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Nonthermal correction to the emission probability of particles from black holes can be obtained if the
backreaction or self-gravitational effects of the emitted particles on the black hole spacetime are taken into
consideration. These nonthermally emitted particles conserve the entropy of the black hole—i.e., the
entropy of the system of radiated particles after complete evaporation of the black hole matches the initial
entropy of the black hole. Using the nonthermal emission probability, we have determined the probability
for a black hole of mass M to be completely evaporated by a given number of particles n. This is done by
first evaluating the number of possible ways in which the black hole can be evaporated by emitting n
number of particles, and then the total number of ways in which the black hole can be evaporated. The ratio
of these two quantities gives us the desired probability. From the probability distribution, we get a
displacement relation between the most probable number of particles exhausting the black hole and the
temperature of the initial black hole. This relation resembles Wien’s displacement law for blackbody
radiation.
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I. INTRODUCTION

Unifying general relativity and quantum mechanics, two
important pillars of modern physics, has been a long sought-
after goal for physicists. However, despite considerable
efforts, a complete theory of quantum gravity remains
elusive. A relatively simpler approach to studying quantum
phenomena in gravitational fields is to treat matter fields
quantum mechanically and background spacetimes classi-
cally. This is a semiclassical approach, much like studying
atomic physics in classical electromagnetic fields instead of
using full quantum electrodynamics. An important land-
mark in this line of research is the discovery of Hawking
radiation by S.W. Hawking [1]. Hawking showed that
quantum effects of matter fields in the vicinity of black
holes lead to the creation of particle-antiparticle pairs. The
antiparticle tunnels through the event horizon, inside the
black hole, and the particle is emitted outside. Thus, black
holes act like hot bodies with temperature TBH ¼ 1

8πGM,
emitting radiation. The discovery of Hawking radiation not
only predicts a completely revolutionary phenomenon—
i.e., the emission of particles from black holes, which were
classically thought to be “regions of no return”—but it also
poses some deep questions about the nature of the interplay
between quantum mechanics and gravity. Consider a black
hole that may have been formed due to the gravitational
collapse of a star. The information about the quantum states

of its formingmatter, which has crossed the event horizon, is
not accessible to an observer outside the event horizon. But
the information is stored safely beyond the horizon (until it
reaches the singularity at the center). Now, with the
discovery of Hawking radiation, as the black hole emits
thermal radiation, it evaporates completely, leaving behind
no trace of the information about its forming matter. On the
other hand, thermal radiation does not carry any information
as it escapes the black hole. Thus, information seems to be
lost in the black hole evaporation process [2]. This loss of
information is in contradiction to the principle of “unitary
evolution” in quantum mechanics. So, Hawking radiation
presents a conflict of principles between general relativity
and quantummechanics.As a result of nonunitary evolution,
entropy is not conserved in the evaporation process [3]. In
particular, the entropy of the radiation system obtained after
complete evaporation of the black hole appears to be more
than the Bekenstein-Hawking entropy [4] of the initial black
hole (Srad ¼ 4

3
SBH). Over the past few decades, a substantial

amount of work has been done on the “information loss
paradox” and its possible resolution [5–20].
An important work by Parikh and Wilczek [21] showed

that the radiation spectrum from a black hole is not strictly
thermal if the self-gravitational effects of the emitted
particles on the black hole spacetime are taken into
consideration. It has been further shown that the evapora-
tion of black holes by the emission of nonthermal radiation
is consistent with the principle of unitary evolution of
quantum mechanics [22]. If the evolution is unitary, one
expects to get back all the information that was stored
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inside the black hole from the emitted radiation. Indeed,
Zhang et al. [23] showed that nonthermally emitted
particles share correlations between them in the form of
mutual information. These correlations carry information
out of the black hole, and one can get back the entire
information by collecting all of these particles. As a result,
entropy is conserved in the evaporation process. To show
the conservation of entropy in the black hole evaporation
process, Zhang et al. have calculated the entropy of the
system of radiation obtained after the complete evaporation
of the black hole, which matches the Bekenstein-Hawking
entropy of the initial black hole. However, this resolution of
the information loss paradox is not unanimously accepted.
As pointed out in Ref. [24], although entropy is conserved
in the nonthermal radiation process, it does not account for
the increase of entanglement entropy between the inside
and outside of the black hole during the entire period of
evaporation, which is the main essence of the information
loss paradox. Also, see Ref. [25]. Very recently, a new
resolution to the paradox has been proposed in
Refs. [19,20] which is in line with the objections raised
in Ref. [24].
However, whether or not these works resolve the para-

