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We analyze the interpretation of the spherically symmetric perfect fluid solutions that admit a flat
synchronization orthogonal to the fluid flow as a thermodynamic perfect fluid in local thermal equilibrium.
The ideal gas sonic condition is examined for this family of metrics, and the macroscopic conditions for
physical reality are accurately tested for some specific solutions.
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I. INTRODUCTION

The Lemaître-Tolman (LT) model [1,2] is a remarkable,
spherically symmetric dust solution for modeling both
gravitational collapse and cosmological inhomogeneities
(see also Refs. [3–7]).
In the last three decades a large number of studies have

been devoted to analyzing the cosmic censorship conjecture
by using the LTmodels (see [5,6,8,9] and references therein).
In cosmology, theLT solutions provide exact inhomogeneous
models for studying the formation of structures [5–7,10] and
for analyzing the effect of the nonlinear inhomogeneities on
the cosmic microwave background radiation [5,6,11,12].
Interest in LT cosmological models grew when several

studies revealed that large-scale spatial inhomogeneities of
the Universe could be compatible with the cosmological
observations (see, for example [13]), and that the setting
of the magnitude-redshift relation with the Type Ia super-
novae data can be carried out in an inhomogeneous model
without cosmological constant [14–16]. Despite the fact that
some authors are skeptical that inhomogeneous models can
be compatiblewith all the cosmological observations (see [7]
and references therein), several works carry on investigating
this subject [17–19], and it is still an open question.
Although Lemaître [1] also considered a non-null

pressure in his pioneering paper, the dust model is the
only one contemplated in the above cited references and in
most approaches where the LT metric is considered.
Nevertheless, in some papers the role of pressure is
analyzed [20,21] (see also references therein), and some
models with anisotropic pressure have been considered
[22,23]. However, something is still lacking in the study of
these LT metrics with pressure; their interpretation as a
thermodynamic perfect fluid in local thermal equilibrium.

Note that the study of the physical interpretation of the
formal perfect fluid solutions to the Einstein field equations
is an open problem in theoretical relativity. Many of these
solutions have been obtained by imposing constraints that
simplify the integration of the field equations, and very few
solutions have been interpreted as physically realistic
fluids. A first step in this task consists of analyzing the
necessary macroscopic constraints for physical reality and
of performing a suitable method to examine whether a
specific family of perfect fluid solutions fulfills them.
Ifwe look for solutions that represent perfect fluids in local

thermal equilibrium, in addition to imposing the energy
conditions [24], wemust add to the hydrodynamic quantities
that appear in the energy tensor T ¼ ðρþ pÞu ⊗ uþ pg, a
set of thermodynamic quantities constrained by the usual
thermodynamic laws [25]. Moreover, in order to obtain a
coherent theory of shock waves, the relativistic compress-
ibility conditions [26,27] must be required. Our macroscopic
hydrodynamic approach to the local thermal equilibrium [28]
and to the relativistic compressibility conditions [29] pro-
vides a tool to impose these physical requirements.
Based on this essential groundwork we have studied the

ideal gas Stephani universes [29,30], the classical ideal gas
solutions [31], and the thermodynamic Szekeres-Szafron
solutions [32–34]. Currently, we plan to study the physical
meaning of the perfect fluid solutions admitting a group G3

of isometries acting on spacelike two-dimensional orbits
S2. Our recent results on the thermodynamic T-models
[35,36] are on the way to achieving this goal. The present
paper is the first step to undertake a similar study for the
R-models (the curvature of the orbits S2 has a gradient that
is not tangent to the fluid flow).
The R-models with geodesic motion are the perfect fluid

solutions whose metric line element is given by [6]

ds2 ¼ −dt2 þ ½Y 0ðt; rÞ�2
1þ 2EðrÞ dr

2 þ Y2ðt; rÞdΩ̃2; ð1Þ
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where dΩ̃2 is a two-dimensional metric of constant
curvature, and a prime represents partial derivative with
respect to the coordinate r.
The commonly considered LT models are the metrics of

the form (1) (LT metrics) with zero pressure and cosmo-
logical constant. Although very few explicit solutions with
nonconstant pressure are known, the perfect fluid general
solution can be obtained by quadratures for the spatially flat
case EðrÞ ¼ 0 [37]. This result made it possible to construct
“Swiss cheese” cosmological models with pressure [38].
The procedure that we have developed in the above

quoted papers to analyze the physical meaning of the
perfect fluid solutions (see [34,35] for more details) could
be applied to the full set of the perfect fluid solutions of the
form (1). In this case, the obtained constraints would be
simply formal and of little practical interest. Nevertheless,
when we apply our procedure to a family of explicit
solutions, we can go further in our analysis of the physical
meaning of the solutions. Therefore, we will limit ourselves
here to studying the case in which explicit solutions are
known, that is, when EðrÞ ¼ 0.
Two comments about this spatially flat case. Firstly, only

the spherical symmetry is compatible [4], and consequently
dΩ̃2 ¼ dΩ2 is the metric of a two-sphere. Secondly, the
spherically symmetric perfect fluid solutions that admit a
flat slice orthogonal to the fluid flow have a geodesic
motion [37], and thus they coincide with the perfect fluid
solutions for the LT metrics (1) with EðrÞ ¼ 0.
Some of these solutions could be applied to model

cosmological scenarios in which thermodynamic equilib-
rium is not achieved. However, we focus on those solutions
that can be interpreted as a perfect fluid in local thermal
equilibrium. Thus, here we study the thermodynamics and
analyze the macroscopic conditions for physical reality of
the spherically symmetric perfect fluid solutions admitting
a flat synchronization orthogonal to the fluid flow.
In Sec. II we present themetric line element and remark on

the linearity of the field equations. Several approaches that
can be considered in solving them are also sketched. As an
example we obtain the general solution of the flat dust LT
models and we comment on the previously known results.
In Sec. III we undertake the general study of the

thermodynamics of the solutions. On the one hand, we
obtain the kinematic and hydrodynamic quantities (expan-
sion, pressure, and energy density of the fluid) as well as
the indicatrix function that gives the square of the speed of
sound. On the other hand, we determine the thermody-
namic schemes that are compatible with each model.
If we want to go further in our analysis of the physical

meaning of the solutions we must specify the general
expressions presented in the previous section by consid-
ering particular solutions or by adding some physical
properties. In Sec. IV we impose a significant physical
constraint on the models; their compatibility with the
equation of state of a generic ideal gas. The sonic condition

and the other macroscopic physical requirements are
specified for this ideal case, and the general equations that
characterize these ideal models are obtained.
In Sec. V we analyze when the spherically symmetric

limit of the Szafron solution [39] fulfills the ideal con-
straints studied above. The behavior of the subsequent ideal
Szafron models is accurately analyzed, and the spacetime
domains where the macroscopic constraints for physical
reality hold are obtained. A similar study is undertaken in
Sec. VI for another ideal model, which can be considered as
a limit of the ideal Szafron models.
In Sec. VII we give a preview of several results on some

open topics. First, we study the conditions that characterize
the models consistent with a homogeneous temperature,
namely, those compatible with a nonvanishing thermal
conductivity coefficient. Second, we outline with an exam-
ple how to determine new solutions to the ideal sonic
equation obtained in Sec. IV.

II. METRIC AND GENERAL SOLUTION

In synchronous comoving coordinates the metric of the
spherically symmetric perfect fluid solutions that admit a
flat slice orthogonal to de fluid flow is [6]

ds2 ¼ −dt2 þ ½Y 0ðt; rÞ�2dr2 þ Y2ðt; rÞdΩ2; ð2Þ
The unit velocity of the fluid is u ¼ ∂t, and its expansion

and the nonvanishing components of the shear tensor are,
respectively

θ ¼ 2
_Y
Y
þ

_Y 0

Y 0 ¼ ∂t½lnðY2Y 0Þ�; ð3Þ

σ11 ¼ σ22 ¼ −
1

2
σ33 ¼ σ̄ ≡ 1

3

�
_Y
Y
−

_Y 0

Y 0

�
; ð4Þ

where a dot represents partial derivative with respect to the
time coordinate t. Note that, u being geodesic, we have
uðϕÞ≡ uα∂αϕ ¼ _ϕ, for any spacetime function ϕðxαÞ.
The Einstein equations for a perfect fluid source reduce

to the following expressions for the pressure p and the
energy density ρ [4]

p ¼ −2
Ÿ
Y
−

_Y2

Y2
; ρ ¼ 2

_Y
Y

_Y 0

Y 0 þ
_Y2

Y2
; ð5Þ

where p ¼ pðtÞ as a consequence of the conservation of the
energy tensor, ∇ · T ¼ 0. If we do not add any additional
physical requirement, only the first equation in (5) con-
strains the metric function Yðt; rÞ, and the second one gives
the energy density for a given solution.

