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In this paper, we investigate the thermodynamics of dyonic black holes with the presence of power
Maxwell electromagnetic field in the extended phase space, which regards the cosmological constantΛ as a
thermodynamic variable. For a generic power Maxwell black hole with the electric charge and magnetic
charge, the equation of state is given as the function of rescaled temperature T̃ in terms of other rescaled
variables r̃þ, q̃, and h̃, where rþ is the horizon radius, q is the electric charge, and h is the magnetic
parameter. For some values of q̃ and h̃, the phase structure of the black hole is uniquely determined.
Moreover, the peculiarity of multiple temperature with some parameter configurations results in complex
phase structures. Focusing on the power Maxwell Lagrangian with LðsÞ ¼ s2, we obtain the corresponding
phase diagrams in the h̃-q̃ plane where the critical line extends to h̃ ¼ þ∞. Then, we analyze the black
holes’ phase structure and critical behavior and display phase transition curves with different h̃ in the q̃-T̃
plane. We also examine thermal stabilities of these black holes.
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I. INTRODUCTION

Black holes are intriguing concepts from the two corner-
stones of modern theoretical physics: general relativity and
quantum field theory. Black holes in the classical sense
absorbed all matter, emitted nothing, and had neither
temperature nor entropy, which were characterized by
mass, angular momentum, and charge (if any) [1].
However, there is another case considering quantum field
theory in curved spacetime. The relationship between black
holes and thermodynamics was first indicated by
Hawking’s area theorem [2], which states that the area
of the event horizon of a black hole can never decrease.
Bekenstein subsequently noticed the similarity between
this theorem and the second law of thermodynamics [3],
proposing that each black hole should be assigned an
entropy proportional to the area of its event horizon [4].
Analogous to the laws of thermodynamics, Bardeen et al.
soon established the four laws of black hole mechanics [5],
where the surface gravity corresponds to the temperature.
Since Hawking discovered that black holes do emit
radiation with a blackbody spectrum [6], the idea of black
hole thermodynamics has convinced most physicists.
According to cosmological constant Λ, black holes can

be classified into asymptotically de Sitter (dS) black holes
(Λ > 0), asymptotically anti-de Sitter (AdS) black holes
(Λ < 0), and asymptotically flat black holes (Λ ¼ 0).

Sufficiently large asymptotically AdS (as compared to the
AdS radius l) black holes, unlike asymptotically flat black
holes, have positive specific heat and can be in stable
equilibrium at a fixed temperature [7]. Moreover, unlike
asymptotically dS black holes [8], asymptotically AdS black
holes only have one horizon, and one can define a good
notion of the asymptotic mass. Therefore, the research on the
asymptotically AdS black holes has received great attention.
Studying the phase transitions of asymptotically AdS black
holes is primarily motivated by AdS=CFT correspondence
[9]. Hawking and Page showed that a first-order phase
transition occurs between Schwarzschild AdS black holes
and thermal AdS space [7], which was later understood as a
confinement/deconfinement phase transition in the context
of the AdS=CFT correspondence [10]. For Reissner-
Nordstrom (RN) AdS black holes, the authors of
Refs. [11,12] showed that its critical behavior is similar to
that of a van der Waals liquid/gas phase transition.
Soon after, the asymptotically AdS black holes were

studied in the context of extended phase space thermody-
namics, where the cosmological constant is interpreted as
thermodynamic pressure [13,14]. In this case, the black hole
mass should be understood as enthalpy instead of the internal
energy; the first law was modified [15]. The P-V criticality
study has been explored for various AdS black holes [16–21].
It showed that the P-V critical behaviors of AdS black holes
are similar to that of a van der Waals liquid/gas system.
Nonlinear electrodynamics (NLED) is an effective

model incorporating quantum corrections to Maxwell
electromagnetic theory. Coupling this model to gravity,
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various NLED charged black holes have been derived and
discussed in a number of papers [22–31]. The thermody-
namics of generic NLED black holes in the extended phase
space have been considered in Refs. [32–36]. And various
particular NLED black holes were also considered, e.g.,
Born-Infeld AdS black holes [37,38], power Maxwell
invariant black holes [39–41], and nonlinear magnetic-
charged dS black holes [42].
Among the various NLED theories, a straightforward

generalization of Maxwell’s theory leads to the so-called
power Maxwell (PM) theory described by a Lagrangian
density of the form LðsÞ ¼ sp, where s is the Maxwell
invariant and p is an arbitrary rational number. It is obvious
that the special value p ¼ 1 corresponds to linear electro-
dynamics. The solutions of PM charged black holes and
their interesting thermodynamics and geometric properties
have been examined in Refs. [26,43–50].
In general, the Einstein equations with a matter source

possessing the conformal invariance can be simplified. In the
absence of the cosmological constant, a traceless energy-
momentum tensor implies that the scalar curvature is zero,
which restricts the possible spacetimes. A well-known
example is given by the specified Bocharova-Bronnikove-
Melnikov-Bekenstein (BBMB) black hole in four dimen-
sions where the matter is described by a scalar field
nonminimally coupled to gravity with the conformal cou-
pling (and also with an electric field) [51]. In this example,
the conformal character of the matter source is crucial since
the solution has been derived using the machinery of
conformal transformations applied to minimally coupled
scalar fields. Moreover, conformal symmetry of the matter
source can also be useful for gravity with a nonzero
cosmological constant. In this case, the traceless character
of the source imposes the spacetime to be of constant scalar
curvature. However, there does not exist a no-hair theorem
that rules out regular black hole solutions on and out of the
event horizon. In fact, black hole solutions with a cosmo-
logical constant have been obtained given a conformally and
self-interacting coupled scalar field in three dimensions
[52,53] and in four dimensions [54,55].
However, Xanthopoulos and Dialynas [56] and Klimcik

