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We show the existence of stable bound orbits for the massive and massless particles moving in the
simplest microstate geometry spacetime in the bosonic sector of the five-dimensional minimal supergravity.
In our analysis, reducing the motion of particles to a two-dimensional potential problem, we numerically
investigate whether the potential has a negative local minimum.

DOI: 10.1103/PhysRevD.105.124014

I. INTRODUCTION

The microstate geometries [1–14] are smooth horizon-
less solutions with the same asymptotic structure as a black
hole or a black ring. So far, these solutions have been
thought of as one of ways to resolve the problem of black
hole information loss. The idea to describe black hole
microstates by horizonless geometries first originated from
the works on fuzzballs of Mathur [15–17]. The existence
itself of such solutions should be surprising because in the
earlier works [18–21], it is a well-known fact that smooth
soliton solutions in four dimensions are completely
excluded. However, in five dimensions, at least in five-
dimensional supergravity, the no-go theorem does not
hold because the spacetime admits the spatial cross sections
with nontrivial second homology and the Chern-Simons
interactions.
There are many ways to probe physical aspects of such

microstate geometries. The simplest and most interesting
way to probe the microstate geometries may be studying
geodesic motion of massive and massless particles in such
spacetimes. In particular, it is an interesting issue what is
significantly different between the motion of particles (e.g.,
the existence/nonexistence of stable bound orbits) in
microstate geometries and that in black hole spacetimes.
Many researchers have so far studied particle motions in
black hole spacetimes. For example, it is well known that in
a four-dimensional Schwarzschild background, stable
bound orbits exist for massive particles and do not exist
for massless particles, whereas in a five-dimensional

Schwarzschild background [22], they do not exist for both
massive and massless particles. Moreover, stable bound
orbits for rotating spherical black holes [23–26], black
holes with nontrivial topologies [27–33], and Kaluza-
Klein black holes [34,35] were also investigated. On the
other hand, in supersymmetric microstate geometries
[36,37], massless particles with zero energy are stably
trapped on an evanescent ergosurface, which are defined
as timelike hypersurfaces such that a stationary Killing
vector field becomes null there and timelike everywhere
except there.
As shown in Ref. [38], the angular momenta of the

asymptotically flat, biaxisymmetric, reflectionally symmet-
ric microstate geometries with a small number of centers
(five centers) in the five-dimensional ungauged minimal
supergravity have lower bounds, which are slightly smaller
than those of the maximally spinning solutions of the
Breckenridge-Myers-Peet-Vafa (BMPV) black holes [39]
[asymptotically flat black holes with the mass and electric
charge obeying the Bogomol’nyi-Prasad-Sommerfield
(BPS) condition and equal angular momenta in the same
theory]. This means that there exists a certain parameter
region such as the microstate geometries with a small
number of the centers that have the same angular momenta
as the BMPV black holes. It is interesting to compare
particle motion in the microstate geometries within such a
parameter region with one in the black hole spacetime. For
instance, if the geodesic motions of particles in the two
spacetimes significantly differ, the microstate geometries
may be unable to be regarded as an alternative to the black
hole. The main purpose of this paper is to study stable
bound orbits in the microstate geometries, more precisely,
to investigate numerically whether stable bound orbits of
particles can exist in the microstate geometries with the
same mass and angular momenta as the BMPV black holes.
In our analysis, focusing on asymptotically flat, sta-

tionary BPS solutions with biaxisymmetry and reflection
symmetry in the five-dimensional ungauged minimal
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supergravity, we regard motion of particles as a two-
dimensional potential problem. As discussed for several
BPS black holes in the same theory [30,31,33–35], one can
replace a problem of whether there exist stable bound orbits
for particles with a simple problem of whether the two-
dimensional effective potential has a negative local mini-
mum. First, we numerically show the existence of stable
bound orbits for massive particles for the microstate geom-
etries with three Gibbons-Hawking centers. Next, we
numerically show that there can be stable bound orbits of
massive and massless particles for the microstate geometries
with five Gibbons-Hawking centers which have the same
mass and angular momenta as the BMPV black holes.
Moreover, we also study the five center solutions whose
angular momenta are larger than the BMPV black holes.
The rest of the paper is organized as follows: In the

following Sec. II, we briefly review the microstate geom-
etries in the five-dimensional minimal supergravity. In
Sec. III, we provide our formalism to show the existence
of stable bound orbits. In Sec. IV, using the formalism, we
discuss whether there are stable bound orbits for massive
and massless particles. In Sec. V, we summarize our results
and discuss possible generalizations of our analysis.

