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We study the impact of eccentricity on gravitational-wave parameter estimation for binary neutron star
systems. For signals with small eccentricity injected into noise with the advanced LIGO power spectral
density, we perform Bayesian parameter estimation using the circular waveform model and show how the
recovered parameters can be biased from their true values, focusing on the intrinsic parameters the chirp
mass (Mc), the symmetric mass ratio (η), and the tidal deformability (λ̃). By comparing the results between
the Bayesian and the analytic Fisher-Cutler-Vallisneri (FCV) methods, we obtain the valid criteria for the
FCV approach. Employing the FCV method and using the realistic population of binary neutron star
sources distributed in the m1–m2–e0 space, where e0 indicates the eccentricity at 10 Hz, we calculate the
measurement errors (σθ) and the systematic biases (Δθ=σθ) and obtain their generalized distributions in the
range of 0 ≤ e0 ≤ 0.025. We find that for all of the three parameters, the biases increase with increasing e0,
and this increase is faster for larger e0. The bias is mainly dependent on the value of e0 and weakly
dependent on the component masses, and thus the distribution shows a narrow band in the e0-Δθ=σθ plane.
We present various posterior examples to illustrate our new findings, such as the bimodality of posteriors.
In particular, we give a specific injection-recovery example to demonstrate the importance of including
eccentricity in parameter estimation to avoid incorrect predictions of the neutron star equation of state.
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I. INTRODUCTION

Recently, the ground-based gravitational-wave (GW)
observatories, advanced LIGO (aLIGO) [1] and advanced
Virgo [2], have finished the third observing run. The
network of the two aLIGO detectors and the advanced
Virgo detector has detected 90 GW candidates [3–6], all
GW sources have been verified to be merging compact
binaries. Most of the GW signals were emitted from the
binary black holes (BBHs), and a small number of signals
were emitted from two binary neutron stars (BNSs) and a
few neutron star-black hole (NSBH) binaries. In particular,
the neutron star (NS) tidal parameter could be measured
from the first detected BNS signal GW170817 due to its
sufficiently high signal-to-noise ratio [7,8].
So far, various waveform models have been developed

for use in GW data analysis. The search template bank is
constructed in the three-dimensional parameter space con-
sisting of the component masses and the aligned-spin
[9,10]. In this pipeline, an inspiral-only post-Newtonian
(PN) waveform model is used for BNS templates [11] and a
full inspiral-merger-ringdown (IMR) waveform model is
used for BBH and NSBH templates [12]. In parameter
estimation, more diverse models are used to infer source

properties as accurately as possible, taking into account
the effect of waveform systematics. Various IMR models
defined in the time domain or frequency domain have been
used for BBH signals, some of which include the pre-
cession effect and/or the higher multipoles (for example,
see Table I of [13]). For BNS signals, an inspiral-only PN
model and several IMR models have been used, and these
models included NS tidal effects [8,14].
On the other hand, the orbital eccentricity has not been

taken into account in the current LIGO-Virgo GW searches
since the binary system is likely to be circularized when
they reach the detector frequency band (∼10 Hz) as the
systems can radiate away their eccentricity through GWs
[15,16]. However, it has been known that dynamically
formed binaries in dense stellar environments may still
have non-negligible eccentricities (e > 0.1) at 10 Hz
[17,18]. Therefore, the presence of a dynamical formation
channel is expected to be confirmed by successful mea-
surements of the nonsmall eccentricity. In this context,
searches for eccentric BBHs [19] or BNSs [20] have also
been performed using LIGO-Virgo data, but no new
significant candidates have been identified. Several groups
have attempted to estimate the eccentricity of the BBH
sources detected by LIGO-Virgo using the inspiral-only
[21], the aligned-spin [22–24], and the numerical simu-
lation [25] waveform models, respectively. The authors of*chohs1439@pusan.ac.kr

PHYSICAL REVIEW D 105, 124022 (2022)

2470-0010=2022=105(12)=124022(16) 124022-1 © 2022 American Physical Society

https://orcid.org/0000-0003-2152-6776
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.124022&domain=pdf&date_stamp=2022-06-10
https://doi.org/10.1103/PhysRevD.105.124022
https://doi.org/10.1103/PhysRevD.105.124022
https://doi.org/10.1103/PhysRevD.105.124022
https://doi.org/10.1103/PhysRevD.105.124022


[26,27] also tried to measure the eccentricity of the BNS
sources separately, and both obtained very small eccen-
tricities. There have also been studies on the search
efficiency for eccentric BBHs [28,29] or eccentric BNSs
[30] using quasicircular templates.
Studies on the impact of eccentricity on GW parameter

estimation have also been done in several works. The
authors of [31–33] found that eccentricity can improve the
measurement accuracy of mass parameters. Recently, some
injection studies have been performed in [34,35] to inves-
tigate the measurability of eccentricity by ground-based
detectors. In particular, a systematic parameter bias that can
be produced by using a quasicircular waveform model for
eccentric BBH signals has been investigated in the recent
works [24,35]. They showed that the eccentric signals can
be recovered by the quasi-circular binaries with higher
chirp masses (Mc) and higher symmetric mass ratios (η).
The two works [36,31] have also conducted research on the
bias due to eccentricity in BNS parameter estimation. The
former used the analytic method introduced by Cutler and
Vallisneri [37] to calculate the systematic bias, while the
latter calculated the bias by searching the Mc–η overlap
surface. Both considered the equal-mass BNS system with
mi ¼ 1.4 M⊙ but showed different results on the bias for η.
In the former work, as the signal’s eccentricity increases,
the bias increases, exceeding the statistical error at small
eccentricities of ∼0.002, while in the latter work, the bias
can be ignored compared to the statistical error even at large
eccentricities of ∼0.4. As we will see in our results, such a
difference is due to the fact that since the overlap surface is
restricted by the physical boundary (i.e., 0 < η ≤ 0.25), the
recovered value of η cannot exceed 0.25, resulting in
negligible bias. However, these boundary effects are not
considered in the analytic method, and thus the recovered η
can increase beyond 0.25.
Unlike the case for the BBH system, the waveform of the