dox, we can still get some further useful information
regarding black hole evaporation from them. A black hole
of some given mass M may be completely evaporated by
the emission of an arbitrary number of particles. The
number of particles that are obtained after the complete
evaporation of the black hole is uncertain. Building upon
the earlier works on nonthermal radiation, we have evalu-
ated the probability that the black hole evaporates com-
pletely by emitting a given number of particles n. To do so,
first we have evaluated the number of possible ways in
which the black hole can be evaporated by emitting n
particles. Then, we have evaluated the total number of ways
in which the black hole can be evaporated. The ratio of
these two quantities gives us the desired probability. From
the probability distribution, we get a relation between the
most probable number of particles exhausting the black
hole and the temperature of the initial black hole.
The outline of this article is as follows: In Sec. II, we

briefly discuss nonthermal Hawking radiation. In particu-
lar, we discuss, following the works of Parikh [22] and
Zhang et al. [23], how nonthermal radiation is consistent
with the unitarity of quantum mechanics, and how these
emitted particles leak the information stored inside the
black hole and conserve entropy. In Sec. III, we calculate
the probability for a black hole to be completely evaporated
by a given number of particles that are emitted non-
thermally. From the probability distribution obtained, we
get a displacement relation between the most probable
number of particles exhausting the black hole and the initial
black hole temperature. Then, we try to interpret the
meaning of the entropy of the radiation system, obtained
after the complete evaporation of the black hole. Finally, we

summarize our results and conclude in Sec. IV. Throughout
the paper, we use natural units (c ¼ ℏ ¼ kB ¼ 1) unless
otherwise mentioned.

II. NONTHERMAL HAWKING RADIATION

The evolution of a black hole to a thermal state,
irrespective of its initial state, is nonunitary in nature
and does not preserve information. In the original work
[1] on Hawking radiation, Hawking considered a static
spacetime geometry for a black hole which is not perturbed
by the loss of energy of the emitted particles. Since the
spacetime geometry is not perturbed during the emission of
a particle with energy E, the mass parameterM of the black
hole spacetime remains unchanged during the emission
period of that particle. This violates the principle of energy
conservation. Parikh, Kraus, and Wilczek [21,26] consid-
ered the case of dynamic geometry to enforce energy
conservation. The dynamic nature of the geometry is due to
the varying mass parameter of the black hole spacetime.
It takes into account the backreaction of the emitted
particles on the spacetime. The calculation of the tunneling
probability through the event horizon—of a particle from
the inside of a black hole to the outside, or equivalently, of
an antiparticle from the outside to the inside—in this
dynamic geometry, results in nonthermal correction terms
to Hawking’s original calculation [21]. The modified
tunneling or emission probability of a particle with energy
E from a black hole of mass M, up to a constant factor, is
given by

ΓðE;MÞ ∼ exp

�
−8πGE

�
M −

E
2

��

¼ exp ½−4πGðM2 − ðM − EÞ2Þ�
¼ exp ½ΔSBH�; ð1Þ

where SBH ¼ 4πGM2 is the Bekenstein-Hawking entropy
of the black hole [4]. The first term in the exponent
corresponds to thermal emission, whereas the second term
gives the nonthermal correction. The constant prefactor of
the exponential term in Eq. (1) can be determined by
including higher orders of ℏ corrections [27] (quantum
corrections) to the tunneling calculation done by Parikh and
Wilczek [21].
In Ref. [21], the emission probability is estimated by

considering modes of emitted particles that propagate from
a point that is arbitrarily close to the horizon of the black
hole. Due to infinite gravitational redshift near the black
hole horizon, the modes can have an arbitrarily small
wavelength (λ → 0). However, there are indications from
many theories of quantum gravity of the existence of an
observer-independent minimum length, which is identified

with the Planck length (lP ¼
ffiffiffiffiffi
ℏG
c3

q
). Using the Planck

length cut to the wavelength of the modes (quantum gravity
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correction), the spectrum is recalculated by Arzano et al.
[28]. This calculation again gives the prefactor of Eq. (1).
However, this prefactor is quite obviously different from
Ref. [27], because two different mechanisms are used. Both
of these calculations also result in a logarithmic correction
term to the entropy of the black hole [29].

S ¼ A
4G

þ α ln
A
G
; ð2Þ

where A ¼ 16πG2M2 is the area of the event horizon of the
black hole.

A. Nonthermal radiation is consistent with the principle
of unitary evolution in quantum mechanics

In Ref. [22], it is argued that the evaporation process of a
black hole by the emission of nonthermal radiation is
unitary in nature. In quantum mechanics, the rate of a
unitary process from an initial state i to its final state f is
given by

Γði → fÞ ¼ jMfij2 × ðphase space factorÞ; ð3Þ

whereMfi is the amplitude of the process. The phase space
factor is obtained by summing over all possible final states,
which is simply the exponential of the final entropy (Sf) of
the system, and averaging over all possible initial states,
which is the exponential of the initial entropy (Si) of the
system. Therefore,

Γði → fÞ ∼ eSf

eSi
;¼ eΔS: ð4Þ

Since Eq. (1) matches the above expression, one can say
that the evaporation process is also unitary in nature.

