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We formulate a nonconservative gravitational theory based on the Herglotz variational principle in a
tensorial covariant form. The model presented here may be seen as an improvement of the theory proposed
in [Lazo et al., Phys. Rev. D 95, 101501 (2017)], whose resulting field equations are meaningful just in
particular coordinate systems. The new theory we report in this work is free from such a restriction. In
comparison to the standard general relativity, both theories based on the Herglotz principle contain an extra
vector field, the Herglotz field, but the new theory is formulated by taking advantage of the restricted
equivalence between Lagrangian functions in the scope of the Herglotz action principle. The more
restricted class of equivalent Lagrangian functions, in comparison with the Hamilton variational principle,
is the key point to finding a Lagrangian that generates a new alternative gravitational theory in a covariant
form. Once the equations that govern the dynamics of the gravitational field are obtained, a few simple
cosmological models are investigated. It is found that the Herglotz vector field reduces to a single function
that, under certain conditions, plays the role of the cosmological constant in general relativity, turning
unnecessary the introduction of dark energy to explain the accelerated expansion of the Universe. The
linearized version of the theory is also investigated and it is verified that the theory shows a dissipative
character regarding the propagation of gravitational perturbations. From observational data, in both
scenarios, the magnitude of the Herglotz field is estimated.
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I. INTRODUCTION

The principle of stationary action, together with impor-
tant theorems such as the Noether theorem, that relates the
symmetry properties of the action to some conserved
physical quantities of a given system, form the basis of
modern theoretical physics. Despite its remarkable con-
tribution to the progress of theoretical physics, such a
principle leaves behind some gaps regarding the description
of all possible physical systems. An important gap is the
lack of a general formulation for dissipative systems.
Alternative formulations have been tried over the years
with relative success, at least for some nonconservative
mechanical systems [1] (see also, e.g., [2–4] and references
therein). An interesting alternative is a formulation due to
Herglotz [5–8], a variational principle that appropriately
describes mechanical systems with damping forces. The
Herglotz principle was extended to classical fields [7–9]
allowing us to obtain, e.g., the electromagnetic field
equations in dissipative media [8].
Interestingly, in Ref. [10] a nonconservative gravity

based on the Herglotz variational problem theory was
proposed. However, the resulting field equations of this

theory are not manifestly covariant since they involve some
extra terms that depend on the frame choice. In fact, the
proposed theory introduces a new vector field λμ which
couples to the action-density field sμ. The noncovariance is
a consequence of choosing a nonscalar Lagrangian density
for the geometry sector so that the additional terms in the
field equations involving λμ are not tensorial functions.
Despite this fact, recent results show that such a noncon-
servative gravity is a promising alternative theory to dark
energy [11–13]. In particular, Ref. [11] investigates the
correspondence between a cosmological solution within
such a modified gravity theory and the universe filled with a
viscous cosmological fluid.
Since its recent formulation, the nonconservative gravity

obtained through the Herglotz variational principle [10] has
been considered in several contexts [11–23]. Besides the
applications to mimic the dark energy in cosmological
models mentioned above [11–13], other interesting appli-
cations have been made, e.g., to build models for compact
objects [18], in braneworld gravity [21], and to model
cosmic string configurations [14]. In Ref. [18] (see also
[17]), the authors analyze the existence of compact object
solutions, a work that motivated investigations also on
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wormhole solutions [15]. Additionally, in Ref. [20] the
possible correspondence between scalar-tensor gravity
theories of Brans-Dicke type and Lagrangian descriptions
of dissipation such as the gravity theory derived from the
Herglotz principle [10] was evidenced. These, and other
studies on this subject, are now motivating further research
on generalized nonconservative gravity theories.
Nonconservative gravity theories have been proposed

over the years for a variety of reasons. For instance, Rastall
[24] argued that energy-momentum conservation could be a
valid phenomenon only in flat spacetime, and proposed a
modified theory of gravity that appears to be nonconserva-
tive. See, however, Ref. [25] for a criticism of this and other
similar theories, and Refs. [26,27] for further consider-
ations and other references on this subject. See also
Ref. [28] for a recent review on nonconservative gravity
theories.
Pursuing the idea of formulating a consistent noncon-

servative gravity theory, we follow a similar path as done in
[10] but keeping control of the assumptions to obtain a
theory whose field equations are formulated in a manifestly
covariant form. Actually, in the present work, we show that
the Herglotz action principle introduced in [10] provides
two direct possibilities to formulate nonconservative grav-
ity theories. The first possibility is by considering only
first-order derivatives of the metric tensor in the Lagrangian
function, as done in [10] and that leads to a noncovariant
and nonconservative theory of gravity. The second pos-
sibility, that we consider in the present work, is to consider
up to second-order derivatives of the metric tensor in the
Lagrangian. As we are going to show, this second approach
yields a covariant nonconservative gravity theory.
The present work is structured as follows. The Herglotz

variational problem is presented in the next section, where
some of its features of interest for the present study are
briefly discussed. Section III is devoted to the formulation
of a covariant nonconservative gravity theory based on the
Herglotz problem. In Sec. IV a few cosmological solutions
are presented and analyzed, and an estimate for the
Herglotz parameter is given. The linear approximation of
the theory is obtained in Sec. V, where the damping effects
on the propagation of gravitational perturbations are con-
firmed. In Sec. VI we make further considerations about the
properties of the formulated theory and conclude. Some
additional analysis regarding the first-order perturbation
theory is performed in Appendixes A and B.

II. AN ACTION PRINCIPLE FOR
NONCONSERVATIVE SYSTEMS

A. The Herglotz variational principle

In recent works, a physically meaningful action principle
for nonconservative systems was proposed [8,10]. It
was first employed to obtain a nonconservative gravity
theory [10], and then it was extended to other fields and

systems [8]. This action principle is a generalization of the
Herglotz variational problem in order to include fields as a
function of several independent variables. The original
formulation of such a principle was introduced in 1930 by
Herglotz [5–7], and since then it has been applied mainly to
mechanical systems. Here we briefly review the formu-
lation of such a variational problem to emphasize some
aspects that are relevant for the present study.
The basic idea of the Herglotz variational problem is to

consider a Lagrangian function that, besides depending on
the usual dynamical variables, depends also on the action
itself. The original formulation [5] applies to the classical
dynamics and consists in the problem of determining the
function xðtÞ that extremizes the functional SðbÞ, where the
action SðtÞ, with t ∈ ½a; b� ∈ R, is a solution of the problem

_SðtÞ ¼ Lðt; xðtÞ; _xðtÞ; SðtÞÞ; ð1Þ

under the boundary conditions

SðaÞ ¼ Sa; xðaÞ ¼ xa; xðbÞ ¼ xb; ð2Þ

with the overdot standing for the total derivative with
respect to the parameter t. It is important to stress that SðtÞ
is a functional since, for each function xðtÞ, it follows a
different differential equation. Therefore, SðtÞ depends on
the function xðtÞ. Furthermore, the Herglotz variational
problem (1)–(2) reduces to the classical fundamental
problem of the calculus of variations when the
Lagrangian function L does not depend on SðtÞ. In this
particular case, integrating (1) results in the classical
variational problem, which consists of extremizing the
functional

SðbÞ ¼
Z

b

a
L̄ðt; xðtÞ; _xðtÞÞdt; ð3Þ

where a < b, xðaÞ ¼ xa, xðbÞ ¼ xb are fixed endpoints,
and

L̄ðt; xðtÞ; _xðtÞÞ ¼ Lðt; xðtÞ; _xðtÞÞ þ Sa
b − a

: ð4Þ

This is, of course, equivalent to the Hamilton variational
principle.
Herglotz [5,6] proved that a necessary condition for a

function xðtÞ to yield an extreme for the variational problem
(1)–(2) is to satisfy the generalized Euler-Lagrange
equation

∂L
∂x −

d
dt

∂L
∂ _x þ ∂L

∂S
∂L
∂ _x ¼ 0: ð5Þ

It is clear that in the case where ∂L=∂S ¼ 0, as in the
classical problem (3), the differential equation (5) reduces
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to the usual Euler-Lagrange equation, which is obtained
from the Hamilton principle.
The potential of the Herglotz problem for applications to

nonconservative systems is evident even in the simplest
case, where the dependence of the Lagrangian function
on the action is linear [8]. For instance, the Lagrangian
functional

L ¼ m_x2

2
− UðxÞ − γ

m
S ð6Þ

describes a dissipative system of a pointlike particle of
massm under the potentialUðxÞ and submitted to a viscous
force proportional to the velocity. In fact, the resulting
equation of motion that follows from Eqs. (6) and (5),

mẍþ γ _x ¼ F; ð7Þ

where ẍ is the particle acceleration and F ¼ −dU=dx is the
external force, includes the well-known dissipative term
proportional to the velocity _x, and whose resistance
coefficient is γ. In this context, the linear term −γS=m
in the Lagrangian (6) can be interpreted as a potential
function for the nonconservative force, see [8].
Furthermore, the Lagrangian given by (6) is physical in
the sense that it provides us with physically meaningful
relations for the momentum and the Hamiltonian (see,
e.g., [8,29,30]).
The formulation of an action principle in terms of the

Herglotz variational problem (1)–(2), instead of the tradi-
tional calculus of variation problem (3), has two direct
justifications. The first one is the fact that the Herglotz
problem enables us to formulate a physically meaningful
Lagrangian problem for nonconservative systems governed
by forces depending linearly on the velocity, like the
frictional force in (7). The second justification is the fact
that, in any physical theory, the Lagrangian function which
defines the action is constructed from the scalars (invariant
quantities) of the theory. Consequently, since the action
itself is a scalar, the most general Lagrangian may itself be a
function of the action [10].

