After taking the limit as 6 — 0 in the vertex
Hilbert space, we will get a projection y. (]J"¢[?) [see
(4.84)]. This projection is left multiplied to the operator
corresponding to §, (v, e;8) in H,, and kill the state with
j=0on e(v,5).

Finally, let us discuss why we choose H_rather than its
complex conjugate for quantization. Suppose that one
chooses the complex conjugate of Hg to do the above
quantization. Then, in the resulting operator, one will get a
term involving B, (v, e;6)" = .7;"6@(v)a"h;('vﬁ)@(te(,,ﬁ)). In
contrast to f)l(v,e;é), f)l(v,e;&)T moves the fermionic
vertex at 7,(,5 € e to v. Now let us consider the states
B, (v.e:8)|y) and §; (v, e;8)|y) with 5 # & for |y), says,
being Din(h,) ® |k;.k),. Then, one gets (v, e;5)
(b1 (v, e:8)y)) =0 but by(v,e;8)"(h (v, e:)|w)) # 0.
This result means that §, (v, e;8)" is not diffeomorphism
covariant. Namely, diffeomorphism equivalent states, i.e.,

the states (v, e;8)|w) and B (v, e;8)|w), could be no
longer diffeomorphism equivalent after acted by §; (v, e;5)".
This facts leads to a problem that 3, .., §; (v, e;8)" cannot

be promoted to a well-defined operator in the diffeomor-
phism invariant Hilbert space.

1. The vertex Hilbert space H

Given a graph y, we will consider the subgroup of C™
semianalytic diffeomorphisms which act on V(ker(y))
trivially, i.e., the diffeomorphisms preserving every vertex
of ker(y). This subgroup will be denoted by Diffy (er())-
There are two subgroups of Diffy (). The first one,
denoted by Diff,, preserves y. The other one, denoted by
Diff?, preserves every edge of y. Hence Diff}(} is a subgroup
of Diff,. The quotient

GS, = Diff, /Diff? (4.52)

is the group of graph symmetries of y. GS, is a finite group
with order |GS,|. Given a state ¥, with respect to y and a
diffeomorphism ¢, ¢px'¥, denotes the pullback of ¥ under
¢. The averaging with respect to GS, defines a projection
P, Hy > HY,
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P |GS | > pxv,. (4.53)

pEGS,

The averaging with respect to the remaining diffeomor-
phisms Diffy ;) /Diff, defines

W(Ty) = ¢*P7(‘Py)
PEDIffy () /Diff,
1
- Y. (4.54
GS, | Z ..f* ! (4.34)
PEDIfFy (o)) /DIf?
Obviously, n(¥,) belongs to the algebraic dual space

Cylioi* of Cyliy. Taking advantage the decomposition
(3.43), one can extend n to a well-defined operation on
Cylio;- Let 7(Cyligs) € Cylgo* denote the image of Cylyy,
under 5. The group averaging procedure naturally endows
17(Cylge:) with an inner product

(n(¥,).n(¥,)) = (n(¥

where (7(%¥,)|¥,,), the action of n(¥
given by

(W) |¥,) =

DY), (4.55)

;) € Cylyy " on W, is

>

$EDIFy (er(y)) / Dif?

(p+P,. W), (4.56)

Here, (-, ) is the inner product in . Then the vertex Hilbert
space H,y is the completion of 7(Cylyy), i.e.,

Hvtx = ”(Cyltot)'

Given a finite subset W C X, let I'i,(W) be the collec-
tion of graphs y satisfying V(ker(y)) = W. Two graphs
|

(4.57)

V.7 € (W) are said to be equivalent, denoted by
y ~q 7', if there exists a diffeomorphism ¢ € Diffy, i.e.,
a diffeomorphism preserving W, such that ¢(y) = y'. Let
Tker(W)] be the quotient space I (W)/~4 [y] €
[Cier(W)] be the equivalence class of y, and Si™ be the
image of P,. Then 7: SI™ — H,,, is isometric. By 7(Si)
denoting the image of Siy“ under #, one has

n(Sy) =

n(Sy). Yy  rel)  (458)

Thus, we can define

T](Sl[ﬁ) = 11(8;17) (4.59)

by choosing arbitrary y’ € [y]. Let FS(X) be the set of finite
subsets of . Then we have

S O

WGFS(Z) [7]6 [err<w)]

1(Clioy) = (ST ®C.  (4.60)

The factor 1/|GS, | in (4.55) ensures that # is an isometric
between HI™ and n(HI"), i.e.,

n(Cyl) = D & Sm ED ,

WGFS( ) [ ] [err<W)]

(4.61)

where o([y]) € [y] is a representative of [y] fixed once and
for all.

