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We investigate McVittie and generalized McVittie solutions for Horndeski gravity with a spatially
homogeneous gravitational scalar field, which is stealth at small scales near the central object but, at large
scales, sources the Friedmann–Lemaître–Robertson–Walker universe in which the central inhomogeneity
is embedded. Unlike previous studies, we include matter and obtain generalized McVittie solutions in the
extended cuscuton model. The possible configurations are classified according to the time dependence of
the gravitational coupling, the radial energy flow, the accretion rate onto the central object, and the Hubble
rate.
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I. INTRODUCTION

The McVittie solution of the Einstein field equations,
sourced by a fluid [1–5], describes a central object
embedded in a Friedmann–Lemaître–Robertson–Walker
(FLRW) universe and it is a special case of the
Kustaanheimo–Qvist family of shear-free solutions [6].
McVittie chose to forbid explicitly the accretion of cosmic
fluid onto the central object [1]. This cosmic fluid has a
homogeneous energy density ρðtÞ and an inhomogeneous,
radially dependent, pressure Pðt; rÞ (unless the cosmic fluid
is replaced by a cosmological constant, in which case the
McVittie solution degenerates into a Schwarzschild–de
Sitter/Kottler geometry [1]). In addition to relevant previous
literature, in the past decade, the McVittie solution has been
the subject of much work, mostly devoted to understanding
the nature of the time-dependent apparent horizon covering
a singularity at a finite radius [7–27]. This apparent horizon
has been shown to depend on the form of the scale factor
aðtÞ of the FLRW universe where the object is embedded
[27]. The McVittie geometry has also been used to study
the interplay between local dynamics and cosmological
expansion [15,28] and to model cosmological wormholes
[29], and generalized McVittie geometries, allowing for
cosmic fluid accretion, have been introduced [28] and
studied [15,30,31].

Since a minimally coupled scalar field is equivalent to an
irrotational perfect fluid, it is natural to ask whether a scalar
field can source the McVittie metric in Einstein gravity. The
answer is negative but a gravitational scalar field, non-
minimally coupled to the curvature (a signature of alter-
native gravity), has been shown to be a possible effective
source for McVittie and generalized McVittie geometries
[32,33]. This context is different: theories of gravity
alternative to general relativity have seen a huge resurgence
of interest with the goal of explaining the current accel-
eration of the Universe discovered in 1998 with type
Ia supernovae without advocating an ad hoc dark energy
[34–36]. It is then natural to ask whether scalar-tensor
gravity, possibly in its most general formulations given by
Horndeski and DHOST gravity, admits (generalized)
McVittie solutions. This question was answered affirma-
tively in Refs. [32,33], but there are severe restrictions on
the class of theories in which this is possible. McVittie
spacetimes are also exact solutions of shape dynamics of
interest for quantum gravity [37], and are nondeformable
solutions for extended fðTÞ teleparallel gravity, where T is
the torsion scalar ([38], see also Ref. [39] for a general
discussion on teleparallel gravity).
It is time to revisit McVittie and generalized McVittie

spacetimes in the most general scalar-tensor theories for
three reasons. First, our understanding of the cuscuton that
admits McVittie geometries as solutions has improved in
the last decade, and, very recently, the “extended cuscuton”
has been introduced in research devoted to avoid cosmo-
logical singularities [40–42]. Second, the previous analyses
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were restricted to vacuum, but, ultimately, a realistic
description of a cosmological setting must include matter,
which is what we do in this article. Third, there has been
growing attention to stealth solutions of scalar-tensor
gravity with motivations coming mainly from the possibil-
ity that black hole hair arising in stealth solutions could be
detected directly in gravitational wave observations. Such a
a detection would discriminate between general relativity
(GR) and scalar-tensor gravity. Both “first generation”
scalar-tensor and more modern Horndeski theories admit
stealth solutions that circumvent the no-hair theorems and
for which the scalar field does not gravitate. They include
the Schwarzschild geometry with a nonvanishing scalar
field ϕ ¼ ϕ0t. Then, it makes sense to look for “locally
stealth” McVittie solutions of Horndeski theories with a
gravitational scalar field, the geometry being McVittie and
the scalar being homogeneous, ϕ ¼ ϕðtÞ. This scalar field
would be a stealth with respect to the central object, but
would contribute to creating the FLRW “background”
(indeed, in the first part of the present work, it will be
the only effective cosmic fluid). Horndeski gravity is the
most general scalar-tensor theory with second order equa-
tions of motion, which automatically avoids the notorious
Ostrogradsky instability encountered for higher order field
equations [43,44]. Continuing, the generalized McVittie
geometries with a radial energy flow offer more possibil-
ities for modeling but have not yet received sufficient
attention because of their higher complexity with respect to
“standard” McVittie geometries.
Last but not least, McVittie and generalized McVittie

spacetimes offer toy models for cosmological inhomoge-
neities, which can be exploited to investigate the current
problem of Hubble tension in relation with local inhomo-
geneities [45–48].
To fix the ideas, we follow the notation of Ref. [49],

using units in which the speed of light c and Newton’s
constant GN are set to 1. The metric signature is −þþþ,
Rμν denotes the Ricci tensor, R≡ gμνRμν is the Ricci scalar,
Gμν ≡ Rμν − 1

2
gμνR is the Einstein tensor, while g is the

determinant of the metric tensor gμν, and round brackets
around indices denote symmetrization.

The action of Horndeski gravity [50] is written as [51,52]

S½gμν;ϕ�¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðL2þL3þL4þL5ÞþSðmÞ; ð1:1Þ

with

L2 ¼ G2ðϕ; XÞ; ð1:2Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð1:3Þ

L4¼G4ðϕ;XÞRþG4;Xðϕ;XÞ½ð□ϕÞ2−ð∇μ∇νϕÞ2�; ð1:4Þ

L5¼G5ðϕ;XÞGμν∇μ∇νϕ

−
G5;X

6
½ð□ϕÞ3−3□ϕð∇μ∇νϕÞ2þ2ð∇μ∇νϕÞ3�; ð1:5Þ

where ϕ is the gravitational scalar field degree of freedom,
X ≡ −∇αϕ∇αϕ=2, the Giðϕ; XÞ (i ¼ 2, 3, 4, 5) are regular
functions of ϕ and X, while Gi;ϕ ≡ ∂Gi=∂ϕ and
Gi;X ≡ ∂Gi=∂X. Moreover, ð∇μ∇νϕÞ2 ≡∇μ∇νϕ∇μ∇νϕ

and ð∇μ∇νϕÞ3 ≡∇μ∇σϕ∇σ∇αϕ∇α∇μϕ. Finally, SðmÞ

stands for the action associated to the matter content.
The multimessenger event GW170817/GRB170817 A

from a binary neutron star merger [53,54] essentially ruled
out theories in which the speed of gravitational waves
differs from c. The surviving Horndeski theories are also
those that avoid instabilities and admit an Einstein frame
description and satisfy [51,55–57]

G5 ¼ 0; G4;X ¼ 0: ð1:6Þ

We restrict ourselves to this subclass, for which the
Lagrangian density reduces to