B. Equivalence of Lagrangians according to the
Herglotz principle

In the classical Hamilton action principle, the
Lagrangian describing a physical system is not uniquely
defined. Two Lagrangian functions L and L̃ are said to be
equivalent if they establish the same Euler-Lagrange
equations. However, in general, this equivalence does
not hold in the context of the Herglotz action principle.
To verify this fact we consider the Herglotz problem with

the Lagrangian L̃ ¼ Lþ _f. It thus consists in extremizing
the functional S̃ðbÞ, but now the action S̃ðtÞ is such that

_̃SðtÞ ¼ Lðt; xðtÞ; _xðtÞ; S̃ðtÞÞ þ _fðt; xðtÞÞ; ð8Þ

subject to the same boundary conditions as in Eq. (2), with
fixed S̃ðaÞ ¼ S̃a. Notice that the function f does not depend
on the variables _x and S̃, since the total Lagrangian for the
standard Herglotz problem (1) may depend only on t, xðtÞ,
_xðtÞ, and SðtÞ.
Now, from (5) the Herglotz problem with the Lagrangian

function L̃ ¼ Lþ _f yields the following Euler-Lagrange
equation:

∂L
∂x −

d
dt

�∂L
∂ _x

�
þ ∂L

∂ _x
∂L
∂S

∂S
∂S̃þ ∂f

∂x
∂L
∂S̃ ¼ 0; ð9Þ

where we have used the identities

d
dt

∂ _f
∂ _x ¼ d

dt
∂
∂ _x

�∂f
∂t þ

∂f
∂x _x

�
¼ d

dt
∂f
∂x ¼ ∂ _f

∂x : ð10Þ

Equation (9), in general, is different from the Euler-Lagrange
equation for the Herglotz problem with Lagrangian L,
Eq. (5), unless ∂L=∂S̃ ¼ 0, wherewe recovered the classical
variational problem, or the conditions

∂f
∂x ¼ 0;

∂S
∂S̃ ¼ 1; ð11Þ

satisfy simultaneously.
Therefore, it is clear that, in general, Lagrangian functions

differing from each other by a total derivative are not
equivalent in the context of the Herglotz variational problem.

III. ACTION AND EQUATIONS OF MOTION OF A
GENERALIZED NONCONSERVATIVE GRAVITY

Let us start this section by reviewing the equivalence
between Lagrangian functions in the context of the classical
(Hamilton) action principle for the general theory of
relativity. As it is well known, in such a context there
are two mostly used equivalent Lagrangian densities for
gravity. The first is the Einstein-Hilbert Lagrangian Lg

given by

Lgðxμ; gρσ; gρσ;μ; gρσ;μνÞ ¼ gμνRμν ≡ L̃ − Lef

¼ gμνðΓσ
μσ;ν − Γσ

μν;σÞ
− gμνðΓσ

μνΓ
ρ
σρ − Γρ

μσΓσ
νρÞ; ð12Þ

where gμν is metric tensor, Rμν is the Ricci tensor, and
we defined L̃ ¼ gμνðΓσ

μσ;ν − Γσ
μν;σÞ and Lef ¼ gμνðΓσ

μνΓ
ρ
σρ−

Γρ
μσΓσ

νρÞ. The second commonly used Lagrangian isL itself.
The equivalence between these two Lagrangian functions
is verified by noting that it holds the relation Lg ¼
2Lef þ∇μJμ, where Jμ ¼ gμνΓσ

νσ − gσνΓμ
σν. Consequently,
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Lg and 2L differ from a divergence term, and by integrating
over a given subset V of the n-dimensional spacetime
manifold M it gives,

R
V Lg

ffiffiffiffiffiffi−gp
dnx ¼ 2

R
V Lef

ffiffiffiffiffiffi−gp
dnx

plus a surface term (see, e.g., [31]), where g is the
determinant of the metric, demonstrating that Lg and
2Lef are equivalent Lagrangian functions according to
the Hamilton variational principle.
Now, since Lagrangian functionals differing from a total

derivative are not equivalent in the Herglotz variational
problem (and consequently are not equivalent when differ-
ing from a divergence term), we have two simple possibil-
ities to formulate a dissipative gravitational theory in such a
context. The first possibility, investigated in Ref. [10], is by
taking Lef as the gravitational part of the Lagrangian. The
second possibility, that we explore in the present work, is
by choosing Lg, with Lg given in Eq. (12).
The approach considered in [10] has the interesting

mathematical advantage of the Lagrangian to be a function
depending only on first-order derivatives of the metric
tensor. It considers a Lagrangian function given by
L ¼ Lef þ λνsν, where λμ ¼ λμðxÞ is an arbitrary vector
field,1 and sμ is the action-density vector field (see [8,10]).
However, this approach has the physical disadvantage that
the Lagrangian Lef is not a scalar density and, conse-
quently, the resulting field equations for the theory are valid
only in a specific set of referential frames fixed it a priori.
Inspired by Ref. [10], here we consider an alternative

proposal by taking the Lagrangian as L ¼ Lg þ λνsν. Since
Lg is an invariant (scalar density), the field equations of our
theory will be given by truly tensorial equations and it is not
necessary to fix a preferential coordinate system a priori as
in [10]. However, since Lg has second-order derivatives of
the metric tensor it is necessary to impose additional
boundary conditions on the metric to fix the variational
problem solution. The derivation of the field equations
from such a Lagrangian is presented next.
Let the spacetime be defined as an n-dimensional smooth

manifold M endowed with a Lorentzian metric gμν. Now
let V be a subset of M with boundary Ω, which is
considered as a Jordan surface whose unit normal vector
is denoted by nμ. Then, the generalized action principle
may be stated in terms of the functional SðΩÞ given by (see
also [10])

SðΩÞ ¼
Z
Ω
nμsμ

ffiffiffiffiffiffi
jhj

p
dn−1x ¼

Z
V
sμ;μdnx;

sμ;μ ¼ Lðxν; gρσ; gρσ;ν; gρσ;τν; sνÞ; ð13Þ

where sμ is a differentiable action-density vector field, the
semicolon (;) stands for covariant derivative, and h is the
determinant of the induced metric on Ω. The boundary

conditions we impose, in order to close the variational
problem, is by keeping both the metric gμν and its
derivatives gμν;γ fixed on Ω.
We consider a generalized Lagrangian given by

L ¼ Lg þ λμsμ þ FLm; ð14Þ

where Lm stands for the standard matter Lagrangian, and
F ¼ FðxÞ is a coupling factor that may be a function of the
coordinates. With this Lagrangian and from Eq. (13), it
follows that the action density sμ is subjected to the
additional condition

ðsμ ffiffiffiffiffiffi
−g

p Þ;μ ¼
ffiffiffiffiffiffi
−g

p ðRμνgμν þ λμsμ þ FLmÞ; ð15Þ

where the comma index ðÞ;μ indicates a partial derivative
with respect to the coordinate xμ.
Our goal is to obtain the field equations for gμν whose

solutions make the functional SðΩÞ stationary under the
condition (15). Taking the variation of (13) and (15) with
respect to gμν it gives, respectively,

δSðΩÞ ¼
Z
Ω
nμδðsμ

ffiffiffi
h

p
Þdn−1x ¼ 0;

ζμ;μ ¼ δðRμνgμν
ffiffiffiffiffiffi
−g

p þ FLm
ffiffiffiffiffiffi
−g

p Þ þ λμζ
μ; ð16Þ

where ζμ ¼ δðsμ ffiffiffiffiffiffi−gp Þ. As considered in [10], since the

hypersurface Ω and, consequently,
ffiffiffi
h

p
are fixed, i.e., they

do not depend on the metric variation, we obtain from the
first equation in (16) that δsμ ¼ 0 on Ω. On the other hand,
the last equation in (16) can be written as

ðζμe−ϕÞ;μ ¼ e−ϕδðRμνgμν
ffiffiffiffiffiffi
−g

p þ FLm
ffiffiffiffiffiffi
−g

p Þ; ð17Þ

with ϕ ¼ R
λμðxÞdxμ. Integrating the left-hand side of (17)

over V, and then working out the variation of sμ
ffiffiffi
g

p
, it

follows

Z
V
ðζμe−ϕÞ;μdnx

¼
Z
V

� ffiffiffiffiffiffi
−g

p �
δsμ −

sμ

2
gνσδgνσ

�
e−ϕ

�
;μ
dnx

¼
Z
Ω
nμ

�
δsμ −

sμ

2
gνσδgνσ

�
e−ϕ

ffiffiffi
h

p
dn−1x ¼ 0; ð18Þ

where we have used the fact that δsμ ¼ 0 on Ω, and we
imposed the usual condition in the variational procedure
that the metric field is fixed on the boundary Ω, i.e., since
gμνðΩÞ is fixed then δgνσ vanishes on Ω. Consequently, the
last integral in Eq. (18) gives zero. Thus, taking these
results back into Eq. (17), after integration, we find

1We name it the Herglotz vector field, or the Herglotz
parameter.
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Z
V
e−ϕ½gμνδRμν þGμνδgμν�

ffiffiffiffiffiffi
−g

p
dnx

þ
Z
V
e−ϕFδðLm

ffiffiffiffiffiffi
−g

p Þdnx ¼ 0; ð19Þ

where Gμν is the Einstein tensor.
Let us now consider the first term in the last integral.