[57] found that the black hole solutions don’t always exist
for a static spherically symmetric spacetime coupled to a
conformal scalar field. They have shown that in higher
dimensions a scalar field conformally coupled to gravity
does not exhibit black hole solutions. The RN black hole in
four dimensions is the first solution with a conformally
invariant matter source from the Maxwell action. However,
as mentioned above, the Maxwell action of the RN solution
no longer possesses the conformal symmetry [58] when it is
extended to higher dimensions. A legitimate question is
whether there exists an extension of the Maxwell action in
arbitrary dimensions that possesses the conformal invari-
ance, which inspires us to propose the generalized Maxwell
action in arbitrary dimensions

IM ¼ −
Z

ddx
ffiffiffiffiffiffi
−g

p
sp; ð1Þ

where s is the Maxwell invariant and p is an arbitrary
rational number. This action enjoys the conformal invari-
ance, which provides the exponent p ¼ d=4. Note that in
four dimensions the conformal action (1) reduces to the
Maxwell action. It is clear that when p ¼ d=4 the con-
formal invariance of the action is encoded by the traceless
condition Tμ

μ ¼ 0. [Consider the Lagrangian of the form
LðFÞ, where F ¼ FμνFμν; then, one can show that for this
form of Lagrangian in d dimensions Tμ

μ ¼ 4ðFdL=dF −
d=4LÞ, so Tμ

μ ¼ 0 implies LðFÞ ¼ Constant × Fd=4].
Moreover, there also exists another conformally invariant
extension of the Maxwell action in higher dimensions for
which the Maxwell field is replaced by a d=2 form when d
is even [59]. The black hole solutions of this theory are
discussed in Ref. [60]. In addition, taking into account the
applications of the AdS=CFT correspondence to super-
conductivity, it has been shown that the PM theory makes
crucial effects on the condensation as well as the critical
temperature of the superconductor and its energy gap [61].
A substantial gap in these studies is the absence of the

dyonic solution. Bronnikov [62] derived a scheme of
finding the dyonic solution in NLED coupled to GR by
quadratures for an arbitrary Lagrangian function LðsÞ and
a dyonic solution for the truncated Born-Infeld theory.
However, there are only few papers devoted to studies of
specific cases with the dyonic solution. In this paper, we
first investigate the thermodynamic behavior of generic
d-dimensional dyonic PM black holes in the extended
phase space in Sec. II. Then, we investigate the phase
structure and critical behavior of eight-dimensional dyonic
PM black holes with a power exponent 2 by studying
the phase diagrams in the q=l4.5-h=l1.5 plane in Sec. III.
We summarize our results in Sec. IV. We will use the units
ℏ ¼ c ¼ 16πG ¼ 1 for simplicity.

II. DYONIC PM ADS BLACK HOLE

In this section, we derive the d-dimensional dyonic PM
asymptotically AdS black hole solution in the Einstein
gravity and verify the thermodynamic properties of the
black hole. We first consider a d-dimensional model of
gravity coupled to a PM nonlinear electromagnetic field
with the action given by

SBulk ¼
Z

ddx
ffiffiffiffiffiffi
−g

p ½R − 2Λþ LðsÞ�; ð2Þ

where

Λ ¼ −
ðd − 1Þðd − 2Þ

2l2
ð3Þ

is the cosmological constant,
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s ¼ 1

4
FμνFμν ð4Þ

is the maxwell invariant, F ¼ dA ¼ ∂μAν − ∂νAμ, and Aμ

is the gauge potential. In our case, the Lagrangian density
has the following form:

LðsÞ ¼ sp: ð5Þ

Taking the variation of the action (2) with respect to gμν and
Aμ, one can get the equations of motion, which are

Rμν −
1

2
Rgμν −

ðd − 2Þðd − 1Þ
2l2

gμν ¼
Tμν

2
; ð6Þ

∂μð
ffiffiffiffiffiffi
−g

p
GμνÞ ¼ 0; ð7Þ

where

Tμν ¼ gμνLðsÞþ
∂LðsÞ
∂s Fμ

ρFνρ ð8Þ

is the energy-momentum tensor and we define the auxiliary
field

Gμν ¼ ∂LðsÞ
∂s Fμν: ð9Þ

To construct a dyonic black hole solution in asymptoti-
cally AdS spacetime, we take the ansatz for the metric and
the gauge potential