BNS system has additional parameters related to the NS
tidal deformability. Although the tidal parameters have a
very small effect compared to other parameters such as
masses or spins, the tidal deformability is a very important
source property because this parameter is related to the
internal structure of NSs. Precision measurements of tidal
deformability can directly constrain the NS equation of
state (EOS) [38–42]. The tidal deformability was directly
measured from GW170817 for the first time, and as a
result, the soft EOS models were preferred over stiff EOS
models [8,43]. Meanwhile, studies on the impact of
eccentricity on the measurement of tidal deformability
have not yet been conducted except for the simple analytic
results presented by Favata [36].
In this work, we study the impact of eccentricity on

parameter estimation for BNS signals. For injection signals
with various small eccentricities e0, where e0 indicates the
eccentricity of the binary at the GW frequency of 10 Hz,
we perform Bayesian parameter estimation using circular

waveforms and investigate the biases for the intrinsic
parameters the chirp mass, the symmetric mass ratio,
and the tidal deformability. We also use the Fisher
matrix-based analytic method to calculate the bias and
evaluate the validity of the analytic method by comparing
the results with the Bayesian parameter estimation results.
By applying the analytic method to the 104 Monte Carlo
samples randomly generated in the m1–m2–e0 space, we
obtain the general distributions of bias for the parameters.
In particular, we provide a variety of posterior examples for
ease of understanding.

II. METHOD

A. Waveform model: TaylorF2

So far, many waveform models have been proposed for
use in GW data analysis. In contrast to the BBH systems
that require full IMR waveforms, it is a large advantage for
the BNS systems that inspiral-only waveform models can
be used efficiently in the ground-based detectors because
the portion of the postmerger is negligible as it goes out of
the detector’s frequency band. This can be directly con-
firmed from the data analysis results for GW170817 [8]
and GW190425 [14], which showed consistent results
between the IMR and the inspiral-only waveform models.
Therefore, we adopt the TaylorF2 waveform model in this
work. Since TaylorF2 is derived from the time-domain PN
waveform model using a stationary phase approximation,
this model is defined in the frequency domain. TaylorF2
is well formulated by the PN expansion with the corre-
sponding higher-order corrections and has a simpler
form than other models used in current GW data
analysis [12,44–53,53–56].
The wave function of TaylorF2 is given by

hðfÞ ¼ M5=6
c

π2=3Deff

ffiffiffiffiffi
5

24

r
f−7=6eiΨðfÞ; ð1Þ

where Deff indicates the effective distance defined by a
combination of the five extrinsic parameters; those are the
true distance of the source (dL), orbital inclination with
respect to the line of sight (θJN), sky position (RA; DEC),
and polarization angle (ψ) [57]. The wave phase of
TaylorF2 is give by

ΨðfÞ ¼ 2πftc − 2ϕc −
π

4

þ 3

128ηv5
½ϕpp;circðfÞ þ ϕtidalðfÞ þ ϕeccðfÞ�; ð2Þ

where v≡ ½πfðm1 þm2Þ�1=3 is the PN expansion param-
eter and tc and ϕc are the coalescence time and phase,
respectively. The term ϕpp;circ represents the point-particle,
circular PN expansion, we here use the standard 3.5PN
equation given in [58] but do not consider the spin effect.
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The term ϕtidal represents the tidal corrections. Although
the PN tidal corrections first appear in the 5PN order,
its impact is comparable to the 3.5PN order point-particle
correction [59]. The PN tidal corrections are given as a
function of the two dimensionless tidal deformability λ1
and λ2. We consider the tidal corrections up to 6PN order,
then the tidal term can be given by the two useful
parameters λ̃ and δλ̃ as [36,60]

ϕTidal¼−
�
39λ̃

2
v10þ

�
3115λ̃

64
−
6595

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p
δλ̃

364

�
v12

�
: ð3Þ

In this case, the 5PN order term is only a function of λ̃, so
the contribution of δλ̃ can be greatly reduced in the overall
tidal effect. As we will see, δλ̃ has a negligible influence on
the parameter estimation results. Finally, the term ϕecc

represents the eccentricity corrections, we here consider the
PN eccentricity corrections derived up to 3PN order given
in Eq. (6.26) of [61], which can be expressed as

ϕecc ¼ −
2355

1462
e20

�
v0
v

�
19=3

�
1þ

�
18766963

2927736
η

þ 299076223

81976608

�
v2 þ

�
2833

1008
−
197

36
η

�
v20

þOðv4Þ þ � � � þOðv6Þ
�
; ð4Þ

where e0 is the eccentricity at the reference frequency f0
(where the choice of f0 is arbitrary). For the ground-based
detectors, the above eccentric PN waveform model is valid
up to e0 ≲ 0.1 for comparable mass systems [61].
Therefore, in order to produce the TaylorF2 waveforms

for eccentric and nonspinning BNS systems, we need
the five extrinsic parameters (dL, θJN, ψ , RA; DEC), the
five intrinsic parameters (Mc, η, Λ̃, δΛ̃, e0), and the two
arbitrary constants (tc, ϕc), hence a total of 12 parameters
are required.