2. The Hamiltonian operator on ’Hm

Given ¥, € S, let H ( )" be the dual of H ( ) acting on
n('¥y), ie.,

() n(P,)I0,) = (%) HE)D,), Y/ el, &, cH. (4.62)
The operator PY(E) takes the form 1-7(3) =3, N(0)y/V;' O(v)\/V;" with O(v) representing some operator. Due to the
inverse volume operators, we have
lim(H(5) 7(¥,)|®,) = lim w,)1\/Vi 0(0/Viie,) (4.63)
veV(ker(y))

Recalling (4.46), we will consider the right-hand term by
term.

Let us begin with the operator H'! )(v 5) with
v € V(ker(y)). By (4.63), we need to investigate

—

1,(y'.8) = (n(¥,)|HY (v;8)®,) (4.64)

|
for all graphs y’ taking v as a vertex. By definition, we can

split H")(;8) into two parts such that

—

HY(v;8)®, = khfpN ()b, (v;6)®, — kAN (v)bh,(v) D,
(4.65)
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with b (138)®, = 3,0, b1 (v, €:6)®, and  By(v) =
S ears O (0)00(0)T7. Substituting (4.63) into (4.64),
we will be concerned about the term

1V, 8) = (n(®,)|By (v;5)®,)
= 3" ()b, (v.e:8)D,).  (4.66)
(2]

eeE y/
eatv

Substituting (4.54) into (4.66), we get
10,6 =" > (hi(v,e:0) (9=¥,)|@,),

eeE(/) pEDiff’

eatv

(4.67)

with Diff’ := Diffy (xer(y)) /Diff, for abbreviation, where we

employ B, (v, e;6)" = jf‘@*(v)a"he‘(lw)9(16(1/..5)). Note that
the summation in the right-hand side of (4.67) is over edges
of y/, while the operator B (v, e;8)" acts on states asso-
ciated to graphs diffeomorphism to y. Thus, we cannot get

1V(,8) = (5, (v:8)"n(¥,)|®,) naively from (4.67).

Consider the action of B, (v, e;8)t on D{;Zne(he(y,a)) ®
Djn/j; o (heve(v5)) @ lki. k), . a general state associated to
the graph {e} U {t,(, 4}, Where e\e(v,d) is the other
segment of e complementing e(v, §). Here and in the rest,
by a state associated to a graph a, we refer to a state in .
Acting on the state, the holonomy h;(lp,a) in b (v, e;6)
changes the spin j, on e(v,8) to j, + 3. Then, for j, =1,
the spin on e(v, §) is changed to 0, i.e., the segment e(v, §)
is erased. Thus, for j, = % acted by the holonomy, the state
becomes a combination of one state associated {e} and the
other state associated to {e\e(v, §) }. However, the operator
J¢ in B, (v:6)" will annihilate this one associated to
{e\e(v.5)}. Consequently, acted by ), (v;5)", the resulting
state is still a state associated to {e}, regardless of the
change of the fermionic vertices by &' (v) and 9(te(y$5)).

¢,*¥, for some diffeomorphism ¢, is a state associated
to the graph ¢, (7). Let 7 and 7, denote the gravitational
sector and the fermionic sector of ¢,(y), ie.,
®,(y) = 76 U 7F. Then, the discussion in the last paragraph
tells that B, (v; 8)'¢,x¥, is a state associated to some
graph whose gravitational sector is 75 U e(v,8). Thus,
(By (v, e;0)T (pox¥,)|®,) #0 for @, € Hy implies
e CygUe(v,8), which means either e C ¢,(y), or
e(v.8)Z,(r) but e\e(v,5) C Py(y).

Let us first consider the case where e(v,5)Zp,(y) but
e\e(v,8) C ¢,(y) such that (§; (v, e;8) (¢, +P,)|®,) # 0.
The hypothesis (§; (v, ¢; 8) (p,*¥,)|®,) #0 implies
76 U e(v,8) = y; where y is the gravitational sector of
y'. Together with e(v, 6)Z ¢, (y), one gets 76 = r;\e(v,d).
Since e(v,d) is a segment of an edge e C 75, fo(ys) 1S @
one-valence vertex in . Furthermore, 7,(, 5 is a one-valence
fermionic vertex because of b, (v,e; 8) (¢p,*¥,) # 0.

