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We find two conditions for superradiant instability of Kerr-Newman black holes under a charged massive
scalar perturbation by analyzing the asymptotic scalar potential and far-region wave function. Actually,
they correspond to the condition for getting a trapping well. Also, we obtain the conditions for superradiant
stability of Kerr-Newman black holes which states that there is no trapping well. The analysis is applied to
Kerr black holes to find a condition for superradiant instability.
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I. INTRODUCTION

If a light boson exists with proper mass, gravitational
bound states are formed around rotating charged black
holes. These bound states could continuously extract
electromagnetic or rotational energy from black holes
[1]. This is the superradiance phenomenon in black holes
[2]. The existence of superradiant modes can be converted
into an instability of the black hole background if a mirror
mechanism to trap these modes is installed near the black
hole. This is called superradiant instability. If a scalar has a
mass μ, its mass would act as a reflecting mirror [3].
The superradiant instability of the Kerr black hole was
found for Mμ ≫ 1 [4], Mμ ≪ 1 [5], and Mμ ≤ 0.5 [6]. A
scalar potential including a trapping well is essential for
generating a quasibound state [1,4,7] whose wave function
is peaked far outside the ergoregion. If there is no trapping
well in the potential, it may correspond to superradiant
stability with a bound state.
In a Kerr-Newman black hole (KNBH) with mass M,

charge Q, and angular momentum J, the superradiant
instability condition for a charged massive scalar with
mass μ and charge q was first obtained as qQ < μM which
may be a condition for a trapping well [8]. However, qQ <
μM is not satisfied simultaneously if one imposes the
superradiance condition (ω < ωc with ωc ¼ mΩH þ qΦH)
and thus, it is a condition for bound states [9]. In other
words, the condition of qQ < μM corresponds to the
Newton-Coulomb requirement for the gravitational force
to exceed the electrostatic force. Also, it is noted that their
effective potential Veff is not a correct form. Scalar clouds
with ω ¼ ωc and ω < μ were obtained in Refs. [10,11].
The absorption cross section was recently computed to give
a negative one for corotating spherical waves [12].

On the other hand, there was an approach to analyzing
superradiant instability based on the scalar potentials [13].
We stress that the appearance/disappearance of a trapping
well is a decisive condition for superradiant instability/
stability. Recently, it was shown that the superradiant stability
ofKNBHsunder a chargedmassive scalar perturbation can be
achieved if qQ > μM and r−=rþ ≤ 1=3 are satisfied [14], in
addition to ω < ωc and the bound state condition (ω < μ).
However, their potential based on the analysis is incorrect
because Ψlm ¼ ffiffiffiffi

Δ
p

Rlm is used and a tortoise coordinate
defined by dr� ¼ ðr2 þ a2Þdr=Δ is not used [15]. So, it
suggests that qQ > μM is not a condition for superradiant
stability. The superradiant stability of a charged massive
scalar based on a desirable potential was discussed in the
KNBH background [16].
In this work, we wish to find two conditions for getting a

trapping well of a KNBH under a charged massive scalar
perturbation by analyzing the asymptotic scalar potential
VaaKNðrÞ and far-region wave functionU½p; s; cr�. They are
given by V 0

aaKNðrÞ > 0ðMμ2 > qQωÞ and U0½p; s; cr� > 0
ðp < 0Þ. In addition, the conditions for no trapping well are
V 0
aaKNðrÞ < 0 ðMμ2 < qQωÞ andU0½p; s; cr� < 0 ðp > 0Þ.

We apply the same analysis to a Kerr black hole under a
massive scalar propagation to find the condition for a
trapping well.