B. Correlation between nonthermal Hawking quanta

Considering the nonthermal emission probability
[Eq. (1)], Zhang et al. [23] showed that this nonthermal
Hawking radiation can carry information out of a black
hole in the form of correlation between sequential emis-
sions of quanta. Consider the successive emission of two
particles with energies E1 and E2 from a black hole of mass
M. The emission probability of the first particle with energy
E1 is given by

ΓðE1;MÞ ¼ exp

�
−8πGE1

�
M −

E1

2

��
: ð5Þ

Now, after the emission of the first particle, the black hole’s
mass has reduced to M − E1. The emission probability of
the second particle of energy E2 from the black hole of
reduced mass is given by

ΓðE2;M − E1Þ ¼ exp

�
−8πGE2

�
M − E1 −

E2

2

��
: ð6Þ

One can see that the emission probability of the second
particle depends on the energy of the first particle. This
implies the existence of statistical correlations between the
two emissions. The joint probability of the two emissions is

ΓðE1;E2Þ ¼ ΓðE1;MÞΓðE2;M−E1Þ

¼ exp

�
−8πG

�
ME1−

E2
1

2
þME2−E1E2−

E2
2

2

��

¼ exp

�
−8πGðE1þE2Þ

�
M−

E1þE2

2

��

¼ ΓðE1þE2;MÞ; ð7Þ

where ΓðE1 þ E2;MÞ is the emission probability of a
single particle with energy E1 þ E2 from a black hole of
mass M.
The correlation function for the two emissions is defined

as [23]

χðE1; E2Þ ¼ ln

�
ΓðE1 þ E2;MÞ

ΓðE1;MÞΓðE2;MÞ
�
; ð8Þ

where the numerator is the probability of the emission of
two particles with energy E1 and E2 simultaneously, or of a
single particle with total energy E1 þ E2, from a black hole
of mass M, and the denominator is the product of the
probabilities of emission of particles of energies E1 and E2,
each occurring independently from a black hole of the same
mass. Since each particle is emitted independently, their
emission probabilities do not depend on the energy of the
other particle. Therefore,

ΓðE1;MÞ ¼ exp

�
−8πGE2

�
M −

E1

2

��
;

ΓðE2;MÞ ¼ exp

�
−8πGE2

�
M −

E2

2

��
;

and χðE1; E2Þ ¼ 8πGE1E2: ð9Þ

So, there exists a nonzero correlation between the two
emissions. Zhang et al. argued that this implies that
radiation can carry information out of the black hole in
the form of correlations between sequential emissions.
Defining the entropy of the emitted particles as [23]

SðEÞ ¼ − lnΓðEÞ; ð10Þ

we get

PROBABILITY DISTRIBUTION FOR BLACK HOLE … PHYS. REV. D 105, 124016 (2022)

124016-3



χðE1; E2Þ ¼ lnΓðE1 þ E2;MÞ − lnΓðE1;MÞ
− lnΓðE2;MÞ�

¼ SðE1Þ þ SðE2Þ − SðE1; E2Þ
¼ IðE1∶E2Þ; ð11Þ

which is simply the mutual information shared between the
two particles. So, the statistical correlation between the two
emissions is shared in the form of mutual information.

C. Entropy conservation by nonthermal radiation

Consider the following scenario: A black hole of massM
is evaporated completely by the emission of two particles
with energies E1 and E2. Therefore, E1 þ E2 ¼ M. Now,
from Eq. (10), the entropy of the first particle is

SðE1Þ ¼ − lnΓðE1;MÞ ¼ 8πGE1

�
M −

E1

2

�
; ð12Þ

and the entropy of the second particle is

SðE2jE1Þ ¼ − lnΓðE2;M − E1Þ

¼ 8πGE2

�
M − E1 −

E2

2

�
; ð13Þ

where SðE2jE1Þ is the conditional entropy of the second
particle, provided that the first particle is emitted with
energy E1. Since the emission probability of the second
particle is dependent (conditional) on the first particle,
the entropy of the second particle is also conditional.
Therefore, the total entropy of the system is

Srad ¼ SðE1Þ þ SðE2jE1Þ ¼ 4πGM2 ¼ SBH: ð14Þ

So, the total entropy of the emitted particles, after complete
evaporation of the black hole, is the same as the initial
Bekenstein-Hawking entropy of the black hole.
This holds, in general, for any number of particles

exhausting the black hole—i.e., if the black hole is
evaporated completely by the emission of n particles, then