II. MICROSTATE GEOMETRIES

A. Solutions

We review the microstate geometries in the five-
dimensional minimal ungauged supergravity (the five-
dimensional Einstein-Maxwell theory with a Chern-Simons
term) [38,40]. The metric and the gauge potential 1-form of
the Maxwell field can be written as

ds2 ¼ −f2ðdtþ ωÞ2 þ f−1ds2M; ð1Þ

A ¼
ffiffiffi
3

p

2

�

fðdtþ ωÞ − K
H
ðdψ þ χÞ − ξ

�

; ð2Þ

where ds2M is the metric of the Gibbons-Hawking space [41],
which is written as

ds2M ¼ H−1ðdψ þ χÞ2 þHds2E3 ; ð3Þ

ds2E3 ¼ dx2þdy2þdz2 ¼ dr2þ r2ðdθ2þ sin2 θdϕ2Þ; ð4Þ

χ ¼
Xn

i¼1

hi
r cos θ − zi

ri
dϕ; ð5Þ

H ¼
Xn

i¼1

hi
ri
: ð6Þ

Here, riði ¼ 1;…; nÞ is the distance between r ≔ ðx; y; zÞ
and the ith point source ri ≔ ð0; 0; ziÞ of a harmonic function
H on E3 and is defined as

ri ≔ jr − rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − ziÞ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2rzi cos θ þ z2i

q
: ð7Þ

The function f−1 and the 1-forms ðω; ξÞ are written as

f−1 ¼ H−1K2 þ L; ð8Þ

ω¼
�

H−2K3þ 3

2
H−1KLþM

�

ðdψ þ χÞ

þ
� Xn

i;j¼1ði≠jÞ

�

himjþ
3

2
kilj

�
r2− ðziþ zjÞrcosθþ zizj

zjirirj

−
Xn

i¼1

�

m0hiþ
3

2
l0ki

�
rcosθ− zi

ri
þ c

�

dϕ; ð9Þ

ξ ¼ −
Xn

i¼1

ki
r cos θ − zi

ri
dϕ; ð10Þ

where the functions K, L, and M are harmonic functions
on E3,

K ¼
Xn

i¼1

ki
ri
; L¼ l0 þ

Xn

i¼1

li
ri
; M ¼m0 þ

Xn

i¼1

mi

ri
: ð11Þ

Since we assume that all point sources lie on the z axis,
the solutions have three commuting Killing vectors
∂=∂t; ∂=∂ψ , and ∂=∂ϕ, and the coordinate has the ranges
−∞ < t < ∞, r > 0, 0 ≤ ψ < 4π, 0 ≤ ϕ < 2π, and
0 ≤ θ ≤ π.
As discussed in Refs. [38,42], asymptotic flatness

requires the parameters to be subject to

Xn

i¼1

hi ¼ 1; ð12Þ

l0 ¼ 1; ð13Þ

c ¼
Xn

i;j¼1ði≠jÞ

himj þ 3
2
kilj

zij
; ð14Þ

m0 ¼ −
3

2

Xn

i¼1

ki: ð15Þ

From the requirements of regularity at r ¼ riði ¼ 1;…; nÞ,
the parameters ðki≥1; li≥1; mi≥1Þ must satisfy

li ¼ −
k2i
hi

; ð16Þ
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mi ¼
k3i
2h2i

: ð17Þ

Moreover, to ensure Lorentzian signature of the metric
around the points r ¼ riði ¼ 1;…; nÞ, the inequalities