B. Bayesian parameter estimation

The main purpose of the GW search pipeline is to
identify GW signals buried in the detector’s data stream
[57]. A more detailed analysis is conducted in the param-
eter estimation pipeline to determine the source properties
by exploring the entire parameter space [62]. Using
Bayesian inference statistics, the result of parameter esti-
mation can be given as posterior probability density
functions (PDFs) for the parameters considered. The
Bayesian parameter estimation process is based on
iterative computations of the overlap between the model
waveforms (h) and the detector data (x) containing the
signal waveform (s). The overlap between x and h is
given by

hxjhi ¼ 4Re
Z

fmax

fmin

x̃ðfÞh̃�ðfÞ
SnðfÞ

df; ð5Þ

where the tilde denotes the Fourier transform of the time-
domain waveform, SnðfÞ is the detector’s noise power
spectral density (PSD), fmin and fmax are the minimum and
the maximum cutoff frequencies, respectively. For a given
prior distribution pðθÞ, where θ is the set of parameters
considered in the analysis, the posterior probability that
the GW signal is characterized by the parameters θ is
expressed as

pðθjxÞ ∝ pðθÞLðxjθÞ; ð6Þ

where LðxjθÞ indicates the likelihood function. Using
the overlap defined in Eq. (5), the likelihood can be given
by [63,64]

LðxjθÞ ∝ exp

�
−
1

2
hx − hðθÞjx − hðθÞi

�
: ð7Þ

In the limit of high SNRs where the noise effect can be
ignored, the above equation can be expressed as

LðθÞ ∝ exp

�
−
1

2
fhsjsi þ hhðθÞjhðθÞi − 2hsjhðθÞig

�
: ð8Þ

For a given signal s, the SNR is given by [57]

ρ ¼
ffiffiffiffiffiffiffiffiffiffi
hsjsi

p
: ð9Þ

If we use an accurate waveform model, the likelihood
distribution has a maximum value when the parameter
values of the model waveform are equal to those of the
signal waveform (i.e., hðθ0Þ ≃ s, hence ρ2 ¼ hsjsi≃
hhðθ0Þjhðθ0Þi). In this case, around the maximum position,
the likelihood distribution in Eq. (8) can be given as [65]

LðθÞ ∝ exp½−ρ2f1 − hŝjĥðθÞig�; ð10Þ

where ĥ≡ h=ρ denotes the normalized waveform.
Therefore, in Bayesian parameter estimation, the shape
of the log–likelihood is determined by the overlap between
the signal and the model waveforms, and its scale of interest
depends on the SNR [65].
Since the prior information is just applied at the begin-

ning of the process, the construction of the parameter
estimation algorithm is a matter of finding the global
maximum of the likelihood distribution over the entire
parameter space as quickly and accurately as possible.
In this work, we perform Bayesian parameter estimation for
BNS injection signals using the BILBY library [66], which is
one of the parameter estimation packages, with the
DYNESTY [67] nested sampling algorithm. In particular,
to speed up the parameter estimation runs, we apply the
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multibanded likelihood technique described in [68].
Furthermore, we select the phase marginalization option
for efficiency, which enables analytical marginalization
over ϕc.

C. Fisher matrix approach: Parameter measurement
error and systematic bias

In the high SNR limit, since the likelihood distribution
obeys the Gaussian approximately, the marginalized 1–d
posterior PDF for the parameter can also be expressed as a
Gaussian function [63,64]. The standard deviation of
the PDF corresponds to the measurement error of the
corresponding parameter. On the other hand, for a given
signal with the true parameter values θ0, the measurement
errors can be easily obtained by using the Fisher matrix
defined by

Γij ¼
�
∂hðθÞ
∂θi

���� ∂hðθÞ
∂θj

	����
θ¼θ0

: ð11Þ

The inverse of Fisher matrix gives the covariance matrix
(Σij ¼ ðΓ−1Þij) of the parameter errors, and the measure-
ment error (σi) of each parameter and the correlation
coefficient (Cij) between two parameters are given by

σi ¼
ffiffiffiffiffiffi
Σii

p
; Cij ¼

Σijffiffiffiffiffiffiffiffiffiffiffiffi
ΣiiΣjj

p : ð12Þ

Despite some well-known limitations (for more details,
refer to [69]), the Fisher matrix method has been widely
used in the parameter estimation literature since it was first
used by [64,70].
Another formula for the Fisher matrix can be given by

the likelihood function as [69,71]

Γij ¼ −
∂
2 lnLðθÞ
∂θi∂θj

����
θ¼θ0

: ð13Þ

Applying the likelihood function in Eq. (10) to the above
equation gives

Γij ¼ −ρ2
∂
2hŝjĥðθÞi
∂θi∂θj

����
θ¼θ0

; ð14Þ

and this represents the curvature of the overlap surface at
the maximum position. Thus, one can infer that specific
isomatch contours in the overlap surface correspond to
the confidence regions of the posterior PDF for a given
SNR [72–74].
One of the limitations of the Fisher matrix method is the

applicability of prior information. Unlike Bayesian param-
eter estimation, only Gaussian prior functions can be
imposed analytically on the Fisher matrix. Assuming that
the variance of the Gaussian prior function for the

parameter θi is P2
θi
, the covariance matrix containing the

prior information can be given by adding the component
Γ0
ii ¼ P−2

θi
as [64,70]

ΣP
ij ¼ ðΓij þ Γ0

iiÞ−1; ð15Þ

where Γij is the original Fisher matrix with no prior
information. The prior is independent of the signal strength,
while the original Fisher matrix strongly depends on the
SNR as seen in Eq. (14). Therefore, the lower the SNR, the
stronger the prior effect on the parameter measurement.
Based on the Fisher matrix formalism, Cutler and

Vallisneri [37] developed an analytic method (henceforth
denoted as “FCV” following the notation in [35]) to
calculate the systematic bias. In this work, the bias can
be induced by ignoring the eccentricity in the model
waveforms in the analysis of the eccentric signals.
Following Eq. (29) of [37], the systematic bias can be
given by [36]

Δθi ¼ θreci − θi0 ¼ Σijð∂jhAPjhT − hAPÞ; ð16Þ

where θrec represents the recoverd parameter value, hT
indicates the true signal waveform, and hAP indicates the
approximate waveform in which the eccentricity correc-
tions are ignored. Here, Σij should be calculated from hAP.
By representing the wave amplitude of Eq. (1) as A, the
above equation can be rewritten as

Δθi ¼ 4A2Σij

Z
fmax

fmin

df
f−7=3

SnðfÞ
ðΨT −ΨAPÞ∂jΨAP; ð17Þ

where ΨT indicates the true wave phase given in Eq. (2)
and ΨAP indicates the approximate phase. Since A2 ∝ ρ2

and Σij ∝ ρ−2, the bias is independent of the SNR. To
include the prior effect in the bias computation, the prior-
incorporated covariance matrix (ΣP

ij) can be used in this
equation.