A. General solution of the field equations

By performing the substitution

Y ¼ Z2=3; ð6Þ
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expressions for the expansion, shear, pressure, and energy
density given in Eqs. (3), (4), and (5) become

θ ¼
_Z
Z
þ

_Z0

Z0 ; σ̄ ¼ 1

3

�
_Z
Z
−

_Z0

Z0

�
; ð7Þ

p ¼ −
4

3

Z̈
Z
; ρ ¼ 4

3

_Z
Z

_Z0

Z0 : ð8Þ

Then, from the expression for the pressure we obtain the
following equation [37]

Z̈ þ 3

4
pðtÞZ ¼ 0; ð9Þ

which is linear in Z. Thus, the general solution is of the
form [37]

Z ¼ aðrÞfðtÞ þ bðrÞgðtÞ; ð10Þ

where aðrÞ and bðrÞ are arbitrary functions of the radial
coordinate r, and fðtÞ and gðtÞ are two independent
particular solutions of (9).
Therefore, the problem of finding particular solutions of

the field equations can be tackled following different
approaches:

(i) On the one hand, we can give an arbitrary pressure
pðtÞ and look for the general solution to (9). Note
that the particular solutions f and g to equation (9)
are related by

f̈=f ¼ g̈=g; ð11Þ

which can be integrated to give _gf ¼ _fgþ C, where
C is an arbitrary integration constant. However,
since we only need g to be any nontrivial particular
solution of (9) independent to f, we can set C ¼ 1
and therefore obtain

_gf ¼ _fgþ 1: ð12Þ

This allows us to obtain from a known particular
solution fðtÞ, another particular solution gðtÞ as
[4,37]

gðtÞ ¼ fðtÞ
Z

t
f−2ðt0Þdt0: ð13Þ

For instance, for p ¼ 0 Eq. (9) can easily be solved
to obtain Zðt; rÞ ¼ aðrÞtþ bðrÞ, which corresponds
to the parabolic subset [EðrÞ ¼ 0] of the Lemaître-
Tolmann dust models [6,37].

(ii) On the other hand, we can give an arbitrary function
fðtÞ as input, and then we can determine the pressure
as 3p ¼ −4f̈=f, and complete the solution of (9) by

using (13). Thus, we can obtain the solution to the
field equations by quadratures. For instance, by
choosing fðtÞ ¼ tq, q ≠ 1=2, then p ∼ t−2 and
gðtÞ ¼ t1−q=ð1 − 2qÞ. These solutions correspond
to the spherically symmetric subset of a wider family
of solutions considered by Szafron [39].

(iii) However, one could also start by making a particular
election of an arbitrary function φðtÞ such that
_φðtÞ > 0, and then obtain fðtÞ and gðtÞ as [40]

fðtÞ ¼ ½ _φðtÞ�−1=2; gðtÞ ¼ fðtÞφðtÞ: ð14Þ

Note that this approach allows us to obtain the
general solutions of the field equations without the
need to calculate any integrals.

It is worth remarking that the same procedures can be
carried out for the flat class I Szekeres-Szafron solutions
since Eq. (9) is also fulfilled in that case [39,40]. However,
although our study of the thermodynamic properties is based
on the solution of Eq. (9), our results only apply in spherical
symmetry since the class I Szekeres-Szafron solutions only
admit a thermodynamic interpretation in this case [41].
Notice that a redefinition of the radial coordinate r

allows us to consider one of the functions aðrÞ or bðrÞ to be
any real function. In fact the metric only depends on the
quotient α ¼ αðrÞ≡ aðrÞ=bðrÞ. Consequently the degrees
of freedom of the spherically symmetric perfect fluid
solutions admitting a flat synchronization are given by
the election of an arbitrary function of r, say αðrÞ, and an
arbitrary function of time, either fðtÞ or pðtÞ or φðtÞ. So, the
gravitational field is determined by a pair ffðtÞ; αðrÞg.
The spatially homogeneous limit of these solutions are

the flat Friedmann-Lemaître-Robertson-Walker (FLRW)
metrics, which can be characterized by one of the following
five equivalent conditions: (i) the metric function Yðt; rÞ
factorizes, and then the coordinate r can be taken so that
Yðt; rÞ ¼ rRðtÞ; (ii) αðrÞ ¼ aðrÞ=bðrÞ is a constant func-
tion; (iii) the fluid expansion is homogeneous, θ ¼ θðtÞ;
(iv) the fluid flow is shear-free, σ̄ ¼ 0; and (v) the energy
density is homogeneous ρ ¼ ρðtÞ, and then the fluid
evolution is barotropic, dρ ∧ dp ¼ 0.

B. On the dust flat LT models

As an example, in this subsection we will consider the
dust flat LT models, that is, the solutions in which the
pressure p takes a constant value, p ¼ −Λ [6,42]. Now
Eq. (9) becomes

Z̈ −
3

4
ΛZ ¼ 0; ð15Þ

and the energy density is ρ ¼ Λþ ρH, where ρH is the
hydrodynamic energy density (≡ matter density). The case
Λ ¼ 0 is the most frequently considered in the literature
[5,6], and the solution can be written as
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Z ¼ Z0ðrÞ½t − t0ðrÞ�; ð16Þ

where t0ðrÞ is the nonsimultaneous big bang time, and
MðrÞ ¼ ð2=9ÞZ2

0ðrÞ is the effective gravitational mass.
Moreover, the matter density takes the expression,

ρH ¼ 4

3ðt − t0Þ2
h
1 − Z0t00

Z0
0
ðt−t0Þ

i : ð17Þ

These expressions can be generalized for Λ ≠ 0. Indeed,
the general solution to (15) is

Zðt; rÞ ¼
�
aðrÞ sinhωtþ bðrÞ coshωt; if Λ > 0

aðrÞ sinωtþ bðrÞ cosωt; if Λ < 0
ð18Þ

where ω2 ≡ 3
4
jΛj. It is worth remarking that, for the Λ > 0

case, if aðrÞ > bðrÞ (respectively, bðrÞ > aðrÞ) these arbi-
trary functions can be written as aðrÞ ¼ Z0ðrÞ cosh½ωt0ðrÞ�
and bðrÞ ¼ −Z0ðrÞ sinh½ωt0ðrÞ� (respectively, bðrÞ ¼
Z0ðrÞ cosh½ωt0ðrÞ� and aðrÞ ¼ −Z0ðrÞ sinh½ωt0ðrÞ�).
Consequently, we obtain that the general solution Zðt; rÞ
of Eq. (15) for Λ > 0 leads to two models,

Zðt; rÞ ¼ Z0ðrÞ sinhðω½t − t0ðrÞ�Þ; ð19Þ

Zðt; rÞ ¼ Z0ðrÞ coshðω½t − t0ðrÞ�Þ: ð20Þ

For the model (19) MðrÞ ¼ ðΛ=6ÞZ2
0ðrÞ, and the matter

density is

ρH ¼ Λ

sinh½ωðt − t0Þ�
h
1 − ωZ0t00

Z0
0
coth½ωðt−t0Þ�

i : ð21Þ

We obtain a similar expression for case (20), which follows
by changing Λ → −Λ and sinh → cosh.
On the other hand, for case Λ < 0 the arbitrary functions

can always be written as aðrÞ ¼ Z0ðrÞ cos½ωt0ðrÞ� and
bðrÞ ¼ −Z0ðrÞ sin½ωt0ðrÞ�. Consequently, the general sol-
ution Zðt; rÞ of Eq. (15) for Λ < 0 becomes

Zðt; rÞ ¼ Z0ðrÞ sinðω½t − t0ðrÞ�Þ: ð22Þ

Now MðrÞ ¼ ðjΛj=6ÞZ2
0ðrÞ, and the expression of the

hydrodynamic energy density is like (21) with the changes
Λ → jΛj and ðsinh; cothÞ → ðsin; cotÞ.
Note that the FLRW homogeneous limit follows, by

considering t0ðrÞ ¼ constant. In this homogeneous case the
matter density is positive everywhere for Λ ¼ 0, for model
(19), and for model (22), and negative for model (20).
Nevertheless, shell-crossing singularities [6] could exist in
the inhomogeneous models, which disconnect spacetime
domains with positive and negative matter density.
It is worth remarking that the flat dust LT models with

Λ ¼ 0 given in (16) are the most commonly considered in

the basic cosmology books [5–7]. On the other hand, the
homogeneous limit of solution (19) is the background
universe in the standard ΛCDM cosmological models. This
analytical expression is little used by observational and
numerical cosmologists, although it was already considered
for the first time by Lemaître [1], and its generalization to a
γ-law is also known [4,43]. The inhomogeneous model (19)
has also been considered previously [42].