L ¼ G2ðϕ; XÞ − G3ðϕ; XÞ□ϕþ G4ðϕÞR: ð1:7Þ

The corresponding field equations are

G4ðϕÞGμν −∇μ∇νG4ðϕÞ þ
�
□G4ðϕÞ −

G2ðϕ; XÞ
2

−
1

2
∇λϕ∇λG3ðϕ; XÞ

�
gμν

þ
�
G3;Xðϕ; XÞ

2
□ϕ −

G2;Xðϕ; XÞ
2

�
∇μϕ∇νϕþ∇ðμϕ∇νÞG3ðϕ; XÞ ¼ 0; ð1:8Þ

and

G4;ϕðϕÞRþ G2;ϕðϕ; XÞ þ G2;Xðϕ; XÞ□ϕþ∇λϕ∇λG2;Xðϕ; XÞ − G3;Xðϕ; XÞð□ϕÞ2 −∇λϕ∇λG3;Xðϕ; XÞ□ϕ

− G3;Xðϕ; XÞ∇λϕ□∇λϕþG3;Xðϕ; XÞRμν∇μϕ∇νϕ −□G3ðϕ; XÞ −G3;ϕðϕ; XÞ□ϕ ¼ 0: ð1:9Þ

We search for McVittie solutions of these field equations.
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The layout of the paper is the following. Section II is
devoted to a general discussion of McVittie geometry in
Horndeski theory. In particular, we discuss the McVittie
scalar field as a cuscuton. Generalized McVittie solutions in
Horndeski gravity are discussed in Sec. III, with attention
to various cases with respect to the functions G2, G3, and
G4 entering the Lagrangian (1.7). Horndeski-McVittie as an
extended cuscuton model is studied in Sec. IV, while
McVittie solutions in extended cuscuton models in pres-
ence of matter is considered in Sec. V with various
combinations of the above functions Gi. Conclusions are
drawn in Sec. VI.

II. MCVITTIE GEOMETRY IN HORNDESKI
THEORY

Let us take into account the most general class of
Horndeski theories in which the McVittie geometry is a
solution of the field equations. The McVittie line element in
isotropic coordinates ðt; r;ϑ;φÞ is [1]

ds2 ¼ −
ð1 − m

2aðtÞrÞ2
ð1þ m

2aðtÞrÞ2
dt2

þ aðtÞ2
�
1þ m

2aðtÞr
�

4

ðdr2 þ r2dΩ2
ð2ÞÞ; ð2:1Þ

where the mass parameter m is a positive constant, aðtÞ is
the scale factor of the FLRW “background,” and dΩ2

ð2Þ ≡
dϑ2 þ sin2 ϑdφ2 is the line element on the unit two-sphere.
Following the recent literature, and in agreement with
cosmological observations, we restrict ourselves to spa-
tially flat FLRW universes. In the spirit of looking for
“locally stealth” solutions discussed above, we consider a
homogeneous scalar field ϕðtÞ, for which

Xðt; rÞ ¼ 1

2

�
2aðtÞrþm
2aðtÞr −m

�
2
_ϕ2ðtÞ ð2:2Þ

in the geometry (2.1), where an overdot denotes differ-
entiation with respect to the comoving time t of the FLRW
“background.” The only independent field equations that
are not identically satisfied are the ðt; tÞ, ðt; rÞ, ðr; rÞ, and
ðr; θÞ ones. The homogeneous scalar field ϕðtÞ is equiv-
alent to a perfect fluid. This is not true for a general Brans–
Dicke-like or Horndeski scalar field, which depends on the
spatial position, which is instead equivalent to an imperfect
fluid with heat conduction, shear and bulk viscosity, and
anisotropic stresses [58–62]. The imperfect fluid structure
is a consequence of the explicit nonminimal coupling of ϕ
to gravity and disappears only in very special spacetimes,
such as the FLRW ones where shear and currents would
violate spatial isotropy [59], or in special theories (such as
the cuscuton [42]). The assumption that the scalar ϕ is
spatially homogeneous has the important consequence of

making it possible for the McVittie solution to satisfy the
Horndeski field equations. In fact, the latter are equivalent
to effective Einstein equations with an extra effective fluid
in their right-hand side, and this fluid is dissipative if ϕ
depends on the spatial position [58–62], while the McVittie
geometry is the only perfect fluid solution of the Einstein
equations that is simultaneously1 spherically symmetric,
shear-free, and asymptotically FLRW with vanishing
(radial) energy current [63] (see also Ref. [5]).
Therefore, if ϕ ¼ ϕðt; x⃗Þ, the corresponding effective fluid
in scalar-tensor or Horndeski gravity is necessarily a
dissipative one [58–62], and the McVittie geometry cannot
be a solution.
In order to find the functional forms of G2, G3, and G4

such that the McVittie geometry (2.1) is a solution of
Eqs. (1.8) and (1.9), we substitute the line element (2.1) in
Eq. (1.8) and impose thatG2,G3, andG4 solve it. The ðt; rÞ
equation becomes

4maðtÞ _ϕðtÞ
m2 − 4a2ðtÞr2 ½Xðt; rÞG3;Xðϕ; XÞ −G4;ϕðϕÞ� ¼ 0; ð2:3Þ

and, assuming _ϕðtÞ ≠ 0, it gives

G3;Xðϕ; XÞ ¼
G4;ϕðϕÞ

X
; ð2:4Þ

which integrates to

G3ðϕ; XÞ ¼ G4;ϕðϕÞ lnX þ FðϕÞ: ð2:5Þ

Inserting this form ofG3ðϕ; XÞ, the radial component of the
Horndeski field Eq. (1.8) yields

G2ðϕ;XÞ¼2X½G4;ϕϕðϕÞðlnX−2ÞþF;ϕðϕÞ�

−4
2aðtÞrþm
2aðtÞr−m

_ϕðtÞHðtÞG4;ϕðϕÞ

þG4ðϕÞ
�
−6H2ðtÞ−4 _HðtÞ2raðtÞþm

2aðtÞr−m

�
: ð2:6Þ

Let us further assume that ϕðtÞ is monotonic, _ϕðtÞ≷0,
while m < 2aðtÞr. Eq. (2.2) then yields

_ϕðtÞ ¼ � 2aðtÞr −m
2aðtÞrþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xðt; rÞ

p
; ð2:7Þ

while Eq. (2.6) becomes

1The proof of this statement is the actual derivation of the line
element (2.1) in the original McVittie article [1].
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Gð�Þ
2 ðϕ; XÞ ¼ 2X½G4;ϕϕðϕÞðlnX − 2Þ þ F;ϕðϕÞ�

∓ 4
ffiffiffi
2

p ffiffiffiffi
X

p
HðtÞG4;ϕðϕÞ

þ G4ðϕÞ
�
−6H2ðtÞ ∓ 4

ffiffiffi
2

p ffiffiffiffi
X

p _HðtÞ
_ϕðtÞ

�
: ð2:8Þ

Since ϕ is monotonic, one can regard HðtÞ≡ SðϕÞ as a
function of ϕ and then _HðtÞ ¼ S;ϕðϕÞ _ϕðtÞ. In order for