II. POTENTIALS AROUND KNBHs

Let us introduce the Boyer-Lindquist coordinates to
represent a KNBH with mass M, charge Q, and angular
momentum J

ds2KN ¼ ḡμνdxμdxν

¼ −
Δ
ρ2

ðdt − asin2θdϕÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ
ρ2

½ðr2 þ a2Þdϕ − adt�2 ð1Þ
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with

Δ ¼ r2 − 2Mrþ a2 þQ2; ρ2 ¼ r2 þ a2cos2θ;

and a ¼ J
M

: ð2Þ

We choose the electromagnetic potential as

Āμ ¼
Qr
ρ2

ð−1; 0; 0; asin2θÞ: ð3Þ

The outer and inner horizons are obtained from Δ ¼ ðr −
rþÞðr − r−Þ ¼ 0 (ḡrr ¼ 0) as

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
: ð4Þ

One describes a charged massive scalar perturbation Φ on
the background of KNBHs by adapting the perturbed scalar
equation

ð∇̄μ − iqĀμÞð∇̄μ − iqĀμÞ�Φ − μ2Φ ¼ 0: ð5Þ

Considering the static and axisymmetric background (1), it
is plausible to separate the scalar perturbation into modes

Φðt; r; θ;ϕÞ ¼ Σlme−iωtþimϕSlmðθÞRlmðrÞ; ð6Þ

where SlmðθÞ are the spheroidal harmonics with −m ≤
l ≤ m and RlmðrÞ describes the radial part of the wave
function. Substituting Eq. (6) into Eq. (5), we have the
angular equation for SlmðθÞ and the Teukolsky equation
as [10]

1

sin θ
∂θðsin θ∂θSlmðθÞÞ

þ
�
λlm þ a2ðμ2 − ω2Þsin2θ − m2

sin2θ

�
SlmðθÞ ¼ 0; ð7Þ

Δ∂rðΔ∂rRlmðrÞÞ þUðrÞRlmðrÞ ¼ 0; ð8Þ

where

UðrÞ ¼ ½ωðr2 þ a2Þ − am − qQr�2
þ Δ½2amω − μ2ðr2 þ a2Þ − λlm�: ð9Þ

We note that Eq. (8) could be used directly for computing
the absorption cross section, quasinormal modes of the
scalar, and scalar clouds. At this stage, we introduce the
tortoise coordinate r� defined by dr� ¼ r2þa2

Δ dr to derive
the Schrödinger-type equation. In this case, an interesting
region of r ∈ ½rþ;∞Þ could be mapped into the whole
region of r� ∈ ð−∞;∞Þ. Then, the radial equation (8) takes
the Schrödinger form when setting Ψlm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
Rlm

d2Ψlmðr�Þ
dr2�

þ ½ω2 − VKNðrÞ�Ψlmðr�Þ ¼ 0; ð10Þ

where the potential VKNðrÞ is found to be [11]

VKNðrÞ ¼ ω2 −
3Δ2r2

ða2 þ r2Þ4 þ
Δ½Δþ 2rðr −MÞ�

ða2 þ r2Þ3

þ Δμ2

a2 þ r2
−
�
ω −

am
a2 þ r2

−
qQr

a2 þ r2

�
2

−
Δ

ða2 þ r2Þ2 ½2amω − λlm�: ð11Þ

Replacing λlm by λ̃lm þ a2ðω2 − μ2Þ with λ̃lm ¼
lðlþ 1Þ þ � � �, one finds a familiar angular equation

1

sin θ
∂θðsin θ∂θSlmðθÞÞ

þ
�
λ̃lm þ a2ðω2 − μ2Þcos2θ − m2

sin2θ

�
SlmðθÞ ¼ 0: ð12Þ

Before we proceed, we would like to mention the super-
radiant scattering of the scalar of the KNBHs. We find two
limits such that VKNðr → ∞Þ → μ2 and VKNðr → rþÞ →
ω2 − ðω − ωcÞ2. In this case, we have plane waves as
scattering waves [2]

Ψlm ∼ e−i
ffiffiffiffiffiffiffiffiffiffi
ω2−μ2

p
r� ð←Þ þReþi

ffiffiffiffiffiffiffiffiffiffi
ω2−μ2

p
r�ð→Þ;

r� → þ∞ðr → ∞Þ; ð13Þ

Ψlm ∼ T e−iðω−ωcÞr� ð←Þ; r� → −∞ðr → rþÞ ð14Þ

where T ðRÞ are the transmission (reflection) amplitudes.
The Wronskian WðΨ;Ψ�Þ condition of i d

dr�
WðΨ;Ψ�Þ ¼ 0

leads to

jRj2 ¼ 1 −
ω − ωcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

p jT j2; ð15Þ

which implies that outgoing waves withω > μ propagate to
infinity and superradiant scattering occurs (jRj2 > jI j2)
whenever the superradiance condition is satisfied

ω < ωc: ð16Þ

Curiously, superradiance is associated with having a
negative absorption cross section [12]. For a KNBH, the
total absorption cross section becomes negative for corotat-
ing spherical waves at low frequencies.
Now, we wish to briefly describe superradiant instability.

