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Conditions for superradiant instability of the Kerr-Newman black holes
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We find two conditions for superradiant instability of Kerr-Newman black holes under a charged massive
scalar perturbation by analyzing the asymptotic scalar potential and far-region wave function. Actually,
they correspond to the condition for getting a trapping well. Also, we obtain the conditions for superradiant
stability of Kerr-Newman black holes which states that there is no trapping well. The analysis is applied to
Kerr black holes to find a condition for superradiant instability.
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I. INTRODUCTION

If a light boson exists with proper mass, gravitational
bound states are formed around rotating charged black
holes. These bound states could continuously extract
electromagnetic or rotational energy from black holes
[1]. This is the superradiance phenomenon in black holes
[2]. The existence of superradiant modes can be converted
into an instability of the black hole background if a mirror
mechanism to trap these modes is installed near the black
hole. This is called superradiant instability. If a scalar has a
mass u, its mass would act as a reflecting mirror [3].
The superradiant instability of the Kerr black hole was
found for My > 1 [4], Mu < 1 [5], and Mu < 0.5 [6]. A
scalar potential including a trapping well is essential for
generating a quasibound state [1,4,7] whose wave function
is peaked far outside the ergoregion. If there is no trapping
well in the potential, it may correspond to superradiant
stability with a bound state.

In a Kerr-Newman black hole (KNBH) with mass M,
charge Q, and angular momentum J, the superradiant
instability condition for a charged massive scalar with
mass p and charge g was first obtained as ¢gQ < uM which
may be a condition for a trapping well [8]. However, gQ <
uM is not satisfied simultaneously if one imposes the
superradiance condition (0 < w, with . = mQyg + q®y)
and thus, it is a condition for bound states [9]. In other
words, the condition of ¢gQ < uM corresponds to the
Newton-Coulomb requirement for the gravitational force
to exceed the electrostatic force. Also, it is noted that their
effective potential V4 is not a correct form. Scalar clouds
with @ = w, and @ < p were obtained in Refs. [10,11].
The absorption cross section was recently computed to give
a negative one for corotating spherical waves [12].
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On the other hand, there was an approach to analyzing
superradiant instability based on the scalar potentials [13].
We stress that the appearance/disappearance of a trapping
well is a decisive condition for superradiant instability/
stability. Recently, it was shown that the superradiant stability
of KNBHs under a charged massive scalar perturbation can be
achieved if gQ > puM and r_/r_ < 1/3 are satisfied [14], in
addition to @ < @, and the bound state condition (w < u).
However, their potential based on the analysis is incorrect
because ¥,,, = V/AR,,, is used and a tortoise coordinate
defined by dr, = (r* + a*)dr/A is not used [15]. So, it
suggests that gQ > uM is not a condition for superradiant
stability. The superradiant stability of a charged massive
scalar based on a desirable potential was discussed in the
KNBH background [16].

In this work, we wish to find two conditions for getting a
trapping well of a KNBH under a charged massive scalar
perturbation by analyzing the asymptotic scalar potential
V .axn (r) and far-region wave function U|p, s; cr]. They are
given by V! v (r) > 0(Mu? > gQw) and U'[p, s;cr] > 0
(p < 0). In addition, the conditions for no trapping well are
V! an(r) <0 (Mp? < qQw) and U'[p, s;cr] <0 (p > 0).
We apply the same analysis to a Kerr black hole under a
massive scalar propagation to find the condition for a
trapping well.

II. POTENTIALS AROUND KNBHs

Let us introduce the Boyer-Lindquist coordinates to
represent a KNBH with mass M, charge O, and angular
momentum J

dsgn = Gy dxtdx
A ) 2 P o
= —;(dt— asin’*0dq¢) —l—Xdr + p°do

312229 (2 + a?)dgp — adi)? (1)
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with

A=r>=2Mr+a*+ Q>

J
d = —. 2
and a W (2)

p> = r* + a*cos?0,

We choose the electromagnetic potential as

i, = % (=1,0,0, asin’0). (3)

The outer and inner horizons are obtained from A = (r —
r)(r=r_)=0(@" =0)as

re =M+ /M*—a? - Q% (4)
One describes a charged massive scalar perturbation @ on

the background of KNBHs by adapting the perturbed scalar
equation

(V¥ —igA*)(V, — iqA,)*® — u*® = 0. (5)

Considering the static and axisymmetric background (1), it
is plausible to separate the scalar perturbation into modes