Srad ¼ SðE1Þ þ SðE2jE1Þ þ � � � þ SðEnjE1; E2;…; Eðn−1ÞÞ
¼ 4πGM2 ¼ SBH; ð15Þ

where E1 þ E2 þ E3 þ � � � þ En ¼ M. Note that entropy
conservation holds true independent of the individual
energies of the emitted particles, and hence the sequence
of emissions also.
Zhang et al.’s work on correlation and entropy con-

servation by nonthermal Hawking radiation has also been
supported by Ref. [32]. The correlation and conservation
of entropy has also been studied for the case where the
quantum gravity correction is taken [33,34]. It has been
shown that for quantum-gravity-corrected emission

probability, the logarithmic corrected entropy of the black
hole is conserved only when there is a black hole remnant.
That means that the black hole cannot be evaporated
completely if the quantum gravity correction is taken into
account.

III. PROBABILITY DISTRIBUTION

A. Probability of complete black hole evaporation
by emission of n particles

We have seen that, for nonthermal emissions, entropy is
conserved irrespective of the number of particles emitted
and the energies of the individual particles. However, it is
not known for certain how many particles will be emitted
before the black hole is completely evaporated. That is, the
black hole can be completely evaporated by emitting a
single particle, or infinitely many particles. We wish to
determine the probability (qn) that a black hole of some
given mass M is completely evaporated by the emission of
a given number of particles n. For this, first we have to
know in how many ways (Ωn) the black hole evaporates
completely by the emission of n particles. We will clarify
what these different ways correspond to in a moment. Also,
we have to know the total number of ways (Ωtotal) in which
the black hole evaporates, where

Ωtotal ¼
X∞
n¼1

Ωn: ð16Þ

Then, we can define the probability as

qn ¼
Ωn

Ωtotal
: ð17Þ

To determine Ωn, we consider the system of n emitted
particles of total energy M (mass of the initial black hole),
obtained after complete evaporation of the black hole. If
this system can be obtained in Ωn different possible ways,
we may say that Ωn is the number of microstates of the
system corresponding to the macrostate defined by total
energy M. Furthermore, since entropy is conserved irre-
spective of the individual energies and the number of
emitted particles, the total entropy of this system is SBH for
all the Ωn possible microstates. Therefore, the macrostate
of this system can be defined by macroscopic properties
like total energy, total entropy, and the number of particles
(M; SBH; n). Note that we do not have a well-defined
volume of the system.
Having defined the macrostate of the system, now we

need to define precisely what we mean by the microstates
of the system—or, in other words, what the different
possible ways of black hole evaporation by n particles
correspond to. Since the total energy of the system is a
macroscopic property which is same for all the microstates,
one may consider that different possible partitions of the
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total energy among the individual particles form the
microstates of the system. This is typical for microcanon-
ical systems. But the system that we have considered here is
different, in the sense that (i) the volume of the system does
not define the macrostate, and (ii) the entropy of the system
defines the macrostate of the system. Furthermore, one can
show that the conservation of entropy naturally leads to the
conservation of energy in the evaporation process. That is,

Xn
i¼1

Si ¼ SBH ⇒
Xn
i¼1

Ei ¼ M; ð18Þ

where Si and Ei are the entropy and energy of the ith
emitted particle, respectively. Here, by conservation of
energy we mean that the sum of the individual energies of
the emitted particles equals the mass of the initial black
hole. However, the reverse cannot be shown. So, conser-
vation of entropy is more fundamental for our system, and
we are essentially left with only two independent macro-
scopic properties ðSBH; nÞ that define the macrostate of the
system. For this reason, we define the microstates of the
system to be the different possible partitions of the total
entropy SBH among the individual particles. That is, every
possible set of individual entropies,

�
Si; i ¼ 1; 2;…; n

����
Xn
i¼1

Si ¼ SBH

	
; ð19Þ

forms the microstates of the system.
Now, we need to evaluate the number of possible

partitions of the total entropy SBH to get Ωn. This can
be done as follows. Consider the entropy space formed by
entropy of the individual particles. Then, the equation

Xn
i¼1

Si ¼ SBH ð20Þ

defines an (n − 1)-dimensional hyperplane in the n-dimen-
sional entropy space. Moreover, since the entropy of any
emitted particle is always positive [see Eq. (10)], the micro-
states that we define lie on the region of this hyperplane
which is bounded by the hyperplanes Si¼0; ∀i¼1;2;…;n.
The entropy space and the microstate hyperplane for three-
particle evaporation of the black hole are shown in Fig. 1.
Now, the number of microstates can be given by