Thus, 7.,s is not a removable vertex; ie., all of the
diffeomorphisms in Diff’ preserve this vertex. Now, let us
come to & <8 If Y cp (f)l(v,e;é’)T(qﬁ*‘Py)kI)},/) =
> sepir (b1 (v, €:8) (¢pxgp,+¥,)|®,) still does not vanish,
then there has to be another diffeomorphism ¢/, that can
move a fermionic vertex in ¢,(y) to f.(,5) such that
b, (v,e;8)7( wxp,x¥,) # 0, and simultaneously preserve
all of the other vertices but not necessarily 7,(, 5 in ¢,(y)
such that (B (v,e;8)" (¢, xp,x'¥,)|®,) # 0. This can
be done only if ¢, can move t,,5 t0 t,,s), Which
is impossible because 7,5 is preserved by all diffeo-
morphisms in Diff’. Therefore, > jep (B (v, e;8)"
(px'¥,)|®@,) = 0 for all § < &. This discussion tells that
for sufficiently small &, the case with e(v,5)Z¢,(y) but
e\e(v,8) C ¢,(y) can be excluded. Because we finally need
to consider the limit as  — 0, choosing a sufficiently small §
can be done without loss of generality.

For the case with e C ¢,(y), (ﬁl(v,e;5)+(¢0*‘Py)|
®,) # 0 requires that the graph of B (v, e;8)%(¢,x¥,)
is equal to y’. Since § is chosen to be sufficiently small, in
the graph y’ there is no fermionic vertex on the segment
e(v,6) CeCy/, and t,,5 €7 is also not a fermionic
vertex. Therefore, for (b, (v, ;) (¢,*¥,)|®,) # 0, there
cannot exist any fermionic vertices in e(v,8) U {t,(,4)}
where e(v,5) and t,(, 5) now are thought of as a segment
and a vertex in the graph of (v, ;8)"(¢,*¥,). This
conclusion has two meanings. At first, ¢, € Diff’ must be
the diffeomorphism that moves the closest fermionic vertex
tovine € y (o t,(, 4 so that 9(@(@,5)) can kill it. The closest
fermionic vertex to v in e € y will be denoted by v;"’e)

Fig. 3 gives an illustration of vl(f’@. Second, it means that

the fermion state at v’

, and

cannot be |1, 1)

e because it
ol

’l} ’7

(v.e)

FIG. 3. An example of graphs y with v

fermionic vertex to v in e € E(ker(y)), and e[v\"*), v] C e is the

edge of y from v to v(;'e).

being the closest
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cannot be annihilated completely by 9(t,;,5). For the second
point, we introduce a projection [ﬁ’vF on the fermion Hilbert
space H,, such that

. 0.
Polin in) = liy. in)
1542/

The first point makes us decompose ¢,, as follows. Let y, be

the graph of ¥’ with v;”) dropped, and v € y promoted to a

new fermionic vertex if it is not. Then, we find a diffeo-

il - 1 - i2,
) (4.68)
otherwise.

morphism ¢ € Diffy, ker ))/Diff, = Diffy (. ) /Diff,,
such that ¢,(y,) =7 Wlth ¢1, we ﬁnd ¢y €
Diff,, (,,)/Diff, which moves 111(;”'6> to 7,(, 5). One thus gets

¢, = ¢pro¢;. Introducing H,(e) as

9(1}&3”6))113’v<f.e), if vl(f'e)exists
F

. JU€0" (v)o h7l.
s:ov<e>={ HO e
0 otherwise
(4.69)
where e[\, v] denotes the edge from v to v\, We thus
get

<¢l *(51}(8)Ty)|q)7/>,

where the right-hand side is independent of o, and
> (y') =y is used. Using (4.70), we finally get

(b1 (v.€:0) (P, ¥,)|@,) = (4.70)

limzt (5, 8) = (p*H,¥,|®,), (471
=0 ¢eDiffy, /Diff,,
with
S, =D H,(e)¥,. V¥ ST (472
catv
Equation (4.71) leads to
lim(, (557 n(%,)| = (S, ¥,)|.  (473)
Finally, taking advantage of lim(;_)ofﬁr/(‘l‘},) = n(f)z‘I’y),

we have

lim(H (v;8))n (¥

n
= khpN(v)y K S, — Z?f‘e@'(v)aié(v))‘l’y] . (474)