The two boundary conditions imply an exponentially
decaying wave (bound state) away from the trapping well
and a purely outgoing wave (superradiance) near the outer
horizon under Eq. (16):
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Ψ ∼ e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r; r� → ∞ðr → ∞Þ; ð17Þ

Ψ ∼ e−iðω−ωcÞr� ; r� → −∞ðr → rþÞ: ð18Þ

From Eq. (17), one needs the bound state condition to
obtain an exponentially decaying mode

ω < μ: ð19Þ
Furthermore, superradiant instability/stability is determined
by the shape of the potential, in addition to Eqs. (16) and
(19). Importantly, a key condition for superradiant insta-
bility is to include a positive trapping well in the potential.
If there is no trapping well in the potential, it implies
superradiant stability.
To find out the condition of a trapping well, we have to

consider the potential VaKNðrÞ obtained when expanding
VKNðrÞ in the far region

VaKNðrÞ ¼ μ2 −
2ðMμ2 − qQωÞ

r
þ λlm þQ2ðμ2 − q2Þ

r2
:

ð20Þ

Its first derivative is

V 0
aKNðrÞ ¼

2ðMμ2 − qQωÞ
r2

−
2½λlm þQ2ðμ2 − q2Þ�

r3
; ð21Þ

where the mass term μ2 disappeared. We note that there are
no restrictions on parameters in deriving VaKNðrÞ. Here,
one is tempted to say that the condition for a trap-
ping well [no trapping well] is given by V 0

aKNðrÞ > 0

[V 0
aKNðrÞ < 0]. Nevertheless, it is difficult to find any

analytic condition from V 0
aKNðrÞ > 0 ðV0

aKNðrÞ < 0Þ. To
this end, we consider the asymptotic potential VaaKNðrÞ
obtained when expanding VKNðrÞ at r ¼ ∞ and its first
derivative

VaaKNðrÞ ¼ μ2 −
2ðMμ2 − qQωÞ

r
;

V 0
aaKNðrÞ ¼

2ðMμ2 − qQωÞ
r2

: ð22Þ

Here, one requires V 0
aaKNðrÞ > 0 (Mμ2 > qQω) for a

trapping well, whereas V 0
aaKNðrÞ > 0 ðMμ2 < qQωÞ is

required for no trapping well. However, this is not a
sufficient condition to get a trapping well. In the next
section, we will find the other condition by analyzing the
far-region scalar function. The other condition for a
trapping well (no trapping well) will be given by
U0½p; s; cr� > 0 ðU0½p; s; cr� < 0Þ where U½p; s; cr� is
the confluent hypergeometric function.
At this stage, we display two potentials: one (left panel of

Fig. 1) includes a trapping well and the other (right panel of

FIG. 1. Left: potential with trapping well VKNðrÞ, its far-region VaKNðrÞ, and asymptotic potential VaaKNðrÞ as functions of r ∈
½rþ ¼ 1.06; 100� with M ¼ 1, Q ¼ 0.01, ω ¼ 3.85, a ¼ 0.998, m ¼ 13, q ¼ 0.2, λlm ¼ 180, and μ ¼ 4. VKNðrÞ has a trapping well
located at r ¼ 9.61. We check ω < ωc ð¼ 6.11Þ and ω < μ as two conditions for superradiant instability. Right: potential without
trapping well VKNðrÞ as a function of r ∈ ½rþ ¼ 1.741; 100� with M ¼ 1, Q ¼ 0.6, ω ¼ 0.02, a ¼ 0.3, m ¼ 1, q ¼ 0.1, λlm ¼ 12, and
μ ¼ 0.05. We check the two conditions ω < ωcð¼ 0.13Þ and ω < μ.