Number of microstatesðΩnÞ

¼ Surface area of the microstate hyperplane
Area of a unit cell on the microstate hyperplane

¼ Sn−1

An−1
; ð21Þ

where the unit cell effectively contains a single microstate.
The surface area of the (n − 1)-dimensional microstate

hyperplane defined by Eq. (20) is given by (see AppendixA)

Sn−1 ¼
ffiffiffi
n

p Sn−1BH

ðn − 1Þ! ; ð22Þ

and the area of the unit cell on the microstate hyperplane is
(see Appendix A)

An−1 ¼
ffiffiffi
n

p
: ð23Þ

Therefore,

Ωn ¼
ffiffiffi
n

p Sn−1BH
ðn−1Þ!ffiffiffi
n

p ¼ Sn−1BH

ðn − 1Þ! ¼
ð4πGM2Þn−1
ðn − 1Þ! : ð24Þ

This gives us the number of different possible ways in which
the black hole can be evaporated by the emission of n
particles. Now, the total number of ways in which the black
hole can evaporate is

Ωtotal ¼
X∞
n¼1

Ωn ¼
X∞
n¼1

ð4πGM2Þn−1
ðn − 1Þ! ¼ e4πGM

2

: ð25Þ

Therefore, the probability that the black hole is com-
pletely evaporated by the emission of n particles is given by

qn ¼
Ωn

Ωtotal
¼ ð4πGM2Þn−1

ðn − 1Þ! e−4πGM
2

: ð26Þ

It is easy to verify that the probabilities add up to unity:

X∞
n¼1

qn ¼ e−4πGM
2
X∞
n¼1

ð4πGM2Þn−1
ðn−1Þ! ¼ e−4πGM

2

×e4πGM
2 ¼ 1:

ð27Þ

That is, the probabilities qn are normalized.

FIG. 1. Three-dimensional entropy space for three-particle
evaporation of the black hole. The individual entropies of the
emitted particles form the axes in the space. The shaded region is
the microstate hyperplane.
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B. Displacement relation

If we plot the probabilities qn as a function of the
numbers of emitted particles n from Eq. (26), we get the
probability distribution for the black hole to be evaporated
completely by the emission of different possible numbers
of particles. The probability distribution is parametrized by
the entropy of the black hole (SBH).
From Fig. 3, we see that for a black hole of given mass,

there exists a certain number of particles, nmax, for which
the probability distribution peaks. That is, the black hole is
most likely to evaporate completely by the emission of nmax
particles. We further see that, as the mass, and hence the
entropy, of the black hole increases, the peak of the
distribution decreases and shifts towards higher values of
nmax. For a black hole of given mass, nmax has the nearest
integer value between SBH and SBH þ 1 (see Appendix B):

SBH ≤ nmax ≤ SBH þ 1; ð28Þ

i:e; nmax ≈ SBH ¼ 4πGM2 ¼ 1

16πGT2
BH

; ð29Þ

where TBH is the Hawking temperature of the initial black
hole. In other words,

nmaxT2
BH ¼ 1

16πG
¼ constant: ð30Þ

Equation (30) relates the most probable number of
emitted particles with the temperature of the initial black
hole. This relation resembles Wien’s displacement law for
blackbody radiation. According to Wien’s displacement
law, the wavelength of blackbody radiation for which the
spectral energy density is maximum, λmax, is inversely
proportional to the temperature of the blackbody,

λmaxT ¼ 2.898 × 10−3 mK ðnot in natural unitsÞ
¼ constant: ð31Þ

C. Entropy of the system

We have seen how the conservation of entropy by the
nonthermal emission of particles from black holes plays an
important role in determining the possible number of ways
in which a black hole can evaporate completely by emitting
a given number of particles. Before concluding, let us delve
a little more into the entropy of the radiation system, or the
system of emitted particles after complete evaporation of
the black hole. In information theory, the entropy of a
system is considered as a “measure of uncertainty” of the
system. If a system can exist in multiple possible states,
then there is an uncertainty about the state in which the
system is. For each possible state, there is a probability
which measures the likeliness of the system to exist in that
state. Given a probability distribution for the system, we
can quantify the uncertainty in terms of Shannon entropy as

S ¼ −
X
i

pi lnpi; ð32Þ

where pi is the probability of the ith state of the system, and
the sum is over all possible states.
In our case, the system of particles obtained after the

complete evaporation of the black hole has twofold
uncertainties: (i) how many particles have been emitted
is not predetermined, and (ii) if it is given that the number
of emitted particles is known, the particular microstate in
which the black hole evaporated is not known. Both of
these uncertainties are there in the total entropy of the
radiation system. This is illustrated below.
The probability that the black hole will emit n particles

before complete evaporation is given by Eq. (26). So, the
first uncertainty is represented by a form of entropy denoted
by SðnumberÞ as

FIG. 2. Unit cell on the microstate hyperplane is shown by the
blue shaded region. It projects a unit square (two-dimensional
cube) on the space spanned by S2 and S3 (red shaded region).
The area of the unit cell is A2 ¼

ffiffiffi
3

p
.