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

d−2; ð10Þ

A ¼ AtðrÞdt − h

�Yd−4
i¼1

sin2 θi

�
cos θd−3dθd−2; ð11Þ

where dΩ2
d−2 is the metric of (d − 2)-sphere (only consider

the case of positive constant curvature, i.e., k ¼ 1)

dΩ2
1 ¼ dθ21; ð12Þ

dΩ2
nþ1 ¼ dΩ2

n þ
�Yn

i¼1

sin2 θi

�
dθ2nþ1: ð13Þ

Then, the equations of motion read

ðd − 2Þ
2

rfðrÞ0 þ ðd − 2Þðd − 3Þ
2

½fðrÞ − 1�

−
ðd − 2Þðd − 1Þr2

2l2
¼ r2

2
½LðsÞþGrtA0

tðrÞ�; ð14Þ

∂rðrd−2GrtÞ ¼ 0; ð15Þ

∂θd−3ðsin θd−3Gθd−3θd−2Þ ¼ 0: ð16Þ

Plugging Eq. (11) into Eq. (4) and Eq. (9) results in

s ¼ A02
t ðrÞ
2

−
h2

2r4
and Grt ¼ −

∂LðsÞ
∂s A0

tðrÞ: ð17Þ

Equation (16) can result in ∂θd−3h ¼ 0, and the remaining
equations of motion can be derived from Eqs. (14) and (15).
Now, A0

tðrÞ can be determined by Eq. (15), which leads to

∂LðsÞ
∂s A0

tðrÞ ¼
q

rd−2
; ð18Þ

where q is a constant. Moreover, integrating Eq. (14),
we have

fðrÞ ¼ 1þ r2

l2
−

m
rd−3

−
1

ðd − 2Þrd−3
Z

∞

r
drrd−2

�
L
�
A02
t ðrÞ
2

−
h2

2r4

�
− q
rd−2

A0
tðrÞ

�
; ð19Þ

where m is a constant. Considering LðsÞ ¼ sp, it can be expressed analytically near the event horizon rþ as

fðrÞ¼d−3

rþ
ðr−rþÞþ

ðd−1Þrþ
l2

ðr−rþÞ−
2−pr2−4pþ ðA02

t0r
4þ−h2Þp−1ðh2þA02

t0ð2p−1Þr4þÞ
ðd−2Þrþ

ðr−rþÞþOðr−rþÞ; ð20Þ

where A0
t0 ≡ A0

tðrþÞ can be solved by Eq. (18) and we have used fðrþÞ ¼ 0 and Eq. (14). The Hawking temperature of the
black hole is given by

T ¼ f0ðrþÞ
4π

; ð21Þ

so one can get
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T ¼ 1

4πrþ

�
d − 3þ ðd − 1Þr2þ

l2
þ 1

d − 2
r2þ

�
L
�
A02
t ðrÞ
2

−
h2

2r4

�
− q
rd−2

A0
tðrþÞ

��
; ð22Þ

which results from plugging fðrþÞ ¼ 0 into Eq. (14).

The electric charge is [63]

Q ¼
Z
S
F̄ ¼

Z �Yd−2
1

dθi

�
F̄

¼
Z �Yd−2

i¼1

dθi

� ffiffiffiffiffiffi
−g

p q
rd−2

¼ ωd−2q; ð23Þ

where

F̄ ¼ ∂L
∂s ð�FÞ; ð24Þ

with ωd−2 being the volume of the unit (d − 2)-sphere:

ωd−2 ¼
2π

d−1
2

Γðd−1
2
Þ : ð25Þ

Moreover, the mass can be extracted by comparison to a
reference background, e.g., vacuum AdS. So, the mass can
be determined by the Komar integral

M ¼ d − 2

8πðd − 3Þ
Z
∂Σ

dxd−2
ffiffiffiffi
γ0

p
ðσμnν∇μKνÞ −MAdS; ð26Þ

where Kμ is the Killing vector associated with t, MAdS is
Komar integral associated with Kμ for the vacuum AdS
space

MAdS ¼ d − 2

8πðd − 3Þ
Z
∂Σ

dxd−2
ffiffiffiffi
γ0

p �
r
l2

�
; ð27Þ

and γ0 is the induced metric of ∂Σ, which is the boundary
of Σ. σμ is the unit normal vector of Σ, and nμ is the unit
outward-pointing normal vector. We set Σ and ∂Σ to be a
constant-t hypersurface and a (d − 2)-sphere at r ¼ ∞.

Using

σμ ¼ ð−f1
2; 0; 0; 0……Þ; ð28Þ

nμ ¼ ð0; f−1
2; 0; 0……Þ; ð29Þ

one can have

σμnν∇μKν ¼ 1

2
f0ðrÞ: ð30Þ

It is shown that for

d − 1 < 4p < 2d − 2 ð31Þ

one can have

1

2
f0ðrÞ ¼ r

l2
þ ðd − 3Þm

2rd−2
þOðr2−dÞ ð32Þ

at spatial infinity, and whether it holds or not is determined
by the relationship of power exponent p and dimension d.
When it holds, we have

M ¼ d − 2

16π
ωd−2m: ð33Þ

In the following, we study the thermodynamics of the
dyonic PM AdS black hole solution in the extended phase
space, where the cosmological constant is interpreted as the
thermodynamic pressure and treated as a thermodynamic
variable. The mass of the black hole is no longer regarded
as internal energy; it is identified with the chemical
enthalpy. In terms of the horizon radius rþ, the mass of
the black hole can be rewritten as