Gð�Þ
2 ðϕ; XÞ to depend only on ϕðtÞ and Xðt; rÞ, it must be

Gð�Þ
2 ðϕ; XÞ ¼ 2X½G4;ϕϕðϕÞðlnX − 2Þ

þF;ϕðϕÞ� ∓ 4
ffiffiffi
2

p ffiffiffiffi
X

p
SðϕÞG4;ϕðϕÞ

þ G4ðϕÞ½−6S2ðϕÞ ∓ 4
ffiffiffi
2

p ffiffiffiffi
X

p
S;ϕðϕÞ�: ð2:9Þ

Assuming the four-velocity,

uμðϕÞ ≡
∇μϕffiffiffiffiffiffi
2X

p ; ð2:10Þ

of the perfect fluid equivalent to the scalar field to be future
oriented, i.e.,

u0ðϕÞ ¼ −
�
2aðtÞrþm
2aðtÞr −m

�
2 _ϕðtÞffiffiffiffiffiffi

2X
p > 0; ð2:11Þ

or

_ϕðtÞ ¼ −
2aðtÞr −m
2aðtÞrþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xðt; rÞ

p
; ð2:12Þ

the Horndeski functions that solve Eqs. (1.8) and (1.9) are

G2ðϕ; XÞ ¼ 2X½G4;ϕϕðϕÞðlnX − 2Þ þ F;ϕðϕÞ�
þ 4

ffiffiffiffiffiffi
2X

p
SðϕÞG4;ϕðϕÞ

þ G4ðϕÞ½−6S2ðϕÞ þ 4
ffiffiffi
2

p ffiffiffiffi
X

p
S;ϕðϕÞ�; ð2:13Þ

G3ðϕ; XÞ ¼ G4;ϕðϕÞ lnX þ FðϕÞ; ð2:14Þ

where SðϕÞ ¼ HðtÞ and G4ðϕÞ are free functions. In
general, G4ðϕÞ is completely unconstrained. Therefore,
any set fG4ðϕÞ;ϕðtÞ; mðtÞ; aðtÞg is a solution of the theory
(1.7) for which Eqs. (2.13) and (2.14) hold with
SðϕÞ ¼ HðtÞ.
The function FðϕÞ appearing in Eqs. (2.13) and (2.14)

can be safely neglected because, when inserted in the
action, it only appears in the total divergence
2XF;ϕðϕÞ − FðϕÞ□ϕ ¼ −∇μ½FðϕÞ∇μϕ�, which generates
a boundary term and does not contribute to the field
equations.

If m ¼ 0, we obtain the same set of functions, and X
reduces to X ¼ _ϕ2ðtÞ=2.
In the special situation G3 ≡ 0, it is G4;ϕðϕÞ ¼ 0 and

G4ðϕÞ ¼ const; then, as shown in the next section, the
scalar field ϕ is not dynamical.

A. McVittie scalar field as a cuscuton

Let us consider now the situation in which G4 ¼ 1=2,
which implies G3 ¼ 0 (keeping in mind that FðϕÞ only
contributes a boundary term −

R
d4x

ffiffiffiffiffiffi−gp ∇μ½FðϕÞ∇μϕ� to
the action), according to Eq. (2.14). Using Eqs. (2.14) and
(2.13), the Horndeski action becomes S ¼ Sg þ Sϕ, where

Sg ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð2:15Þ

Sϕ ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Lðϕ; XÞ≡

Z
d4x

ffiffiffiffiffiffi
−g

p
G2ðϕ; XÞ

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½AðϕÞ þ BðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xðt; rÞ

p
�; ð2:16Þ

with

AðϕÞ ¼ −6S2ðϕÞ; ð2:17Þ

BðϕÞ ¼ 4
ffiffiffi
2

p
S;ϕðϕÞ: ð2:18Þ

This action belongs to the class of k-essence theories of
gravity, and its variation with respect to ϕ produces the
well-known equation of motion for ϕ,

δS
δϕ

¼ ðL;Xgαβ − L;XX∇αϕ∇βϕÞ∇α∇βϕ − 2XL;Xϕ

þ L;ϕ ¼ 0: ð2:19Þ

When the inequality,

L;X þ 2XL;XX > 0; ð2:20Þ

is satisfied, the partial differential equation (2.19) is hyper-
bolic, and ϕ describes a propagating degree of freedom. In
the case under consideration, the inequality (2.20) is
violated because

L;X ¼ BðϕÞ
2

ffiffiffiffi
X

p ; ð2:21Þ

2XL;XX ¼ −
BðϕÞffiffiffiffi

X
p ; ð2:22Þ
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and L;X þ 2XL;XX ¼ 0, which is the condition for the
scalar field ϕ to be a cuscuton [32,33,64–66]. It is always
possible to redefine the scalar field ϕ → ϕ̃ðϕÞ so that
BðϕÞdϕ̃=dϕ ¼ �μ2 and to rewrite the cuscuton Lagrangian
as

Lðϕ; XÞ ¼
ffiffiffiffiffiffi−gp
2

½�μ2
ffiffiffiffi
X

p
− VðϕÞ�; ð2:23Þ

where VðϕÞ ¼ −AðϕÞ. As a consequence, VðϕÞ ¼ 6H2ðtÞ
and _HðtÞ ¼∓ μ2 _ϕðtÞ=ð4 ffiffiffi

2
p Þ, which yield

HðtÞ ¼ C� μ2ϕðtÞ
4

ffiffiffi
2

p ; ð2:24Þ

VðϕÞ ¼ 6

�
C� μ2ϕðtÞ

4
ffiffiffi
2

p
�
2

; ð2:25Þ

where C is a constant of integration.
From the physical point of view, the cuscuton is

equivalent to a perfect fluid, and it is incompressible since
its sound speed is found to be infinite [32,33,64–68]. This
feature, which expresses the facts that perturbations do not
propagate and the cuscuton is not dynamical, is reminiscent
of the property of the McVittie universe that the cosmic
fluid is not allowed to accrete onto the central object but
somehow expands rigidly, given that the energy density
ρðtÞ is perfectly homogeneous [1]. This “McVittie con-
dition” is removed in generalized McVittie geometries by
allowing radial energy flux, and, correspondingly, the class
of Horndeski theories admitting generalized McVittie
spacetimes as solutions is wider than cuscuton gravity.

III. GENERALIZED MCVITTIE SOLUTIONS OF
HORNDESKI GRAVITY

Let us turn now to generalized McVittie geometries
[28,30,31] characterized by a radial spacelike energy flux
onto (or away from) the central object, which was instead
forbidden explicitly by McVittie in his solution of the
Einstein equations [1]. The corresponding line element in
isotropic coordinates reads

ds2 ¼ −
ð1 − mðtÞ

2aðtÞrÞ2

ð1þ mðtÞ
2aðtÞrÞ2

dt2

þ a2ðtÞ
�
1þ mðtÞ

2aðtÞr
�

4

ðdr2 þ r2dΩ2
ð2ÞÞ; ð3:1Þ

where mðtÞ > 0 is now a function of time, while it was
constant in the McVittie solution [1]. This time dependence
of the mass parameter of the central object embedded in the
FLRW universe is due to the nonvanishing radial energy
flux [28,30,31]; therefore, generalized McVittie geometries

are substantially different from the original McVittie ones.
Here, we determine the Horndeski theories that admit
generalized McVittie solutions. The method is similar to
the one adopted in the previous section: We substitute the
line element (3.1) in Eq. (1.8) and impose that G2, G3, and
G4 solve it. Then we will compare our result with Ref. [67].
Let us consider again a strictly monotonic homogeneous
scalar field ϕðtÞ with _ϕðtÞ < 0 and mðtÞ < 2aðtÞr, which
leads to