FIG. 3. Probability distribution for black holes of different
masses to be evaporated by the emission of different possible
numbers of particles.
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SðnumberÞ ¼ −
X∞
n¼1

qn ln qn

¼
X∞
n¼1

Ωn

Ωtotal
lnΩtotal −

X∞
n¼1

Ωn

Ωtotal
lnΩn

¼ lnΩtotal

Ωtotal

X∞
n¼1

Ωn −
1

Ωtotal

X∞
n¼1

Ωn lnΩn

¼ lnΩtotal −
P∞

n¼1Ωn lnΩnP∞
n¼1 Ωn

: ð33Þ

Now, consider that the black hole is evaporated by the
emission of n particles. The first particle is emitted with
energy E1, the second particle with energy E2, and the nth
particle with energy En. The joint probability for this
sequence of emission is

P¼ ΓðE1;MÞ× ΓðE2;M −E1Þ× � � �× Γ
�
En;M −

Xn−1
j¼1

Ej

�

¼ exp ð−4πGM2Þ: ð34Þ
It is readily seen that this probability holds true for any
value of n, and for any partition of the total energy M
among the emitted particles. That is to say, allΩtotal ways of
black hole evaporation occur with this same probability.
Since all Ωtotal possibilities occur with equal probability, it
easily follows that

P ¼ 1

Ωtotal
¼ e−4πGM

2

; ð35Þ

reconfirming Eq. (25). Again, the probability of occurrence
of one of the Ωtotal possibilities of black hole evaporation
can also be written as

P ¼ Probability that the black hole has emitted

n particles × Probability of occurrence of

one among Ωn microstates

¼ qn × PαðmicrostatejnumberÞ; ð36Þ

where PαðmicrostatejnumberÞ; α ¼ 1; 2;…;Ωn is the con-
ditional probability of the occurrence of the αth microstate
among the Ωn possible microstates provided that the black
hole has been evaporated by the emission of n particles
[35]. Therefore,

1

Ωtotal
¼ Ωn

Ωtotal
× PαðmicrostatejnumberÞ;

PαðmicrostatejnumberÞ ¼ 1

Ωn
: ð37Þ

The second uncertainty about the specific microstate,
given the knowledge of the number of particles emitted, is

represented by another form of entropy, denoted by
SðmicrostatejnumberÞ. For the emission of n particles, this
entropy is expressed as

SnðmicrostatejnumberÞ ¼ −
XΩn

α¼1

PαðmicrostatejnumberÞ

× ln PαðmicrostatejnumberÞ

¼
XΩn

α¼1

1

Ωn
lnΩn

¼ ln Ωn: ð38Þ

Finally, the total uncertainty about the particular way
among the Ωtotal possibilities in which the black hole has
evaporated encompasses both of the uncertainties that we
discussed earlier. This total uncertainty is represented by
the total entropy of the system as

Srad ¼−
XΩtotal

k¼1

1

Ωtotal
ln

1

Ωtotal
¼ lnΩtotal ¼ 4πGM2 ¼ SBH: ð39Þ

So,

SðnumberÞ ¼ SBH −
P∞

n¼1 ΩnSnðmicrostatejnumberÞP∞
n¼1 Ωn

;

SBH ¼ SðnumberÞ þ SavgðmicrostatejnumberÞ;
¼ Srad; ð40Þ

where SavgðmicrostatejnumberÞ is the conditional entropy
SðmicrostatejnumberÞ averaged over all possible numbers
of emitted particles. So, we see that the total entropy of the
system (Srad ¼ SBH) contains two parts:

(i) Entropy due to uncertainty in the number of particles
emitted (SðnumberÞ).

(ii) Average entropy due to uncertainty in the micro-
states of a given number of emitted particles
(SavgðmicrostatejnumberÞ).