M ¼ d − 2

16π
ωd−2

�
rd−3þ þ rd−1þ

l2
−

1

d − 2

Z
∞

rþ
drrd−2

�
L
�
A02
t ðrÞ
2

−
h2

2r4

�
− A0

tðrÞ
q

rd−2

��
; ð34Þ

where we have used Eq. (33).
The free energy F can be expressed by the Euclidean

action SE [32],

F ¼ M − TS; ð35Þ

where the entropy of the black hole is one-quarter of the
horizon area

S ¼ rd−2þ ωd−2

4
: ð36Þ
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We have expressed thermodynamic quantities F, M, and S
as the functions of the horizon radius rþ, q (proportional to
the electric chargeQ), h (associated with magnetic charge),
and the AdS radius l (the pressure P ¼ ðd − 1Þðd − 2Þ=l2).
Now, we need to express the thermodynamic quantities in
terms of T, q, h, and P by solving the equation of state for

rþ ¼ rþðT; q; l; hÞ: ð37Þ
So, we first rescale the T, which becomes

T̃ ¼ 1

4πr̃þ

�
d − 3þ ðd − 1Þr̃2þ

þ r̃2þ
d − 2

��
Ã02
t ðrþÞ
2

−
h̃2

2r̃4þ

�p

− Ã0
tðrþÞ

q̃
r̃d−2þ

��
; ð38Þ

where

r̃þ ¼ rþl−1; q̃ ¼ ql−
1
p−dþ4; Ã0

tðrþÞ ¼ l
1
pA0

tðrþÞ;
h̃ ¼ hl

1
p−2; T̃ ¼ Tl: ð39Þ

Then, Ã0
tðrþÞ is determined by

�
p
Ã02
t ðrþÞ
2

−
h̃2

2r̃4þ

�p−1
Ã0
tðrþÞ ¼

q̃
r̃d−2þ

; ð40Þ

which usually cannot be solved analytically and has
multiple solutions when p is large. By solving Eq. (38),
r̃þ can be expressed as a function of T̃, q̃, and h̃. With
r̃þ ¼ r̃þðT̃; q̃; h̃Þ, one can express the thermodynamic

quantities in terms of T̃, q̃, and h̃; e.g., the Gibbs free
energy is given by

F̃≡ F=ld−3 ¼ F̃ðT̃; q̃; h̃Þ: ð41Þ

The phase structure of the black hole comes from the
solutions of Eq. (38). If T̃ðr̃þ; q̃; h̃Þ is a monotonic function
with respect to r̃þ for some values of q̃ and h̃, there would
be only one branch for the black hole. Generally, with fixed
q̃ and h̃, there exists a local minimum/maximum for
T̃ðr̃þ; q̃; h̃Þ at r̃þ ¼ r̃þ;min=r̃þ;max. In this case, there is
more than one black hole (BH) branch, namely, small BH
and large BH, around a local minimum of T̃ ¼ T̃min as
shown in Fig. 1(a). In the right panel of Fig. 1(a), the Gibbs
free energy of these two branches is displayed, and the
upper branch is a small BH while the lower one is a large
BH since ∂F̃ðT̃; q̃; h̃Þ=∂T̃ ¼ −4π6r̃6þ, which means that the
large BH branch is thermodynamically preferred. Similarly,
there are also two branches around a local maximum of T̃.
In this case, the upper/lower branch is large/small BH
since it has more/less negative slope, and the small BH
branch is thermodynamically preferred in this case. In
general, one might need to figure out how the existence of
local extremums depends on values of Q̃ and h̃ to study the
phase structure of the black hole.
Moreover, by solving Eq. (40), we can find more than one

T̃ðr̃þ; q̃; h̃Þ with some fixed q̃ and h̃, indicating multiple sets
of r̃þi ¼ r̃þiðT̃; q̃; h̃Þ. And every set of r̃þiðT̃; q̃; h̃Þ may
have multiple branches. A simple case is depicted in
Fig. 1(b), which corresponds to those of Fig. 1(a).

Small BH

Large BH

r̃ +

T̃

T̃

r̃ +

T̃

F̃

Small BH

Large BH

Smaller BH

Larger BH

r̃ +

T̃

T̃

r̃ +

T̃

F̃

(a)

(b)

FIG. 1. Branches of black holes around local extremums of T̃ ¼ T̃min and T̃ ¼ T̃max with some fixed q̃ and h̃. (a) Branches around a
local minimum of T̃ ¼ T̃min. (b) Branches around a local maximum of T̃ ¼ T̃min when T̃ ¼ T̃ðr̃þ; q̃; h̃Þ is multivalued.
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After the black hole branches are obtained, it is easy to
check their thermodynamic stabilities against thermal
fluctuations. The thermal stability of the branch follows
from the specific heat C > 0. The specific heat takes the
form as

CQ;h;P ¼ T

�∂S
∂T

�
Q;h;P

¼ ld−2ðd − 2ÞT̃ r̃d−3þ ωd−2

4

�∂r̃þ
∂T̃

�
;

ð42Þ

and since ωd−2 is also positive, the sign of T̃ 0ðr̃þÞ
determines the thermodynamic stabilities.

III. EIGHT-DIMENSIONAL DYONIC PM ADS
BLACK HOLE WITH P=2

In this section, we focus on eight-dimensional (8D)
spacetime in order to satisfy the condition of conformal
invariance, and the power exponent is chosen as p ¼ 2.
Then, the mass of the black hole satisfies

M ¼ 2

5
π2
�
r5þ þ r7þ

l2
−
1

6

Z
∞

rþ
drr6

�
L
�
A02
t ðrÞ
2

−
h2

2r4

�
− A0

tðrÞ
q
r6

��
; ð43Þ

and the electric charge

Q ¼ 16π3

15
q; ð44Þ

where we have used Eqs. (34) and (23). And Eqs. (38) and (36) become

T̃ ¼ 1

4πr̃þ

�
5þ 7r̃2þ þ r̃2þ

6

��
Ã02
t ðrþÞ
2

−
h̃2

2r̃4þ

�
2

− Ã0
tðrþÞ

q̃
r̃6þ

��
; S ¼ 4

15
π3r6þ; ð45Þ

where

r̃þ ¼ rþl−1; q̃ ¼ ql−4.5; Ã0
tðrþÞ ¼ l0.5A0

tðrþÞ; h̃ ¼ hl−1.5; T̃ ¼ Tl: ð46Þ
Moreover, the rescaled Gibbs free energy is given by