h−1i c1ðiÞ ≔ hi þ
Xn

j¼1ðj≠iÞ

2kikj þ lihj þ hilj
jzijj

> 0 ð18Þ

must be satisfied, and from the absence of closed timelike
curves around the points, they must also satisfy

hic2ðiÞ ≔ him0 þ
3

2
ki

þ
Xn

j¼1ðj≠iÞ

himj −mihj − 3
2
ðlikj − kiljÞ

jzijj
¼ 0: ð19Þ

In addition, the absence of orbifold singularities at r ¼
riði ¼ 1;…; nÞ demands

hi ¼ �1ði ¼ 1;…; nÞ: ð20Þ

B. Useful coordinates

In the work of the geodesic motion of particles, it is more
convenient to use the coordinates ðρ;ϕ1;ϕ2Þ defined by

x ¼ ρ cosðϕ1 − ϕ2Þ; y ¼ ρ sinðϕ1 − ϕ2Þ;
ψ ¼ ϕ1 þ ϕ2; ϕ ¼ ϕ1 − ϕ2; ð21Þ
where ðϕ1;ϕ2Þ are the coordinates with 2π periodicity.

C. Three-center solutions

The solutions with three centers (n ¼ 3) and
ðh1; h2; h3Þ ¼ ð1;−1; 1Þ describe the simplest asymptoti-
cally flat, stationary, and biaxisymmetric microstate geom-
etries, which have the four parameters ðk1; k3; z1; z3Þ,
where we have set k2 ¼ 0 and z2 ¼ 0. Moreover, under
the assumption of the reflection symmetry

z3 ¼ −z1≕ að> 0Þ; k3 ¼ k1; ð22Þ
the bubble equations (19) are simply written as

c2ð1Þ ¼ −
1

2
c2ð2Þ ¼ c2ð3Þ ¼

k1½k21 − 3a�
2a

¼ 0; ð23Þ

which lead to

k1 ¼ 0; a ¼ k21
3
: ð24Þ

Only the latter case can satisfy the inequalities (18), where
hic1ðiÞ (i ¼ 1, 2, 3) are computed as

h1c1ð1Þ ¼ h3c1ð3Þ ¼ 4; h2c1ð2Þ ¼ 5: ð25Þ

Therefore, for arbitrary nonzero k1, this describes regular
and causal solutions of asymptotically flat, stationary
microstate geometries with the biaxisymmetry and reflec-
tion symmetry. The solutions were previously analyzed
in Ref. [10].
The z axis of E3 in the Gibbons-Hawking space consists

of the four intervals: I− ¼ fðx; y; zÞjx ¼ y ¼ 0; z < z1g,
Ii ¼ fðx; y; zÞjx ¼ y ¼ 0; zi < z < ziþ1g (i ¼ 1, 2), and
Iþ ¼ fðx; y; zÞjx ¼ y ¼ 0; z > z3g. The rod structure of
the three-center microstate geometries is displayed
in Fig. 1.
Under the symmetric conditions (22) and gauge con-

ditions k2 ¼ 0, z2 ¼ 0, the Arnowitt-Deser-Misner (ADM)
mass, two ADM angular momenta, and the magnetic fluxes
on Ii (i ¼ 1, 2) are written as, respectively,

M ¼
ffiffiffi
3

p

2
Q ¼ 6πk21; ð26Þ

Jψ ¼ 3πk31; ð27Þ
Jϕ ¼ 0; ð28Þ

q½I1� ¼ −q½I2� ¼
ffiffiffi
3

p

2
k1: ð29Þ

As discussed in Ref. [38], the squared angular momentum
normalized by the mass is written as

j2 ¼ 9

8
: ð30Þ

This is larger than the BMPV black holes which have the
range of 0 ≤ j2 < 1.