(I)(t, r, 97 ¢) = Zlme_i(MJrim(/)Slm(H)le(r)’ (6)

where S,,(6) are the spheroidal harmonics with —m <
¢ <m and R, (r) describes the radial part of the wave
function. Substituting Eq. (6) into Eq. (5), we have the
angular equation for S, (6) and the Teukolsky equation
as [10]

1 )
maa(smgaasfmw»
20,72 2\ i m’
— 1 — — 7
+ ﬁlm +a (ﬂ @ )Sll’l 0 sin29 Slm(e) 0’ ( )
Aar(Aaernz<r)) + U(F)le(l’) = 0’ (8)

where

U(r) = [o(r* + a*) — am — qQr)?
+ ARamw — p*(r? + a*) — Ayp)- 9)

We note that Eq. (8) could be used directly for computing
the absorption cross section, quasinormal modes of the
scalar, and scalar clouds. At this stage, we introduce the
tortoise coordinate r, defined by dr, = ’Z%A"zdr to derive
the Schrodinger-type equation. In this case, an interesting
region of r € [r,, o) could be mapped into the whole
region of r, € (—o0, 00). Then, the radial equation (8) takes

the Schrodinger form when setting ¥,,, = Va> + r’R,,

dz?lm(r*)

dr2 + [0 = Vgn (N)]¥pn(r,) =0, (10)

where the potential Vy(r) is found to be [11]

3A%r? A[A +2r(r — M)]
Vin(r) :wz—(a2+r2)4+ @+ )
Au? am qQr 12
— 0) —_— —_—
a*+r? a+r a*+r
A

Replacing 1, by A, +a*(@®*—p?) with 1, =
I(I+1)+---, one finds a familiar angular equation

1 .
m 09 (Sln HagSfm (9))

2
+ A + (@ = p?)c0s?0 — ——18,,,(0) = 0. (12)
sin“@

Before we proceed, we would like to mention the super-
radiant scattering of the scalar of the KNBHs. We find two
limits such that Vgy(r = 00) = p? and Vgy(r = ry) —
@® — (0w —w,)?. In this case, we have plane waves as
scattering waves [2]

\le ~ e—i\/(uz—ﬂzr*<(_) + Re+i\/(u2—y2r*(_))’

r, = +oo(r - ), (13)

Y, ~Tell@@)r (), r, > —oo(r—r.) (14)
where 7 (R) are the transmission (reflection) amplitudes.
The Wronskian W (¥, ¥*) condition of i = W(¥,¥*) =0
leads to

RE =1 - 752 | TP, (15)

Vo —pu

which implies that outgoing waves with @ > u propagate to
infinity and superradiant scattering occurs (|R|* > |Z|*)
whenever the superradiance condition is satisfied

® < @, (16)

Curiously, superradiance is associated with having a
negative absorption cross section [12]. For a KNBH, the
total absorption cross section becomes negative for corotat-
ing spherical waves at low frequencies.

Now, we wish to briefly describe superradiant instability.
The two boundary conditions imply an exponentially
decaying wave (bound state) away from the trapping well
and a purely outgoing wave (superradiance) near the outer
horizon under Eq. (16):
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Left: potential with trapping well Vg (r), its far-region V gy(r), and asymptotic potential V,,xy(r) as functions of r €

[r, =1.06,100] with M =1, Q = 0.01, @ = 3.85, a = 0.998, m = 13, ¢ = 0.2, 4;,, = 180, and p = 4. Vy(r) has a trapping well
located at r = 9.61. We check w < @, (=6.11) and w < p as two conditions for superradiant instability. Right: potential without
trapping well Vg y(r) as a function of r € [r, = 1.741,100] with M = 1, 0 = 0.6, w = 0.02,a = 03, m = 1, g = 0.1, 4;,, = 12, and
u = 0.05. We check the two conditions @ < w.(= 0.13) and @ < p.

\PN e_ /Mz_wlr’ r* —_ oo(r —_ 00), (17)
P ~ gmilo—wc)r, r, = —oo(r—ry). (18)

From Eq. (17), one needs the bound state condition to
obtain an exponentially decaying mode

@ < u. (19)

Furthermore, superradiant instability/stability is determined
by the shape of the potential, in addition to Eqgs. (16) and
(19). Importantly, a key condition for superradiant insta-
bility is to include a positive trapping well in the potential.
If there is no trapping well in the potential, it implies
superradiant stability.