III. RESULT

A. Setup

The eccentric TaylorF2 waveform model is implemented
in LAL (LIGO Algorithm Library) [75] named as
“TaylorF2Ecc”. Using this model, we generate eccentric
and nonspinning BNS signals and inject those into the
LIGO-Hanford detector with zero noise. We use the aLIGO
sensitivity curve labeled as “aligo_O4high”,1 and the
minimum frequency cutoff is set to fmin ¼ 20 Hz. The
maximum frequency cutoff is set to fmax ¼ fISCO, where
fISCO is the innermost-stable-circular-orbit frequency
defined by fISCO ¼ 1=½63=2πðm1 þm2Þ�. We choose the

1https://dcc.ligo.org/LIGO-T2000012/public.
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fiducial BNS masses as ðm1; m2Þ ¼ ð2 M⊙; 1 M⊙Þ, and
then the tidal parameters can be given as (λ1; λ2Þ ¼
ð14.7; 1744Þ. Here, we assume the APR4 model [76],
which is one of the soft EOS models preferred by the
parameter estimation results for GW170817 [8].
When running BILBY, the algorithm must explore the

entire 11–d parameter space. However, we can reduce the
exploration space to 6–d space by holding the extrinsic
parameters equal to their true values. Note that, including
the extrinsic parameters in the analysis has a little impact on
the results of the intrinsic parameters (see, Appendix A).
We assume the flat priors in the ranges of ½0.5 M⊙; 2.5 M⊙�
for the component masses (m1, m2) and [0, 5000] for the
component tidal parameters (λ1, λ2). The priors of tc and ϕc
are given as ½tc0 − 1s; tc0 þ 1s� and [0, 2π], respectively.
Since our parameter estimation is performed with circular
waveforms, the eccentricity is not included in the prior
setting. When displaying the posteriors in BILBY, one can
choose the parameters of interest, and we select (λ̃, δλ̃)
rather than (λ1, λ2) in our results.
When computing the Fisher matrix, we use the circular

waveform model that can be obtained by ignoring the
eccentric term in Eq. (2). Thus, the input parameters of the
Fisher matrix are given as (Mc, η, λ̃, δλ̃, tc, ϕc). Although
the choice of tc and ϕc does not affect the results of the
intrinsic parameters, they should be considered with the
intrinsic parameters, as they usually have strong correla-
tions with the intrinsic parameters. We adopt a single-
detector configuration and only focus on the intrinsic
parameters in this work. The extrinsic parameters only
scale the signal strength, and most of the information about
the intrinsic parameters is contained in the wave phase.
Therefore, we do not consider the extrinsic parameters by
choosing a fixed effective distance (Deff ) as in the case of
Bayesian parameter estimation. If Deff is used as one of the
input parameters in the Fisher matrix, its correlations with
the intrinsic parameters are relatively very small [77].

B. Measurement error: Comparison between Bayesian
and Fisher matrix methods

First, we perform parameter estimation using circular
waveforms for a circular signal with our fiducial parameter
values assuming various SNRs. In this case, in principle,
the posterior should be unbiased because we use the same
waveform model as the signal model and assume zero noise
in the injections. Figure 1 shows the results with the SNRs
of (17, 34, 68, 114), where the true values are marked in
orange. The SNRs can be simply obtained by choosing
Deff ¼ ð200; 100; 50; 30Þ Mpc. For each SNR, the margin-
alized 1–d posterior PDF and the 2–d confidence regions
are shown for the parameters Mc, η, and λ̃. It can be seen
that the injection signals can be recovered well overall,
showing decreasing measurement errors with increasing
SNR. The PDFs are slightly biased from the true values for

low SNRs, but rarely biased for high SNRs. For ρ ¼ 17,
the contours are cut by the physical boundary for λ̃ and
asymmetric around the true value, while the contours
are clearly symmetric for high SNRs. The marginalized
PDF for δλ̃ is given in Fig. 2 separately. Unlike the three
parameters given in Fig. 1, δλ̃ is poorly recovered for all
SNRs. In particular, the PDFs for ρ ¼ 68 and 114 are very
similar, and they show no Gaussian distribution.
Next, by applying the circular waveform model to the

Fisher matrix method, we calculate the measurement errors
assuming no prior information. The Fisher matrix is given
as a 6–d matrix with the parameter components (Mc, η, λ̃,
δλ̃, tc, ϕc), and we use the same parameter values as in the
previous Bayesian parameter estimation. By comparing the
results between the Fisher matrix and the Bayesian pos-
terior, we find that the measurement errors from the Fisher
matrix are much larger than those from the Bayesian
parameter estimation, especially for the tidal parameters.
The discrepancy between the Fisher matrix and the