III. THERMODYNAMICS OF THE SOLUTIONS

If we want a perfect energy-momentum tensor T to
describe the energetic evolution of a thermodynamic
perfect fluid in local thermal equilibrium, we must add
to the hydrodynamic quantities fu; ρ; pg a set of thermo-
dynamic quantities fn; s;Θg (matter density n, specific
entropy s and temperature Θ) constrained by the usual
thermodynamic laws [25]. Namely, the conservation of
matter,

∇ · ðnuÞ ¼ uðnÞ þ nθ ¼ 0; ð23Þ

and the local thermal equilibrium relation, which can be
written as

Θds ¼ dh −
1

n
dp; h≡ ρþ p

n
; ð24Þ

where h is the relativistic specific enthalpy.
In [28] we have offered a hydrodynamic condition that

guarantees the existence of thermodynamics; a perfect
energy-momentum tensor describes the (non isoenergetic,
_ρ ≠ 0) evolution of a thermodynamic perfect fluid in local
thermal equilibrium if and only if, the hydrodynamic
quantities, fu; ρ; pg, fulfill the so-called hydrodynamic
sonic condition [28,29]

S∶ dχ ∧ dp ∧ dρ ¼ 0; χ ≡ uðpÞ
uðρÞ ; ð25Þ

where χ is the indicatrix of the local thermal equilibrium.
When this condition holds χ is a function of state,
χ ¼ χðρ; pÞ, which represents the square of the speed of
sound in the fluid, χðρ; pÞ≡ c2s .
Note that due to the symmetries of the metric (2), all

scalar invariants depend on two functions at most. Then, the
hydrodynamic sonic condition S is fulfilled automatically.

A. Hydrodynamic quantities: energy density,
pressure, and indicatrix function

Let us consider an inhomogeneous solution of the field
equationsZ¼aðrÞfðtÞþbðrÞgðtÞ,α0ðrÞ≠0,α≡aðrÞ=bðrÞ.
If β ¼ βðrÞ≡ a0ðrÞ=b0ðrÞ, the fluid expansion (7) can be
written as
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θ ¼ ∂tðln½ðαf þ gÞðβf þ gÞ�Þ ¼ α _f þ _g
αf þ g

þ β _f þ _g
βf þ g

; ð26Þ

and the pressure and energy density (8) take the following
expressions

p ¼ −
4

3

f̈
f
; ρ ¼ 4

3

αβ _f2 þ ðαþ βÞ _f _gþ_g2

αβf2 þ ðαþ βÞfgþ g2
: ð27Þ

The square of the speed of sound can be obtained using
the definition (25) of the indicatrix function, expression
(27) of the pressure, and the energy conservation condition
_ρþ ðρþ pÞθ ¼ 0,

c2s ¼
_p
_ρ
¼ −

_p
θðρþ pÞ≡ χðt; rÞ; ð28Þ

where θðt; rÞ, pðtÞ, and ρðt; rÞ are given in (26) and (27).
If we consider a specific solution of the field equations

we can know the expansion θðt; rÞ, the pressure pðtÞ, the
energy density ρðt; rÞ and the indicatrix function χðt; rÞ as
explicit spacetime functions, and then we could analyze the
physical behavior of the solutions. In particular, we could
study the spacetime regions where the energy conditions or
the relativistic compressibility conditions hold. It is worth
remarking that each solution represents a specific evolution
of a family of fluids. If we are interested in the thermo-
dynamic properties of these fluids regardless of the
evolution, we should obtain the explicit dependence on
the energetic variables of the indicatrix function and thus
determine the equation of state c2s ¼ χðρ; pÞ.

B. Thermodynamic scheme: Entropy,
matter density, and temperature

When a perfect energy tensor T ≡ fu; ρ; pg fulfills the
sonic condition S, a set of associated thermodynamic
quantities fn; s;Θg exists. This thermodynamic scheme
is not unique. In [28] we have shown that the specific
entropies s and the matter densities n associated with T are
of the form s ¼ sðs̄Þ and n ¼ n̄=Nðs̄Þ, where sðs̄Þ and Nðs̄Þ
are arbitrary real functions of a particular solution s̄ ¼
s̄ðρ; pÞ to the equation uðsÞ ¼ 0, and n̄ ¼ n̄ðρ; pÞ is a
particular solution to Eq. (23). Moreover, Θ is determined
by (24). Finding the expressions of these thermodynamic
quantities corresponds to solving the inverse problem [28]
for our metrics (2).
It is worth remarking that only the sonic condition S

constrains the metric tensor as a consequence of the
Einstein equations, and each associated thermodynamic
scheme provides a physical interpretation of the solution; a
thermodynamic solution represents the evolution of the
family of fluids defined by the thermodynamic properties
of the associated schemes.
From expression (26) of the expansion it is easy to see

that n̄ ¼ ½ðαf þ gÞðβf þ gÞ�−1 is a particular solution of

Eq. (23), and any function of the radial coordinate s̄ ¼ s̄ðrÞ
fulfills uðsÞ ¼ _s ¼ 0. Then, we have that the thermody-
namic schemes associated with the perfect fluid solutions
of the form (2) are determined by a specific entropy s given
by sðρ; pÞ ¼ sðrÞ, and a matter density n of the form,

nðρ; pÞ ¼ 1

NðrÞ½αβf2 þ ðαþ βÞfgþ g2� ; ð29Þ

where s ¼ sðrÞ and N ¼ NðrÞ are two arbitrary real
functions.
The temperature Θ of each thermodynamic scheme

determined by a pair fs; ng can be obtained from (24)
as Θ ¼ ð∂h

∂sÞp ¼ 1
s0ðrÞ ð∂h∂rÞt. Using (27) and (29) we obtain

that the specific enthalpy takes the following expression,

h ¼ 4

3
N

�
_g2 − g2f̈=f − αβf2ð _f=f _Þ − ðαþ βÞg2ð _f=g _Þ

�
:

ð30Þ

Then, we obtain that the temperature Θ associated with
the thermodynamic scheme defined by the functions
fsðrÞ; NðrÞg has the following expression,

Θ ¼ t1ðtÞτ1ðrÞ þ t2ðtÞτ2ðrÞ þ t3ðtÞτ3ðrÞ; ð31aÞ

t1ðtÞ≡ _g2 − g2f̈=f; τ1ðrÞ≡ 3

4
N0=s0; ð31bÞ

t2ðtÞ≡ −f2½ _f=f _�; τ2ðrÞ≡ 3

4
ðNαβÞ0=s0; ð31cÞ

t3ðtÞ≡ −g2½ _f=g _�; τ3ðrÞ≡ 3

4
½Nðαþ βÞ�0=s0: ð31dÞ

C. Imposing additional physical properties

If we want to go further in our analysis of the physical
meaning of the solutions we must impose complementary
physical properties on the solutions, and thus specify the
general expressions presented in this section. Afterwards,
we will be able to impose the macroscopic constraints for
physical reality. Among others, we can consider the
following approaches:

(i) We can specify a solution by providing the function
fðtÞ that determines the time evolution of the model.
For example, we can consider the Szafron solution
[39] by taking fðtÞ ¼ tq (see Sec. V).