FIG. 2. Left: potential with trapping well VKNðrÞ, its far-region
VaKNðrÞ, and asymptotic potential VaaKNðrÞ as functions of r ∈
½rþ ¼ 1.39; 100� with M ¼ 1, Q ¼ 0.01, ω ¼ 2.95, a ¼ 0.9,
m ¼ 13, q ¼ 20, λlm ¼ 180, and μ ¼ 3. Here, we have q > μ,
which shows a feature of KNBH. VKNðrÞ has a trapping well
located at r ¼ 19.3. We check that the two conditions ω < ωcð¼
4.38Þ and ω < μ are satisfied for superradiant instability.

CONDITIONS FOR SUPERRADIANT INSTABILITY OF THE … PHYS. REV. D 105, 124015 (2022)

124015-3



Fig. 1) does not include a trapping well, but it matches up
with Mμ2 > qQω. Figure 2 indicates a potential with a
trapping well for q > μ and Mμ2 > qQω, which shows
a feature of a charged massive scalar propagating around
the KNBH. It is worth noting that all have V 0

aaKNðrÞ > 0.
One needs to find the other condition to have no trap-
ping well.
Finally, we describe two conditions for superradiant

instability and stability under a charged massive scalar
propagating around the KNBHs:

(i) Superradiant instability → ω < ωc and ω < μwith a
positive trapping well.

(ii) Superradiant stability → ω < ωc and ω < μ without
a positive trapping well.

III. CONDITION FOR TRAPPING WELL

One needs to observe far-region scalar functions to
distinguish between potential with trapping well and
potential without trapping well. For this purpose, we wish
to derive a scalar equation in the far region.
In the far region where one takes r� ∼ r, we obtain an

equation from Eqs. (10) and (20) as

�
d2

dr2
þ ω2 − VaKNðrÞ

�
ΨlmðrÞ ¼ 0: ð23Þ

The above equation could be rewritten as

�
d2

dr2
− A2 þ B

r
−
C
r2

�
ΨlmðrÞ ¼ 0; ð24Þ

where the three coefficients are given by

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
; B ¼ 2ðMμ2 − qQωÞ;

C ¼ λlm þQ2ðμ2 − q2Þ: ð25Þ

The solution is given exactly by the Whittaker function
W½p; s; cr� and the confluent hypergeometric function
U½p; s; cr� as

ΨlmðrÞ ¼ c1W
�
B
2A

; k; 2Ar
�

ð26Þ

¼ c1e−Arð2ArÞkþ1
2U

�
kþ 1

2
−

B
2A

; 1þ 2k; 2Ar

�
; ð27Þ

where

k ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4C

p
: ð28Þ

Here, we find a bound state e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r in Eq. (17). Mμ2 >

qQω ðMμ2 < qQωÞ corresponds to B > 0 ðB < 0Þ. In the
asymptotic region, one has an asymptotic wave function

ΨA
lmðrÞ ∼ e−

ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
r
�Mμ2−qQωffiffiffiffiffiffiffiffi

μ2−ω2
p

; ð29Þ

which always leads to zero as r → ∞ for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
> 0.

Let us observe a radial mode ΨlmðrÞ for a trapping well
(see left panel of Fig. 1), implying superradiant instability.
As is shown in the left panel of Fig. 3, Eq. (27) shows a
quasibound state whose wave function is a peak located far
from the outer horizon. A similar picture is found in the left
panel of Fig. 4 which is based on Fig. 2 with q > μ. This
case indicates a feature of a charged massive scalar
propagating around the KNBH.
In contrast, we consider a radial mode for a potential

without a trapping well [shown in the right panel of Fig. 1
with V 0

aaKN > 0 ðMμ2 > qQωÞ], implying superradiant
stability. As is shown in Fig. 5, Eq. (27) shows an
exponentially decaying mode. This case explains
why one needs to find the other condition for no trapping
well.