parameter estimation is mainly due to the prior effect.
Figure 3 shows the prior distributions for λ̃ and δλ̃ used in
the Bayesian parameter estimation, which can be obtained
by converting our prior distributions for (m1, m2, λ1, λ2).
It can be seen that the posterior PDFs for δλ̃ in Fig. 2 are
significantly reduced compared to the prior in Fig. 3, as
expected. However, we found that the measurement error of
δλ̃ obtained from the Fisher matrix was much larger than
the width of the Bayesian prior for δλ̃ in Fig. 3. Motivated
by that, we impose the Gaussian prior for the parameter δλ̃,
whose variance is similar to the Bayesian prior size
(Pδλ̃ ∼ 500), to the Fisher matrix. Using the prior-incorpo-
rated Fisher matrix, we calculate the measurement errors
(σ) of Mc; η, and λ̃ and their correlation coefficients. Then,
we compare the 1–d Gaussian functions determined by σ
assuming ρ ¼ 17, 34, 68, and 114 with the marginalized
Bayesian PDFs shown in Fig. 1. In Fig. 4, the black and the
blue lines correspond to the Fisher matrix and the Bayesian
results, respectively, where the contour indicates 68% con-
fidence region given in the Mc-η plane. This result clearly
shows that the analytic Gaussian functions agree remark-
ably well with the Bayesian PDFs for all SNRs. The
confidence regions are also nearly identical between the
two methods, indicating that the correlations are also very
similar. Note that, the Bayesian posteriors are shifted
slightly to match the Gaussian functions, so the small
biases are not shown here. In Table I, we list the
measurement error and correlation coefficient for the
parameters Mc, η, λ̃, and δλ̃ assuming ρ ¼ 34. The result
with no prior information is given in the top row, and the
result with the prior Pδλ̃ ∼ 500 is given in the middle row.
Figure 5 describes how the prior information for the

parameter δλ̃ affects the measurement of the other intrinsic
parameters, showing the ratio between σprior and σpriorless as
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a function of the fractional prior size Pδλ̃=σ
priorless. Here,

σprior indicates the error calculated with the prior on δλ̃ with
the variance Pδλ̃, while σpriorless indicates the error calcu-
lated with no prior information. The result shows that the
contribution of the prior is the highest (lowest) for λ̃ðMcÞ.
For example, if the prior size is similar to the error size,
i.e., Pδλ̃ ∼ σpriorless, σprior can be ∼70ð85Þ% of σpriorless for
λ̃ðMcÞ. Note that, since both the error (σprior) and the prior

(Pδλ̃) are divided by σpriorless, this result is independent of
the SNR (for more details, refer to Fig. 7 of [77]).
On the other hand, we also find in Table I that the

correlations between δλ̃ and the other parameters can be
reduced by incorporating the prior information. In particu-
lar, the correlations with the mass parameters can be
reduced to almost zero, meaning that the parameter δλ̃
does not affect the measurement of the mass parameters.

FIG. 1. Marginalized 1–d posterior PDF and 2–d confidence regions with the SNRs ρ ¼ 17, 34, 68, and 114. The contours indicate
39, 86, and 99% confidence regions. Injection values are ðm1; m2; ½Mc; η�; λ1; λ2; ½λ̃; δλ̃�Þ ¼ ð2M⊙; 1M⊙; ½1.21673M⊙; 0.22222�;
14.7; 1744; ½237; 101�Þ marked in orange.
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To confirm this, we compute the 5–d Fisher matrix, in
which δλ̃ is not included. The result is given in the bottom
row in Table I. We find that the errors of the mass
parameters are nearly the same between the 5–d and the
6–d (Pδλ̃ ¼ 500) Fisher matrices. The dependence of the
correlation on the prior is also described in Fig. 6, showing
the correlation coefficient as a function of Pδλ̃=σ

priorless.

C. Systematic bias due to eccentricity

In this subsection, we investigate how the recovered
parameters of eccentric BNS signals can be biased from
their true values by using circular waveforms in likelihood
calculations. To this end, we inject three BNS signals with
small eccentricities e0 ¼ ð0.008; 0.016; 0.024Þ into the
aLIGO PSD with zero noise. Motivated by the results in

Fig. 1, we assume a high SNR (ρ ¼ 114) to remove
unknown bias sources. Figure 7 shows the marginalized
posterior PDFs for the parametersMc (top), η (middle), and
λ̃ (bottom), respectively. As expected, as e0 increases, the
magnitude of the bias also increases. On the other hand, all
of the biases show a positive direction, meaning that the
recovered parameters are larger than the true parameter
values. This increasing behavior for the mass parameters is
also seen in the BBH systems [24,35]. In particular, the bias
on the tidal parameter is important because the value of λ̃
can constrain the NS EOS. For example, the soft EOS
model ARP4 [76], which we employ in our analysis, gives
λ̃ ∼ 240 for the binary with (2M⊙, 1M⊙) but the stiffer EOS

FIG. 3. Prior distributions for λ̃ (upper) and δλ̃ (lower) used
in Bayesian parameter estimation. These can be obtained by
converting the flat priors for ðm1; m2; λ1; λ2Þ in the ranges of
[0.5M⊙, 2.5M⊙] for the component masses and [0, 5000] for the
component tidal parameters.

FIG. 4. Comparison between the Fisher matrix (black) and
Bayesian parameter estimation (blue). The 2–d contour indicates
68% confidence region given in the Mc-η plane. Note that, the
small biases are not shown here since the Bayesian posteriors are
shifted slightly to match the Gaussian functions.

TABLE I. Measurement errors (σi) and correlation coefficients
(Cij) calculated by the Fisher matrix method assuming ρ ¼ 34.
The top row is obtained from the 6–d Fisher matrix with no prior
information. The middle row is obtained from the 6–d Fisher
matrix incorporating the Gaussian prior on the parameter δλ̃ with
the variance (Pδλ̃ ∼ 500) that is similar to the Bayesian prior size
shown in Fig. 3. The bottom row is obtained from the 5–d Fisher
matrix where δλ̃ is not considered.