(ii) We can impose physical constraints on the indicatrix
function that fixes the (hydrodynamic) equation of
state c2s ¼ χðρ; pÞ. For example, we can establish that
χðρ; pÞ is that of a generic ideal gas (see next section).

(iii) We can impose physical constraints on the thermo-
dynamic scheme. For example, we can demand a
homogeneous temperature (see Sec. VII A)
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IV. IDEAL MODELS

Now we will analyze when the models considered above
are compatible with the equation of state of a generic ideal
gas, namely,

p ¼ k̃nΘ; k̃≡ kB=m: ð32Þ

In [28] we have shown that Eq. (32) restricts the functional
dependence of the indicatrix function c2s ¼ χðρ; pÞ. More
precisely, a perfect energy tensor T ≡ fu; ρ; pg represents
the evolution of a generic ideal gas in local thermal
equilibrium if and only if, it fulfills the ideal gas sonic
condition,

SG∶ χ ¼ χðπÞ ≠ π; χ ≡ uðpÞ
uðρÞ ; π ≡ p

ρ
: ð33Þ

On the other hand, in [29] we have proved that, for an
indicatrix function of the form (33), χ ¼ χðπÞ, the com-
pressibility conditions that constrain the hydrodynamic
evolution of the fluid can be written as

HG
1 ∶

0 < χ < 1;

ζ ≡ ð1þ πÞðχ − πÞχ0 þ 2χð1 − χÞ > 0:
ð34Þ

And the remaining compressibility conditions constrain the
associated thermodynamic schemes fs; n;Θg [29]

H2∶ 2nΘ >
1

s0ρ
: ð35Þ

These thermodynamic variables are also bounded by the
positivity conditions,

P∶ Θ > 0; ρ > n > 0: ð36Þ

Moreover, the equation of state (32) and the positivity
conditions P imply a positive thermodynamic pressure,
p > 0. Consequently, the energy conditions [24] for a
perfect fluid energy tensor, −ρ < p ≤ ρ, become (here we
shall consider nonshift perfect fluids, ρ ≠ p),

EG∶ ρ > 0; 0 < π < 1; π ¼ p=ρ: ð37Þ

Note that, in order to study the solutions with the
hydrodynamic behavior of a generic ideal gas, in a first
step we must impose the ideal sonic condition SG. In a
second step, we must impose on the subfamily thus
obtained the hydrodynamic conditions EG and HG

1 , and
determine the spacetime domains where the solution ful-
fills them. Finally, we must analyze the thermodynamic
schemes that are compatible with the constraints P and H2.

A. Study of the ideal sonic condition SG

To obtain the models that meet the ideal sonic condition
SG given in (33) we must impose the constraint
dχ ∧ dπ ¼ 0, where χ ¼ χðt; rÞ is given in (28) and where,
from (27), π takes the expression,

π ¼ p
ρ
¼ πðt; rÞ≡ −

f̈½αβf2 þ ðαþ βÞfgþ g2�
f½αβ _f2 þ ðαþ βÞ _f _gþ_g2� : ð38Þ

Then, if from (11) and (12) we replace the derivatives of g, a
long but straightforward calculation shows that the ideal
sonic condition SG is equivalent to

X8
i¼1

RiðrÞTiðtÞ ¼ 0; ð39Þ

where the functions Ri ¼ RiðrÞ are given by

R1 ≡ 1þ β0ðαÞ; R2 ≡ αþ ββ0ðαÞ; R3 ≡ β þ αβ0ðαÞ; R4 ≡ αβ½1þ β0ðαÞ�; ð40aÞ

R5 ≡ β2 þ α2β0ðαÞ; R6 ≡ β3 þ α3β0ðαÞ; R7 ≡ αβ½β þ αβ0ðαÞ�; R8 ≡ αβ½β2 þ α2β0ðαÞ�; ð40bÞ

and where the functions Ti ¼ TiðtÞ are given by

T1 ≡ −g2ð1þ g _fÞ2f _f2f̈2 þ 2f _f f̈ ⃜fþfð−2f̈3 − 3f ⃜f2 þ 2ff̈ ⃜fÞg; ð41aÞ

T2 ≡ ff−g3 _f4f̈2 − g2 _f3f̈ðf̈ þ 2gf ⃜fÞ þ g _f2½f̈2 þ 2g2ff̈3 þ 3g2f2 ⃜f2 − gff̈ð3 ⃜f þ 2gf ⃜fÞ�
þ _f½f̈2 þ 2g2ff̈3 þ 4g2f2 ⃜f2 − gff̈ð2 ⃜f þ 3gf ⃜fÞ� þ f½−f̈ ⃜fþg2ff̈2 ⃜f þ gðf̈3 þ f ⃜f2 − ff̈ ⃜fÞ�g; ð41bÞ

T3 ≡ ff−3g3 _f4f̈2 − g2 _f3f̈ð5f̈ þ 6gf ⃜fÞ þ 3g _f2½−f̈2 þ 2g2ff̈3 þ 3g2f2 ⃜f2 − gff̈ð3⃜f þ 2gf ⃜fÞ�
þ _f½−f̈2 þ 10g2ff̈3 þ 14g2f2 ⃜f2 − gff̈ð2⃜f þ 9gf ⃜fÞ� þ f½f̈ ⃜f−g2ff̈2 ⃜f þ gð3f̈3 þ 5f ⃜f2 − 3ff̈ ⃜fÞ�g; ð41cÞ

T4 ≡ f2f−3g2 _f4f̈2 − 2g _f3f̈ðf̈ þ 3gf ⃜fÞ þ fðf̈3 þ 2gff̈2 ⃜f þ f ⃜f2 − ff̈ ⃜fÞ
þ _f2½f̈2 þ 6g2ff̈3 þ 9g2f2 ⃜f2 − 6gff̈ð⃜f þ gf ⃜fÞ� − 2f _f½f̈ ⃜fþgð−2f̈3 − 4f ⃜f2 þ 3ff̈ ⃜fÞ�g; ð41dÞ
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T5 ≡ f2f−3g2 _f4f̈2 − 2g _f3f̈ð2f̈ þ 3gf ⃜fÞ þ 2gf _fð4f̈3 þ 5f ⃜f2 − 3ff̈ ⃜fÞ
þ fðf̈3 − 2gff̈2 ⃜f þ 2f ⃜f2 − ff̈ ⃜fÞ þ _f2½−2f̈2 þ 6g2ff̈3 þ 9g2f2 ⃜f2 − 6gff̈ð⃜f þ gf ⃜fÞ�g; ð41eÞ

T6 ≡ f3f−g _f4f̈2 − f2f̈2 ⃜f − _f3f̈ðf̈ þ 2gf ⃜fÞ þ f _fð2f̈3 þ 2f ⃜f2 − ff̈ ⃜fÞ
þ f _f2½−f̈ ⃜fþgð2f̈3 þ 3f ⃜f2 − 2ff̈ ⃜fÞ�g; ð41fÞ

T7 ≡ f3f−3g _f4f̈2 þ f2f̈2 ⃜f − _f3f̈ðf̈ þ 6gf ⃜fÞ þ f _fð2f̈3 þ 4f ⃜f2 − 3ff̈ ⃜fÞ
þ 3f _f2½−f̈ ⃜fþgð2f̈3 þ 3f ⃜f2 − 2ff̈ ⃜fÞ�g; ð41gÞ

T8 ≡ −f4 _f2f _f2f̈2 þ 2f _f f̈ ⃜fþfð−2f̈3 − 3f ⃜f2 þ 2ff̈ ⃜fÞg: ð41hÞ

B. Analyzing the ideal model equation

The above analysis of the ideal sonic condition SG leads
to Eq. (39). This constraint and (12) constitute a differential
system for the functions ffðtÞ; gðtÞ; βðαÞg. The study of the
general solution to this system is a complex task that
requires the use of numerical methods and that falls outside
the scope of this work.
Alternatively, we can use an analytical approach in

looking for some particular solutions. For example, we
can choose a particular function β ¼ βðαÞ, then determine
the functionsRiðrÞ, and finally solve the system of equations
that (39) and (12) impose on ffðtÞ; gðtÞg (see Sec. VII B).
We can also consider a family to solutions of the field

equations, and then analyze whether a subfamily fulfills the
ideal sonic condition (39). This is the approach that we
follow in the next section for the spherically symmetric
limit of the Szafron solution [39].