F̃≡ F=l5 ¼ F̃ðT̃; q̃; h̃Þ: ð47Þ
By solving Eq. (40), we can obtain

Ã0
tiðrþÞ ¼

2h̃ffiffiffi
3

p
r̃2þ

cos

�
1

3
arccos

�
3

ffiffiffi
3

p
q̃

2h̃3

�
−
2π

3
ði − 1Þ

�
; i ¼ 1; 2; 3: ð48Þ

To clearly present the existence domain and the relative magnitude of three solutions, we define

CiðxÞ≡ cos

�
1

3
arccosðxÞ − 2π

3
ði − 1Þ

�
ði ¼ 1; 2; 3Þ; ð49Þ

which is independent of r̃þ. Then, three solutions can be expressed as

Ã0
tiðr̃þÞ ¼

2h̃ffiffiffi
3

p
r̃2þ

CiðxÞ; i ¼ 1; 2; 3; ð50Þ

where x ¼ 3
ffiffiffi
3

p
q̃=2h̃3. We display CiðxÞ in the left panel of Fig. 2(a). It is shown that there is no solution for Ã0

t2ðrþÞ and
Ã0
t3ðrþÞ when 3

ffiffiffi
3

p
q̃=2h̃3 > 1 and no solution for Ã0

t2ðrþÞ and Ã0
t1ðrþÞ when 3

ffiffiffi
3

p
q̃=2h̃3 < −1. In the same manner, the

Hawking temperature can be written as

T̃iðr̃þ; h̃; xÞ ¼
1

4πr̃þ

�
5þ 7r̃2þ þ r̃2þ

6

��
2h̃2

3r̃4þ
C2
i ðxÞ −

h̃2

2r̃4þ

�
2

−
2h̃ q̃ffiffiffi
3

p
r8þ

CiðxÞ
��

ð51Þ

¼ 1

4πr̃þ

�
5þ 7r̃2þ þ h̃4

6r̃6þ
DiðxÞ

�
; ð52Þ
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and here

Diðh̃; q̃Þ≡ 1

4

�
4C2

i ðh̃; q̃Þ
3

− 1

�
2

− Ciðh̃; q̃Þ
2q̃ffiffiffi
3

p
h̃3

; ð53Þ

which is shown in the right panel of Fig. 2(b). Equation (52)
shows that h̃4DiðxÞ completely determines the dependence
of T̃iðr̃þÞ on r̃þ. And because of the symmetry for DiðxÞ,
we only need to consider the case of h̃ q̃ > 0, i.e., x > 0.
Moreover, note that three curves of DiðxÞ never intersect
when x > 0, which means that T̃2ðr̃þÞ > T̃3ðr̃þÞ > T̃1ðr̃þÞ
is always satisfied for fixed h̃ and q̃ and h̃ q̃ > 0. Moreover,
the rescaled Gibbs free energy is

F̃i ¼
12π2r̃5þ

5
þ 16π2r̃7þ

5
−
28

15
π3r̃6þT̃i; i ¼ 1; 2; 3: ð54Þ

To find the critical point, one usually consider the
equations

∂T̃ðr̃Þ
∂r̃þ ¼ 0 and

∂2T̃ðr̃þÞ
∂r̃2þ ¼ 0; ð55Þ

which can be solved as

r̃þc ¼
ffiffiffiffiffi
15

28

r
; T̃c ¼

ffiffiffiffiffiffiffi
60

7π2

r
and h̃4D1ðxÞ ¼−2

�
15

28

�
4

:

ð56Þ

As shown in the right panel of Fig. 2(b), D2ðh̃; q̃Þ and
D3ðh̃; q̃Þ are always positive when h̃ q̃ > 0, which means
that there is no critical point for T̃2 and T̃3. And only T̃ðr̃þÞ
has a critical point. The detailed results about the existence
of the local extremums are summarized in Table I.
As shown in Fig. 1(b), solving Eq. (52) for r̃þ in terms of

T̃ gives r̃þðT̃Þ, which is usually a multivalued function. The
parameters h̃ and q̃ determine the number of the branches for
r̃þðT̃Þ. In what follows, we can find four major regions in the
h̃-q̃ plane if we only consider the number of branches of
r̃þðT̃Þ. We plot these regions in the h̃-q̃ plane, which is
shown in Fig. 3. The left panel displays four major regions,
and the right panel highlights region I and shows us five
subregions of region I. Each region has the distinct behavior
of the branches and the phase structure. In Fig. 4, we display
the plots of event horizon r̃þ, free energy F̃ against the
temperature T̃ for Region I, while the ones for other regions
(II, IV, and V) are shown in Fig. 5. The first-order phase
transition and zeroth-order phase transition are marked with
a black point and arrow, respectively.

(i) Region I.—x < 1 and T̃ 0
1ðr̃1Þ < 0, where r̃1 is the

solution of T̃ 00
1ðr̃þÞ ¼ 0.