Pδλ̃ σMc
=Mc ση σλ̃ σδλ̃ CMcδλ̃

Cηδλ̃ Cλ̃δλ̃

… 4.521E-5 1.739E-3 990.1 19780 0.7271 0.8607 0.9965
500 3.105E-5 0.886E-3 87.0 499.8 0.0268 0.0426 0.2865
… 3.104E-5 0.886E-3 83.4 … … … …

FIG. 2. Marginalized PDFs for δλ̃. The true value is marked
in red.
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model MPA1 [76] gives λ̃ ∼ 450. Roughly speaking, if the
astrophysical NSs are represented by the soft EOS, param-
eter estimation using circular waveform models for eccen-
tric BNS signals with e0 ≳ 0.016 can yield results in favor
of the stiff EOS models. We will show a concrete example
in Sec. III E.
In Table II, we list the biases obtained from the Bayesian

and the FCV methods for the eccentric signals given in
Fig. 7. For the FCV results, we use Eq. (17) assuming the
prior Pδλ̃ ¼ 500. For efficiency, we give the fractional bias
defined by Δθ=σθ where σ is the unbiased error given in
Table I with Pδλ̃ ¼ 500. Overall, the results of the FCV
method are similar to those of the Bayesian method. When
e0 ¼ 0.024, the differences between the two methods are
∼7.6, 8.1, and 4.1% for Mc, η, and λ̃, respectively.
On the other hand, one can see in Fig. 7 that the PDF for

e0 ¼ 0.024 is somewhat wider than the unbiased PDF,

especially for λ̃. This implies that a biased posterior can
give a larger measurement error than the unbiased error.
This is clearly illustrated in Fig. 8, which shows the
confidence regions of the posteriors together, where the
recovered values (θrec) for the different signals coincide
with the coordinates (0, 0).2

One can also see in Fig. 7 that the increase in bias is
faster for larger e0. To see a generalized tendency, we inject
eccentric signals, varying e0 up to 0.04, and perform
parameter estimation. In Fig. 9, we display the bias as a
function of e0 for Mc, η, and λ̃, where we present together
the bias calculated by the FCV method. Favata et al. [35]
showed that the bias due to ignoring eccentricity can be
given as Δθ ∝ e20. We also find that our analytic curves can
almost exactly match their quadratic fitting functions.
On the other hand, the Bayesian curves look similar to

the analytic FCV curves up to e0 ∼ 0.025, but beyond that,
they exhibit quite irregular behavior. One can see that the
Bayesian curve rises abruptly at e0 ∼ 0.025 and ∼0.032,
which is especially noticeable for λ̃. To figure out how these
sudden jumps occur, we generate a densely distributed
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FIG. 6. Dependence of the correlation on the prior. The curves
represent the correlation coefficients between δλ̃ and the other
parameters.

FIG. 7. Marginalized PDFs for Mc (top), η (middle), and λ̃
(bottom). We assume a high SNR (ρ ¼ 114) to remove unknow
bias sources. For reference, the unbiased PDF is also given. The
red dashed line represents the true value.
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FIG. 5. Contribution of the prior on δλ̃ to the measurement of
the other intrinsic parameters. Here, σprior indicates the error
calculated with the prior information, while σpriorless indicates the
error calculated with no prior. Note that, this result is independent
of the SNR [77].

2In this plot, we used a covariance fitting function (imple-
mented in Mathematica) to the marginalized 2–d posteriors to
obtain clear contours.
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signal set near e0 ¼ 0.025 and perform parameter estima-
tion. We choose four posterior results required to describe
the sudden jump. We display the results for e0 ¼
ð0.0250; 0.0251; 0.0252; 0.0252Þ in Fig. 10. Interestingly,
these posteriors show a bimodal distribution, and we found
that such bimodality only appears very near e0 ∼ 0.025 and
∼0.032. The maximum posterior position (marked with a
red star) suddenly moves from the left peak to the right
peak when e0 is between 0.0251 and 0.0252, resulting in a
sudden jump in the bias curve.3 We also found similar
situation near e0 ∼ 0.032. The posterior’s fine-scale struc-
ture becomes clearer if the SNR increases. Thus, the
bimodality will be more likely seen in the third-generation
detectors, such as Einstein Telescope [78] and Cosmic
Explorer [79].
Although not the case for the chirp mass, the upper

bound of the symmetric mass ratio is limited to η ≤ 0.25.
Thus, the maximum bias for η is given by Δη ¼ 0.25 − η0,
independently of increasing e0. This relation implies that if
the true value of η is close to 0.25, the bias Δη can be
negligible compared to the measurement error. By explor-
ing the Mc–η overlap surface for an equal-mass BNS
source, Sun et al. [31] also found ignorable biases even
at large eccentricities of ∼0.4. In Fig. 9, the horizontal
red line represents the boundary η ¼ 0.25. The vertical red
line indicates the value of e0 when ηrec first touches the
boundary, and we denote this critical eccentricity as ecrit0 .
On the other hand, one can see that the increasing behavior
of the bias curves changes significantly if e0 increases
beyond ecrit0 . The increase in ΔMc slows down, Δη remains
at 0.25, and Δη even decreases. In Fig. 11, we present
two posterior results that illustrate such behavior well. The
result for e0 ¼ 0.038 corresponds to the case of e0 ∼ ecrit0 ,
and e0 ¼ 0.041 corresponds to e0 > ecrit0 . In both cases, the
1–d PDFs for η are truncated at the boundary and their peak
positions coincide with the boundary, hence ηrec ¼ 0.25.
The 2–d posteriors show that between e0 ¼ 0.038 and
e0 ¼ 0.041, ΔMc increases, but Δλ̃ decreases. A detailed
description is given in Appendix B.

D. Monte Carlo study

We create 104 Monte Carlo samples randomly generated
in the parameter space m1–m2–e0. The parameter
ranges are given as 1 M⊙ ≤ m1;2 ≤ 2 M⊙ðm2 ≤ m1Þ and

FIG. 8. 99% confidence regions of the biased posteriors. The
recovered values (θrec) for the different signals coincide with the
coordinates (0, 0). We assume ρ ¼ 114.

FIG. 9. Systematic bias due to eccentricity given as a function
of e0 obtained by using the Bayesian and the FCV methods. We
present the fractional bias Δθ=σθ where the measurement error is
given Table I with Pδλ̃ ¼ 500. The horizontal red line represents
the upper boundary of η, and the vertical red line indicates the
value of e0 when ηrec first touches the boundary.

TABLE II. Comparison of biases between the Bayesian and the
FCV methods. We use the errors (σ) given in Table I with
Pδλ̃ ¼ 500.