<
~—

Now let us consider the operator H?)(v; ). An issue on
defining lims_,H? (v; ) is the operator A, comprising

H®@ (v;6). In this paper, we will employ the work [45] to

’

define Ay, in H,,. More precisely, Hz, is given by
Hi, = VN (F, + F)V/VET with

F,==2 Z e(é, e )e r(hg

e, atv

)J” e]“ o (4.75)

where a,, is a loop tangent to the two edges e and ¢’ at the
vertex v up to orders k, + 1 and k. + 1, respectively, with
k, and k, being, respectively, the orders of tangentiality of
e and ¢’ at v (see [45] for more details.) By this definition,
F, will change the graph by adding a loop at v and, thus,
F 7, by removing a loop.

A subtlety here is that the vertex Hilbert space defined in
[45] is a little different from ours. In [45], the authors
defines the vertex Hilbert space with diffeomorphisms
preserving V(y) while our work considers the diffeomor-
phisms preserving V(ker(y)). Regardless of this difference,
the operator A, introduced in [45], for v € V (ker(y)), is
well defined in our vertex Hilbert space H,,. Indeed, due to

the operator \/V;' in H? )(v 6), we do not need to
consider Hjy, for removable v, ie., v & V(ker(y)).
According to this discussion, for v € V(ker(y)), we have

%{%H 2 (0:6) n(¥ v)
2m(n/;2N (0nl(Hg, V=V, He, )0 (0)0(0)¥,], (476)

where k() is introduced in [45] to remove the dependence
on the partition. -

Finally, for the operator H®)(v;6), since H®) (v 6) for
v € V(ker(y)) is independent of § and Diffy e,y invari-
ant. We have

—

lim(HC)(0:6) (¥,)| = (n(H; (1))

with
AP (v) = khBN (v (ZJW)GT )oid(v).  (4.78)
eatve

Let us summarize our results. According to the above
discussion, we have

Apn(¥,) = imH (5)'n(¥,)
- Z”( VilH, V;“I‘y), (4.79)
veV(y)

where H » 18 given by
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— — 2 —
o= 10w 5O (0) = O G) - g0 (o),
2 2/
(4.80)
with
HO(0) = xy(0) 22BN (0) (35 _ Zéw)at@(y)jg-e),
eatv
@)/ k1 (v) N T T
HO W) = g N 0= Vo )0 (0010),
HO)(0) = k3() 22BN ( J“) (v), (4.81)
eatv
according to (4.74), (4.76), and (4.77), respectively.

Here we again introduce the parameters k, and k5 as in
[35] in order to remove the dependence on the partition.
Finally, because of (4.24), we finally define the fermion
Hamiltonian operator A ;[N] on H, as

1 ;
Hp[N] :E(AF +Ar) (4.82)
Let f); on H, be the operator defined by
5;;77(‘113/) = W(éa‘l‘y) (483)

Then, the only nontrivial term in A}, is the operator ($)*.
By the definition, $, is composed of $,(e), which
annihilates the fermionic vertex contained in e and closest
to v. Thus, the operator (Sf)’,j)T contains the operators, each
of which is associated to an edge ¢ at v and promotes a
point vy € e to a fermionic vertex such that v becomes the
closest to » among the fermionic vertices contained in e. To

be more precise, let us define an operator ﬁﬁ(e) [refer to
(4.69)] as

5?(6) = )(+(|jv,e |2)é1—(be.v)he(bw)aié(v)jly’e’ (484)

where y, denotes the characteristic function of [2,c0),

|Jve? = &80T, v, , € e is an arbitrary point between
v and the closest fermionic vertex to v in e, and e(v, ) C e
is the segment starting from » and ending at v, ,. Here the

factor y.(]J"¢|?) ensures that $"(e) cannot erase the
segment e(v, ,) C e. In other words, $(e), acting on a
state with spin § on e(v, ), will only change the spin § to 1.
Moreover, b, , is defined such that it becomes closest to v
among the fermionic vertices in e after the action of $7(e).