Xðt; rÞ ¼ 1

2

�
2aðtÞrþmðtÞ
2aðtÞr −mðtÞ

�
2
_ϕ2ðtÞ; ð3:2Þ

or

_ϕðtÞ ¼ −
2aðtÞr −mðtÞ
2aðtÞrþmðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xðt; rÞ

p
: ð3:3Þ

The ðt; rÞ component of the Horndeski field equations
yields

G3;ϕðϕ; XÞ ¼
G4;ϕðϕÞ þ 2G0ðϕÞG4ðϕÞ

X
; ð3:4Þ

where

G0ðϕÞ ¼
_mðtÞ

mðtÞ _ϕðtÞ ¼
WðtÞ
_ϕðtÞ ; ð3:5Þ

and with WðtÞ≡ _mðtÞ=mðtÞ.
Equation (3.4) is integrated with respect to X, obtaining

G3ðϕ;XÞ¼ ½2G0ðϕÞG4ðϕÞþG4;ϕðϕÞ� lnXþG1ðϕÞ; ð3:6Þ

where G1ðϕÞ is an arbitrary integration function of the
scalar field, which can be neglected because it produces a
boundary term, as we will see. By imposing the generalized
McVittie geometry (3.1), the radial component of the field
equations (1.8) in conjunction with Eq. (3.6) gives

G2ðϕ; XÞ ¼ Aðϕ; XÞG4ðϕÞ þ Bðϕ; XÞG4;ϕðϕÞ
− 2Xð1 − lnXÞG4;ϕϕðϕÞ þ 2XG1;ϕðϕÞ; ð3:7Þ

where Aðϕ; XÞ and Bðϕ; XÞ depend on ϕ and X. Using
some auxiliary functions, it is possible to write the explicit
functional form of G2 as

G2ðϕ; XÞ ¼ 2G4ðϕÞ½F1ðϕÞ þ F2ðϕÞ
ffiffiffiffi
X

p

−2XðG0;ϕðϕÞð2 − lnXÞ þ 3G2
0ðϕÞÞ�

− 4G4;ϕðϕÞ½G0ðϕÞXð2 − lnXÞ þ S0ðϕÞ
ffiffiffiffi
X

p
�

− 2XG4;ϕϕð2 − lnXÞ þ 2XG1;ϕðϕÞ; ð3:8Þ

where
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G0ðϕÞ ¼
1

_ϕðtÞ
_mðtÞ
mðtÞ ¼

WðtÞ
_ϕðtÞ ; ð3:9Þ

S0ðϕÞ ¼
ffiffiffi
2

p
ðHðtÞ −WðtÞÞ; ð3:10Þ

F1ðϕÞ ¼ −3ðHðtÞ −WðtÞÞ2 ¼ −
3

2
S20ðϕÞ; ð3:11Þ

F2ðϕÞ ¼
2

ffiffiffi
2

p
_ϕðtÞ ½

_HðtÞ − _WðtÞ þ 3WðtÞðHðtÞ −WðtÞÞ�

¼ 2½S0;ϕðϕÞ þ 3G0ðϕÞS0ðϕÞ�: ð3:12Þ

These equations show that G1ðϕÞ is completely negligible
because, together with Eq. (3.6), it produces the total
divergence 2XG1;ϕðϕÞ − G1ðϕÞ□ϕ ¼ −∇μ½G1ðϕÞ∇μϕ� in
the action integral and, therefore, an irrelevant boun-
dary term.
If G0ðϕÞ ¼ 0, then m is constant, and we recover the

function G2 associated with the McVittie metric,

G2ðϕ; XÞ ¼ 2G4ðϕÞ½F1ðϕÞ þ F2ðϕÞ
ffiffiffiffi
X

p
�

− 4G4;ϕðϕÞS0ðϕÞ
ffiffiffiffi
X

p
− 2XG4;ϕϕð2 − lnXÞ

þ 2XG1;ϕðϕÞ; ð3:13Þ

where

S0ðϕÞ ¼
ffiffiffi
2

p
HðtÞ; ð3:14Þ

F1ðϕÞ ¼ −3H2ðtÞ ¼ −
3

2
S20ðϕÞ; ð3:15Þ

F2ðϕÞ ¼ 2
ffiffiffi
2

p _HðtÞ
_ϕðtÞ ¼ 2S0;ϕðϕÞ: ð3:16Þ

In general, G4ðϕÞ is unconstrained.
If mðtÞ vanishes identically, G0ðϕÞ ¼ 0, and one recov-

ers the above set of functions with X ¼ _ϕðtÞ2=2.
The case _ϕðtÞ > 0 is obtained by changing the sign of

the terms with
ffiffiffiffi
X

p
. However, fixing the sign of _ϕðtÞ does

not cause loss of generality because rewriting every
quantity in terms of t leads to the same expression for
G2ðtÞ and G3ðtÞ.
Therefore, the class of viable Horndeski theories that

admit generalizedMcVittie solutions is characterized byG2

and G3 given in Eqs. (3.8) and (3.6), respectively, together

with Eqs. (3.9)–(3.12). Then, any quadruple fG4ðϕÞ;ϕðtÞ;
mðtÞ; aðtÞg corresponds to a particular solution of the
Horndeski theory (1.7).
The results of Ref. [67] are recovered for G4ðϕÞ ¼ 1=2;

this special case in conjunction with G3ðϕ; XÞ ¼ 0 repro-
duces Sec. II A with m ¼ const.
A particular subclass of the theories found, correspond-

ing to G3 ¼ 0, is discussed below. This subclass is of
physical interest for the reasons discussed in Ref. [69], and
the vanishing of G3 has significant consequences.

A. Vanishing G3ðϕ;XÞ
In the special subclass of Horndeski theories with

G3 ¼ 0, Eq. (3.6) gives

2G0ðϕÞG4ðϕÞ þG4;ϕðϕÞ ¼ 0; ð3:17Þ

and

G4ðϕÞ ¼ C exp

�
−2

Z
ϕ

1

G0ðξÞdξ
�
; ð3:18Þ

where C is an integration constant. Due to the monotonicity

of ϕ, one can writemðtÞ ¼ m̃ðϕÞ andG0ðϕÞ ¼ d ln m̃ðϕÞ
dϕ and,

redefining the constant C,

G4ðϕÞ ¼
C

m̃2ðϕÞ ð3:19Þ

or

G̃4ðtÞ ¼
C

m2ðtÞ : ð3:20Þ

Thus, G4ðϕÞ is constant if and only if mðtÞ is.
Let us restore explicitly the speed of light c and the

Newton coupling assuming it to be time dependent,
G ¼ GðtÞ. In this way, the McVittie mass coefficient can
be rewritten as

mðtÞ ¼ GðtÞMðtÞ
c2

; ð3:21Þ

where the function MðtÞ has the dimensions of a mass,
while the Horndeski nonminimal coupling reads

G4ðϕÞ ¼
c4

16πGðtÞ : ð3:22Þ

Thus, Eq. (3.19), together with Eqs. (3.21) and (3.22), can
be written as

GðtÞ ¼ GN
M2

0

MðtÞ2 ; ð3:23Þ
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and it results

mðtÞ ¼ GNM0

c2
M0

MðtÞ ; ð3:24Þ

which, in turn, gives

_mðtÞ
mðtÞ ¼ −

_MðtÞ
MðtÞ ; ð3:25Þ

where GN is the present value of the gravitational coupling,
and M0 ≡Mðt0Þ is the present value of MðtÞ.