Bayesian FCV

e0 ΔMc=σMc
Δη=ση Δλ̃=σλ̃ ΔMc=σMc

Δη=ση Δλ̃=σλ̃
0.008 2.841 1.443 0.685 2.955 1.542 0.696
0.016 11.42 5.902 2.634 11.82 6.170 2.784
0.024 24.71 12.84 6.531 26.60 13.88 6.264

3Cho [74] also found sudden jumps in the bias curves for BBH
systems (see Fig. 16 therein), in which the bias was produced by
using an inspiral-only waveform model for the IMR signal.
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0 ≤ e0 ≤ 0.025. Employing these samples as the true
values, we produce 104 eccentric signals and calculate
biases using the FCVmethod assuming Pδλ̃ ¼ 500. We also
calculate the unbiased errors using the same signals but
assuming e0 ¼ 0 for all signals. Finally, we select a total
of 4582 signals that satisfy ηrec ≤ 0.25. Figure 12 shows
the distributions of the fractional biases for the selected
signals. For reference, the 1–d bias curves for the signal
with masses of (2M⊙, 1M⊙) are given by the red lines.
For a given value of e0, the width of the distribution

represents the dependence on the component masses. We
find that the distribution shows a narrow band along the
red line, which means that the bias is mainly dependent
on the value of e0 and weakly dependent on the compo-
nent masses.
To see a more useful explanation of the bias distribution,

we also display the biases for the component masses
(m1, m2) and the total mass (Mt) in Fig. 13. Note that,
in this plot, we present only the bias Δθ, not the fractional
bias Δθ=σθ. The massive components have a negative bias,

FIG. 10. Biased posteriors showing the bimodality. We assume ρ ¼ 114. Note that, the maximum posterior position (marked with a
red star) suddenly moves from the left peak to the right peak when e0 is between 0.0251 and 0.0252.
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but the lighter components have a positive bias, and both
exhibit a wide distribution for a given value of e0. The
maximum bias is given as Δm1ðΔm2Þ ∼ −0.4ð0.3Þ M⊙ at
e0 ¼ 0.025. For Mt, the biases are negative. In particular,
the bias distribution is almost independent of the signal
mass, so it even looks like a single curve. The distribution
for Mt is quite consistent with the quadratic fitting
function ΔMt=M⊙ ¼ −160e20.

E. Injection and recovery

In this subsection, we present two specific cases via
injection and recovery. First, we show how different

FIG. 11. Biased posteriors for the signals with e0 ¼ 0.038
(upper panel) and e0 ¼ 0.041 (lower panel), showing the in-
creasing (decreasing) behavior for ΔMcðΔλ̃Þ in the region of
e0 > ecrit0 . We assume ρ ¼ 114.

FIG. 12. Distribution of the fractional biases for the selected 4582
signals that satisfy ηrec ≤ 0.25. When calculating the analytic bias
(Δθ) and error (σθ),we incorporate the priorPδλ̃ ¼ 500. The red line
is the 1–d bias curve for the signal with masses of (2M⊙, 1M⊙).

FIG. 13. Distribution of the biases for the same signals as in
Fig. 12 but given for the component masses (m1,m2) and the total
mass (Mt). The distribution for Mt looks like a single curve,
which means that the distribution is almost independent of the
component masses. Note that, in this plot, we present only the
bias, not the fractional bias.
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eccentric signals can be recovered as one identical signal
similar to our fiducial binary source i.e., ðm1; m2; λ̃Þ≃
ð2 M⊙; 1 M⊙; 240Þ. To this end, we inject two signals with
the true values of ðm1;m2; λ̃;e0Þ¼ð2.0182M⊙;0.9920M⊙;
179;0.008Þ and ð2.0727 M⊙; 0.9686 M⊙; 14; 0.016Þ and
perform parameter estimation using circular waveforms.
The results are given in Fig. 14. Although the signal in the

lower panel has an e0 value twice that of the signal in the
upper panel, their posteriors have almost the same distribu-
tion in the parameter spacem1–m2–λ̃ and the same recovered
parameters. On the other hand, the biases of Mt are ΔMt ∼
0.010 and ∼0.41 for e0 ¼ 0.008 and 0.016, respectively.
Thus, the relation ΔMt=M⊙ ¼ −160e20 is well satisfied.
Here, we estimated the injection parameters reversely from
the fiducial values referring to the results in Fig. 9.
As discussed in Sec. III C, parameter estimation using

circular waveforms for eccentric BNS signals can yield
incorrect predictions for the NS EOS. Here, we present a
concrete example. We assume that the astrophysical NSs
are represented by one of the soft EOS models APR4 [76],
and then the tidal parameter value can be determined as
λ̃ ∼ 237 for the given masses of (2M⊙, 1M⊙). So, we inject
a signal with the true values of ðm1; m2; λ̃; e0Þ ¼
ð2 M⊙; 1 M⊙; 237; 0.0152Þ and perform parameter estima-
tion using circular waveforms. The posterior result is
given in Fig. 15, where the recovered parameters are
∼ð1.93 M⊙; 1.03 M⊙; 440Þ. The tidal parameter of λ̃ ∼
440 is consistent with the prediction of one of the stiff
EOS models MPA1 [76]. Therefore, this example demon-
strates the importance of including eccentricity for the
correct estimation of the NS EOS.

IV. SUMMARY AND DISCUSSION

In this work, we investigated how the small eccentricity
of BNS signals can affect parameter estimation for the mass

FIG. 14. This example shows that different eccentric signals
can be recovered as one identical binary source. The two
posteriors have almost the same distribution and the same
recovered parameters, i.e., ðm1; m2; λ̃Þ ≃ ð2 M⊙; 1 M⊙; 240Þ.
We assume ρ ¼ 114.