Using the definition of the Ricci tensor in terms of the
metric, we get (see, e.g., [32])

Z
V
e−ϕgμνδRμν

ffiffiffiffiffiffi
−g

p
dnx

¼
Z
V
e−ϕ½ðgμνgσγðδgμνÞ;γ − ðδgσγÞ;γÞ

ffiffiffiffiffiffi
−g

p �;σdnx

¼
Z
V
e−ϕ½ðgμνgσγðδgμνÞ;γ − ðδgσγÞ;γÞ

ffiffiffiffiffiffi
−g

p �λσdnx; ð20Þ

where an integration by parts was performed, and we
consider the additional boundary condition imposed in the
problem that gμν;γðΩÞ is fixed [and consequently ðδgμνÞ;γ
vanishes on the boundary Ω].
Let us now work out the integral terms on the rhs of the

last relation in Eq. (20). The first integral term reads

Z
V
e−ϕgμνgσγðδgμνÞ;γλσ

ffiffiffiffiffiffi
−g

p
dnx

¼
Z
V
e−ϕgμνλγðδgμν;γ þ Γν

σγδgμσ þ Γμ
σγδgσνÞ ffiffiffiffiffiffi

−g
p

dnx

¼
Z
V
e−ϕgμνðλσλσ − λρ;ρ þ Γσ

γρλ
ρÞδgμν ffiffiffiffiffiffi

−g
p

dnx; ð21Þ

where an integration by parts was performed, and the
boundary terms were neglected once again. Applying the
same procedure to the second term on the rhs of Eq. (20)
one gets

Z
V
e−ϕðδgσγÞ;γλσ

ffiffiffiffiffiffi
−g

p
dnx

¼
Z
V
e−ϕðδgσγ;γ þ Γγ

μγδgσμ þ Γσ
μγδgμγÞλσ

ffiffiffiffiffiffi
−g

p
dnx

¼
Z
V
e−ϕðλμλν − λμ;ν þ Γσ

μνλσÞδgμν
ffiffiffiffiffiffi
−g

p
dnx: ð22Þ

Now we put the results given by Eqs. (21) and (22) back
into (20) to obtain

Z
V
e−ϕðgμνδRμν − KμνδgμνÞ

ffiffiffiffiffiffi
−g

p
dnx ¼ 0; ð23Þ

where we introduced the tensor Kμν given by

Kμν ¼ Λμν − gμνΛ; ð24Þ

with Λμν being the symmetric tensor

Λμν ¼
1

2
ðλμ;ν þ λν;μÞ − λμλν; ð25Þ

and Λ ¼ Λμ
μ is its trace.

Finally, from (19) and (23) we find the generalized field
equations

Rμν −
1

2
gμνRþ Kμν ¼

F
2
Tμν; ð26Þ

where F ¼ FðxÞ is a non-negative arbitrary function that, in
the conservative Einstein-Hilbert action, plays the role of
the (Newtonian) gravitational coupling constant, and the
energy-momentum tensor is given by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δðLm

ffiffiffiffiffiffi−gp Þ
δgμν

: ð27Þ

The usual Einstein field equations are recovered in the case
λμ ¼ 0, as long as we take F ¼ 16πG=c4, with G being the
universal gravitational constant.
Since λμ is a tensor (a vector) by definition, and the

covariant derivative of a vector field is also a tensor, it
becomes clear that Λμν is a tensor. Thus, Eq. (26) is written
in a manifestly covariant form.
It is worth noticing that in an empty spacetime region,

i.e., for Tμν ¼ 0, or by assuming conservation of the
quantity on the rhs of Eq. (26), i.e., by imposing
ðFTν

μÞ;ν ¼ 0, the Bianchi identity implies that the tensor
Kμν ¼ Λμν − gμνΛ also satisfies the conservation condition
Kν

μ;ν ¼ 0. However, the Herglotz principle is adapted to
dissipative systems, for which the energy momentum
tensor does not satisfy the conservation equation, and so
the Bianchi identity gives ðFTν

μÞ;ν ¼ Λν
μ;ν − δνμΛ;ν. Note

that even by assuming energy-momentum conservation,
tensor Kμν may be a nonconserved quantity because of the
presence of the function FðxÞ, i.e., Kν

μ;ν ¼ Tν
μF;ν. This fact

was explored in Ref. [10], where the accelerating effect of
dark energy in standard cosmological models was simu-
lated by a time-dependent coupling function F ¼ FðtÞ, t
being the cosmological time (see also Ref. [11]).
At this point, a comment on the choice of the coupling

factors in the Lagrangian function (14) is in order. In the
formulation of general relativity, the usual choice is a total
Lagrangian in the form LRG ¼ 1

8πGRþ Lm. Therefore,
when allowing the gravitational coupling G to be a scalar
function, one obtains alternative theories of gravity as the
Brans-Dicke or similar scalar-tensor theories. Notice,
however, that the factor F in (14) couples directly to the
matter Lagrangian, and then it does not generate extra terms
to the field equations as it happens, e.g., in the Brans-Dicke
theory, and the freedom introduced by such a factor can be
seen as a positive aspect of the theory. Moreover, a further
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natural assumption that F is a constant factor sets the theory
free of the potential problems that a varying coupling may
bring with it. With this in mind, in the present work we
assume the usual form F ¼ 16πG=c4, but for the sake of
generality we observe that in the present theory the factorG
may be an arbitrary function of the coordinates.

IV. APPLICATION TO COSMOLOGY

A. The modified Friedmann equations

In order to investigate the consequences of the Herglotz
vector field λμ, we analyze some cosmological models
filled with a perfect fluid. The energy-momentum tensor is
of the form

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð28Þ

where ρ is the energy density, p is pressure, and uμ is the
four-velocity of the fluid. For now, we consider the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric
with zero space curvature, which may be written as

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ; ð29Þ

where aðtÞ is the scale factor, t being the comoving time
coordinate, and dΩ2 ¼ dθ2 þ sin2 θdφ2 is the metric on the
unit sphere.
Given that the metric (29) represents a spatially homo-

geneous and isotropic spacetime, it admits a set of Killing
vectors that generate the isometries. These vectors are
useful for fixing the general form of the Herglotz vector
field λμ in this spacetime. For that, the λμ vector needs to
satisfy the Killing equation

Lχλμ ¼ 0; ð30Þ

where χ stands for the set of Killing vectors of the metric
(29). After a detailed analysis, we realize that the most
general vector λμ that satisfies Eq. (30) is of the form

λμ ¼ ðϕðtÞ; 0; 0; 0Þ; ð31Þ

with ϕ being a smooth function of the time t only.
Substituting the vector field (31), the metric (29), and the

energy-momentum tensor (28) into Eq. (26), and using
(25), we get the modified Friedmann equations for the scale
factor

3

�
_a
a

�
2

− 3
_a
a
ϕ ¼ 8πGρ; ð32Þ

2
ä
a
þ
�
_a
a

�
2

− 2
_a
a
ϕþ ϕ2 − _ϕ ¼ −8πGp: ð33Þ

This is a system of two equations for four unknown
functions. Hence, even after establishing, as usual, an
equation of state for the cosmological fluid, additional
conditions are needed.
It is worth emphasizing that the function ϕðtÞ is arbitrary

and hence a new cosmological model is built for every
choice of that function. In fact, this freedom may be
somehow fixed by imposing some physical conditions
required by the cosmological model under construction.
For instance, considering an expanding cosmological
model ( _a=a > 0), in order to guarantee the non-negativity
of energy density, the constraint

_a
a
− ϕ ≥ 0 ð34Þ

must be obeyed at least for sufficiently large times. In the
following, we analyze some particular simple cosmological
models emerging from the present theory that satisfy such a
constraint.
Using the Bianchi identities and proceeding with the idea

that G may not be a constant (see, e.g., [33]) it follows just
one nontrivial relation, namely,

3

�
ä
a
þ _a
a
ϕ

�
ϕþ 8π _Gρ ¼ −8πG

�
_ρþ 3

_a
a
ðpþ ρÞ

�
: ð35Þ

The right-hand side of Eq. (35) represents the covariant
divergence of the energy-moment tensor, coupled to gravity
through the function G. Note that, as expected, in the
present theory the energy-momentum conservation may be
violated even in the case of nonconstant G. By assuming
energy-momentum conservation, it follows

3

�
ä
a
þ _a
a
ϕ

�
ϕþ 8π _Gρ ¼ 0: ð36Þ

As seen from this relation, the present model admits
conservative solutions even in the presence of the
Herglotz parameter. Two particular situations promptly
come out. One is for varying G, while the other, more
interesting one, is for constant G. To simplify the analysis,
and also to avoid the apparent conflict of a time-dependent
gravitational coupling with observational data, we restrict
the analysis from now on just to the case of constant G.