V. THE IDEAL SZAFRON MODEL f ðtÞ= tq
Now we shall study whether the Szafron solution [39],

which is defined by the choice fðtÞ ¼ tq, q ≠ 1=2, is
compatible with the ideal sonic condition (39). From (13)
we obtain that the general solution of the field equations
takes form (10) with

fðtÞ ¼ tq; gðtÞ ¼ −σ−1t1−q; σ≡ 2q− 1 ≠ 0: ð42Þ

From these expressions we obtain that the functions
Ti ¼ TiðtÞ given in (41) become

T1 ¼ T2 ¼ T3 ¼ T6 ¼ T7 ¼ T8 ¼ 0; ð43aÞ

T4 ¼ −T5 ¼
1

8
σð1 − σ2Þ2t−6: ð43bÞ

Thus, we have that all the functions Ti identically vanish
if and only if, σ ¼ �1, which corresponds to the dust
LT-model with Λ ¼ 0. Otherwise, the ideal sonic condition
(39) holds when R4 ¼ R5. Expressions in (40) for these

functions imply that the functions αðrÞ≡ aðrÞ=bðrÞ and
βðrÞ≡ a0ðrÞ=b0ðrÞ fulfill the following relation,

βðαÞ ¼ cα; ð44Þ

where c ≠ 1 is a constant (note that c ¼ 1 leads to the
FLRW limit). This equation also holds if we change
the functions gðtÞ, α, and β by a factor; thus, we can take
gðtÞ ¼ t1−q.
Then, taking into account that (44) is a differential

equation that relates aðrÞ and bðrÞ, we obtain a solution
of the perfect fluid Einstein equations, which is compatible
with the ideal sonic condition SG (33), given by the
metric (2) with the following election of the metric function
Yðt; rÞ,

Y ¼ Z2=3; Zðt; rÞ ¼ t
1−σ
2 bðrÞ½1þ αðrÞtσ�; ð45Þ

where bðrÞ is given by

bðrÞ ¼ jαðrÞj1=ðc−1Þ; c ≠ 1: ð46Þ

Regarding the expansion of the fluid flow, from (26) we
have

θ ¼ 1

t

�
1þ σ −

σ

1þ αtσ
−

σ

1þ cαtσ

�
: ð47Þ

It is worth remarking that we are considering, as Szafron
did, expanding models with t > 0. Nevertheless, the
change t ↔ −t, with t < 0, leads to contracting models,
and our analysis, given below, of the physical properties of
the solutions is also valid in this case.

A. Hydrodynamic quantities: Energy density,
pressure, and speed of sound

Now we can obtain expressions for the hydrodynamic
quantities ρ, p, and the indicatrix function c2s ¼ χðπÞ. The
time dependence of the pressure and the energy density can
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easily be obtained from the expressions in (27). The
pressure is

p ¼ ð1 − σ2Þ
3t2

; ð48Þ

and the energy density is

ρ ¼ 1

3t2
½ð1 − σÞ þ ð1þ σÞαtσ�½ð1 − σÞ þ ð1þ σÞcαtσ�

ð1þ αtσÞð1þ cαtσÞ :

ð49Þ

Now, solving the equation ρ ¼ ρðt; αÞ for α and using
(48) to eliminate t, the following function of state can be
obtained when c ≠ 0,

α ¼ αðρ; pÞ≡ κ0
ffiffiffiffiffiffiffiffiffiffiffiffi
ð3pÞσ

p ðcþ 1Þð1 − πÞ þ εσFðπÞ
ð1 − σÞ − ð1þ σÞπ ; ð50Þ

FðπÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉ2ð1 − πÞ2 þ 16cπ=ð1 − σ2Þ

q
; ð51Þ

κ0 ≡ −ð1 − σ2Þ1−σ
2=½2ð1þ σÞc�; ð52Þ

ε ¼ �1; ĉ ¼ ð1 − cÞ=σ: ð53Þ

Finally, from expression (28) with (42), (44), and (47),
and taking into account (48) and (50) to eliminate t and α,
the indicatrix function χðπÞ can be determined,

c2s ¼ χðπÞ≡ 4π2½ĉ2ð1þ πÞ þ ð1þ cÞεFðπÞ�
ð1þ πÞ½ĉ2ð1 − σ2Þð1þ πÞ2 þ 4ð1þ cÞ2π� :

ð54Þ

When c ¼ 0 the above expression for χðπÞ remains valid by
taking ε ¼ þ1.
Here we are interested in nonbarotropic (α ≠ constant)

solutions with a nonvanishing pressure (σ2 ≠ 1). Besides,
only a positive pressure (σ2 < 1) is compatible with
the ideal gas equation of state (32). On the other hand,

the changes ðσ; c; αÞ ↔ ð−σ; c−1; α−1Þ leave the metric
unchanged. Thus, αðrÞ being a nonconstant arbitrary
function, we can analyze all the ideal Szafron models by
considering σ2 < 1 and −1 ≤ c < 1.
Let us note that, as Szafron already pointed out [39],

the solutions approach a FLRW model with a γ-law,
p ¼ ðγ − 1Þρ, when t → 0 or t → ∞. Indeed, from (48)
and (49), we obtain

ρðt → 0Þ ¼ 1 − jσj
1þ jσjp; ρðt → ∞Þ ¼ 1þ jσj

1 − jσj p: ð55Þ

B. Fluid properties: Compressibility conditions HG
1

Expression (54) of the indicatrix function χðπÞ defines a
function of state that characterizes a family of fluids. We
can analyze the physical reality of these fluids regardless
the particular evolution that the ideal Szafron models
represent. More specifically, now we study the compress-
ibility conditions HG

1 given in (34).
We must analyze the behavior of the function χðπÞ in the

interval 0 < π < 1 where the energy conditions EG hold.
Note that χðπÞ depends on the parameters c and σ2, and the
sign ε.
Firstly, we analyze the first constraint in (34), the causal

condition 0 < χðπÞ < 1. When − 1 ≤ c ≤ 0, χðπÞ is an
increasing function and it is well defined and fulfills this
compressibility condition in an interval �0; πM½, where
πM≡1þw−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðwþ2Þp

, with w≡−8c=½ĉ2ð1−σ2Þ�>0

(see Fig. 1(a)). Note that πM is close to 1 (respectively,
is close to 0) when c or σ are close to zero (respectively,
σ2 is close to 1).
When 1 > c > 0, the behavior of the indicatrix function

depends on ε. If ε ¼ þ1, then χðπÞ is a positive increasing
function in the whole interval �0; 1½, and fulfills the causal
constraint in the interval 0 < π < π1 < 1, with χðπ1Þ ¼ 1
(see Fig. 1(b)). Moreover, π1 is close to 1 (respectively,
to 0) when c or σ are close to zero (respectively, c is
close to 1).
If c > 0 and ε ¼ −1, we have two possibilities;

when jσj < σ0 ¼ ð1 − cÞ=ð1þ cÞ, then χðπÞ is a positive

(a) (c)(b)

FIG. 1. The orange solid line shows the behavior of the indicatrix function χ ¼ χðπÞ of the ideal Szafron models.
(a) Case − 1 ≤ c ≤ 0; (b) Case c > 0, ϵ ¼ þ1; (c) Case c > 0, ϵ ¼ −1, jσj > σ0. We have also plotted function ζðπÞ given in
(34) (green dashed line), which is positive in the interval where χðπÞ ∈�0; 1½.
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increasing function and fulfills the causal constraint in the
whole interval �0; 1½ (see Fig. 1(c)); and when jσj > σ0,
then χðπÞ is a negative function and thus it does not meet
the causal constraint at any point.
Regarding the second of the compressibility conditions

HG
1 , ζðπÞ > 0, it holds throughout the interval where χðπÞ is

well defined and fulfills the causal condition in each of the
cases considered above (see Fig. 1).
It is worth remarking that the ideal Szafron models do

not represent the evolution of a classical ideal gas because
the equation of state (54) is not compatible with the one of a
classical ideal gas, namely, χðπÞ ¼ γπ=ð1þ πÞ [31]. This
result agrees with a result on the study of the velocities of
the classical ideal gases [44]; a geodesic and expanding
timelike unit vector is the unit velocity of a classical ideal
gas if, and only if, it is vorticity free and its expansion is
homogeneous.
Note that the function χðπÞ (54) verifies χð0Þ ¼

χ0ð0Þ ¼ 0. Thus, it approaches that of a classical ideal
gas (or a monoatomic Synge gas) at zero order (but not
at first order) for small values of π. For every value of σ,
a value of c exists for which the indicatrix function (54)
approaches that of the Synge gas at zero order in the
ultrarelativistic regime, χð1=3Þ ¼ 1=3.