To find out the condition of a trapping well, we have to
consider the potential V,xy(r) obtained when expanding
Vi (r) in the far region

s 2(Mp*—qQw) Ay + O*(W* —q?)

VaKN(r) =H - , + }"2 .
(20)
Its first derivative is
2(Mu* = qQw) 20k, + O (W = )]
;KN(r) = 2 - i > (21)

where the mass term y” disappeared. We note that there are
no restrictions on parameters in deriving V,xy(r). Here,
one is tempted to say that the condition for a trap-
ping well [no trapping well] is given by V/y(r) >0
[V/kn(r) <O0]. Nevertheless, it is difficult to find any
analytic condition from V/ gy (r) >0 (V! ny(r) <0). To
this end, we consider the asymptotic potential V . xn(7)
obtained when expanding Vgy(r) at r = oo and its first
derivative

2(Mu?* —
Viaarn (1) = 12 _M’

() = 22 4C0) )

Here, one requires V/ xn(r) >0 (Myu*> > gQw) for a
trapping well, whereas V/,_n(r) >0 (My? < qQw) is
required for no trapping well. However, this is not a
sufficient condition to get a trapping well. In the next
section, we will find the other condition by analyzing the
far-region scalar function. The other condition for a
trapping well (no trapping well) will be given by
Ulp,s;cr] >0 (U'[p,s;cr] <0) where U[p,s,cr| is
the confluent hypergeometric function.

At this stage, we display two potentials: one (left panel of
Fig. 1) includes a trapping well and the other (right panel of
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FIG. 2. Left: potential with trapping well V gy (r), its far-region
Vakn(r), and asymptotic potential V ,,xn(r) as functions of r €
[r. =1.39,100] with M =1, Q =0.01, v =2.95, a=0.9,
m =13, g =20, 4;,, = 180, and u = 3. Here, we have g > y,
which shows a feature of KNBH. Vy(r) has a trapping well
located at r = 19.3. We check that the two conditions @ < o.(=
4.38) and w < u are satisfied for superradiant instability.

124015-3



YUN SOO MYUNG

PHYS. REV. D 105, 124015 (2022)

Fig. 1) does not include a trapping well, but it matches up
with Mu®> > gQw. Figure 2 indicates a potential with a
trapping well for ¢ > u and Mu*> > gQw, which shows
a feature of a charged massive scalar propagating around
the KNBH. It is worth noting that all have V! .. (r) > 0.
One needs to find the other condition to have no trap-
ping well.

Finally, we describe two conditions for superradiant
instability and stability under a charged massive scalar
propagating around the KNBHs:

(i) Superradiant instability - @ < . and ® < p witha

positive trapping well.

(i1) Superradiant stability - o < o, and @ < p without

a positive trapping well.

III. CONDITION FOR TRAPPING WELL

One needs to observe far-region scalar functions to
distinguish between potential with trapping well and
potential without trapping well. For this purpose, we wish
to derive a scalar equation in the far region.

In the far region where one takes r, ~ r, we obtain an
equation from Egs. (10) and (20) as

The solution is given exactly by the Whittaker function
Wp,s;cr] and the confluent hypergeometric function
Ulp, s;cr] as

B
¥, (r) = CIW[ﬂ,k, 2Ar] (26)

| 1 B
— —Ar k+§ _ .
cre " (2Ar) U{k+2 2A,l+2k,2Ar], (27)
where
1
kzix/1+4C. (28)

Here, we find a bound state e=V#*=@"r in Eq. (17). My?* >
qQw (Mu? < qQw) corresponds to B > 0 (B < 0). In the
asymptotic region, one has an asymptotic wave function

Mu?—q0w

lPIIAm(}") ~ e /ﬂz_er(z /ﬂ2 _ wzr) Vi2—a? ,

which always leads to zero as r — oo for \/p?> — w? > 0.