IV. HORNDESKI–MCVITTIE AS AN EXTENDED
CUSCUTON MODEL

Here, we show that the class of viable Horndeski theories
admitting McVittie and generalized McVittie solutions in
Eqs. (2.1) and (3.1), respectively, is a particular case of
what in the literature is called extended cuscuton model
[40,41], a generalization of the cuscuton seen in Sec. II A in
which the scalar ϕ remains nondynamical.
The cuscuton (2.23) has always received much attention

([32,33,40,64–67], see also Refs. [68,70–76]), representing
[in the unitary gauge, ϕ ¼ ϕðtÞ] the unique subclass of k-
essence theory with only two propagating degrees of
freedom. This fact is related to two closely related features
of this model:

(i) The equation of motion for the scalar ϕ is of first
order in the case of FLRW cosmology;

(ii) The kinetic term of scalar cosmological perturba-
tions vanishes.

However, the cuscuton is not the most general Horndeski
theory propagating only two degrees of freedom. The
theory with this feature is the extended cuscuton model,
characterized by the generalization of the first statement to

(i) The system composed of the dynamical equa-
tions (1.8) and (1.9) is degenerate in FLRW
(see Ref. [40]).

The above statement implies that the functions Giðϕ; XÞ
in the action (1.7) must satisfy the conditions,

G2ðϕ; XÞ ¼ f1ðϕÞ þ f2ðϕÞ
ffiffiffiffiffiffi
2X

p

−
�
2f3;ϕðϕÞ þ 4f4;ϕϕðϕÞ þ

3f32ðϕÞ
4f4ðϕÞ

�
X

þ ðf3;ϕðϕÞ þ 2f4;ϕϕðϕÞÞX lnX; ð4:1Þ

G3ðϕ; XÞ ¼
�
1

2
f3ðϕÞ þ f4;ϕðϕÞ

�
lnX; ð4:2Þ

G4ðϕÞ ¼ f4ðϕÞ; ð4:3Þ

where the ffig are arbitrary functions of ϕðtÞ, so that the
scalar field does not propagate at both the background and
the perturbative levels.
Equations (4.1)–(4.3) coincide with Eqs. (3.6)–(3.8)

under the identifications,

f1ðϕÞ ¼ 2G4ðϕÞF1ðϕÞ ¼ −3G4ðϕÞS20ðϕÞ; ð4:4Þ

f2ðϕÞ ¼
ffiffiffi
2

p
½G4ðϕÞF2ðϕÞ þ 2S0ðϕÞG4;ϕðϕÞ�

¼ 2
ffiffiffi
2

p
½G4ðϕÞðS0;ϕðϕÞ þ 3G0ðϕÞS0ðϕÞÞ

þ S0ðϕÞG4;ϕðϕÞ�; ð4:5Þ

f3ðϕÞ ¼ 4G0ðϕÞG4ðϕÞ; ð4:6Þ

where

G0ðϕÞ ¼
WðtÞ
_ϕðtÞ ; ð4:7Þ

S0ðϕÞ ¼
ffiffiffi
2

p
ðHðtÞ −WðtÞÞ: ð4:8Þ

Fixing f3ðϕÞ ¼ 0, or G0 ¼ 0, Eqs. (4.1)–(4.6) are
equivalent to the set of functions (2.13) and (2.14).
Therefore, also the standard (i.e., m ¼ const) McVittie
geometry in Horndeski theory represents an extended
cuscuton model. It is well known that this kind of
theory is transformed into the standard cuscuton model
[32,33,64–66] by a particular disformal transforma-
tion [40,67].
Extended cuscuton models are used to describe dark

energy, mimicking the ΛCDM model in late-time cosmol-
ogy [41,77] with a time-dependent gravitational coupling,
or as a mechanism to remove the cosmological singularity
through a bounce [42]. These works deal with a particular
choice of the functions ffig, which provide different
cosmological models. In Refs. [41,42,77], they discuss
the extended cuscuton action in the presence of matter
while, until now in the present work, we have considered
only the vacuum Horndeski action (i.e.,G2 andG3 describe
effectivematter). Therefore, we are able to find a functional
form of the viable Horndeski action such that the McVittie
geometry satisfies the field equations, but there is freedom
in choosing the functions (3.9) and (3.10), and one cannot
discuss the dynamics of the system until these are fixed. For
this reason, in the next section, we improve the generality
by adding a matter fluid to the extended cuscuton model,
Eqs. (4.1)–(4.3), and classifying all the resulting
possibilities.
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V. MCVITTIE IN THE EXTENDED CUSCUTON
MODEL WITH MATTER

Without loss of generality, let us parametrize the func-
tions ffig of Eqs. (4.1)–(4.3) in the more convenient way,

f1ðϕÞ → 2f1ðϕÞG4ðϕÞ; ð5:1Þ

f2ðϕÞ →
ffiffiffi
2

p
f2ðϕÞG4ðϕÞ; ð5:2Þ

f3ðϕÞ → 4f3ðϕÞG4ðϕÞ: ð5:3Þ

This is just a redefinition of the functions ffig because f1,
f2, and G0 are still free. Moreover, we assume the cosmic
fluid to be described by an imperfect fluid stress-energy
tensor Tμν, allowing a priori a nonvanishing radial flow,

Tμν ¼ ðPþ ρÞuμuν þ Pgμν þ qμuν þ qνuμ; ð5:4Þ

where the fluid four-velocity uμ is normalized to
uμuμ ¼ −1, the purely spatial vector qμ describes a radial
energy flow, and ρðt; rÞ and Pðt; rÞ denote the energy
density and pressure of the fluid, respectively. It follows
that

Tt
t ¼ −ρðt; rÞ; Tr

r ¼ Pðt; rÞ: ð5:5Þ

Now, the ðt; rÞ field equation gives

f3ðϕÞ ¼
1

_ϕðtÞ

�
WðtÞ þ ð2aðtÞr −mðtÞÞ3Tt

rðt; rÞ
8aðtÞmðtÞG4ðϕÞð2aðtÞrþmðtÞÞ

�
;

ð5:6Þ

where WðtÞ ¼ _mðtÞ=mðtÞ. Since, by definition, f3 is a
function of ϕðtÞ, we can introduce a generic function of
time QðtÞ and rewrite Tt

r as

Tt
r ¼

8aðtÞmðtÞG4ðϕÞð2aðtÞrþmðtÞÞ
ð2aðtÞr −mðtÞÞ3 QðtÞ: ð5:7Þ

The flux Tt
r vanishes if mðtÞ ¼ 0 and also as r → þ∞.