B. A conservative cosmological model

Although the theory introduces a nonconservative geo-
metric gravitational aspect, in this section we explore the
existence of solutions that deviate from general relativity in
cases where the energy-momentum tensor is conserved and
the coupling strength G is constant.
Considering energy-momentum conservation and the

constancy of G, Eq. (36) results in

PAIVA, LAZO, and ZANCHIN PHYS. REV. D 105, 124023 (2022)

124023-6



ϕ ¼ −
ä
_a
: ð37Þ

After introducing this result into (32), the energy density
reads

8πGρ ¼ 3

�
_a
a

�
2

þ 3
ä
a
: ð38Þ

Now, by analyzing Eq. (38) one concludes that any solution
with accelerated expansion (ä=a > 0) provides a positive
definite energy density.
On the other hand, by substituting (37) into (33), the

expression for the pressure results in the form

8πGp ¼ −
�
4ä
a

þ _a2

a2
þ að3Þ

_a

�
; ð39Þ

where að3Þ stands for the third-order derivative of the scale
factor with respect to the time t.
The system of equations to be solved is now formed by

Eqs. (37)–(39), with three equations for four unknowns.
The usual strategy to close the system is to pick up an
equation of state for the cosmic fluid. However, in the
present case, such a strategy leads to a nonlinear third-order
differential equation for the scale factor which has no
solution in closed form. Hence, for simplicity, and since it
is not our objective here to consider the most general
solution for this system, we follow a simpler road by
choosing the explicit form of one of the unknown func-
tions. The first choice is a power-law function for the scale
factor, i.e., aðtÞ ∼ tα. In this case, we get

aðtÞ ¼ a0

�
t
t0

�
α

; ð40Þ

ϕðtÞ ¼ 1 − α

t
; ð41Þ

8πGρðtÞ ¼ 3αð2α − 1Þ
t2

; ð42Þ

8πGpðtÞ ¼ αð7 − 6αÞ − 2

t2
; ð43Þ

where a0 > 0 and α are constant parameters.
Assuming that the scale factor increases with time

(α > 0), the non-negativity of the energy density ρ implies
the constraint α ≥ 1=2. The cosmic fluid is well defined for
all values of α in the interval 1=2 ≤ α < ∞, with the ratio
R ¼ pðtÞ=ρðtÞ being independent of time and varying with
α from R ¼ 1=3 (for α close to 1=2) to R ¼ −1 (in the
limit α → ∞Þ.
For α smaller than 1=2 the energy density and the

pressure assume only negative values.

Taking α ¼ 1=2, aðtÞ ¼ a0ðt=t0Þ1=2, the energy density
and pressure vanish, pðtÞ ¼ ρðtÞ ¼ 0, and ϕ reduces
exactly to the Hubble function, that is, ϕ ¼ _a=a ¼ 1=2t.
This case reproduces exactly the same behavior of the
spatially flat FLRW model dominated by radiation in
general relativity. Thus, in vacuum or when the field ϕ
dominates, the Herglotz field ϕ behaves like a fictitious
radiation component, thinking of ϕ as a fictitious source, it
simulates a cosmological model in general relativity with a
perfect fluid whose effective energy density and pressure
obey the equation of state pef ¼ ρef=3 ∼ a−4ðtÞ ∼ t−2.
By taking α ¼ 2=3 it follows that aðtÞ ¼ a0ðt=t0Þ2=3,

and p ¼ 0. This solution is known as the Einstein-de Sitter
universe with cold dark matter (CDM). The equivalent
(effective) in general relativity is a cosmic fluid obeying the
equation of state pef ¼ 0.
For α larger than 2=3 the pressure assumes only negative

values.
Therefore, under the assumption that the energy-momen-

tum tensor is conserved we get cosmological models which
are equivalent to general relativity models.
In the case where ϕ is constant, Eq. (37) can be

integrated for the scale factor yielding

aðtÞ ¼ a0ðe−ϕt − 1Þ; ð44Þ

where a0 is the integration constant and the big bang
condition [aðtÞ ¼ 0] was chosen at t ¼ 0. It is clear that the
constant ϕ must be negative (ϕ < 0) so that the scale factor
is in accordance with the present observational data.
For the scale factor (44), energy density and pressure are

given, respectively, by

8πGρ ¼ 3ϕ2ð2 − eϕtÞ
ð1 − eϕtÞ2 ;

8πGp ¼ ϕ2ð6eϕt − e2ϕt − 6Þ
ð1 − eϕtÞ2 : ð45Þ

Note that, although the energy density is non-negative,
the pressure is always negative for any cosmological time.
The ratio RðtÞ ¼ pðtÞ=ρðtÞ varies with time from RðtÞ ¼
−1=3 (for t → 0) to RðtÞ ¼ −1 (for t → ∞). Therefore,
applying this solution to the beginning of times, the result
is an inflationary model governed by a fluid of cosmic
strings p ≃ −ρ=3. On the other hand, applying the solution
to very late times, the result is an accelerated expansion
driven by a cosmological constant. In fact, for very large
times, the components of the fluid (45) reduce to
8πGp ¼ −8πGρ ¼ −6ϕ2, which is the same equation of
state for a fluid represented by the cosmological constant Λ
in general relativity, with Λ ¼ 6ϕ2.
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C. A nonconservative model: An accelerated expanding
phase dominated by cold dark matter

Sticking to the case of constantG, here we investigate the
possibility of building models for accelerated expansion
within the present theory without recurring to the mysteri-
ous dark energy content. To take the simplest road, we put
the pressure to zero, p ¼ 0, so it results in a cold dark
matter dominated phase. Even after substituting the ansatz
(46) into Eqs. (32) and (33), 1 degree of freedom is
available. Again aiming at a simple model, let us assume
that, during a given phase of the cosmic expansion, the
scale factor aðtÞ may be approximate by a growing
exponential function,

aðtÞ ¼ a0eht; ð46Þ

with a0 and h being constant parameters, and with h > 0.
After this choice, Eq. (33) provides

ϕðtÞ ¼ hþ
ffiffiffi
2

p
h tan ½

ffiffiffi
2

p
hðt − t1Þ�; ð47Þ

where t1 is an integration constant. Substituting (47) into
(32) it follows

ρðtÞ ¼ 3
ffiffiffi
2

p

8πG
h2 tan ½

ffiffiffi
2

p
hðt1 − tÞ�; ð48Þ

while the pressure is zero. This phase of accelerated
expansion is generated by a CDM model.
Since t1 is an arbitrary integration constant, its value may

be adjusted so that the accelerated expansion phase lasts
long enough to conform the present observational data.
However, to guarantee the non-negativity of the energy
density, in the present case, the accelerated expansion
cannot last forever after. There must be a mechanism to
turn on the field ϕðtÞ at the time t≡ t0 ¼ t1 − π=2

ffiffiffi
2

p
h, and

to turn it off just before the time t ¼ t1. Once this
mechanism is activated, its duration is at most a time
interval given by Δt ¼ π=ð2 ffiffiffi

2
p

hÞ until it is turned off. It is
still necessary to adjust the constant t1 in favor of explain-
ing the accelerated expansion at the current cosmologi-
cal time.

D. Interpreting and estimating the Herglotz field from
cosmological data

We first comment on the possible physical interpretation
of the Herglotz vector field within the FLRW cosmological
models. In such models, the isometries of the spacetime
reduces the vector field λμ to just one component, exactly
the timelike component of the four-vector, i.e., λμ ¼
ϕðtÞδtμ, with δνμ being the Kronecker tensor. The field
ϕðtÞ depends only on the cosmic time and its effects on the
field equations may be compared to the Hubble factor. This
can be seen by considering a simple case of Eq. (32), e.g.,

the case with ρ ¼ 0 for which (32) reduces to
ð _a=a − ϕÞ _a=a ¼ 0. The nontrivial solution to this equation
is ϕ ¼ _a=a ¼ H, with H being the Hubble parameter. In
this particular case, the presence of the Herglotz field ϕ
induces global expansion when ϕ > 0, and global con-
traction when ϕ < 0.
According to Eq. (32), the contribution of the Herglotz

field to the energy density is through the term −3ϕ _a=a
which, in an expanding phase, is positive for a negative ϕ
and is negative for a positive ϕ. In turn, according to
Eq. (33), the contribution of the Herglotz field to the
pressure is through the terms 2ϕ _a=a − ϕ2 þ _ϕ. It is
reasonable to think of ϕ as a function of time proportional
to _a=a, i.e., ϕ ¼ k _a=a with k being small compared to
unity. In such a case, the contribution to the pressure is
mostly negative, unless the model is in a highly accelerat-
ing phase. This example shows that the Herglotz field may
induce similar situations to the dark energy or phantom
matter models in general relativity. Hence, the overall effect
of the Herglotz field in cosmological models is to cause the
(accelerated) spacetime expansion (or contraction) even in
the absence of ordinary matter.
The intricate role of the field ϕ is seen in the simple cases

as, for instance, by taking ϕ ¼ constant and solving
Eq. (33) for zero pressure. The result is an oscillatory
function for the scale factor aðtÞ. On the other hand, as seen
in Sec. IV C, an oscillatory behavior of ϕðtÞ results in a
monotonic behavior of the scale factor aðtÞ. Therefore, the
physical interpretation of the Herglotz field is not a simple
task in the cosmological models. However, the asymptotic
limit of solutions like (44) shows a behavior similar to the
vacuum solution with a cosmological constant (dark energy
component) in general relativity. This solution allows us to
estimate the value of the Herglotz field ϕ at the present
epoch. In fact, in a FLRW model (within general relativity)
dominated by the cosmological constant one has H2

0 ¼
Λ=3. Hence, taking into account that the present solution
gives ϕ2 ¼ Λ=6, we get jϕj ¼ ffiffiffi

2
p

H0=2 ≃ 0.71H0. Now, by
using the value ofH0 obtained, for instance, from Ref. [34],
H0 ∼ 70 km=s=Mpc, it follows jϕj ≃ 50 km=s=Mpc ≃
1.6 × 10−18 s−1.