In this region, there are a local maximum and a
local minimum for T̃1ðr̃þÞ. Therefore, there are three
branches for r̃þ1ðT̃Þ: the smallest BH for 0 ≤ T̃1 ≤
T̃1max, intermediate BH for T̃1min ≤ T̃1 ≤ T̃1max,
and largest BH for T̃1 ≥ T̃1min. However, there

TABLE I. Solution of T̃ 00
i ðr̃þÞ ¼ 0 and the local extremums of T̃ 0

iðr̃þÞ in various cases, where r̃1 is the solution of
T̃ 00
i ðr̃þÞ ¼ 0.

h̃ q̃ > 0, i.e., x > 0 T̃ 0ð0Þ T̃ 0ðþ∞Þ Solution of T̃ 00ðr̃þÞ ¼ 0 Extrema of T̃ 0ðr̃þÞ
T1, h̃

4D1ðxÞ > −2ð15
28
Þ4 ∞ 7

4π
r̃1 > 0 T̃ 0

minðr̃1Þ < 0

T1, h̃
4D1ðxÞ < −2ð15

28
Þ4 ∞ 7

4π
r̃1 > 0 T̃ 0

minðr̃1Þ > 0

T2, exists for x < 1 −∞ 7
4π

None None

T3, exists for x < 1 −∞ 7
4π

None None

C1(x)

C2(x)

C3(x)

–2 –1 1 2
x

–1.0

–0.5

0.5

1.0

C(x)

D1(x)

D2(x)

D3(x)

–2 –1 1 2
x

–0.8

–0.6

–0.4

–0.2

0.2

0.4
D(x)

(a) (b)

FIG. 2. CðxÞ and DðxÞ, where x≡ 3
ffiffi
3

p
q̃

2h̃3
. (a) CðxÞ. (b) DðxÞ.
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are a minimum T̃2min for T̃2ðr̃þÞ and a minimum
T̃3min for T̃3ðr̃þÞ, and thus two branches exist for
r̃þ2ðT̃Þ or r̃þ3ðT̃Þ, namely, a small BH and large BH
for r̃þ2ðT̃Þ, smaller BH and larger BH for r̃þ3ðT̃Þ.
The r̃þðT̃Þ is displayed in the left panel of Fig. 4(a),
and the Gibbs free energy is plotted in the following
five panels for different subregions, which show
different phase transitions. Note that the smallest
BH, large BH, larger BH, and largest BH branches
have positive heat capacity, and hence they are
thermally stable (represented by solid lines), while
others are thermally unstable (represented by dashed
lines). First, the three tips in five figures of F̃ðT̃Þ
correspond to three minima of T̃ with T̃1min <
T̃3min < T̃2min and F̃1ðT̃1minÞ > F̃3ðT̃3minÞ >
F̃2ðT̃2minÞ. And the F̃ðT̃Þ of the smallest BH can
intersect with that of other three stable phases with
some parameter configuration [such as in Fig. 4(f)].
Three intersections T̃1p > T̃3p > T̃2p correspond to
the largest BH (red), larger BH (light blue), and large
BH (green). The difference of phase transitions is
determined by the relative position of three minima
and three intersections in the T̃ − F̃ plane.
In subregion I1 as shown in Fig. 4(b), a first-order

phase transition from smallest BH to largest BH
occurs at T̃ ¼ T̃1p as T̃ increases from 0, and then
there are zeroth-order phase transitions at T̃ ¼ T̃3min

and T̃2min. (When x ¼ 1, it is similar except T̃2 and
T̃3 merge into one.)

In Fig. 4(c), we present the case of subregion I2,
which is similar to the case of subregion I1, where
T̃2p and T̃3p do not exist since F̃2ðT̃Þ and F̃3ðT̃Þ are
always smaller than F̃ of the smallest BH, and
T̃1p > T̃3 min. These results in two zeroth-order
phase transitions occur at T̃ ¼ T̃3 min and T̃2 min.

Figure 4(d) shows us the case of subregion I3,
where T̃2p still does not exist, however T̃3p < T̃2min.
Therefore, as one increases T̃ from 0, there are a
first-order phase transition at T̃ ¼ T̃3p and a zeroth-
order phase transition at T̃ ¼ T̃2min.

In subregion I4, as shown in Fig. 4(e), T̃2p does
not exist since F̃2ðT̃Þ is always smaller than the free
energy of the smallest BH, and T̃2min < T̃3p < T̃1p,
which means that a zeroth-order phase transition
between smallest BH and large BH happens at
T̃ ¼ T̃2min as T̃ increases from 0.

The case of subregion I5 is displayed in
Fig. 4(f), where all three intersections exist with
T̃2p < T̃3p < T̃1p. Therefore, only a first-order
phase transition happens between smallest BH
and large BH at T̃ ¼ T̃2p. There is no phase
transition when T̃ > T̃2p since it is shown that
F̃1ðT̃Þ > F̃3ðT̃Þ > F̃2ðT̃Þ for the largest BH, larger
BH, and large BH.