Therefore, we have

f3ðϕÞ ¼
WðtÞ þQðtÞ

_ϕðtÞ : ð5:8Þ

Using this form of f3ðϕÞ, we must now impose that the
equation of motion Eq. (1.9) of ϕ is satisfied, thus obtaining
constraints on f1 and f2 that can be used in the field
equations. However, it is not possible to follow this
procedure for arbitrary G4ðϕÞ, QðtÞ, WðtÞ, and HðtÞ,
and it is necessary to make some assumptions on these
four functions in order to solve the algebraic expression
coming from the equation of motion of ϕ. This situation is

related with the fact that this equation of motion sets
constraints on f1 and f2, which are obtained in specific
domains. We provide a classification of all the possible
cases in which Eq. (1.9) is satisfied by reasoning on
fG4;ϕðϕÞ; QðtÞ;WðtÞ; HðtÞg, according to whether one or
more of them vanishes identically. To anticipate the results,
when QðtÞ ≠ 0, WðtÞ ¼ 0, and HðtÞ ≠ 0, the equation of
motion cannot be satisfied, as well as as whenG4;ϕðϕÞ ≠ 0,
QðtÞ ≠ 0, WðtÞ ≠ 0, and HðtÞ ¼ 0. All the possible cases
are characterized by constraints on fG4;ϕðϕÞ; QðtÞ;
WðtÞ; HðtÞg and are summarized in the following list:

(i) Case 1: QðtÞ ¼ 0 and WðtÞ ¼ 0;
(ii) Case 2: QðtÞ ¼ 0 and WðtÞ ≠ 0;
(iii) Case 3: QðtÞ ≠ 0, WðtÞ ¼ 0, and HðtÞ ¼ 0;
(iv) Case 4: G4;ϕ ¼ 0, and QðtÞ ¼ −WðtÞ ≠ 0;
(v) Case 5: G4;ϕ ¼ 0, QðtÞ ≠ 0 and WðtÞ ¼ HðtÞ ≠ 0;
(vi) Case 6: G4;ϕ ≠ 0, QðtÞ ≠ 0 and QðtÞ ≠ −HðtÞ,

and WðtÞ ¼ HðtÞ ≠ 0.

A. Case 1: QðtÞ= 0 and WðtÞ= 0
We consider a generic function G4ðϕÞ, which could be

constant, vanishing radial flow, and a standard McVittie
geometry. This situation occurs also in the limit of
asymptotically flat spacetime HðtÞ ¼ 0. From the equation
of motion for ϕ, one obtains

f1;ϕðϕÞ ¼ −½f1ðϕÞ − 3H2ðtÞ�G4;ϕðϕÞ
G4ðϕÞ

−
3ffiffiffi
2

p HðtÞf2ðϕÞ;

ð5:9Þ

f2 ¼ f2ðϕÞ; ð5:10Þ

leaving the function f2 unconstrained. The corresponding
field equations provide the energy density and the pressure
of the fluid,

ρðtÞ ¼ G4ðϕÞ½f1ðϕÞ þ 3H2ðtÞ�; ð5:11Þ

Pðr; tÞ ¼ −G4ðϕÞ
�
f1ðϕÞ þ 3H2ðtÞ

þ 2aðtÞrþm
2aðtÞr −m

ð
ffiffiffi
2

p
f2ðϕÞ _ϕðtÞ − 4 _HðtÞÞ

�

− 2
2aðtÞrþm
2aðtÞr −m

HðtÞ _ϕðtÞG4;ϕðϕÞ: ð5:12Þ

B. Case 2: QðtÞ = 0 and WðtÞ ≠ 0

In this case, there is no radial flow, and there is a central
inhomogeneity with nonconstant mass parameter: The
scalar field “compensates” the time variation of mðtÞ as
it happens in the case of generalized McVittie geometries in
the vacuum extended cuscuton model.
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The equation of motion of the scalar field yields the
constraints,

f1;ϕðϕÞ ¼ −½f1ðϕÞ þ 3ðHðtÞ −WðtÞÞ2�G4;ϕðϕÞ
G4ðϕÞ

−
6

_ϕðtÞ ðHðtÞ −WðtÞÞð _HðtÞ − _WðtÞÞ; ð5:13Þ

f2ðϕÞ ¼
2

ffiffiffi
2

p
_ϕðtÞ

�
_HðtÞ − _WðtÞ þ 3WðtÞðHðtÞ −WðtÞÞ

þ ðHðtÞ −WðtÞÞ
_ϕðtÞG4;ϕðϕÞ

G4ðϕÞ
�
: ð5:14Þ

As a consequence, from the field equations, we obtain that
the only possible cosmological fluid is a perfect fluid with
linear barotropic coefficient equal to −1:

PðtÞ¼−G4ðϕÞ½f1ðϕÞþ3ðHðtÞ−WðtÞÞ2�¼−ρðtÞ: ð5:15Þ

In this case, f2 has a fixed functional form, which
corresponds to Eq. (4.5) and remains constrained in the
limit WðtÞ → 0. In general, it does not give back the
previous case.
This result is consistent with what we obtained in the

vacuum case. Indeed, for vanishing P and ρ, it is
f1 ¼ 3½HðtÞ −WðtÞ�2, corresponding to Eq. (4.4).

C. Case 3: QðtÞ ≠ 0, WðtÞ= 0, and HðtÞ = 0
This case describes a Schwarzschild black hole

embedded in an imperfect fluid with radial flow. The
scalar field equation of motion gives

f1ðϕÞ ¼
λ

G4ðϕÞ
; f2 ¼ f2ðϕÞ; ð5:16Þ

QðtÞ ¼ Q0ffiffiffiffiffiffiffiffiffiffiffiffiffi
G4ðϕÞ

p ; ð5:17Þ

where λ and Q0 are integration constants. The fluid is
characterized by

ρðt; rÞ ¼ λþ 3

�
2aðtÞrþm
2aðtÞr −m

�
2

Q2
0; ð5:18Þ

Pðt; rÞ ¼ −λþ 3

�
2aðtÞrþm
2aðtÞr −m

�
2

Q2
0

þ 1ffiffiffi
2

p 2aðtÞrþm
2aðtÞr −m

f2ðϕÞ _ϕðtÞG4ðϕÞ

þ
�
2aðtÞrþm
2aðtÞr −m

�
2G4;ϕðϕÞ _ϕðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

G4ðϕÞ
p Q0: ð5:19Þ

D. Case 4: G4;ϕ = 0, and QðtÞ= −WðtÞ ≠ 0

Now we have a generalized McVittie metric with generic
scale factor and constant gravitational coupling. The
solution of the equation of motion of ϕ is

f1;ϕðϕÞ ¼ 0; f2ðϕÞ ¼ 0; QðtÞ ¼ −WðtÞ; ð5:20Þ

where the last equality QðtÞ ¼ −WðtÞ implies f3 ¼ 0, and,
in conjunction with G4;ϕ ¼ 0, it has the consequence
that G3 ¼ 0.
The energy density and pressure of the imperfect fluid

surrounding the central object are

ρðt; rÞ ¼ G4

�
f1 þ 3

�
HðtÞ þ 2mðtÞ

2aðtÞr −mðtÞWðtÞ
�

2
�
;

ð5:21Þ

Pðt;rÞ¼G4

�
−f1−3H2ðtÞþ4mðtÞð3m2ðtÞ−8mðtÞaðtÞr−4a2ðtÞr2Þ

ð2aðtÞr−mðtÞÞ3 W2ðtÞ−4mðtÞð4aðtÞr−mÞð2aðtÞr−3mðtÞÞ
ð2aðtÞr−mðtÞÞ3 WðtÞHðtÞ

−
4mðtÞð2aðtÞrþmðtÞÞ

ð2aðtÞr−mðtÞÞ2 W0ðtÞ−2
2aðtÞr−mðtÞ
2aðtÞr−mðtÞH

0ðtÞ
�
: ð5:22Þ

The homogeneous limit r → ∞ reproduces the usual
perfect fluid Friedmann equation,

ρðtÞ ≃G4½f1 þ 3H2ðtÞ�; ð5:23Þ

PðtÞ ≃ −G4½f1 þ 3H2ðtÞ − 2 _HðtÞ�; ð5:24Þ

where f1 plays the role of a cosmological constant.
Therefore, this case is equivalent to the generalized
McVittie metric of GR with a cosmological constant.