V. LINEAR APPROXIMATION

A. Linearized theory

Here we consider the metric resulting from a small
perturbation around the Minkowski spacetime, i.e.,

gμν ¼ ημν þ hμν; khμνk ≪ 1; ð49Þ

where ημν is the Minkowski metric tensor, and the quan-
tities hμν are perturbation functions.
Proceeding with the linearization of the field equations, it

is well known that, at first order in hμν and its derivatives,
the Einstein tensor reads
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Rμν −
1

2
ημνR ¼ −

1

2
□γμν −

1

2
ημνγ

ρσ
;ρσ þ γρðμ;νÞρ; ð50Þ

where γμν ¼ hμν − 1
2
ημνh and with the parentheses in

indexes indicating symmetrization. This notation will be
adopted throughout the text.
The next step is to obtain the series expansion of the

tensor Kμν, cf. Eqs. (24) and (25), up to first order in
perturbations. For this we first have to consider how to deal
with the Herglotz vector field λμ in the perturbation theory.
Since the beginning, λμ has been treated as a nondynamical
field, and then a natural procedure is to keep λμ as a fixed
(unperturbed) quantity. Moreover, taking into account the
results from the previous section, cosmological observa-
tions imply that the background λμ assumes very small
values and can be considered as a perturbation itself. In this
sense, it is a reasonable choice to neglect any possible
perturbation on such a field.
Therefore, the perturbations on Kμν come from the

metric perturbations alone and, up to first order in hμν,
such a tensor is given by

Kμν ¼ Λ̄μν − ημνΛ̄ − λ̄ργρðν;μÞ þ
1

2
λ̄ργμν;ρ

þ ημν

�
Λ̄ρσγ

ρσ þ λ̄ργσρ;σ −
1

4
λ̄σγ;σ

�

þ 1

2
λ̄ðμγ;νÞ − γμνΛ̄; ð51Þ

where we have defined

Λ̄μν ¼ λ̄ðμ;νÞ − λ̄μλ̄ν; ð52Þ

with h≡ hμμ and Λ̄≡ Λ̄μ
μ.

The energy-momentum tensor is also perturbed and may
be split as

Tμν ¼ T̄μν þ τμν; ð53Þ

where T̄μν is the background energy-momentum tensor and
τμν stands for the respective perturbation tensor, with all τμν
being small quantities when compared to the nonzero
components of T̄μν for all μ, ν.
The zeroth order approximation of Eq. (26) results in

K̄μν ¼ Λ̄μν − ημνΛ̄ ¼ 8πGT̄μν; ð54Þ

where it was used the fact that the unperturbed Einstein
tensor Ḡμν vanishes, i.e., one has Ḡμν ¼ 0. Relation (54)
defines the background energy-momentum tensor in
flat spacetimes that is, in general, different from zero.
In the present theory, the flat Minkowski spacetime is
fulfilled by a nonisotropic energy-momentum tensor given
by 8πGT̄μν ¼ Λ̄μν − ημνΛ̄. The important point here is that,

since this energy-momentum tensor does not affect
the geometry and, then, the trajectory of geodesic
particles are straight lines, it cannot be detected by local
experiments. On the other hand, the hypothesis T̄μν ¼ 0

requires the background vector λ̄μ must satisfy the condition
λ̄ðμ;νÞ − λ̄μλ̄ν ¼ 0. In this case, λ̄μ is given by λ̄μ ¼
b0∂μ ln ðtþ xþ yþ zÞ, where b0 is an integration constant.
Both cases, the vanishing T̄μν or satisfying (54), are
consistent with the analysis presented in the present section.
The linearized version of the field equations is obtained

after replacing expressions (50) and (51) into Eq. (26), i.e.,

−
1

2
□γμν −

ημν
2

γσρ;ρσ þ γσðμ;νÞσ ¼ 8πGτμν − kμν; ð55Þ

where Eq. (54) has been used, G is taken as a constant
parameter, and we defined

kμν ¼ −λ̄ργρðμ;νÞ þ
1

2
λ̄ργμν;ρ þ

1

2
λ̄ðμγ;νÞ − γμνΛ̄

þ ημν

�
Λ̄ρσγ

ρσ þ λ̄ργσρ;σ −
1

4
λ̄σγ;σ

�
: ð56Þ

In order to determine the physical properties of the
metric perturbations in the present theory, we proceed
as usual and consider the infinitesimal diffeomorphism
generated by a vector field ξμ, which gives rise to the
coordinate transformation

x0μ ¼ xμ þ ξμðxÞ: ð57Þ

Taking notice that ξμ is an infinitesimal generator, it follows
that the metric perturbations hμν and the energy-momentum
tensor Tμν transform respectively as (see Appendix A for
more details)

δhμν ¼ ξμ;ν þ ξν;μ;

δTμν ¼ ξρT̄μν;ρ þ ξρ;μT̄ρν þ ξρ;νT̄μρ: ð58Þ
From Eqs. (24) and (57) we obtain the transformation of

the tensor Kμν in the form

δKμν ¼ ξρK̄μν;ρ þ ξρ;νK̄μρ þ ξρ;μK̄νρ: ð59Þ

Now, by using Eqs. (54), (58), and (59) it follows

δKμν ¼ 8πGδTμν: ð60Þ

This relation states that, since the Einstein tensor Gμν is
invariant by the gauge transformation (57), the field equa-
tions (55) are also invariant under transformations (58).
Now, due to the diffeomorphism invariance in a back-

ground spacetime region where Eq. (54) is obeyed, we are
free to make a gauge choice. In the present case of
unperturbed λμ, we choose the modified gauge condition
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γρμ;ρ − λ̄ργμρ þ
1

2
λ̄μγ ¼ 0; ð61Þ

to simplify the field equations (55). With such a choice, the
perturbation equations are cast as

□γμν − λ̄ργμν;ρ þ 2Λ̄γμν þ λ̄ðμ;νÞγ − 2λ̄σð;μγνÞσ

þ ημν

�
λ̄σ;ργ

σρ −
1

2
λ̄σ;σγ − λ̄ργσρ;σ − 2Λ̄ρσγρσ

�
¼ −16πGτμν:

ð62Þ

Condition (61) implies that 4 metric degrees of freedom
are fixed, as in standard general relativity. Some of the
remaining 6 degrees of freedom may not be physical, or
may not propagate, and further detailed analysis is neces-
sary to answer this question. This is an important study that
we prefer not to present here to avoid a too lengthy text.

B. Plane wave decomposition of the gravitational
perturbations

For simplicity, we now assume that λ̄μ is a constant
vector and that the perturbed energy-momentum tensor is
zero, τμν ¼ 0. We then look for solutions to the last
equations in the plane wave form

γμν ¼ Aμνeikσx
σ
; ð63Þ

where Aμν is a constant and symmetric tensor, and kμ is the
wave vector. By taking the expression (63) into (61) and
(62) it follows

Aλ̄μ þ 2ðikν − λ̄νÞAμν ¼ 0;

k2 þ iλ̄μkμ þ 2λ̄2 ¼ 0;

Aμνλ̄
νðikμ þ 2λ̄μÞ ¼ 0: ð64Þ

Note that, the admission of a plane wave solution for a
constant Herglotz vector field λμ, together with the gauge
condition (61), imposes five restrictions to the amplitude
tensor Aμν, namely, the first (four) and the last (one)
relations in (64). Hence, five components are left unde-
termined, and a deeper analysis to get the physical
interpretation of them is necessary. As commented above,
this study is beyond the scope of the preset work.
Now, the constancy restriction on λ̄μ would pick out a

preferential direction in spacetime. In other words, the local
Lorentz symmetry is broken and the wave propagation may
not be isotropic even in flat spacetime.
Additionally, since the Herglotz vector is arbitrary, we

may make further assumptions to simplify the analysis.
Here we assume that second-order terms on λμ such as λ̄2

may be neglected, what is exactly true in the case λ̄μ is a
lightlike vector, and it is a good approximation in cases

where jλ2j is much smaller than jk2j and jλμkμj in the
second relation of (64).