IV. SUMMARY AND CONCLUSIONS

We have revisited the process of nonthermal radiation
from black holes. The nonthermal correction to Hawking’s
original calculations of black hole radiation comes from
taking into account the backreaction of the emitted particles
on the black hole spacetime. Entropy is conserved during
the evaporation process of black holes due to nonthermal
radiation, irrespective of the number of particles emitted. In
this work, we have tried to answer the following question:
What is the probability that a black hole of some given
mass emits a certain number of particles before being
completely evaporated? Conservation of entropy during the
evaporation process plays a crucial role in determining the

PROBABILITY DISTRIBUTION FOR BLACK HOLE … PHYS. REV. D 105, 124016 (2022)

124016-7



probability. We have found that a black hole of mass M

evaporates completely by emitting n particles in Ωn ¼
ð4πGM2Þn−1

ðn−1Þ! different possible ways. These different possible

ways correspond to different possible partitionings of the
Bekenstein-Hawking entropy of the initial black hole
among the emitted particles. If we let the number of
emitted particles be arbitrary, then there are in total
Ωtotal ¼ e−4πGM

2

ways in which the black hole can evapo-
rate completely. From these, we find the probability of the
emission of n particles before complete black hole evapo-

ration to be qn ¼ ð4πGM2Þn−1
ðn−1Þ! e4πGM

2

.

From the probability distribution obtained for different
numbers of emitted particles, we find that for black holes of
mass M, there is a most probable number of emitted
particles, nmax ¼ 4πGM2. That is, the black hole is most
likely to evaporate completely by emitting nmax particles.
This implies that, for more massive black holes, a larger
number of particles is expected to be emitted before their
complete evaporation. We have expressed this conclusion
in the form of a displacement relation between the most
probable number of particles emitted and the temperature
of the initial black hole, nmaxT2

BH ¼ 1
16πG ¼ constant. This

displacement relation resembles Wien’s displacement law
for blackbody radiation.
Finally, we have examined the entropy of the system of

radiated particles obtained after the complete evaporation
of a black hole from a different perspective. As mentioned
earlier, this entropy matches the entropy of the initial black
hole. When the entropy is interpreted as a measure of
uncertainty (or, equivalently, hidden information), then we
see that the total entropy of the system contains two parts.
One part contains the information about the number of the
particles in the system (the number of particles emitted
before the complete evaporation of the black hole).
The other part contains the information about the particular
way in which the black hole has emitted the given number
of particles. This interpretation may give a new meaning to
black hole entropy.
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APPENDIX A: SURFACE AREA OF THE
MICROSTATE HYPERPLANE AND
AREA OF A UNIT CELL IN THE
MICROSTATE HYPERPLANE

1. Surface area of the microstate hyperplane

In this section, we will calculate the surface area of an
(n − 1)-dimensional hyperplane given by the equation

Xn
i¼1

xi ¼ C ðA1Þ

in the positive sector of the coordinates (xi ≥ 0;
∀ i ¼ 1; 2;…; n).
But first, let us calculate the volume of the region

bounded by this plane and the planes xi ¼ 0;
∀ i ¼ 1; 2;…; n. The n-dimensional volume is given by

Vn ¼
Z

C

x1¼0

Z
C−x1

x2¼0

� � �
Z

C−
P

n−1
i¼1

xi

xn¼0

Yn
i¼1

dxi

¼
Z

C

x1¼0

� � �
Z

C−
P

n−2
i¼1

xi

xn−1¼0

�
C −

Xn−1
i¼1

xi

�Yn−1
i¼1

dxi:

Let

C −
Xn−2
i¼1

xi ¼ α: ðA2Þ

Therefore,

Vn ¼
Z

C

x1¼0

� � �
Z

α

xn−1¼0

ðα − xn−1Þ
Yn−1
i¼1

dxi

¼ 1

2

Z
C

x1¼0

� � �
Z

C−
P

n−3
i¼1

xi

xn−2¼0

�
C −

Xn−2
i¼1

xi

�2Yn−2
i¼1

dxi:

Again, let

C −
Xn−3
i¼1

xi ¼ β: ðA3Þ

Therefore,

Vn ¼
Z

C

x1¼0

� � �
Z

β

xn−2¼0

ðβ − xn−2Þ2
Yn−2
i¼1

dxi

¼ 1

2 × 3

Z
C

x1¼0

� � �
Z

C−
P

n−4
i¼1

xi

xn−3¼0

�
C −

Xn−3
i¼1

xi

�
3 Yn−3
i¼1

dxi:

Let

C −
Xn−4
i¼1

xi ¼ δ: ðA4Þ

Therefore,

Vn ¼
Z

C

x1¼0

� � �
Z

δ

xn−3¼0

ðδ − xn−3Þ3
Yn−3
i¼1

dxi

¼ 1

4 × 3!