D. Five-center solutions

The stationary, biaxisymmetric microstate geometries
with five centers (n ¼ 5) and ðh1; h2; h3; h4; h5Þ ¼
ð1;−1; 1;−1; 1Þ have the four parameters ðk1; k2; z1; z2Þ
under the reflection-symmetric conditions

k5 ¼ k1; k4 ¼ k2; z5 ¼−z1≕aþb; z4 ¼−z2≕b ð31Þ

and the gauge conditions k3 ¼ 0, z3 ¼ 0. Thus, the con-
ditions (19) are simplified as

2h1c2ð1Þ ¼ 2h5c2ð5Þ ¼ −3ðk1 þ 2k2Þ

−
k31

aþ b
þ ðk1 þ k2Þ3

a
þ ðk1 þ k2Þ3

aþ 2b
¼ 0; ð32Þ

FIG. 1. Rod structure for the microstate geometries with three
centers and ðh1; h2; h3Þ ¼ ð1;−1; 1Þ.
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2h2c2ð2Þ ¼ 2h4c2ð4Þ ¼ 3ð2k1 þ 3k2Þ

−
k32
b
−
ðk1 þ k2Þ3

a
−
ðk1 þ k2Þ3
aþ 2b

¼ 0; ð33Þ

h3c2ð3Þ ¼ −3ðk1 þ k2Þ þ
k31

aþ b
þ k32

b
¼ 0; ð34Þ

where we note that Eqs. (32)–(34) are not independent
due to the constraint equation

P
5
i¼1 hic2ð1Þ ¼ 2h1c2ð1Þ þ

2h2c2ð2Þ þ h3c2ð3Þ ¼ 0. Therefore, the solutions have only
two independent parameters. If we regard a and b as the
functions of k1 and k2 from Eqs. (32) and (34), the solutions
are a two-parameter family for ðk1; k2Þ.
Furthermore, the parameters k1 and k2 must satisfy the

inequalities (18), which are written as

h1c1ð1Þ ¼ h5c1ð5Þ ¼ 1−
k21

aþb
þðk1þ k2Þ2

a
þðk1þ k2Þ2

aþ 2b
> 0;

ð35Þ

h2c1ð2Þ ¼ h4c1ð4Þ ¼−1þ k22
b
þðk1þ k2Þ2

a
þðk1þ k2Þ2

aþ 2b
> 0;

ð36Þ

h3c1ð3Þ ¼ 1 −
2k21
aþ b

þ 2k22
b

> 0; ð37Þ

with the inequalities a > 0, b > 0. In the below, we assume
k1 ≠ 0 and k2 ≠ 0. As shown in Ref. [38], these inequalities
are equivalent with

k2=k1 <−1; −0.2063…< k2=k1 < 0; k2=k1 > 0: ð38Þ
The z of E3 in the Gibbons-Hawking space consists of
the six intervals: I− ¼ fðx; y; zÞjx ¼ y ¼ 0; z < z1g, Ii ¼
fðx;y;zÞjx¼ y¼ 0; zi < z < ziþ1gði¼ 1;…;4Þ and Iþ ¼
fðx; y; zÞjx ¼ y ¼ 0; z > z5g. The five-center microstate
geometries have the rod structure displayed in Fig. 2.
For the solutions, the ADM mass, two ADM angular

momenta the magnetic fluxes are computed as

M ¼
ffiffiffi
3

p

2
Q ¼ 6πðk21 þ 4k1k2 þ 3k22Þ; ð39Þ

Jψ ¼ 3πðk31 þ 6k21k2 þ 10k1k22 þ 5k32Þ; ð40Þ

Jϕ ¼ 0; ð41Þ

q½I1� ¼−q½I4� ¼
ffiffiffi
3

p

2
ðk1þk2Þ; q½I2� ¼−q½I3� ¼−

ffiffiffi
3

p

2
k2:

ð42Þ
As discussed in Ref. [38], the squared angular momen-

tum runs the range

j2 > 0.841…: ð43Þ
The biaxisymmetric and reflectionally symmetric micro-
state geometries with five centers can have the same
angular momentum of the range 0.841… < j2 < 1 as the
BMPV black holes.