C. Damping gravitational perturbations

As it is well known, the complex form of the dispersion
relation, as the second relation in (64), leads to dissipative
effects on the wave propagation. Indeed, the components of
the wave vector kμ assume complex values and the
imaginary parts contribute to the damping or amplification
of the wave amplitude, depending on the vector λ̄μ. To
explore this dependence, we split the timelike and spacelike
components of vectors λ̄μ and kμ, respectively, as λ̄μ ¼
ð−λ̄t; λ̄Þ and kμ ¼ ð−ω; kÞ. Therefore, from the second
equation in (64), and keeping in mind that here we
neglected the λ̄2 term, i.e., here we assume λ̄2 ¼
λ̄μλ̄

μ ¼ 0, one finds the relation

ω ¼ 1

2
½αþ − ið�α− þ λ̄tÞ�; ð65Þ

with α� defined by

α� ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2jkj2 − λ̄2t =2Þ2 þ ð2k · λ̄Þ2
q

� ð2jkj2 − λ̄2t =2Þ
i
1=2

;

ð66Þ

where the dot (·) stands for the scalar product, and we have
chosen the solution for which the real part of ω is non-
negative. After using (65), the exponential part of the
solution in (63) goes as exp½−ð�α− þ λ̄tÞt=2� times an
oscillatory function of time. This indicates that the wave
may be damped (or amplified) while traveling throughout
spacetime.
The effects of the Herglotz field λμ in the wave

propagation are more easily identified in two particular
cases, namely, the case where the wave vector k is
orthogonal to λ̄ and the case where these two spatial
vectors are parallel to each other.
Taking the case where k is parallel to λ̄ it follows

αþ ¼ 2jkj, α− ¼ jλ̄tj, and ω ¼ jkj − iλ̄t. This result follows
by noticing that, without loss of generality, we may
choose coordinate axes so that the wave and Herglotz
vectors take respectively the forms kμ ¼ ð−ω; 0; 0; kzÞ
and λ̄μ ¼ ð−λ̄t; 0; 0;�λ̄tÞ, with kz ¼ �jkj and where the
assumption λ̄2 ¼ 0 was used to write λ̄z ¼ �λ̄t. Hence, one
has k · λ̄ ¼ �kzλ̄t and from Eqs. (65) and (66) the just
stated result follows. As a consequence, the time depend-
ence of the wave function (63) becomes exp ½−ðijkj þ λ̄tÞt�,
so that the wave amplitude varies with the exponential
factor exp ½−λ̄tt�. Therefore the wave perturbation is
damped in the case λ̄t > 0 and it is amplified in the
case λ̄t < 0.
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Now choosing the particular case where k is orthogonal
to λ̄, i.e., with k · λ̄ ¼ 0, two distinct situations come out.
The first situation is αþ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 − λ̄2t =2

p
, α− ¼ 0, for

jkj2 − λ̄2t =2 > 0. In this case it follows ω ¼ ðαþ − iλ̄tÞ=2,
which implies the wave amplitude varies with time as
exp½−λ̄tt=2�. Therefore, as in the preceding case, the wave
is damped in the case λ̄t > 0 and it is amplified in the case
λ̄t < 0. The second situation is for jkj2 − λ̄2t =2 < 0, which
gives αþ ¼ 0 and α− ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̄2t =2 − jkj2

p
. In this case it

follows ω ¼ −ið�α− þ λ̄tÞ=2, which implies the wave
amplitude varies with time as exp½−ð�α− þ λ̄tÞt=2�, and
since one has 0 ≤ α− ≤ jλ̄tj, once again the wave is damped
in the case λ̄t > 0 and it is amplified in the case λ̄t < 0. The
interesting new feature here is that the long wavelength
modes, for which jkj2 − λ̄2t =2 < 0, do not propagate.

D. The wave speed

The speed of the perturbation waves may be determined
from the above results. We start by studying the phase
speed vf, defined by vf ¼ jℜðktÞj=jkj ¼ ℜðωÞ=jkj, where
ℜ represents the real part of a complex number.
Using relations (65) and (66) we see that the phase
speed depends on the wavelength, on the propagation
direction, and on the Herglotz vector field λμ. The
dependence of the phase speed on the propagation
direction is seen more clearly by taking two particular
cases, namely, the case where k is parallel and the case
where it is perpendicular to λ̄, for which the dispersion
relation turns out simple.
The first interesting particular case occurs for k parallel

to λ̄, where one has ω ¼ jkj − iλ̄t. In this case the phase
speed of the wave is given by

vf ¼ ℜðωÞ
jkj ¼ 1; ð67Þ

which is exactly the speed of light.
A second simple case is when the propagation is

orthogonal to the spacelike part of the Herglotz vector,
i.e., for k · λ̄ ¼ 0. Here, it follows

vf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λ2t
2jkj2

s
; jkj2 − λ̄2t =2 > 0;

vf ¼ 0; jkj2 − λ̄2t =2 ≤ 0: ð68Þ

This result implies that the Herglotz parameter λ̄t imposes a
cutoff for the propagation of plane waves, no propagation
for low wave number (large wavelength) values compared
to λt. For large wave number (low wavelength) values, the
phase speed approaches the speed of light.
Additionally, one must also consider the group velocity

in the present theory. A simple calculation by using the

definition vg ¼ ∂ℜðωÞ=∂k provides the group speed, and
the resulting expressions show that the group velocity may
be larger than the speed of light. However, a deeper analysis
is necessary to investigate whether the energy transported
by gravitational waves really may travel faster than the
speed of light, but this analysis is beyond the goals of the
present work.

E. Interpreting and estimating the Herglotz parameter
from gravitational waves data

A possible interpretation of the Herglotz vector in the
linear regime of the theory may be obtained by analyzing
the dispersion relations resulting from the plane wave
solutions investigated in Secs. V B and V C, in particular
by considering the relations given in Eq. (64). As com-
mented in Sec. V C, the true dispersion relation is given by
the real part of ω, while the imaginary part of ω gives the
damping (or amplification) of the wave amplitude with
time, both parts depend upon the Herglotz vector.
In complement to the analysis presented in Sec. V C,
where the Herglotz vector λμ was assumed to be a lightlike
vector, here we consider two different particular cases,
namely, the case of a spacelike Herglotz vector (λt ¼ 0 and
λ̄ ≠ 0), and the case of a timelike Herglotz vector (λ̄t ≠ 0

and λ̄ ¼ 0).
(i) For λ̄t ¼ 0 and λ̄ ≠ 0:
Taking λ̄t ¼ 0 into the second relation in Eq. (65) and

solving for ω one finds

ω ¼ 1

2
½αþ ∓ iα−�; ð69Þ

with α� defined by

α� ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2jkj2þ4jλ̄j2Þ2þð2k · λ̄Þ2
q

�ð2jkj2þ4jλ̄j2Þ
�
1=2

:

ð70Þ
To simplify the analysis we consider small jλ̄j when

compared to jkj and expand the relation (70) in powers
of jλ̄ · kj=jkj2 to get, to the second order in λ̄, ω ¼
jkj þ ¯jλj2=jkj þ λ̄2k=8jkjÞ � ijλ̄kj=2, where λ̄k is the compo-

nent of λ̄ along the wave vector k. This regime can be
compared to the Eikonal limit of some quasioscillatory
systems such as quasinormal modes of black holes, wave
propagation in viscous fluids, among others. The real part
of the frequency shows a deviation from the linear
dependence on the wave number just at the second order
on the Herglotz vector components. On the other hand, the
imaginary part of the frequency is a first-order correction to
the nondamped propagating wave, and the damping
(amplification) of the waves goes as exp½∓ jλ̄kj=2�. This
behavior is essentially the same as in the case of lightlike
Herglotz vector studied in Sec. V C.
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(ii) For λ̄t ≠ 0 and λ̄ ¼ 0:
In cases where the spatial part of the Herglotz vector λ̄

may be neglected, the dispersion relation reduces to

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 − 9λ̄2t

4

s
−
i
2
λ̄t: ð71Þ

Considering the expansion for small λ̄t, we get
ω ¼ jkj − 9λ̄2t =ð8jkjÞ − iλ̄t=2. Again the damping (ampli-
fication) of the wave is of the exponential form, i.e., the
amplitude goes as exp½−λ̄t=2�, the same behavior as in the
case investigated in Sec. V C.
As we have just seen, the Herglotz vector field couples to

the wave vector in such a way to modify the dispersion
relations of propagating waves with subsequent effects on
the phase and group velocity, and also damping (or
amplifying) the amplitude of the waves. In this way, the
additional field may be interpreted as introducing a dis-
persive media throughout the spacetime. The damping
effect on the wave propagation is similar to what happens
in a dissipating media. In the present theory, the dissipation
and dispersion effects may be thought of as properties of
the spacetime itself.
The recent data from gravitational waves detection may

be used to estimate the parameter λ̄t in the cases of timelike
and lightlike Herglotz vector, or the component parallel to
the wave number, λ̄k, in the case of a spacelike Herglotz
vector. Taking for instance the event GW170817 [35],
which is located at the distance of about 130 million light
years from Earth, using the result (67) and the fact that the
wave speed is of the order of the speed of light, we find the
time travel τ of waves produced at that event is of about
100 million years. Let R be the relation between the
supposedly damped wave and the amplitude of the corre-
sponding nondamped wave, both observed at the Earth.
The theoretical prediction for R is obtained from the
analysis of the last section, that is R ¼ exp ½−λ̄tτ�, or
equivalently jλ̄tτj ≃ j lnRj. Assuming further that the ampli-
tude damping due to dissipative effects is of the order of the
initial amplitude we have R ¼ 1=2 and it follows
jλ̄tj ∼ 10−16 s−1. This is to be considered as an upper
bound for the parameter jλtj. The more distant the gravi-
tational source is, the sharper is the upper bound on jλ̄tj. In
fact, using the event of Ref. [36] which is estimated to have
occurred at the redshift of the order of z ¼ 0.1, which
means that the wave has traveled about 1.3 billion years to
reach Earth, we find jλ̄tj ∼ 10−17 s−1, yet 1 order of
magnitude larger than what is estimated from cosmology
(see Sec. IV D).