Wwith $%(e), ($)) is given by

($00w,) = n( S8, ).

eatv

(4.85)

Note that even though b, , is not uniquely determined by its

definition, the operator ()" on H, is independent of the
choice of v, ,, due to the averaging operation 7. Moreover,

2. (177¢)?) is introduced in (4.84) because (4.72) implies

=> 9, () (177P). (4.86)
eatv
Applying $(e), A}, reads
ALn(¥,) = Z n(y/V;llilﬁ\/Vzl‘Ij;,), (4.87)
veV(y)

where A* is

# o

) — 1+ —
= =i () —L oy -1

(v) = pHO (1),
(4.88)

—_— —

with H?v) and H®) (v) givenin (4.81), and H") (1})# given
by

—

HO(0)" =k (0) 3N (0)
X <Z§ji(e) —Z@T(v)oié(v)j;"e). (4.89)

eatv eatv

Let us complete this section with a discussion on the
intuitive picture led by the action of $,(¢) and $?(¢). By
definition, $(e) creates a fermionic vertex v € e so that
vp will be closest to v and carries states a|l,0) + b|0, 1).
Simultaneously, $(e) changes the fermion state iy, i), at

’ >L ’ >1, ’ >1/‘ for
some constant ¢ and d, and a|1,0), + |0, 1), for arbitrary

a and f is changed to |0,0),. Moreover, because of the

holonomy operator A, ) and flux operator J;** in Hh(e),
the spin on the segment ¢(b, ,) C e and the intertwiner at v

are changed. These results can be summarized as that the
operator $"(e) moves a fermion at v to vy, and changes the
geometry around v simultaneously. For the operator $,(e),

it reverses this procedure. ﬁy(e) moves a fermion at the

fermionic vertex v\, i.e., the closest fermionic vertex to
F

v, to the vertex v, and changes the geometry around v
simultaneously. Moreover, because of the projection oper-

ator |]3’UF in sf)v( ) [see (4.69)], when the fermionic vertex

( *) carries a fermion state I1, l) (o), the fermion at vl(; °)

cannot be moved by the operator Sjy(e). To see the
consequence of this fact, let us imagine an edge e with

both the source s, and the middle point W . belng the

(v.e)

fermionic vertices, where vy "’ carries a fermion state, say,
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|1,0) o). Acted by 55? (e), the fermion at s, will be moved

X
F
to some point v} between s, and v;-”'e). Then, acted by
9, (e) twice, the fermion at v, will be moved to 7,. Now,

(v.e)

suppose that vy carries the state |1, 1) .. Then, acted by
F

5fe(e), the fermion at s, will be again moved to v'.
However, the fermion at v} cannot be moved to 7, after
acted by $, (e), due to the operator IPL,;J) in 9, (e).

Intuitively, in the second situation, the fermion at s, is

confined around s, by the fermion state |1, l)v(,f) at 1;5;””.
F

The above picture tells how a fermion moves in loop

quantum spacetime and influences the background quan-

tum geometry in the LQG framework.

V. SUMMATION AND OUTLOOK

This work is concerned about the model of fermion field
coupled to LQG. The Gauss and Hamiltonian constraints in
this model are studied in details. In the solution to the
Gauss constraint, fermion spins and the gravitational spin
network intertwine with each other so that the fermion spins
contribute to the volume of the spin network vertices.
Consequently, the closure condition encoded in the Gauss
constraint will no longer be satisfied for the gauge invariant
state with nonvanishing fermion spins. In other words, the
faces dual to the edges at a fermionic vertex with a
nonvanishing fermion spin could not form a closed poly-
hedron, and the area defect of this unclosed polyhedron is
filled by the fermion spin. Consequently, in contract to
pure-gravity case, a three-valence gauge invariant vertex
with nonvanishing fermion spin will get nonvanishing
volume from the fermion spin. The volume of this type
of vertices is computed in details.