FIG. 3. Left: radial mode showing a quasibound state Ψ1313ðrÞ as a function of r ∈ ½11.3; 100� with a trapping well. Right: the
confluent hypergeometric function U½−0.8; 27.8; 2.17r� is an increasing function of r and its derivativeU0½−0.8; 27.8; 2.17r� is positive.
All parameters go together with the left panel of Fig. 1.
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At this stage, it is useful to introduce the asymptotic form
of U½p; s; cr� as [17]

U½p; s; cr → ∞� → ðcrÞ−p
�
1 −

pð1þ p − sÞ
cr

þO
�
1

cr

�
2
�
:

ð30Þ

Here, one observes an increasing function U½p; s; cr� for a
negative p (right panel of Fig. 3 and right panel of Fig. 4),
while one finds a decreasing function for a positive p
(Fig. 5). Furthermore, considering the first derivative of
U½p; s; cr� with respect to r (c > 0) as

U0½p; s; cr� ¼ −pcU½1þ p; 1þ s; cr�; ð31Þ

it implies that the condition for a trapping well is

U0½p; s; cr� > 0 → p < 0; ð32Þ

whereas the condition for no trapping well is given by

U0½p; s; cr� < 0 → p > 0: ð33Þ

Therefore, the quasibound state with a peak could be found
when p is negative as

p < 0 →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4C

p
<

B
A
− 1 →

Mμ2 − qQωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p > kþ 1

2
;

ð34Þ

which is the other condition for a trapping well, in addition
to Mμ2 > qQω [V 0

aaKNðrÞ > 0]. On the other hand, the
bound state could be found for a positive p as

p > 0 →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4C

p
>

B
A
− 1 →

Mμ2 − qQωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p < kþ 1

2
;

ð35Þ

which denotes the other condition for no trapping well,
in addition to Mμ2 < qQω ½ðV 0

aaKNðrÞ < 0Þ�. We could
not find a condition of Mμ=qQ < 1 for superradiant
stability [14]. However, we obtain one condition from
V 0
aaKNðrÞ < 0 as

FIG. 5. Bound state function Ψ13ðrÞ as r ∈ ½5; 100� without a
trapping well. The confluent hypergeometric function U½3.97; 8;
0.09r� represents a decreasing function of r and its derivative
U0½3.97; 8; 0.09r� is negative. All parameters go together with the
right panel of Fig. 1.

FIG. 4. Left: radial mode showing a quasibound state Ψ1313ðrÞ as a function of r ∈ ½21.4; 100� with a trapping well. Right: the
confluent hypergeometric function U½−1.5; 27.8; 1.1r� is an increasing function of r and its derivative U0½−1.5; 27.8; 1.1r� is positive.
All parameters go together with Fig. 2.

FIG. 6. Potential with a trapping well VKNðrÞ, its far-region
VaKNðrÞ, and asymptotic potential VaaKNðrÞ as functions of r ∈
½rþ ¼ 1.062; 100� with M ¼ 1, Q ¼ 0.01, ω ¼ 3.85, a ¼ 0.998,
m ¼ 13, q ¼ 0.2, λlm and μ ¼ 4. Here, we choose λlm ¼ 202.461
to find a ¼ −5.9 × 10−9 ∼ 0 inU½p; s; cr�. VKNðrÞ has a trapping
well located at r ¼ 10.8.
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Mμ

qQ
<

ω

μ
< 1: ð36Þ

Finally, we consider the case of p ≃ 0 to denote a
boundary state between quasibound and bound states.
Here, we display a corresponding potential in Fig. 6 which
seems to have a trapping well. The asymptotic wave
function shows a half of a peak (left panel of Fig. 7)
and thus, it does not represent a quasibound state completely.
Its confluent hypergeometric function U½p; 29.5; 2.17� with
p ¼ −5.9 × 10−9 ≃ 0 is nearly a constant (right panel of
Fig. 7), which impliesU0½p; 29.5; 2.17� ≃ 0. This completes
our classification: p < 0, p ¼ 0, p > 0.