VI. FINAL REMARKS

We have considered the Herglotz variational principle to
propose a covariant formulation for a nonconservative

gravity theory. As a result, by using the usual gravity
Lagrangian density and introducing an arbitrary back-
ground vector field (the Herglotz field), we obtained the
modified gravitational field equations that present a totally
tensorial structure. Therefore, the nontensorial character of
the theory obtained in [10] is solved.
When the theory was put to the test within the scope of

cosmology using the FLRW geometry, different types of
solutions were obtained by assuming the conservation and
nonconservation of the energy-momentum tensor. In the
case of conserved energy-momentum tensors, it results in
solutions for the scale factor such as power-law and
exponential forms, the last form being appropriate for both
inflation with big bang and a late phase of accelerated
expansion. In this case, the extra (Herglotz) vector field,
which in FRLW spacetimes has only one nontrivial
component ϕ, plays a role similar to the cosmological
constant in general relativity, and an estimate for its
numerical value at present time was obtained by consid-
ering the present value of the Hubble parameter. In the case
of nonconserved energy-moment tensors, we have found
the inflation standard solution among other interesting
solutions. Among these, the solution obtained in
Sec. IV C stands out. It represents an accelerated universe
filled with dust (cold dark matter), over a period of time,
thus avoiding the introduction of a dark energy component
(or a dilaton field) to explain the accelerated expansion (or
the inflationary) period.
Despite a variety of cosmological solutions that can be

found in view of the arbitrariness of the Herglotz field ϕ,
the simplest cosmological models have some issues to be
considered and further investigated. One of them is the
existence of solutions with negative energy density, leading
us to restrict the choices for ϕ that result in non-negative
energy density. Another issue is the same as it happens in
general relativity. Due to the restriction imposed by
choosing an equation of state in the form p ¼ ωρ, with
ω being a constant parameter, the theory is unable to
provide an accelerated expansion in late cosmological
times without the aid of an exotic material known as dark
energy. However, in the present theory, these apparent
flaws may be remedied by introducing some kind of
mechanism to select the appropriate ϕðtÞ for each phase
of the universal expansion.
The linear regime of the theory was also studied and

wavelike solutions were shown to exist for the metric
perturbations. As expected, this study revealed the dis-
sipative behavior of wave propagation, which can be
damped or forced depending on the Herglotz vector λμ.
In the present theory, the phase speed of the plane waves
may be different from the speed of light, but further
investigation is needed to determine the speed of energy
propagation, and also to establish the real number of
independent propagation modes. Again, considering a
plane wave propagating along a specific direction, a
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numerical estimate for the extra (Herglotz) parameter was
obtained by using the recent data on gravitational waves.
The applications presented in the present work should be

considered as a preliminary analysis, so that further and
deeper studies are necessary to test the theory against
observational data. Our immediate interest is to investigate
the existence of solutions representing compact objects in
this nonconservative gravity theory.
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APPENDIX A: PERTURBATIONS AROUND
MINKOWSKI: UNPERTURBED

HERGLOTZ FIELD

1. Preliminary remarks

Let us consider a perturbed metric in the form given by
Eq. (49), i.e., gμν ¼ ḡμν þ hμν, with hμν being considered as
a perturbation over the background metric ḡμν. Up to the
first order in hμν and its derivatives, the Einstein tensor may
be split as Gμν ¼ Ḡμν þ Gμν, where Gμν stands for the first-
order correction on the background (unperturbed) Einstein
tensor Ḡμν. Similarly, we may write Tμν ¼ T̄μν þ τμν,
Kμν ¼ K̄μν þ kμν. Therefore, the filed equations (26) are
satisfied order-by-order and separate into two equations,

Ḡμν ¼ 8πGT̄μν − K̄μν; ðA1Þ

Gμν ¼ 8πGτμν − kμν: ðA2Þ

Taking the divergence of Eqs. (A1) and (A2) it follows

8πGT̄ν
μ ;ν − K̄ν

μ ;ν ¼ 0; ðA3Þ

8πGτμν;ν − kμν;ν ¼ 0: ðA4Þ

It is then clear that, in general, the perturbation quantities
τμν and kμν form a divergence free tensor just when
combined in the form 8πGτμν − kμν. In fact, as we show
next, in general the quantities kμν and τμν are not tensorial
objects, they define a tensorial function just when com-
bined as in Eq. (A4).

2. Perturbed quantities and gauge transformations

Here we investigate the perturbation equations in the
case where the Herglotz field λμ is kept fixed, while the

metric and other fields are perturbed around the flat
spacetime, i.e., we may write

gμν ¼ ημν þ hμν; khμνk ≪ 1; λμ ¼ λ̄μ; ðA5Þ

where λ̄μ is the background Herglotz vector.
Let us start by investigating the behavior of the tensor

Λμν under the perturbations (A5). Such a tensor is defined
in terms of the metric and the vector λμ in Eq. (25). In the
case of unperturbed λμ and up to the first order in hμν, the
tensor Λμν reads

Λμν ¼ Λ̄μν − Γσ
μνλ̄σ; ðA6Þ

where

Γρ
μν ¼ 1

2
ηρσð∂μhσν þ ∂νhσμ − ∂σhμνÞ; ðA7Þ

and Λ̄μν is defined in Eq. (52).
Now, by performing an infinitesimal coordinate trans-

formation x0μ ¼ xμ þ ξμðxÞ, see Eq. (57), we find the
transformation for the metric perturbation tensor

h0μν ¼ hμν þ ξμ;ν þ ξν;μ;

h0μν ¼ hμν − ξμ;ν − ξν;μ: ðA8Þ

Similarity, we obtain the transformed Herglotz vector
field,

λ0μ ¼ λμ þ ξσλ̄μ;σ þ ξσ;μλ̄
σ: ðA9Þ

Therefore, using the first relation in (A7) and (A8) we get
the transformation on the Christoffel symbol as δΓσ

μν ¼ ξσ;μν.
From this result and (A6), we calculate the variation of Λμν

in (A6) at first order, i.e.,

δΛμν ¼ ξρΛ̄μν;ρ þ ξρ;νΛ̄μρ þ ξρ;μΛ̄νρ: ðA10Þ

So now the calculation of the change in the tensor Kμν ¼
Λμν − gμνΛ is obtained straightforwardly. Indeed,

δKμν ¼ δΛμν − δgμνΛ − gμνδðΛσρgσρÞ
¼ δΛμν − δgμνΛ − ημνðδΛσρη

σρ þ ΛσρδgσρÞ; ðA11Þ

where we eliminate all the second-order terms. Finally, by
using (A8) and (A10), it follows

δKμν ¼ ξρðΛ̄μν;ρ − ημνΛ̄;ρÞ þ ξρ;νðΛ̄μρ − ημρΛ̄Þ
þ ξρ;μðΛ̄νρ − ηνρΛ̄Þ

¼ ξρK̄μν;ρ þ ξρ;νK̄μρ þ ξρ;μK̄νρ; ðA12Þ

where
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K̄μν ¼ Λ̄μν − ημνΛ̄; ðA13Þ

and Λ̄μν is defined in Eq. (52). This result confirms that, in
the case the Herglotz vector λμ is not perturbed, the
complete perturbed tensor Kμν transforms appropriately,
and because of the gauge invariance of the Einstein
tensor, the combination 8πGTμν − Kμν is such that
8πGδTμν − δKμν ¼ 0.
Notice that, although the full object Kμν does transform

as a tensor under the gauge transformation (A8), the
background quantity K̄μν does not obey the same trans-
formation law. As a consequence, both objects T̄μν and τμν
are affected in the same way as K̄μν and kμν [see Eq. (56)],
since K̄μν and T̄μν are linked by Eq. (54), i.e.,

K̄μν ¼ 8πGT̄μν: ðA14Þ

Indeed, by using the expressions (A6) and (A10) it is found

δK̄μν ¼ ξρK̄μν;ρ þ ξρ;νK̄μρ þ ξρ;μK̄νρ þ ξσ;μνλ̄σ

þ 2Λ̄ξðμ;νÞ − ημνðλ̄σ□ξσ þ 2ξσ;ρΛ̄σρÞ: ðA15Þ

With this result, Eq. (A14) lead us to the following relation:

δT̄μν ¼ ξρT̄μν;ρ þ ξρ;νT̄μρ þ ξρ;μT̄νρ þ
1

8πG
ξσ;μνλ̄σ

þ 1

8πG
½2Λ̄ξðμ;νÞ − ημνðλ̄σ□ξσ þ 2ξσ;ρΛ̄σρÞ�: ðA16Þ

Furthermore, since Tμν ¼ T̄μν þ τμν is a tensor, it trans-
forms as

δTμν ¼ δT̄μν þ δτμν ¼ ξρT̄μν;ρ þ ξρ;νT̄μρ þ ξρ;μT̄νρ: ðA17Þ

Therefore, by comparing Eqs. (A16) and (A17), it follows

8πGδτμν ¼ −ξσ;μνλ̄σ − 2Λ̄ξðμ;νÞ þ ημνðλ̄σ□ξσ þ 2ξσ;ρΛ̄σρÞ;
ðA18Þ

which shows explicitly that τμν is not a tensor. However, the
combination of Eqs. (A16)–(A18) confirms that the quan-
tity 8πGτμν − kμν transforms as a second rank tensor, as
expected.