For the Hamiltonian constraint, the regularization and
quantization procedures are presented in details. There are
several remarkable issues on the Hamiltonian constraint
operator. At first, in order to take the limit of the regularized
expression as the regulator approaches 0, we introduce the
vertex Hilbert space. By definition, the vertex Hilbert space
is the space of cylindrical functions averaged with the
diffeomorphisms preserving the unremovable vertices.
Thus, the states in the vertex Hilbert space are partially
diffeomorphism invariant. The vertex Hilbert space is the
dual space to the space of cylindrical functions. Then, the
regularized Hamiltonian operator H(§) can be promoted as

an operator 1-7(3)* therein by duality. Due to the diffeo-
morphism invariant feature of the vertex Hilbert space, the

operators PT(E)* for different values of the regulator ¢ are

identical. Thus, the limit of 1-7(3)* as ¢ approaches 0 can be
taken. Moreover, by introducing the vertex Hilbert space,
we fix several other problematic issues. Classically, the

Hamiltonian can be divided into two parts as H_adding its
complex conjugate Hc. H(5) can be promoted to the

operator H(8) which is cylindrical consistent and diffeo-
morphism covariant. However, its adjoint H (5)1—, as a
candidate of the operator corresponding to H7CF, is not

—

densely defined, because H(5) could change graphs by
erasing some segments of edges in graphs. These problems

—

on H (5)T are finally solved by introducing the vertex
Hilbert space to define limit. In the vertex Hilbert space, the

operator A}, as the limit of H (6), performs in a way such
that a projection is left multiplied in A} as a factor. Then, if
A; erases segments of edges, the projection will annihilate
the resulting state, so that the adjoint of ATF is densely
defined. Finally, in the Hamiltonian constraint operator,
there are the operators $"(e) and $,(e) involved. These
two operators tell how a fermion moves in LQG spacetime
and influences the background loop quantum geometry.
According to our results, the operator Sf)ﬁ(e) moves a
fermion at the vertex » to a point v € e so that vz becomes
the closest fermionic vertex to v, and simultaneously
changes the spin on the segment connecting v to vy of
e as well as the intertwiner at ». This procedure will be

reversed by the operator sf‘),)(e), which moves a fermion,

located at the fermionic vertex vl(p”’e) closest to » in e, to the

vertex », and simultaneously changes the spin on the
segment connecting v to vﬁf’e)
at v. In addition, $,(e) is defined to contain a projection

operator [ ... As a consequence of this operator, the
F

in e as well as the intertwiner

fermion located at, say, s, will be confined around s, by the

1’ 1>1/.1r'.e) IOCated at /Ugf’g) ce.

(
F

Even though the current work is concerned about the
graph changing feature, the framework can be easily
adapted to define a graph preserving version of the
Hamiltonian constraint operator. Then one can apply this
graph preserving operator to the lattice model of fermion
coupled to LQG, so that some open issues in lattice
fermion field theory can be employed and studied.
Moreover, the properties of the fermion Hamiltonian
operator are still not well understood although we have
discussed some of them. All of these will be left as our
future works.

state
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APPENDIX A: HAMILTONIAN ANALYSIS
FOR A FERMION FIELD

_ 1=/
Define P, = =", one has

PL=P,, P, P_.=P_P =0, P.t=y'P.. (Al

Therefore, we have

Prlef PV, ¥ = (¥1) Ty i ¥y

1 .
+— (Y)Y e oy r Yy

) (A2)

with W, := P, W. Let us choose the Weyl basis of the y
matrices

yoz(o i1]2> yk:( 0 i5k> ysz(—lz 0>.
il, 0/ —icx 0 )’ 0 I,
(A3)

Then ¥ take the form W_ = (y,0)” and ¥, = (0,7)7.
We thus get

_ _ | _
Wy ef VY = —y'sleiop + ZWTG'e’,‘wﬂKLaKaLy/
(A4)

N 1. _
—n'eleln + Zr]’ae’;wﬂKLaKaLn,

with ¢! = (1, Pauli matrix’) and &’ = (1, —Pauli matrix’).
|

Sp = —i/ d*x(Py'efV, ¥ —c.c.),
2 Jm

Performing the 3 4+ 1 decomposition M = R x X, one
has

H _ v M
e =ejqy —n'ny,

(AS)

where ¢ is the projection to X and n* = (# — N*)/N with
N and N* being the lapse function and the shift vector,
respectively, and # being some time evolution vector field
given by #d,t = 1. Substituting (AS5) into (A4), we have

Wely'V,¥ = (y'efo'Diy —n'eiDyn)

— (= N Dy + 1 D). (A9
where we defined
Df =0,+ (I F K1, =0, + AX. (A7)
Defining
V,=0,+T1z, (A8)

we can express the action of the fermion field in terms of
K', and V, explicitly, which reads

i .
=3 / d*x\/q ((vﬁazw + 170 —c.c.) + 20, (w'e"y + n'e"n) = N“(w Vo + 7'V — (Vo) 'w = (Van)'n)