E. Case 5: G4;ϕ = 0, QðtÞ ≠ 0 and WðtÞ=HðtÞ ≠ 0

The condition WðtÞ ¼ HðtÞ automatically makes the
generalized McVittie solution a nonrotating Thakurta
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geometry, which we are going to discuss below. When one
solves the equation of motion of ϕ imposing G4;ϕ ¼ 0,
QðtÞ ≠ 0, WðtÞ ≠ 0, and HðtÞ ≠ 0 and assuming
QðtÞ ≠ −WðtÞ, one obtains

WðtÞ ¼ HðtÞ ⇒ mðtÞ ¼ m0aðtÞ; ð5:25Þ

QðtÞ ¼ Q0

a3ðtÞ ; ð5:26Þ

wherem0 andQ0 are integration constants. In an expanding
universe, the equation WðtÞ ¼ HðtÞ implies a growing
black hole mass. In addition, the condition QðtÞ ≠
−WðtÞ becomes QðtÞ ≠ −HðtÞ.
In this case, the cosmic fluid has energy density and

pressure,

ρðt; rÞ ¼ G4

�
3

�
2aðtÞrþmðtÞ
2aðtÞr −mðtÞ

�
2 Q2

0

a6ðtÞ þ f1

�
; ð5:27Þ

Pðt; rÞ ¼ G4

�
3

�
2aðtÞrþmðtÞ
2aðtÞr −mðtÞ

�
2 Q2

0

a6ðtÞ − f1

�
: ð5:28Þ

As r → þ∞, the cosmic fluid becomes a perfect fluid, and
ρ and P become

ρðtÞ ≃ G4

�
3Q2

0

a6ðtÞ þ f1

�
; ð5:29Þ

PðtÞ ≃G4

�
3Q2

0

a6ðtÞ − f1

�
; ð5:30Þ

with f1 acting again as a cosmological constant. Therefore,
the cosmic fluid is made up by a cosmological constant
contribution and by a stiff fluid with linear barotropic
coefficient equal to 1.

F. Case 6: G4;ϕ ≠ 0, QðtÞ ≠ 0 and QðtÞ ≠ −HðtÞ, and
WðtÞ=HðtÞ ≠ 0

If none of G4;ϕðϕÞ, QðtÞ, WðtÞ, HðtÞ vanishes, the
equation of motion of the scalar field yields

f1ðϕÞ ¼
λ

G4ðϕÞ
; f2ðϕÞ ¼ 0; ð5:31Þ

WðtÞ ¼ HðtÞ; QðtÞ ≠ −HðtÞ; ð5:32Þ

_QðtÞ¼−3QðtÞHðtÞ−QðtÞ
2

_ϕðtÞG4;ϕðϕÞ
G4ðϕÞ

�
QðtÞþ2HðtÞ
QðtÞþHðtÞ

�

¼−3QðtÞHðtÞ−QðtÞ
2

_G4ðtÞ
G4ðtÞ

�
QðtÞþ2HðtÞ
QðtÞþHðtÞ

�
; ð5:33Þ

where λ is an integration constant.

In this case, WðtÞ ¼ HðtÞ ⇒ mðtÞ ¼ m0aðtÞ does not
mean that an expanding universe corresponds to a growing
mass; because mðtÞ is a mass parameter containing a
nonconstant gravitational coupling, then we have to take
into account the whole evolution of the function, which is
not a mere change of mass.
Indeed, with the parameterization of Sec. III A, it is

_MðtÞ
MðtÞ −

_G4ðtÞ
G4ðtÞ

¼ HðtÞ; ð5:34Þ

while Eq. (5.33) can be seen as a sort of continuity
equation. Then, the field equations give

ρðt; rÞ ¼ λþ 3G4ðϕÞQ2ðtÞ
�
2aðtÞrþmðtÞ
2aðtÞrþmðtÞ

�
2

; ð5:35Þ

Pðt; rÞ ¼ −λþ
�
3G4ðtÞQ2ðtÞ þ

_G4ðtÞQ2ðtÞ
QðtÞ þHðtÞ

�

×
�
2aðtÞrþmðtÞ
2aðtÞrþmðtÞ

�
2

: ð5:36Þ

The homogeneous limit r → ∞ reduce these quantities to

ρðtÞ ≃ λþ 3G4ðtÞQ2ðtÞ; ð5:37Þ

PðtÞ ≃ −λþ 3G4ðtÞQ2ðtÞ þ
_G4ðtÞQ2ðtÞ
QðtÞ þHðtÞ : ð5:38Þ

Even if, to solve the scalar field equation, we impose the
nonvanishing of G4;ϕðϕÞ, at the end of the day, this case
generalizes the previous one. Indeed, imposing
G4;ϕðϕÞ ¼ 0, one obtains the same Friedmann equations
and the same expression for QðtÞ in terms of aðtÞ.
The current case is the most interesting one; to inves-

tigate it, let us consider a matter-dominated cosmological
era and let us assume the barotropic equation of state
PðtÞ ¼ wρðtÞ, w ¼ const. In particular, for dust, we can
neglect λ and obtain

HðtÞ ¼ −QðtÞ −
_G4ðtÞ
3G4ðtÞ

; ð5:39Þ

_QðtÞ ¼ 3

2
Q2ðtÞ ⇒ QðtÞ ¼ −

2

2c1 þ 3t
; ð5:40Þ

where c1 is an integration constant, and

G4ðtÞ ¼
c2ð2c1 þ 3tÞ2

a3ðtÞ ; ð5:41Þ

ρðtÞ ¼ 12c2
a3ðtÞ ; ð5:42Þ
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MðtÞ ¼ c3ð2c1 þ 3tÞ2
a2ðtÞ ; ð5:43Þ

where c2;3 are integration constants. Therefore, the density
of dust scales as ρ ∝ a−3 as in GR. We can generalize this
treatment to a generic equation of state constant parameter
w. Assuming the linear barotropic equation of state,
PðtÞ ¼ wρðtÞ leads to the system of equations (when w ≠ 1

and _G4ðtÞ ≠ 0),

_G4ðtÞ
G4ðtÞ

¼ 3ðw − 1ÞðHðtÞ þQðtÞÞ; ð5:44Þ

_QðtÞ ¼ −
3QðtÞ
2

ð2wHðtÞ þ ðw − 1ÞQðtÞÞ; ð5:45Þ

yielding

QðtÞ ¼ a−3wðtÞ
c1 þ 3

2

R
t
1ðw − 1Þa−3wðt̃Þdt̃ ; ð5:46Þ

G4ðtÞ ¼ c2a3ðw−1Þ
�
c1 þ

3

2

Z
t

1

ðw − 1Þa−3wðt̃Þdt̃
�
2

; ð5:47Þ

with c1;2 are integration constants. Then, the energy density
is

ρðtÞ ¼ 3c2
a3ð1þwÞðtÞ ; ð5:48Þ

while the black hole mass is

MðtÞ ¼ c3a3w−2ðtÞ
�
c1 þ

3

2

Z
t

1

ðw − 1Þa−3wðt̃Þdt̃
�
2

; ð5:49Þ

where c3 is another integration constant, and the scale
factor is unknown. At first sight, this result seems to hold
also for w ¼ −1, the simplest dark energy model, and for
w ¼ 1, the stiff matter case, but the latter value of the
equation of state parameter is forbidden and can be taken
into account only in the case _G4 ¼ 0 (the previous case).