C. Curvature singularities and spacetime domains

The expressions for the metric line element, expansion,
energy density and pressure of the ideal Szafron models

given at the beginning of this section show that our models
can have up to three different singularities. The first one
takes place at t ¼ 0. At this singularity the line element of
the 3-spaces t ¼ constant vanishes and the energy density
and pressure become infinite. Thus, this is a big bang
singularity.
Secondly, when tσ1αðrÞ ¼ −1, the metric line element of

the sphere vanishes while the metric distance on the coor-
dinate lines of coordinate r becomes infinite.Moreover, at this
singularity, which is not simultaneous for the comoving
observer [t1 ¼ t1ðrÞ], the energy density is infinite.
Finally, a singularity appears when tσ2αðrÞ ¼ −c−1. At

this singularity,which is not simultaneous either [t2 ¼ t2ðrÞ],
the metric distance on the coordinate lines of coordinate r
vanishes and we have infinite energy density again.
Depending on how many of these singularities appear,

three different cases can be distinguished (see Fig. 2):
(i) If c ≥ 0 and αðrÞ > 0, then only the singularity at

t ¼ 0 occurs. Consequently, the solution is defined
in the full domain t > 0 (see Fig. 2(a)).

(ii) If c ≤ 0 and α < 0, we have a singularity at
t̂ðrÞ ¼ t1, and if c < 0 and α > 0 we have a
singularity at t̂ðrÞ ¼ t2. In both cases the singularity
at t ¼ 0 occurs. Now, two disconnected spacetimes
domains exist; R0 ¼ f0 < t < t̂g and R̂ ¼ ft̂ <
t < ∞g (see Fig. 2(b)).

(iii) Finally, if c > 0 and αðrÞ < 0, then we have all three
singularities, and three disconnected spacetimes

(a) (b) (c)

FIG. 2. Time evolution of the hydrodynamic variables of the ideal Szafron models for a fixed r. At the top we have plotted the energy
density ρðt; rÞ (orange solid line) and the pressure pðt; rÞ (blue dot-dashed line); these figures also show the spacetime regions defined
by the spacetime singularities. At the bottom we have plotted the hydrodynamic variables χðt; rÞ (orange solid line) and πðt; rÞ (blue dot-
dashed line), and we have shaded the spacetime domains where the conditions for physical reality do not hold. (a) Case c ≥ 0, α > 0.
(b) Case c ≤ 0, α < 0 (the case c < 0, α > 0 is similar exchanging t1 for t2). (c) Case c > 0, α < 0, σ > 0 and t1 < t̂ρ; the temporal axis
is represented in logarithmic scale (the case c > 0, α < 0, σ > 0, and t1 > t̂ρ is similar but without the nonshaded domain �t1; tπ ½); for
this case (c), but with σ < 0, we have a similar situation, but exchanging tρ ↔ t̂ρ and t1 ↔ t2.
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domains exist: R0¼f0<t<t1g, R1¼ft1<t<t2g
and R2 ¼ ft2 < t < ∞g (see Fig. 2(c)).

D. Analysis of the evolution: Energy and
compressibility conditions

Now we study the spacetime domains where the energy
conditions EG given in (37) and the compressibility con-
ditions HG

1 given in (34) hold. These domains are related to
those considered above and defined by the spacetime
singularities, but they also depend on the times at which
the energy density vanishes or at which πðt; rÞ ¼ 1. All
these times are not simultaneous for the comoving observer
and depend on αðrÞ. The last one, tπðrÞ, is defined by
the constraint ctσπαðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − σÞ=ð1þ σÞp
, which can be

obtained from the expression πðt; αÞ ¼ pðtÞ=ρðt; αÞ, where
pðtÞ and ρðt; αÞ are given in (48) and (49), respectively. On
the other hand, the energy density vanishes at two times,
tρðrÞ and t̂ρðrÞ, on the region R0 when c > 0 and α < 0,
and it vanishes at one of them when c < 0, or when c ¼ 0
and α < 0. These times are defined by the constraints
tσραðrÞ ¼ ð1 − σÞ=ð1þ σÞ and ct̂σραðrÞ ¼ ð1 − σÞ=ð1þ σÞ.
Finally, we must also consider the times tχðrÞ, t̄χðrÞ and
t̂χðrÞ, defined by the condition χðt; rÞ ¼ 1.
The role played by the above times in defining the

spacetime regions where the energy conditions EG and the
compressibility conditions HG

1 hold depend on the signs of
σ and c. In Table I the results for σ > 0 are summarized,
and in Fig. 2 we have plotted the different possible cases.

E. Thermodynamic schemes

Now that we have analyzed the hydrodynamic con-
straints for physical reality for the ideal case, those
regarding the hydrodynamic quantities, we can proceed
to analyze the thermodynamic ones. In order to do so, the
thermodynamic schemes of this particular subset of sol-
utions must be obtained. This can easily be done by
substituting (42) and (44) in (29) and (31), and using
(48). It is worth remarking that in these particular cases, the
metric function αðrÞ is a function of state given by (50).

Furthermore, we have that _α ¼ 0 and, therefore, it is a
particular solution of uðsÞ ¼ 0.
Taking all this into account, we have that the ideal

Szafron model has a specific entropy s which is an arbitrary
function of the function of state αðρ; pÞ given in (50),
sðρ; pÞ ¼ sðαÞ. Moreover, they have a matter density
given by

nðρ; pÞ ¼ 1

NðαÞ½cα2t1þσ þ ð1þ cÞαtþ t1−σ� ; ð56Þ

and the temperature Θðρ; pÞ is given by (31), with

t1ðtÞ≡ 1 − σ

2
t−ð1þσÞ; τ1ðrÞ≡ 3

4
N0=s0; ð57aÞ

t2ðtÞ≡ 1þ σ

2
t−ð1−σÞ; τ2ðrÞ≡ 3

4
cðNα2Þ0=s0; ð57bÞ

t3ðtÞ≡ 1 − σ2

2
t−1; τ3ðrÞ≡ 3

4
ð1þ cÞðNαÞ0=s0; ð57cÞ

where NðαÞ is an arbitrary function of αðρ; pÞ, and
t ¼ tðpÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − σ2Þ=ð3pÞ
p

.
The set of thermodynamic schemes fn; s;Θg associated

with each ideal Szafron model presented above defines a
family of fluids that gives the different interpretation of the
solutions, and solves the so-called inverse problem for this
case [28]. One of these schemes corresponds to the generic
ideal gas, namely, the one that fulfills the ideal gas equation
of state (32).
In [28] we have given an algorithm to obtain this ideal gas

thermodynamic scheme from the indicatrix function χðπÞ
(see also [34]). This algorithm involves determining two
quadratures which cannot be computed for the indicatrix
function (54). Nevertheless, we can alternatively look for the
functions sðαÞ and NðαÞ that lead to this ideal scheme.
Indeed, in this case the temperatureΘ and the specific energy
density e ¼ ρ=n depend on π:Θ ¼ ΘðπÞ, e ¼ eðπÞ. Then, if
we impose these conditions on the expressions of nðρ; pÞ
given in (56) and ofΘðρ; pÞ given in (31), (57), we obtain the
ideal gas thermodynamic schemes if

TABLE I. This table provides the space-time regions where the hydrodynamic conditions for physical reality hold
for those models with σ > 0, which differ depending on the sign of the parameter c. The boundary times tπðrÞ, tρðrÞ,
t̂ρðrÞ, t1ðrÞ, t2ðrÞ, tχðrÞ, t̄χðrÞ, and t̂χðrÞ, are defined in Secs. V C and V D. For those models with σ < 0 the results
are the same, but exchanging tρ ↔ t̂ρ and t1 ↔ t2 in the c > 0 and αðrÞ < 0 case.