FIG. 15. This example shows that parameter estimation using
circular waveforms can yield inaccurate NS EOS predictions. The
injection value (λ̃ ¼ 237) is chosen according to the soft EOS
model ARP4, but the recovered value (λ̃rec ∼ 440) representes the
stiffer EOS (MPA1). We assume ρ ¼ 114.
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parameters Mc and η and the tidal deformability λ̃. We
showed how the recovered parameters can be biased
from their true values by presenting various posterior
samples. We also showed concrete posterior examples that
display irregular behavior of bias, such as the abrupt
increase in bias.
Using the realistic population of BNS sources distrib-

uted in the m1–m2–e0 space, we calculated the measure-
ment errors and the systematic biases for the parameters
Mc, η, and λ̃ and obtained their generalized distributions
in the range of 0 ≤ e0 ≤ 0.025. For all of the three
parameters, the fractional biases (Δθ=σθ) increase
with increasing e0, and this increase is faster for larger
e0. For a given value of e0, the bias is weakly dependent
on the masses and thus its distribution displays a
relatively narrow band. In particular, the bias distribution
for the total mass exhibits a very narrow band, just like
a single curve, and can be fitted by the quadratic
function ΔMt=M⊙ ¼ −160e20.
We presented two specific injection-recovery examples.

The first example showed that independent parameter
estimations for different signals with different eccentricities
can give almost identical recovered values for the compo-
nent masses and λ̃. In the second example, we showed that
parameter estimation for signals with small eccentricity
(∼0.0152) can yield predictions that have shifted from the
“true” soft EOS to the “false” stiff EOS, demonstrating
the importance of including eccentricity in the wave-
form model.
We employed both the Bayesian and the analytic Fisher

matrix methods for error calculations and demonstrated that
the analytic method can predict the parameter estimation
errors well by appropriately imposing the prior informa-
tion. Unlike the Fisher matrix, the FCV method has been
used very limitedly in the literature because its general
validity has not been investigated. We provided specific
comparison results between the Bayesian and the FCV
methods. For the first time, we suggested the valid criteria
of the FCV method by showing the bias as a function of the
parameter that induces the bias. In the era of the third-
generation detectors, the analytic methods will be more
useful because the length of the GW signal is greatly
increased and parameter estimation requires a very long
computational time. The impact of bias will also be more
pronounced because the measurement errors can be
reduced due to the increase in SNR by the third-generation
detectors. Meanwhile, the spin effect can be included in
the Fisher matrix and the FCV method by employing the
spinning TaylorF2 model, and our approach will be
extended to spinning binary systems in future works.
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APPENDIX A: PARAMETER ESTIMATION FOR
THE ENTIRE 11 PARAMETERS

Here, we present the parameter estimation result for the
entire 11 parameters using the same BNS source as in
Fig. 1. In the inset, we show the zoom-in view for the
three main parametersMc; η, and λ̃. We assume ρ ¼ 34, so
this signal is the same as the one in Fig. 1 with ρ ¼ 34. It
can be seen that the posteriors in the inset are well
consistent with those in Fig. 1, including the small biases.
Thus, in a single-detector analysis, reducing the extrinsic
parameters to a single parameter Deff yields nearly the
same parameter estimation results for the intrinsic param-
eters compared to using the entire parameters. Since ϕc
was analytically marginalized in the likelihood calcula-
tion process, it cannot be shown in the posterior. The
priors for the extrinsic parameters are given in default
in BILBY.

APPENDIX B: CONFIDENCE REGION
AT e0 ≥ ecrit0

Here, we show a schematic view describing the
increasing bias for Mc and the decreasing bias for λ̃
shown in Fig. 11 at e0 ≥ ecrit0 . Figure 17 displays two
overlap contours in the Mc-η (upper) and η-λ̃ planes,
respectively. These biased contours can be obtained by
using the Fisher matrix and the FCV methods for our
fiducial BNS source. The maximum overlap position
(Pmax) is located at the center of the contour. The star
indicates the maximum overlap position only in the
region below the boundary η ¼ 0.25. In the upper panel,
the difference between the red and the black stars is
smaller than the difference between Pmax of the red
contour and Pmax of the black contour. This means that
the increase in ΔMc slows down. In the lower panel,
although Pmax of the red contour is higher than Pmax of the
black contour, the red star is lower than the black star,
and that indicates the decrease in Δλ̃. Note that, these
contours are comparable to the confidence regions in
Fig. 11, except that these contours are extended beyond
the η–boundary.
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FIG. 16. Parameter estimation result for the same BNS source as in Fig. 1 with ρ ¼ 34. We use the entire 11 parameters including the 5
extrinsic parameters. The zoom-in view of the posteriors for the three main parameters Mc; η, and λ̃ is given in the inset. ϕc was
automatically marginalized and thus is not shown here. True values are marked in orange.
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APPENDIX C: DEPENDENCE ON THE TRUE
VALUES OF λ̃ AND δλ̃

Here, we show how the true values of λ̃ and δλ̃ affect
our results of errors and biases. We assume a BNS signal
with the true values of ðm1; m2; e0Þ ¼ ð2 M⊙; 1 M⊙; 0.02Þ.
Using the Fisher matrix and the FCV methods, we calculate
the errors and the biases for the parameters Mc, η, and λ̃

varying the true values of the tidal parameters λ̃ and δλ̃.
We find that the results for the mass parameters are
independent of the tidal parameters, so they are not shown
here. The errors and the biases for λ̃ are given in the upper
and the lower panels, respectively, in Fig. 18. It can be seen
that the dependence on δλ̃ is almost negligible. Although
the dependence on λ̃ is relatively large, the variation in the
results is less than 10% in our parameter range. For
example, for the soft ARP4 EOS model, σλ̃ ¼ 86.9,
Δλ̃ ¼ 544.9, and for the stiffer MPA1 EOS model,
σλ̃ ¼ 88.4, Δλ̃ ¼ 569.1. Note that, for Mc and η, the
differences between the two EOS models are less
than 0.01%.
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