(ii) Region II.—x < 1 and T̃ 0
1ðr̃1Þ ≥ 0. In this region,

T̃1ðr̃þÞ is a monotonically increasing function, and
there is only one largest BH branch for r̃þ1ðT̃Þ, which

I

II

III

IV

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

h̃

(a) (b)

I1

I2

I3

I4

I5

0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

h̃

q̃q̃

FIG. 3. The eight regions in the h̃-q̃ plane for dyonic PM AdS black holes. The color represents the branch which enters at first phase
transition with increasing T̃ from 0 (except region IV), the darker color represents the zeroth-order phase transition, and the lighter color
represents the first-order phase transition. (a) The four main regions in the h̃-q̃ plane, each of which possesses the distinct behavior of the
branches and the phase structure. (b) The five subregions of region I in the h̃-q̃ plane, each of which possesses the distinct phase structure.
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is thermally stable. And there are still a minimum
T̃2min for T̃2ðr̃þÞ and a minimum T̃3min for T̃3ðr̃þÞ
indicating that r̃þ2ðT̃Þ and r̃þ3ðT̃Þ have two branches,
which is the sameas the case of region I.These features
are displayed in Fig. 5(a), in which the left panel is
r̃þðT̃Þ and the free energy is plotted in the right panel.
The large BH, larger BH, and largest BH branches are
thermally stable. Since F̃1ðT̃Þ > F̃3ðT̃Þ > F̃2ðT̃Þ is
always satisfied, there are a zeroth-order phase

transition from largest BH to larger BH at T̃ ¼
T̃3min and a zeroth-order phase transition from larger
BH to large BH at T̃ ¼ T̃2min. (If x ¼ 1, it is similar,
except T̃2 and T̃3 merge into one.)

(iii) Region III.—x > 1 and T̃ 0
1ðr̃1Þ < 0. In this region,

there are a local maximum and a local minimum for
T̃1ðr̃þÞ, similar to the case of region I. However, T̃2

and T̃3 do not exist, so there is only one first-order
phase transition from the smallest BH to largest BH

(a) (b)

(c) (d)

(e) (f)

FIG. 4. r̃þ, F̃ against T̃ for dyonic PM AdS black holes in region I. (a) Region I: h̃ ¼ 1 and q̃ ¼ 0.02. (b) Region I1: h̃ ¼ 1 and
q̃ ¼ 0.1. (c) Region I2: h̃ ¼ 1 and q̃ ¼ 0.05. (d) Region I3: h̃ ¼ 1 and q̃ ¼ 0.02. (e) Region I4: h̃ ¼ 1 and q̃ ¼ 0.001. (f) Region I5:
h̃ ¼ 0.5 and q̃ ¼ 0.02.
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at T̃ ¼ T̃1p, which resembles that of RN-AdS black
holes. These are displayed in the left panel of
Fig. 5(b). The smallest BH and largest BH branches
are thermally stable, while the intermediate BH is
unstable.

(iv) Region IV.—x > 1 and T̃ 0
1ðr̃1Þ ≥ 0. In this region,

T̃1ðr̃þÞ is a monotonically increasing function and

has only one branch. Moreover, T̃2 and T̃3 do not
exist, so there is no phase transition in this region,
which is displayed in Fig. 5(c).

We now discuss the critical behavior and phase structure
of black holes in two aspects. The critical line is the
boundary between the two regions in which T̃ðr̃þÞ has n
and nþ 2 extremums, determined by Eq. (55). In our case,

(a)

(b)

(c)

FIG. 5. r̃þ, F̃ against T̃ for dyonic PM AdS black holes in regions II, III, and IV. The number of branches is different in these regions.
The intermediate BH, small BH, and smaller BH are always thermally unstable, while others are always thermally stable. (a) Region II:
h̃ ¼ 1 and q̃ ¼ 0.2. There is a zeroth-order phase transition between largest BH and larger BH and a zeroth-order phase transition
between larger BH and large BH. (b) Region III: h̃ ¼ 0.5 and q̃ ¼ 0.1. There is a first-order phase transition between smallest BH and
largest BH. (c) Region IV: h̃ ¼ 0.5 and q̃ ¼ 0.3. There is no phase transition.
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the critical line is the boundary between the two regions
in which T̃ðr̃þÞ has no extremum and 2 extremums, i.e.,
the boundary of region I and region II or the boundary of
region III and region IV.
On the one hand, we fix parameters q and h, and the AdS

radius l (the pressure P) varies. This would generate a curve
in the h̃-q̃ plane, which is determined by

q̃lðh̃Þ ¼
q
h3

h̃3: ð57Þ

In Fig. 6, we plot q̃lðh̃Þ for various values of q=h3. It shows
that there is always a critical point as P increases from 0 to
∞ since the critical line can extend to h̃ ¼ þ∞. For
q=h3 > 2

ffiffiffi
3

p
=9, as one increases P from 0, q̃lðh̃Þ always

crosses the critical line and enters region IV (no phase
transition) from region III (a first-order phase transition
between the smallest BH and largest BH). For q=h3 <
2

ffiffiffi
3

p
=9, as one increases P from 0, q̃lðh̃Þ passes through

five subregions of region I, then crosses the critical line and
enters region II, in which there are two zeroth-order phase
transitions, one from the largest BH to the larger BH and
one from the larger BH to the large BH.
On the other hand, h and P are fixed parameters. As one

increases q̃ from q̃ ¼ 0, the black hole would cross
different regions. And there is always a critical point for
any h̃ since the critical line can extend to h̃ ¼ þ∞. In
Fig. 7, we present phase diagrams in the q̃ − T̃ plane with
h̃ ¼ 0.5, h̃ ¼ 0.6, h̃ ¼ 0.7, and h̃ ¼ 1, respectively. The
phase structure can be manifested more clearly in these
phase diagrams, where the blue lines (point) represent

first-order phase transitions, the red lines (point) represent
zeroth-order phase transitions, and the black points re-
present the critical points.
For h̃ ≤ h̃1 ≃ 0.51, as one increases q̃ from q̃ ¼ 0, the