Z
C

x1¼0

� � �
Z

C−
P

n−5
i¼1

xi

xn−4¼0

�
C −

Xn−4
i¼1

xi

�
4Yn−4
i¼1

dxi:
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Proceeding in similar way, we get

Vn ¼
1

ðn − 2Þ!
Z

C

x1¼0

Z
C−x1

x2¼0

ðC − x1 − x2Þn−2dx2dx1

¼ 1

ðn − 1Þ!
Z

C

x1¼0

ðC − x1Þn−1dx1

¼ 1

n!
Cn: ðA5Þ

Now, we turn back to calculate the surface area of the
hyperplane represented by Eq. (A1). In general, the surface
area of any (n − 1)-dimensional surface embedded in n
dimensions, represented by

xn ¼ ϕðx1; x2;…; xn−1Þ; ðA6Þ

can be written as

Sn−1 ¼
Z
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xn−1
i¼1

�
∂ϕ

∂xi

�
2

vuut Yn−1
i¼1

dxi; ðA7Þ

where D is the projection of the hyperplane on the space
spanned by (x1; x2;…; xn−1).
For our case, the equation of the hyperplane can be

written as

xn ¼ ϕ ¼ C −
Xn−1
i¼1

xi: ðA8Þ

So,

∂ϕ

∂xi
¼ −1; ∀ i ¼ 1; 2;…; n − 1:

Therefore,

Sn−1 ¼
Z
D

ffiffiffi
n

p Yn−1
i¼1

dxi: ðA9Þ

Here, the projected region D on the space spanned by
(x1; x2;…; xn−1) is boundedby (n − 2)-dimensional surfaces
represented by the equations xi ¼ 0; ∀ i ¼ 1; 2;…; n − 1
(since we are only concerned about the positive sector of the
space), and C −

P
n−1
i¼1 xi ¼ 0. So, the term

R
D

Q
n−1
i¼1 dxi is

simply thevolume of the (n − 1)-dimensional space bounded
by the said (n − 2)-dimensional surfaces. Now, the surface
area can be written as

Sn−1 ¼
ffiffiffi
n

p Z
C

x1¼0

Z
C−x1

x2¼0

� � �
Z

C−
P

n−2
i¼1

xi

xn−1¼0

Yn−1
i¼1

dxi

¼ ffiffiffi
n

p
Vn−1 ¼

ffiffiffi
n

p Cn−1

ðn − 1Þ! : ðA10Þ

This gives the surface area of the hyperplane. The area
of the microstate plane, whose equation is given byP

n
i¼1 Si ¼ SBH, can be calculated using this formula in a

straightforward way.

2. Area of the unit cell

The area of a unit cell in the microstate hyperplane can
be calculated using Eq. (A9), where the region D is the
projection of the unit cell on the (n − 1)-dimensional space
spanned by (S1; S2;…; Sn−1). The projected regionD forms
a (n − 1)-dimensional unit cube, then the area of the unit
cell in the microstate hyperplane is given by

An−1 ¼
ffiffiffi
n

p
: ðA11Þ

The unit cell in the microstate hyperplane and the projected
region D are shown in Fig. 2 for the case when the black
hole is evaporated by three particles.

APPENDIX B: VALUE OF THE MOST
PROBABLE NUMBER OF EMITTED

PARTICLES (nmax) FROM THE
DISTRIBUTION FUNCTION

In this section, we will evaluate the most probable
number of emitted particles (nmax) analytically from the
probability distribution function. We have the probability
distribution function as

qn ¼ e−SBH
Sn−1BH

ðn − 1Þ! : ðB1Þ

For the most probable number of emitted particles,

qnmax
¼ maximum:

Now, qn is a function of discrete variable. To obtain the
maxima for this function, the following two conditions
have to be satisfied simultaneously:

qðnmaxþ1Þ − qðnmaxÞ ≤ 0;

qðnmaxÞ − qðnmax−1Þ ≥ 0: ðB2Þ

Therefore,

e−SBH
�
SðnmaxÞ
BH

ðnmaxÞ!
−

Sðnmax−1Þ
BH

ðnmax − 1Þ!
�
≤ 0

SðnmaxÞ
BH

ðnmaxÞ!
−
nmaxS

ðnmax−1Þ
BH

ðnmaxÞ!
≤ 0

SBH ≤ nmax; ðB3Þ

and
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e−SBH
�

Sðnmax−1Þ
BH

ðnmax − 1Þ! −
Sðnmax−2Þ
BH

ðnmax − 2Þ!
�
≥ 0

Sðnmax−1Þ
BH

ðnmax − 1Þ! −
ðnmax − 1ÞSðnmax−2Þ

BH

ðnmax − 1Þ! ≥ 0

SBH þ 1 ≥ nmax: ðB4Þ

So, for the given probability distribution, nmax has the
integer value in the range

SBH ≤ nmax ≤ SBH þ 1: ðB5Þ
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