IV. CONDITION FOR TRAPPING WELL
IN KERR BLACK HOLES

Now, we are in a position to study the superradiant
instability/stability of Kerr black holes under a massive
scalar propagation. We obtain this case when choosing
q ¼ Q ¼ 0. Its far-region equation is given by Eq. (24)
with A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
, B ¼ 2Mμ2, C ¼ lðlþ 1Þ, and

k ¼ lþ 1=2. Here, one should find the other condition
for no trapping well because B > 0 ½V 0

aaKðrÞ > 0� implies
that a trapping well necessarily arises. In this case, the
solution is given by [18]

ΨK
lmðrÞ ¼ c2e−

ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
r
�
lþ1

U

×

�
lþ 1 −

Mμ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p ; 2lþ 2; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
r

�
:

ð37Þ

Here, the condition for a trapping well is obtained from the
first argument (p < 0) in U½p; s; cr� as

Mμ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p > lþ 1; ð38Þ

while the condition for no trapping well takes the form

Mμ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p < lþ 1: ð39Þ

Equation (38) is satisfied for the potential with a trapping
well (similar to the left panel of Fig. 1) whose parameters
are given byM ¼ 1, ω ¼ 3.85, a ¼ 0.998,m ¼ 13, l ¼ 13,
μ ¼ 4, and ωc ¼ 6.101 > ω. We note that its confluent
hypergeometric function U½−0.61; 28; 2.19r� is an increas-
ing function of r. Also, we have checked the stability
condition (39) for the potential without a trapping well
(similar to the right panel of Fig. 1) whose parameters are
M ¼ 1, ω ¼ 0.02, a ¼ 0.3, m ¼ 1, l ¼ 3, μ ¼ 0.05, and
ωc ¼ 0.076 > ω. As is expected, its confluent hypergeo-
metric function U½3.95; 8; 0.09r� is a decreasing function
of r.
For a complex ω ¼ 3.85þ 10−6i ðjωIj ≪ ωR;ωR <

mΩHÞ with the same parameters [18,19], one has the
asymptotic solution

Ψ13;13 ∼ ð51422 − 2.35iÞeð−1.09þ3.5×10−6iÞrr14U

× ½−0.74 − 5 × 10−5i; 28; ð2.17 − 7 × 10−6iÞr�
ð40Þ

whose real part takes the form of a peak as in the left panel
of Fig. 3. Here, one may rewrite p in U½p; s; cr� as

p ¼ −n − δν; ð41Þ
where n ¼ 1 and δν¼−0.26þ 5× 10−5iðjδνj ¼ 0.26< 1Þ.
The latter complex number might represent a deviation
from the hydrogen wave functions. A state of superradiant
instability could not be approximately described by a small
shift of hydrogen energy levels because jδνj ¼ 0.26 is not a
small shift. This may be so because we use Mμ ¼ 4 > 1
(not ultralight bosons with ω ∼ μ ≪ 1=M).

V. DISCUSSIONS

First of all, we would like to mention the conditions for
superradiant instability and stability. Superradiant instabil-
ity can be achieved for ω < ωc and ω < μ with a positive

FIG. 7. Left: radial mode ΨðrÞ showing a half of a peak as a function of r ∈ ½12.66; 100� with a trapping well. Right: the confluent
hypergeometric function U½−5.9 × 10−9 ≃ 0; 29.5; 2.17r� represents a constant and its derivative U0½−5.9 × 10−9 ≃ 0; 29.5; 2.17r� is
nearly zero. All coefficients go together with Fig. 6.
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trapping well, whereas superradiant stability can be found
for ω < ωc and ω < μwithout a positive trapping well. The
presence of a trapping well is regarded as a decisive
condition for superradiant instability. If there is no trapping
well, it corresponds to superradiant stability.
In this work, we have first obtained two conditions

for getting a trapping well of KNBHs under a charged
massive scalar perturbation by analyzing the asymptotic
scalar potential [VaaKNðrÞ] and far-region wave function
(U½p; s; cr�). They are given by V 0

aaKNðrÞ > 0 ðMμ2 >
qQωÞ and U0½p; s; cr� > 0 ðp < 0Þ. Also, the two con-
ditions for no trapping well are V 0

aaKNðrÞ < 0 ðMμ2 <
qQωÞ and U0½p; s; cr� < 0 ðp > 0Þ. From the former, we

have derived one condition of Eq. (36) for superradiant
stability.
We have carried out the same analysis for aKerr black hole

under a massive scalar propagation to find the conditions for
superradiant instability and stability. The superradiant insta-
bility condition is given by Mμ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
> lþ 1, while

the stability condition is Mμ2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
< lþ 1 because

V 0
aaKðrÞ > 0 ðMμ2 > 0Þ is always satisfied.
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