III. OUR FORMALISM

To study stable bound orbits, we regard the geodesic
motion of massive and massless particles as a two-dimen-
sional potential problem (see Ref. [30] for the details). The
Hamiltonian of a free particle with mass m is written as

H ¼ gμνpμpν þm2; ð44Þ
where pμ is the momentum such that ðpt; pϕ1

; pϕ2
Þ ¼

ð−E;Lϕ1
; Lϕ2

Þ are constants of motion. Then, the
Hamiltonian can be rewritten as

H ¼ 4f
Hρ2

ðp2
ρ þ p2

zÞ þ E2

�

U þm2

E2

�

: ð45Þ

The effective potential U ¼ Uðρ; zÞ is given by

U ¼ gtt þ gϕ1ϕ1l2ϕ1
þ gϕ2ϕ2l2ϕ2

− 2gtϕ1lϕ1
− 2gtϕ2lϕ2

þ 2gϕ1ϕ2lϕ1
lϕ2

ð46Þ

¼ 1

4ðK2þHLÞ ½−3K
2L2þ8K3Mþ12HKLM−4HL3

þ4H2M2þð4K3þ6HKLþ4H2MÞðlϕ1
þ lϕ2

Þ

þH2ðlϕ1
þ lϕ2

Þ2�þ ½−2ω̂ϕþðlϕ1
þ lϕ2

Þχϕþðlϕ2
− lϕ1

Þ�2
4ðK2þHLÞρ2 ;

ð47Þ
where two angular momenta ðLϕ1

; Lϕ2
Þ are normalized by

the energy E as lϕ1
≔ Lϕ1

=E and lϕ2
≔ Lϕ2

=E. Thus,
particles move on the two-dimensional space ðρ; zÞ in
the two-dimensional potential Uðρ; zÞ, satisfying the
Hamiltonian constraint H ¼ 0. The allowed regions of
the motions for massive and massless particles correspond
to U ≤ −m2=E2 and U ≤ 0, respectively. If U has a
negative local minimum for given ðlϕ1

; lϕ2
Þ, stable bound

orbits exist for massive particles at the point or in the
neighborhood of the point, and furthermore if the curve
U ¼ 0 in the ðρ; zÞ plane or the region surrounded with the

FIG. 2. Rod structure for the microstate geometries with five
centers and ðh1; h2; h3; h4; h5Þ ¼ ð1;−1; 1;−1; 1Þ.
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U ¼ 0 curve and the z axis is closed, stable bound orbits
exist even for massless particles.

IV. STABLE BOUND ORBITS

A. Three-center solutions

To see whether there exist stable bound orbits in the
microstate geometries for n ¼ 3, let us focus on the simple
case of lϕ2

¼ 0. For the three-center solutions, the z axis
is composed of the four intervals, I− ¼ fðρ; zÞjρ¼ 0;
z < z1g, I1 ¼ fðρ; zÞjρ¼ 0; z1 < z< z2g, I2 ¼ fðρ; zÞjρ¼ 0;
z2 < z< z3g, and Iþ ¼ fðρ; zÞjρ ¼ 0; z > z3g. As was

previously shown in [30], it should be noted that only
particles with the angular momentum of lϕ2

¼ 0 can move
on I1 and Iþ (because Iþ and I1 correspond to the fixed
points of the Killing isometry v2 ≔ ∂=∂ϕ2), and hence only
particles with the angular momentum of J ≔ pμv

μ
2 ¼

Lϕ2
¼ 0ðlϕ2

¼ 0Þ can move on the z axis, whereas (because
U diverges) on I− and I2 the particles cannot move. It can
be shown from the entirely similar discussion that on I− and
I2 only particles with the angular momenta of lϕ1

¼ 0 are
allowed to move there.
Figure 3 displays the typical contour plots ofU in the ðρ; zÞ

plane for the parameter setting ðk1; k2; k3Þ ¼ ð ffiffiffi
3

p
; 0;

ffiffiffi
3

p Þ,

FIG. 3. The figures show the contours of the potential U under the parameter setting ðk1; k2; k3Þ ¼ ð ffiffiffi
3

p
; 0;

ffiffiffi
3

p Þ and
ðz1; z2; z3Þ ¼ ð−1; 0; 1Þ. The left, middle, and right figures correspond to the angular momenta ðlϕ1