It is worth asking what happens if the change in the
effective mass is due exclusively to the change of
gravitational coupling. Adopting the parametrization
of Sec. III A, WðtÞ ¼ − _G4ðtÞ=G4ðtÞ → _G4ðtÞ=G4ðtÞ ¼
−HðtÞ ⇒ G4ðtÞ ¼ cG=aðtÞ. The consequence is that

QðtÞ ¼ −
ð3w − 2Þ
3ðw − 1ÞHðtÞ; ð5:50Þ

HðtÞ ¼ 2

tð3wþ 2Þ − 2c1
; ð5:51Þ

aðtÞ ¼ c2½tð3wþ 2Þ − 2c1� 2
3wþ2; ð5:52Þ

ρðtÞ ¼ 4cGð2 − 3wÞ2
3c2ðw − 1Þ2 ½tð3wþ 2Þ − 2c1�−

6ðwþ1Þ
3wþ2 ; ð5:53Þ

where fcig are integration constants. Therefore, in this
model, the barotropic coefficient is constrained to val-
ues w > −2=3.
A final comment about the condition WðtÞ ¼ HðtÞ ⇒

mðtÞ ¼ m0aðtÞ is mandatory: when the latter holds, the
generalized McVittie line element assumes the form,

ds2 ¼ −
ð1 − m0

2rÞ2
ð1þ m0

2rÞ2
dt2

þ a2ðtÞ
�
1þm0

2r

�
4

ðdr2 þ r2dΩ2
ð2ÞÞ: ð5:54Þ

This special case of generalized McVittie metrics is the
nonrotating Thakurta solution [78], see also Refs.
[15,79,80], which is conformal to the Schwarzschild metric
with conformal factor aðηÞ, where η is the conformal time
of the FLRW “background” defined by dt ¼ aðηÞdη. Using
the “conformal Schwarzschild radius,”

R ¼ r

�
1þm0

2r

�
2

; ð5:55Þ

as the radial coordinate, the metric (5.54) can be
rewritten as

ds2 ¼ −
�
1 −

2m0

R

�
dt2 þ a2ðtÞ

�
1 −

2m0

R

�
−1
dR2 þ a2ðtÞR2dΩ2

ð2Þ

¼ a2ðηÞ
�
−
�
1 −

2m0

R

�
dη2 þ

�
1 −

2m0

R

�
−1
dR2 þ R2dΩ2

ð2Þ

�
: ð5:56Þ

The metric (5.54) has a pleasant characteristic that is
missing in the standard McVittie metric: It provides the
usual Hubble law v ¼ HðtÞd. Unlike the McVittie universe,
the Hubble law holds exactly and not just asymptotically.

This aspect prevents the possibility that the current H0

tension be due to proximity to an inhomogeneity, at least in
this model. This could be a straightforward theoretical
solution for the Hubble tension problem.
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VI. DISCUSSION AND CONCLUSIONS

There are several motivations to revisit McVittie and
generalized McVittie solutions in the context of Horndeski
gravity, after the progress recently made in the study of
these theories. Furthermore, there are now theoretical
indications for, and the experimental capability to detect,
scalar hair around black holes. This hair could vary on
cosmological scales, and the McVittie solutions of scalar-
tensor gravity offer a context for this possibility. While it
was shown that McVittie geometries solve cuscuton theory,
and generalized McVittie geometries solve more general
Horndeski theories, previous studies were limited to
vacuum. We have now included matter in the picture,
which is essential in order to achieve a realistic cosmo-
logical background of where to embed the McVittie central
object. Moreover, the extended cuscuton scenario intro-
duced very recently has not been considered before in
relation with (generalized) McVittie spacetimes. As in the
“old” cuscuton, the scalar field of the extended cuscuton
does not propagate degrees of freedom. Here, we found
conditions under which generalized McVittie geometries
are solutions of the extended cuscuton model.
The requirement that the scalar field be homogeneous is

essential for the McVittie and generalized McVittie geom-
etries to be solutions of the Horndeski field equations.
Without this property, the field equations, rewritten as
effective Einstein equations, exhibit an effective imperfect
fluid stress-energy tensor in their right-hand sides [58,59].
The characteristic quantities of an imperfect fluid; i.e., heat
current density, shear, and viscous pressure are due to the
nonminimal coupling of ϕ with gravity [58,59] and
preclude (generalized) McVittie from solving the field
equations because these geometries are shear free [6,63].
The (generalized) McVittie geometry is inhomogeneous,
due to the presence of the central object. This inhomoge-
neity dies off asymptotically as the metric becomes FLRW
at large distances from the central object. Therefore, the
homogeneous scalar field does not affect directly the
gravitational field of the central object because it sources
only the FLRW “background” universe in which the latter
is embedded and, in the generalized McVittie case in vacuo,
it determines the energy current onto it. In both cases, ϕðtÞ
controls the evolution of the mass parameter mðtÞ. It can
legitimately be said that the scalar ϕðtÞ is “locally stealth”
on small scales near the central object but is not stealth with
respect to the large-scale FLRWuniverse (indeed, it sources

it). In this context, we restricted ourselves to the subclass of
viable Horndeski theories.
We found that, in the extended cuscuton model in

presence of matter, a special generalizedMcVittie geometry
appears as a solution, the nonrotating Thakurta metric. This
geometry is peculiar since, contrary to all other (general-
ized) McVittie solutions, it is conformally equivalent to the
Schwarzschild one where mðtÞ ¼ m0aðtÞ is scaling as a
length in the FLRW background. More importantly, it was
shown in Ref. [31] that the generalized McVittie solutions
of GR with a fluid have the nonrotating Thakurta geometry
as a late-time attractor. The proof of this statement in
Ref. [31] depends only on the functional form of the metric
and not on the field equations and can be transposed
without change to the extended cuscuton model, provided
that a fluid is present. Therefore, nonrotating Thakurta
becomes the generic solution at late times in the class of
generalized McVittie geometries. We stress that the pres-
ence of a fluid is essential: In Horndeski models without
matter, where the scalar field acts as the fluid for the FLRW
background, the late-time limit may make the scalar ϕ
constant and make the fluid disappear. In this case, one
should not expect a nonrotating Thakurta limit for the
generalized McVittie solution. Indeed, this is the case for
the generalized McVittie solution of the “cuscuta-Galileon”
theory found in Ref. [67], which could have other interest-
ing aspects, also from an observational point of view, in the
Galileon model [81]. A more general study of the late-time
behavior of the solutions for various specific models is
deferred to future work.
Several aspects need to be analyzed in greater detail,

such as the presence of late-time attractors for (generalized)
McVittie spaces, other geometries describing objects
embedded in cosmological spacetimes, anisotropic fluids,
and the use of McVittie toy models to explore the current
Hubble tension problem in relation with local inhomoge-
neities. These subjects will be examined in future research.
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