(29)

d? Let us observe a radial mode W,,,(r) for a trapping well
2 — —_— m
{W o= Vagn (r)] P (r) = 0. (23) (see left panel of Fig. 1), implying superradiant instability.
As is shown in the left panel of Fig. 3, Eq. (27) shows a
The above equation could be rewritten as quasibound state whose wave function is a peak located far
d from the outer horizon. A similar picture is found in the left
) panel of Fig. 4 which is based on Fig. 2 with ¢ > u. This
d B C case indicates a feature of a charged massive scalar
— =AY = 24 .
Llr2 * rz} m(r) =0, (24) propagating around the KNBH.
In contrast, we consider a radial mode for a potential
where the three coefficients are given by without a trapping well [shown in the right panel of Fig. 1
with V! v >0 (Myp*> > gQw)], implying superradiant
stability. As is shown in Fig. 5, Eq. (27) shows an
A =\/y* -, B =2(My?* — qQw), exponentially decaying mode. This case explains
sl 0 why one needs to find the other condition for no trapping
C=,+0 (ﬂ —-q ) (25) well.
4><1014; — Wiz3(r)
3x10M 40¢
2x10™ k 30
1x10™ * 20k
e : : : Loy — U[-0.8,27.9;2.171]
20 40 60 80 100 10
—— U'-0.8,27.9;2.171]
-1x10"
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FIG. 3.

Left: radial mode showing a quasibound state W 3;3(r) as a function of r € [11.3,100] with a trapping well. Right: the

confluent hypergeometric function U[—0.8,27.8;2.17r] is an increasing function of r and its derivative U’[-0.8,27.8;2.17r] is positive.

All parameters go together with the left panel of Fig. 1.
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FIG. 4. Left: radial mode showing a quasibound state W,3;3(r) as a function of r € [21.4, 100] with a trapping well. Right: the
confluent hypergeometric function U[—1.5,27.8; 1.17] is an increasing function of r and its derivative U’'[—1.5,27.8; 1.1r] is positive.

All parameters go together with Fig. 2.

At this stage, it is useful to introduce the asymptotic form
of Ulp,s;cr] as [17]

Ulp,s; |1
[p,s;cr — o] = (cr) o

Here, one observes an increasing function U|p, s; cr| for a
negative p (right panel of Fig. 3 and right panel of Fig. 4),
while one finds a decreasing function for a positive p
(Fig. 5). Furthermore, considering the first derivative of
U[p, s; cr] with respect to r (¢ > 0) as

Ulp,s;cr] = —pcU[l + p, 1 + s;5c1], (31)
it implies that the condition for a trapping well is

Ulp,s;cr] >0— p <0, (32)

whereas the condition for no trapping well is given by

Ulp,s;cr] <0 — p > 0. (33)
%00 — Wis(r)
200 — U[3.97,8;0.09 1]
—— U'[3.97,8;0.09 1]
100
. r
20 30 40 50
-100
-200
FIG. 5. Bound state function ¥3(r) as r € [5, 100] without a

trapping well. The confluent hypergeometric function U[3.97, 8;
0.09r] represents a decreasing function of r and its derivative
U'[3.97, 8;0.09r] is negative. All parameters go together with the
right panel of Fig. 1.

_ptr=s) o 1Y

Therefore, the quasibound state with a peak could be found
when p is negative as

B My — 1
p<0-ViFac<B_ My =49 1
A oy 2

(34)

which is the other condition for a trapping well, in addition
to Mu? > qQw [V!, kn(r) > 0]. On the other hand, the
bound state could be found for a positive p as

B M2 - 1
p>0—>\/1+4C>Z—1—>”7qu<k+—,

VR

(35)

which denotes the other condition for no trapping well,
in addition to Myu?> < qQw [(V!ky(r) < 0)]. We could
not find a condition of Mu/qQ < 1 for superradiant
stability [14]. However, we obtain one condition from
Viarn(r) <0 as

20

15l N e _____

Vkn(r)

| Vakn(r)
104 Vakn(r)

r/r  mm——— w?=14.8
1?=16

1 L L L 1 L L L 1 L L L 1

n n n n n n 1
0 20 40 60 80 100

FIG. 6. Potential with a trapping well Vgy(r), its far-region
V.xn(r), and asymptotic potential V ,,xx(7) as functions of r €
[r, = 1.062,100] with M = 1, Q = 0.01, @ = 3.85, a = 0.998,
m =13, q = 0.2, 4;,, and u = 4. Here, we choose 4,,, = 202.461
to find @ = =5.9 x 107 ~0in U[p, s; cr]. Vg (r) has a trapping
well located at r = 10.8.
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02}
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FIG. 7. Left: radial mode ¥(r) showing a half of a peak as a function of r € [12.66, 100] with a trapping well. Right: the confluent
hypergeometric function U[-5.9 x 107 ~0,29.5;2.17r] represents a constant and its derivative U’'[—5.9 x 107 ~0,29.5;2.177] is

nearly zero. All coefficients go together with Fig. 6.