black hole would cross three regions subsequently, i.e.,
region I5 (smallest BH/large BH first-order phase transi-
tion) → region III (the smallest BH/largest BH first-order
phase transition) → region IV (no phase transition), as
shown in Fig. 7(a).
For h̃1 ≤ h̃ < h̃2 ≃ 0.63, the black hole will cross three

more regions, i.e., region I5 (smallest BH/largeBH first-order
phase transition)→ region I4 (smallest BH/large BH zeroth-
order phase transition)→ region I3 (a smallest BH/larger BH
first-order phase transition and a larger BH/large BH zeroth-
order phase transition)→ region I2 (a smallest BH/larger BH
zeroth-order phase transition and a larger BH/large BH
zeroth-order phase transition) → region III (the smallest
BH/largest BH first-order phase transition) → region IV
(no phase transition). These are shown in Fig. 7(b).
When h̃2 ≤ h̃ < h̃3 ≃ 0.76, the process becomes region

I5 (smallest BH/large BH first-order phase transition) →
region I4 (smallest BH/large BH zeroth-order phase tran-
sition) → region I3 (a smallest BH/larger BH first-order
phase transition and a larger BH/large BH zeroth-order
phase transition) → region I2 (a smallest BH/larger BH
zeroth-order phase transition and a larger BH/large BH
zeroth-order phase transition) → region I1 (the smallest
BH/largest BH first-order phase transition and two zeroth-
order phase transitions) → region III (the smallest BH/
largest BH first-order phase transition) → region IV (no
phase transition), which is shown in Fig. 7(c).

I

II

III

IV

q/h3=3.46

q/h3=1.15

q/h3=0.385

q/h3=0.128

q/h3=0.0428

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

h̃

q̃ q̃

I1

I2

I3

I4

I5

q/h3=3.46

q/h3=1.15

q/h3=0.385

q/h3=0.128

q/h3=0.0428

0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20
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FIG. 6. In the case of varying AdS radius l (the pressure P) with fixed q and h, the system moves along q̃lðh̃Þ, which is displayed for
various values of q=h3. There is always a critical point and a corresponding largest BH/smallest BH first-order phase transition.
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When h̃ ≥ h̃3 ≃ 0.76, it becomes region I4 (smallest
BH/large BH zeroth-order phase transition) → region I3 (a
smallest BH/larger BH first-order phase transition and a
larger BH/large BH zeroth-order phase transition)→ region
I2 (a smallest BH/larger BH zeroth-order phase transition
and a larger BH/large BH zeroth-order phase transition) →
region I1 (the smallest BH/largest BH first-order phase
transition and two zeroth-order phase transitions)→ region
III (the smallest BH/largest BH first-order phase transition)
→ region IV (no phase transition), as shown in Fig. 7(d).
When h̃ ≥ h̃4 ≃ 1.14, it just begins from region I3;

therefore, it is comparable to Fig. 7(d), except that the
red line before the blue line on the left is cut.

IV. CONCLUSION

We have investigated the thermodynamic behavior of
d-dimensional dyonic PM AdS black holes in the extended
phase space, which includes the conjugate pressure/volume
quantities. The black hole temperature T, charge q, horizon
radius rþ (thermodynamic volume V), AdS radius l
(pressure P), and the magnetic parameter h could be
connected by

Tl ¼ T̃ðrþ=l; q=la; h=lbÞ; ð58Þ

where a and b depend on the dimension d and the power
exponent p. In the canonical ensemble with fixed T and
q, we found that the critical behavior and phase structure
of the black hole are determined by q̃≡ q=la and
h̃≡ h=lb.
For eight-dimensional dyonic PM AdS black holes

with a power exponent 2, we identified different param-
eter configurations according to their characteristic
phase transitions in the h̃ − q̃ plane, which is shown
in Fig. 3. There are eight regions, and each region has a
different phase behavior. Then, we studied the phase
transition with fixed q̃≡ q=la and h̃≡ h=lb in Figs. 4
and 5, in which the thermal stabilities of the black holes
have been examined and it was found that all the
thermodynamically preferred phases are thermally sta-
ble. Furthermore, in Fig. 6, the variation of P was also
investigated in the h̃ − q̃ plane. There is always a critical
point as P increases from 0 to ∞ since the critical line
can extend to h̃ ¼ þ∞. Finally, we displayed the phase
structure of the black hole in the h̃ − T̃ plane with
different q̃, as plotted in Fig. 7. Unlike RN-AdS black
holes, the temperature T̃ðr̃þ; q̃; h̃Þ of dyonic PM AdS
black holes could have more than one branch for some
parameter configurations of q̃ and h̃. If we discuss them
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FIG. 7. The phase diagram in the q̃-T̃ plane for dyonic PM AdS black holes with h̃ ¼ 0.5, h̃ ¼ 0.6, h̃ ¼ 0.7, and h̃ ¼ 1. The blue line
and point represents first-order phase transition, and the red line and point represents zeroth-order transition. The black point represents
the critical point. (a) h̃ ¼ 0.5. (b) h̃ ¼ 0.6. (c) h̃ ¼ 0.7. (d) h̃ ¼ 1.
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separately, one of them (T̃1) resembles the temperature
of RN-AdS black holes, and the other two (if they exist)
resemble that of Schwarzschild-AdS black holes. This
feature results in complex phase structures and phase
behaviors.
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