N . . . .
~ 7 W E¢o'V . — (Vow) Edc'y + 2y [E* K Jy — 1" E¢6'V oy + (Vn) Edo'n + 20" [E2, Ka]ﬂ]> :

Define &, = ¢/qws and v, = ¢/qny with A=+1
Equation (A9) implies the following nonvanishing anti-
Poisson bracket,
{€4(%). E5(0)}s = —idapd(x.y).
i
B

{va(x),vp(y)}, = —ibapd(x,y). (A10)

For the gravitational parts, the action is

1 . 1 -
Sy = p / d“x(E?ﬁtK; +mNE;‘Ej?Q’;b

+(1-T),, 6" K L E* + 2N"E§‘V[uK§7]> . (A1)

(A9)

I
Substituting the expression (A9) and (A11) into the total
action S = Sy + S, one can obtain the constraints gov-
erning the classical dynamics which are expressed in
terms of V, =9, +1T%z,. Then taking advantage of
Al =T% + BK', one can simplify these constraints in
terms of the derivative D, = d, + Aiz;. The results are
listed as follows. The total action reads

S=38c+ Sk
= / d*x(symplectic structure terms

- "G, — N°H, — NH). (Al12)
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The Gaussian constraint is

1 1 .
G, = @DaE? +5 VAo +n'oun). (A13)
The vector constraints is
1 . i .
Ha = @E?F;b + 5 \/C_I{WTDaW - (Dal//)Tl// + W'Dan - (Darl)T’/]} +ﬂKZLGm (A14)
The scalar constraint is
1. ) . ) 1 ) ) 1 .
H = Hg +3 |i(w'E{o' Doy = (Day) ' Efo'y) — PE{Kiyw — 5 (1+p*)DEly o'y — ﬂTE?Du(\/ﬁw'a’w)
q
) ) . i 1 . 1 )
—i(n'E{6'Dyn — (Van) Efo'n) + BE{Kin'n — 5 (1+p*)D.E{n‘e'n —p ﬁEi‘Da(\/@an’n) , (A15)

where H; denotes the scalar constraint of pure gravity

1
H =
¢ 2/

E{EY(Fiye,' = 2(1 + f)KI K7)).

[a™b] <A1 6)

APPENDIX B: GRADED VECTOR SPACE AND
GRADED ALGEBRA

We follow the notions given in [50]. A vector space V
over R or C is graded (over Z,) if there are fixed subspaces
Vo and V| such that V. =V, @ V,. An element v € V is
homogeneous if v is either in V or in V;. For all v € V;
with v # 0, we define their degree as

o(v) =1i. (B1)
Given two graded vector space V and W, the space
Hom(V, W) of homomorphism from V to W is graded.
An element a € Hom(V, W) is said to be homogeneous
and of d(a) provided
alVi] € Wit moa2s (B2)
with a[V;] denotes the image of « acting on V.

An algebra (A,-) is a graded algebra if A is a graded
vector space and A; - A; C A jmoq2, Where A; - A; denotes
the space of elements a; - a; for all a; € A; and a; € A;. A
graded algebra A is a graded commutative algebra if the
product satisfies

x-y= (_1)D(X)b(y)y - X, (B3)

where x,y € A are homogeneous. Any commutative
algebra A is a graded commutative algebra with the
grade A; = A and Ay = {0}. An example of the graded
commutative algebra is the exterior algebra of some finite
vector space V, i.e.,

A:R@V@(V/\V)EB(V/\VAV)ea-~~€9/n\v.
(B4)

A is graded as

2k+1

A4=B A V.

A= DAV, (B5)
k=0

A graded algebra (a, [-,-]) is a graded Lie algebra if the
Lie bracket satisfies
(1) [x.y] = (=1)HPER0Iy ];
@) (=1)"PE [, y], 2] + (=10 [y, 2], ]+
(=120 [z, . y] = 0.
An operation d on a graded algebra A is called a derivative
if it satisfies

d(xy) = (9x)y + (=1)*P0x(ay), (B6)

where d(9) is defined by thinking of it as a homomorphism
on A. It can be checked that the operator [x, -] on a graded
Lie algebra A for all x € A is a derivative.
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