My
—<—x<1. 36
qQ0 u (36)

Finally, we consider the case of p~0 to denote a
boundary state between quasibound and bound states.
Here, we display a corresponding potential in Fig. 6 which
seems to have a trapping well. The asymptotic wave
function shows a half of a peak (left panel of Fig. 7)
and thus, it does not represent a quasibound state completely.
Its confluent hypergeometric function U[p, 29.5;2.17] with
p=-59x%x10"2~0 is nearly a constant (right panel of
Fig. 7), which implies U’[p, 29.5;2.17] ~ 0. This completes
our classification: p <0, p =0, p > 0.

IV. CONDITION FOR TRAPPING WELL
IN KERR BLACK HOLES

Now, we are in a position to study the superradiant
instability/stability of Kerr black holes under a massive
scalar propagation. We obtain this case when choosing
g = Q = 0. Its far-region equation is given by Eq. (24)
with A =\/p>—-w?, B=2Mu*>, C=1I(l+1), and
k=14 1/2. Here, one should find the other condition
for no trapping well because B > 0 [V/, () > 0] implies
that a trapping well necessarily arises. In this case, the
solution is given by [18]

Pk (r) = cze‘\/"z“”z’(%/ﬂ2 - a)zr) "u
M 2
X {l+]—\/%,21+2;2\//42—w2r].
W —w

(37)

Here, the condition for a trapping well is obtained from the
first argument (p < 0) in U|p, s; cr] as
My?

oy

>1+1, (38)

while the condition for no trapping well takes the form

Mu?

ey

<I+1. (39)

Equation (38) is satisfied for the potential with a trapping
well (similar to the left panel of Fig. 1) whose parameters
are givenby M = 1,0 =3.85,a =0.998, m = 13, = 13,
u=4, and w, = 6.101 > w. We note that its confluent
hypergeometric function U[—0.61,28,2.19¢] is an increas-
ing function of r. Also, we have checked the stability
condition (39) for the potential without a trapping well
(similar to the right panel of Fig. 1) whose parameters are
M=1 =002 a=03 m=1, =3, y=0.05, and
w,. = 0.076 > w. As is expected, its confluent hypergeo-
metric function U[3.95,8,0.097] is a decreasing function
of r.

For a complex @ =3.85+107% (|o;| < wg, o <
mQy) with the same parameters [18,19], one has the
asymptotic solution

Wiss ~ (51422 - 2.35l‘)e(—1.09+3.5><10‘6i)rr14U
x [-0.74 =5 x 107,28, (2.17 = 7 x 107%)r]
(40)

whose real part takes the form of a peak as in the left panel
of Fig. 3. Here, one may rewrite p in U[p, s; cr| as

p=-—-n-2adv, (41)

where n = 1 and v = —0.26 +5 x 1073i(|sv| =0.26 < 1).
The latter complex number might represent a deviation
from the hydrogen wave functions. A state of superradiant
instability could not be approximately described by a small
shift of hydrogen energy levels because |5v| = 0.26 is not a
small shift. This may be so because we use My =4 > 1
(not ultralight bosons with @ ~ y < 1/M).

V. DISCUSSIONS

First of all, we would like to mention the conditions for
superradiant instability and stability. Superradiant instabil-
ity can be achieved for ® < o, and w < u with a positive
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trapping well, whereas superradiant stability can be found
forw < o, and @ < p without a positive trapping well. The
presence of a trapping well is regarded as a decisive
condition for superradiant instability. If there is no trapping
well, it corresponds to superradiant stability.

In this work, we have first obtained two conditions
for getting a trapping well of KNBHs under a charged
massive scalar perturbation by analyzing the asymptotic
scalar potential [V ,,xn(r)] and far-region wave function
(U[p, s;cr]). They are given by V! en(r) >0 (Mu?> >
qQw) and U'[p,s;cr] >0 (p <0). Also, the two con-
ditions for no trapping well are V! _,v(r) <0 (Mu? <
qQw) and U'[p, s;cr] <0 (p > 0). From the former, we

have derived one condition of Eq. (36) for superradiant
stability.

We have carried out the same analysis for a Kerr black hole
under a massive scalar propagation to find the conditions for
superradiant instability and stability. The superradiant insta-

bility condition is given by Mu?/\/u> — @* > [ + 1, while
the stability condition is Mu?/\/u*> — @* < [ + 1 because
V! k() >0 (Mu? > 0) is always satisfied.
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