ρ > 0 0 < π < 1 0 < χ < 1

c ≥ 0; αðrÞ > 0 ½0;∞½ �tπ ;∞½ �tχ ;∞½

c > 0; αðrÞ < 0
t1 > t̂ρ ½0; tρ½∪�t̂ρ; t1½∪�t2;∞½ �tπ; t1½∪�t2;∞½ �tχ ;∞½
t1 < t̂ρ ½0; tρ½∪�t1; t̂ρ½∪�t2;∞½ �tπ; t̂ρ½∪�t2;∞½ �t̂χ ; t̄χ ½∪�tχ ;∞½

c < 0; αðrÞ > 0 ½0; t̂ρ½∪�t2;∞½ �t2;∞½ �tχ ;∞½
c ≤ 0; αðrÞ < 0 ½0; tρ½∪�t1;∞½ �t1;∞½ �tχ ;∞½
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NðαÞ ¼ n1α
1−σ
σ ; sðαÞ ¼ s0 þ s1α2; ð58Þ

where s1 ¼ 9k̃=ð16σÞ. The positivity conditions P given in
(36) and the compressibility conditionsH2 given in (35)must
be required for each thermodynamic scheme to define a
physically realistic fluid. For the ideal gas scheme, conditions
P hold if we take n1 < 0.Moreover, H2 can be stated in terms
of the indicatrix function as [28]

χðπÞ > ξðπÞ≡ π

2π þ 1
: ð59Þ

Note that χð0Þ ¼ χ0ð0Þ ¼ 0, ξð0Þ ¼ 0, ξ0ð0Þ ¼ 1.
Consequently, condition (59) does not hold in a neighbor-
hood of zero. Nevertheless, for the three cases considered in
Fig. 1 the indicatrix function χðπÞ fulfills this constraint
if π > πm > 0.

VI. THE IDEAL MODEL f ðtÞ= ffiffi
t

p

Now we consider q ¼ 1=2, that is fðtÞ ¼ ffiffi
t

p
. Then, the

solution of the field equations takes form (10) with

fðtÞ ¼ ffiffi
t

p
; gðtÞ ¼ ffiffi

t
p

ln t: ð60Þ
From these expressions we now obtain that the only
functions Ti ¼ TiðtÞ that do not vanish as

T2 ¼ −T3 ¼
1

8
t−6: ð61Þ

Thus, the ideal sonic condition (39) holds when R2 ¼ R3.
The expressions (40) for these functions imply that the
functions αðrÞ and βðrÞ fulfill the following relation,

βðαÞ ¼ αþ c̃; ð62Þ
where c̃ ≠ 0 is a constant. Then, taking into account that
(62) is a differential equation that relates aðrÞ and bðrÞ, we
obtain that a solution of the perfect fluid Einstein equations
which is compatible with the ideal sonic condition SG (33)
is given by the metric (2) with the following election of the
metric function Yðt; rÞ,

Y ¼ Z2=3; Zðt; rÞ ¼ bðrÞ ffiffi
t

p ½ln tþ αðrÞ�; ð63Þ

where bðrÞ is given by

bðrÞ ¼ eαðrÞ=c̃; c̃ ≠ 0: ð64Þ

From (3), the expansion in this case is

θ ¼ 1

t

�
1þ 1

αþ ln t
þ 1

αþ c̃þ ln t

�
: ð65Þ

Again, the change t ↔ −t, with t < 0, leads to contracting
models, whose properties are similar to those we study
below for the expanding models.

A. Hydrodynamic quantities: Energy density,
pressure, and speed of sound

Now, the pressure also takes the expression (48), and the
energy density is

ρ ¼ 1

3t2
ð2þ αþ ln tÞð2þ αþ c̃þ ln tÞ

ðαþ ln tÞðαþ c̃þ ln tÞ : ð66Þ

From this expression we obtain

α ¼ α̃ðρ; pÞ≡ 4π þ εF̃ðπÞ
2ð1 − πÞ þ 1

2
lnð3pÞ − c̃

2
; ð67Þ

F̃ðπÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̃2ð1 − πÞ2 þ 16π

q
: ð68Þ

Then, we can determine the indicatrix function χ ¼ χðπÞ,

c2s ¼ χ̃ðπÞ≡ 4π2½c̃2ð1þ πÞ þ 2εF̃ðπÞ�
ð1þ πÞ½c̃2ð1þ πÞ2 þ 16π� : ð69Þ

It is worth remarking that this ideal model can be
obtained from the ideal Szafron model studied in the
previous section by a limit procedure taking σ → 0,
c → 1 and ĉ ¼ ð1 − cÞ=σ → c̃. Consequently, to study this
model we can start from the expressions obtained in this
subsection, or we could sometimes use the analysis already
made for the ideal Szafron models.
Now, when t → 0 or when t → ∞, the solution becomes

a shift FLRW model p ¼ ρ, as we can deduce by taking
σ ¼ 0 in (55).

B. Fluid properties: Compressibility conditions HG
1

We must analyze the behavior of the equation of state
χðπÞ in the interval 0 < π < 1 where the energy conditions
EG hold. Now χðπÞ defines a family of fluids depending on
the parameter c̃2 and the sign ε.
The function χðπÞ can have two different behaviors

depending on the sign ε. If we choose the positive sign,
ε ¼ þ1, χðπÞ is an increasing function, and the first of the
compressibility conditions HG

1 holds in the whole interval
0 < π < 1, and χð1Þ ¼ 1. This case appears as the limit of
the ideal Szafron model plotted in Fig. 1(a).
If ε ¼ −1, χðπÞ identically vanishes when jc̃j ¼ 2.

When jc̃j > 2 it is an increasing function, and the causal
condition holds in the whole interval 0 < π < 1. This case
appears as the limit of the ideal Szafron model plotted
in Fig. 1(c). Otherwise, when jc̃j < 2, χðπÞ is a negative
function and it does not fulfill the causal condition for any
interval.
The second compressibility condition in HG

1 holds in the
interval where χðπÞ is well defined and fulfills the causal
condition in the cases considered above.

THERMODYNAMIC PERFECT FLUID SPHERES ADMITTING AN … PHYS. REV. D 105, 124019 (2022)

124019-11



C. Curvature singularities and spacetime domains

For this model we can also have up to three different
singularities. First, a big bang singularity at t ¼ 0.
Secondly, the metric line element of the sphere vanishes
and the energy density is infinite at t̃1 ¼ t̃1ðrÞ ¼ e−αðrÞ.
Finally, a singularity could appear at t̃2 ¼ t̃2ðrÞ ¼ e−αðrÞ−c̃,
and then the metric distance on the coordinate lines of
coordinate r vanishes and we have infinite energy den-
sity again.
Now, two different situations can be distinguished:
(i) If jc̃j ¼ 2, we have the singularity at t ¼ 0 and also

the one at t̂ðrÞ, where t̂ ¼ t1 if c̃ ¼ 2, and t̂ ¼ t2 if
c̃ ¼ −2. Now, two disconnected spacetime domains
exist: R0 ¼ f0 < t < t̂g and R̂ ¼ ft̂ < t < ∞g.

(ii) If jc̃j ≠ 2, then we have all three singularities,
and three disconnected spacetime domains exist:
R0¼f0<t<tmg, Rm ¼ ftm < t < tMg and RM ¼
ftm < t < ∞g, where tm ¼ minft1; t2g and tM ¼
maxft1; t2g.

Note that these two cases are similar to cases (ii) and
(iii) considered in Sec. V C for the ideal Szafron models
(see Figs. 2(b) and 2(c)).