3. Gauge compatibility

Let us now consider the changes in the field equations for
the metric perturbations and for the gauge choice under the
coordinate transformations (57), xμ → x0μ ¼ xμ þ ξμðxÞ.
Performing the gauge the transformation and using the
results of the last section into the equations of motion (62),
at first order in the perturbations, we get

ð□ξν− λ̄ρξν;ρÞ;μþð□ξμ− λ̄ρξμ;ρÞ;ν
þημνðλ̄σ;ρξσ;ρþ λ̄σ;ρξρ;σ−4Λ̄σρξ

σ;ρÞþ4Λ̄ξðμ;νÞ−2λσ;ðμξσ;νÞ
−ημνð□ξσ;σ− λ̄ρξσ;ρσþ λ̄σ□ξσÞ¼−16πGδτμν: ðA19Þ

By substituting (A18) into (A19) it gives

ð□ξν− λ̄ρξν;ρ− λ̄σξσ;νÞ;μþð□ξμ− λ̄ρξμ;ρ− λ̄σξσ;μÞ;ν
−ημνð□ξσ;σ− λ̄ρξσ;ρσ− λ̄σ□ξσÞþημνðλ̄σ;ρξσ;ρþ λ̄σ;ρξρ;σÞ¼0:

ðA20Þ

Apparently, the field equations are not invariant under
transformation (A8). To verify this, we follow the usual
procedure as in general relativity and consider the variation
of gauge choice (61) under the transformation (57), which
implies in

□ξν − λ̄ρξν;ρ − λ̄σξσ;ν ¼ 0: ðA21Þ

This means that the gauge condition (61) obligates the
coordinate system to satisfy Eq. (A21). Hence, by taking
(A21) into (A20) it follows

λ̄σ;ρðξσ;ρ þ ξρ;σÞ ¼ 0: ðA22Þ

Since this condition cannot be satisfied in general, the field
equations are not invariant under the gauge transformation.
There is however, a particular case where (A22) becomes
an identity, namely, when λ̄μ is a constant vector. Therefore,
for consistency, the present first order metric perturbation
theory requires the Herglotz vector field λ̄μ to be a constant
vector.

APPENDIX B: PERTURBATION AROUND
MINKOWSKI: PERTURBED HERGLOTZ FIELD

1. Perturbed quantities and gauge transformations

Here we assume that, besides the metric and mater fields,
also the Herglotz vector field is perturbed around its
background value λ̄μ, i.e.,

λμ ¼ λ̄μ þ lμ; ðB1Þ

where λ̄μ is the solution of Eq. (26) in Minkowski
spacetime, and lμ stands for the perturbation on λ̄μ.
Therefore, up to the first order in the perturbations hμν,
lμ, and their derivatives the tensor Kμν defined in Eq. (24)
may be split as a background and a perturbation term,

Kμν ¼ K̄μν þ kμν; ðB2Þ

where K̄μν and kμν are given respectively by
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K̄μν ¼ Λ̄μν − ημνΛ̄;

kμν ¼ lμν − ημνl − hμνΛ̄þ ημνΛ̄ρσhρσ; ðB3Þ

where Λ̄μν is given by Eq. (52), and we have defined

lμν ¼ lðμ;νÞ − 2λ̄ðμlνÞ − λ̄ρhρðν;μÞ þ
1

2
λ̄ρhμν;ρ; ðB4Þ

with Λ̄μν defined in Eq. (52), and we use the same notation
and conventions of the preceding sections. In terms of γμν,
the perturbation tensor kμν reads

kμν ¼ lðμ;νÞ − 2λ̄ðμlνÞ − λ̄ργρðν;μÞ þ
1

2
λ̄ργμν;ρ

− ημν

�
lσ;σ − 2λ̄σlσ − λ̄ργσρ;σ þ

1

4
λ̄σγ;σ

�

þ 1

2
λ̄ðμγ;νÞ þ ημνΛ̄ρσγ

ρσ − γμνΛ̄: ðB5Þ

The energy-momentum tensor is also perturbed and may
be split as in Eq. (53), i.e., Tμν ¼ T̄μν þ τμν.
We proceed as usual and consider the infinitesimal

diffeomorphism generated by a vector field ξμ, which
gives rise to the coordinate transformation x0μ ¼ xμþ
ξμðxÞ. It follows that the metric perturbations hμν transform
as in Eq. (A8), while the perturbation of the Herglotz
vector lμ and the energy-momentum tensor τμν transform
as

l0μ ¼ lμ þ ξρλ̄μ;ρ þ λ̄ρξ
ρ
;μ;

τ0μν ¼ τμν þ ξρT̄μν;ρ þ ξρ;μT̄ρν þ ξρ;νT̄μρ; ðB6Þ

respectively.
From Eqs. (B6), (B4), and (B3) we obtain the variation

of the tensor kμν as

k0μν ¼ kμν þ ξρK̄μν;ρ þ ξρ;νK̄μρ þ ξρ;μK̄νρ: ðB7Þ

Now, by substituting K̄μν from Eq. (54) into (B7) it follows

k0μν ¼ kμν þ 8πGðξρT̄μν;ρ þ ξρ;νT̄μρ þ ξρ;μT̄νρÞ; ðB8Þ

where we assumed a constant G.
Hence, given that the source on the rhs of Eq. (55)

transforms according to the last relation in (58), i.e.,
δτμν ¼ ξρT̄μν;ρ þ ξρ;νT̄μρ þ ξρ;μT̄νρ, the comparison between
this and (B8), by means of Eq. (60), shows that the first-
order perturbation equations (55) are gauge invariant.
Now, due to the diffeomorphism invariance in a back-

ground spacetime region where Eq. (54) is obeyed, we are

free to make a gauge choice. In the present case, we choose
the modified gauge condition

γρμ;ρ − λ̄ργμρ þ
1

2
λ̄μγ þ lμ ¼ 0; ðB9Þ

to simplify the field equations (55). With such a choice, the
perturbation equations are cast as

□γμν − λ̄ργμν;ρ þ 2Λ̄γμν − 2γρðμλ̄
ρ
;νÞ þ γλ̄ðμ;νÞ

þ ημν

�
λ̄σ;ργ

σρ −
1

2
λ̄σ;σγ − λ̄ργσρ;σ − 2Λ̄ρσγρσ

�
þ ημνðlσ;σ − 4λ̄σlσÞ þ 4λ̄ðμlνÞ ¼ −16πGτμν: ðB10Þ

Since lμ is not a dynamic field, it does not propagate
through spacetime and then all degrees of freedom asso-
ciated with it may be chosen arbitrarily. In particular, if one
is allowed to choose lμ ¼ 0, the perturbations equations
result the same as the case analyzed in Sec. V.

2. Gauge compatibility

Let us now consider the changes in the field equations for
the metric perturbations under the infinitesimal gauge
transformation (57), xμ → x0μ ¼ xμ þ ξμðxÞ, for arbitrary
lμ. To simplify analysis, we assume a constant λ̄μ from now
onward. At first order in the perturbations, transformations
(B6) imply that the equations of motion (B10) change to the
form

ð□ξν − λ̄ρξν;ρÞ;μ þ ð□ξμ − λ̄ρξμ;ρÞ;ν − ημνð□ξσ;σ − λ̄ρξσ;ρσÞ
− 2ðK̄σ

μξσ;ν þ K̄σ
νξσ;μÞ ¼ −16πGδτμν: ðB11Þ

After using the second relation in (B6), with
K̄μν ¼ 8πGT̄μν, we get K̄σ

μξσ;ν þ K̄σ
νξσ;μ ¼ 8πGδτμν and,

as a consequence, Eq. (B11) reduces to

ð□ξν− λ̄ρξν;ρÞ;μþð□ξμ− λ̄ρξμ;ρÞ;ν−ημνð□ξσ;σ − λ̄ρξσ;ρσÞ¼ 0:

ðB12Þ

Again, the equation for the metric perturbations (B10) does
not appear to be invariant under the transformations (B6).
In fact, this is just an illusion of the gauge choice. To see
this, we just take the variation of the gauge (B9) to find

□ξμ − λ̄ρξμ;ρ ¼ 0: ðB13Þ

Equation (B13) implies that (B12) is identically satisfied.
Therefore the field equations (B10) are invariant under the
transformations (B6) and consequently are gauge compatible.
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