D. Analysis of the solutions and energy conditions

The spacetime domains where the energy conditions EG

and the compressibility conditions HG
1 hold depend on the

value of c̃. These domains are defined by the times t1ðrÞ
and t2ðrÞ that determine the singularities and the times
tρ ¼ tρðrÞ ¼ e−αðrÞ−2, t̃ρ ¼ t̃ρðrÞ ¼ e−αðrÞ−c̃−2 and tπ ¼
tπðrÞ ¼ e−ð2þ2αðrÞþc̃Þ=2.
We have a behavior that is similar to some cases of the

ideal Szafron models summarized in Table I. If jc̃j ¼ 2
(respectively, jc̃j < 2 or jc̃j > 2) the behavior is that of the
fifth and sixth rows (respectively, third and fourth rows) in
Table I. Exchanging c̃ ↔ −c̃ produces the exchange of
t1 ↔ t2 and tρ ↔ t̃ρ.

E. Thermodynamic schemes

The specific entropy s is again an arbitrary function
of the function of state αðρ; pÞ (67), sðρ; pÞ ¼ sðαÞ.
Moreover, the matter density is given by

nðρ; pÞ ¼ 4
ffiffiffiffiffiffi
3p

p
NðαÞ½2α − lnð3pÞ�½2αþ 2c̃ − lnð3pÞ� ; ð70Þ

where NðαÞ is an arbitrary function of αðρ; pÞ. And the
temperature Θðρ; pÞ is given by (31a), with

t1ðtÞ≡ 1

t
ð1þ ln tÞ; τ1ðrÞ≡ 3

4
N0=s0; ð71aÞ

t2ðtÞ≡ 1

2t
; τ2ðrÞ≡ 3

4
½Nαðαþ c̃Þ�0=s0; ð71bÞ

t3ðtÞ≡ 1

4t
ð2þ ln tÞ; τ3ðrÞ≡ 3

4
½Nð2αþ c̃Þ�0=s0 ð71cÞ

where t ¼ tðpÞ≡ 1=
ffiffiffiffiffiffi
3p

p
.

In this case, the ideal thermodynamic scheme that
fulfills the equation of state (32) can be obtained by taking
NðαÞ ¼ n0e−α and sðαÞ ¼ s0 þ s1α, with n0 > 0 and
s1 ¼ −9k̃=8.

VII. OPEN TOPICS AND WORK IN PROGRESS

Our study on the thermodynamics of the spatially
flat LT metrics (2) analyzes several significant issues.
Nevertheless, there are some open problems that are not
solved yet and that require endeavors beyond the scope of
this paper. Now, we present some preliminary results
of them.

A. On the models with homogeneous temperature

According to the thermodynamic theory of irreversible
processes (in both the standard irreversible thermodynam-
ics [25] and the extended irreversible thermodynamics
[45,46]), the transport coefficients of thermal conductivity,
shear-viscosity, and bulk viscosity appear in the constitu-
tive equations linking dissipative fluxes (anisotropic pres-
sures, bulk viscous pressure, and energy flux) with the
kinematic coefficients of fluid flow (shear, expansion, and
acceleration) [47].
The perfect fluid approximation can be considered

when the transport coefficients of a fluid vanish (or are
negligible). A nonperfect fluid is a fluid with at least a
nonzero transport coefficient. For this fluid, the ener-
getic evolution is, generically, described by an energy
tensor with energy flux and anisotropic pressures.
However, when a nonperfect fluid admits particular
evolutions in which the dissipative fluxes vanish, these
evolutions are well described by a perfect energy tensor,
and are usually called equilibrium states [47]. Moreover,
all the thermodynamic relations of the perfect fluid
hydrodynamics remain valid. Furthermore, the shear, the
expansion and the acceleration of the fluid undergo
strong restrictions as a consequence of the constitutive
equations. Specifically, if the thermal conductivity coef-
ficient does not vanish, then the fluid acceleration is
constrained by the relation

a ¼ −⊥d lnΘ; ð72Þ

where ⊥ denotes the orthogonal projection to the fluid
velocity.
After these considerations, we can look for perfect fluid

solutions to the Einstein equations that describe both (i) a
thermodynamic perfect fluid in local thermal equilibrium,
and (ii) an inviscid (with negligible shear and bulk viscosity
coefficients) nonperfect fluid in equilibrium. Then, the
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thermal conductivity coefficient does not vanish and, when
the fluid flux is geodesic as the solutions we are consid-
ering here, equation (72) implies a homogeneous temper-
ature Θ ¼ ΘðtÞ.
Thus, a forthcoming study we can address is to find the

solutions with homogeneous temperature. To do so, we
must analyze the compatibility of the expression of the
temperature (31), with the constraint Θ ¼ ΘðtÞ ≠ 0. This
analysis requires us to consider different cases.
For example, we can look for the thermodynamic

schemes fsðαÞ; NðαÞg and the metric function βðαÞ which
are compatible with a homogeneous temperature for any
solution ffðtÞ; gðtÞg of the field equations. In this case the
three functions τiðrÞ given in (31) are constant and then a
straightforward calculation leads to

βðαÞ ¼ β0αþ β1
β2α − β0

; ð73aÞ

sðαÞ ¼ n0αβðαÞ − s1
s0 − n1αβðαÞ

; NðαÞ ¼ n0 þ n1sðαÞ; ð73bÞ

with β0 ¼ n1s1 − n0s0. Note that β1 and β2 cannot be
canceled simultaneously [this leads to s0ðαÞ ¼ 0]. Thus,
the above expression of βðαÞ is compatible with neither
(44) nor (62). Moreover, the three functions tiðtÞ given in
(31) are independent for the ideal models studied in
Secs. V and VI. Consequently, these models cannot
represent an inviscid fluid with a nonvanishing thermal
conductivity coefficient. The compatibility of (73) with
the general ideal sonic condition (39) leads to a system
of five fourth-order differential equations, which will be
studied elsewhere.
When at least one of the functions τiðrÞ is nonconstant

we can consider different cases that lead to solutions
admitting thermodynamic schemes with homogeneous
temperature. They will be analyzed elsewhere.

B. On the solutions of the ideal sonic condition

As commented in Sec. IV B the study of the general
solution of the ideal sonic equation (39) is a task that falls
outside the scope of this work. A way to extend the family
of solutions is to consider a constraint for the function βðαÞ,
compute the functions RiðαÞ given in (40), and analyze the
subsequent equation (39) for ffðtÞ; gðtÞg.

As an example, let us consider β ¼ −α. Then, R1 ¼
R4 ¼ R5 ¼ R8 ¼ 0, R2 ¼ −R3 ¼ 2α, R7 ¼ −R6 ¼ 2α3.
Consequently, Eq. (39) is equivalent to

T2 − T3 ≡ E1ð⃜ff; ⃜f; f̈; _f; f; gÞ ¼ 0; ð74aÞ

T6 − T7 ≡ E2ð⃜f; ⃜f; f̈; _f; f; gÞ ¼ 0: ð74bÞ

Then, we can eliminate the fourth derivative from (74) and
obtain (considering a nonconstant pressure),

E3 ≡
⃜f

f̈

_g
g
−
f̈
_f

�
_f
f
þ _g
g

�
þ _g2

g2
¼ 0: ð75Þ

It is easy to prove that this equation implies (74). Thus, the
functions ffðtÞ; gðtÞg must fulfill the third-order differ-
ential system (12), (75), and then a solution for each initial
condition ffðt0Þ; _fðt0Þ; f̈ðt0Þ; gðt0Þg exists. It is worth
remarking that the ideal Szafron models with c ¼ −1 are
the solution to these equations for specific initial condi-
tions. The study of the solutions corresponding to other
initial conditions requires a numerical approach that is
beyond the scope of this work.

C. On the evolution of the energy density profiles

For each choice of the functions αðrÞ, expressions (49)
and (66) give different energy density profiles that could
model inhomogeneities. The evolution of these inhomo-
geneities will be studied in forthcoming works.
Actually, a similar analysis was carried out for some

subclasses of the general solution (6)–(10) in the context of
the so-called “Swiss cheese”models [38]. Moreover, one of
these subclasses seem to admit solutions compatible with
the ideal sonic condition (39). Therefore, the study of the
thermodynamics of such solutions and their possible
interpretation as a generic ideal gas are open problems
that we leave for future work.
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