; lϕ2
Þ ¼ ð−7; 0Þ; ð0; 0Þ; ð4; 0Þ,

respectively, and the upper, middle, and lower figures differ only in the scales of the vertical and horizontal axes. The bold solid curves
and the dashed curves denote U ¼ 0 and U ¼ −1, respectively, and the white regions denote the forbidden regions of U > 0 where
massive and massless particles cannot move. The black circles correspond to the centers at ðρ; zÞ ¼ ð0; ziÞ (i ¼ 1, 2, 3).
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which corresponds to the solutions with j2 ¼ 9=8 and
ðz1; z2; z3Þ ¼ ð−1; 0; 1Þ, where it should be noted that the
upper, middle, and lower figures differ only in the scales
of the horizontal axis and vertical axis, and the left,
middle, and right figures correspond to the angular
momenta of particles ðlϕ1

; lϕ2
Þ ¼ ð−7; 0Þ; ð0; 0Þ; ð4; 0Þ,

respectively. In these figures, the red curves denote the
contoursU ¼ 0, which we callU ¼ 0 curves. For each case
of ðlϕ1

; lϕ2
Þ ¼ ð−7; 0Þ; ð4; 0Þ, the U ¼ 0 curve intersects

with I1 and Iþ on the z axis so that it makes a closed region
surrounded with the z axis. Since U > 0ð< 0Þ inside (a
little outside) the U ¼ 0 curve, there are not stable bound
orbits for massless particles. It can be seen from these
figures that in each case, U has a negative local minimum
outside the U ¼ 0 curve, i.e., there are stable bound orbits
for massive particles. In particular, for ðlϕ1

; lϕ2
Þ ¼ ð−7; 0Þ,

the stable bound orbit at the local minimum is cir-
cular because U has the local minimum on I1, where
massive particles move along ∂=∂ϕ1. On the other hand,
it can be shown from the three middle figures that for
ðlϕ1

; lϕ2
Þ ¼ ð0; 0Þ,U does not have aU ¼ 0 curve and has a

local minimum at the center (0,0). Therefore, stable bound
orbits do not exist for massless particles but exist for
massive particles. Moreover, U is monotonically increas-
ing at large distances and U → −1 at r → ∞; the stable
bound orbits exist for massive particles even at infinity.

B. Five-center solutions

For the five centers, the z axis of E3 in the Gibbons-
Hawking space consists of the six intervals, I− ¼
fðx;y;zÞjx¼ y¼ 0; z < z1g, Ii ¼ fðx;y;zÞjx¼ y¼ 0; zi <
z < ziþ1gði¼ 1;…;4Þ, and Iþ ¼ fðx; y; zÞjx ¼ y ¼ 0;
z > z5g. As was previously discussed in [30], only particles
with the angular momentum of lϕ2

¼ 0 can move on I1, I3,
Iþ but cannot move on I−, I2 and I4. Similarly, only
particles with the angular momenta of lϕ1

¼ 0 are allowed
to move on I−, I2 and I4 but cannot move on I1, I3, and Iþ.
Here, as typical examples, we study two cases of j2 ≃ 0.919
and j2 ≃ 14.8 for particles with lϕ2

¼ 0:

1. j2 ≃ 0.919

Figure 4 displays the contour plots ofU for particles with
zero angular momenta, ðlϕ1

; lϕ2
Þ ¼ ð0; 0Þ under the param-

eter setting ðk1; k2; k3; k4; k5Þ ¼ ð1;−0.192; 0;−0.192; 1Þ,
which corresponds to the solutions with j2 ≃ 0.919 and
ða; bÞ ≃ ð0.0296; 0.000227Þ, where it should be noted
that the four figures differ only in the scales of the
horizontal axis and vertical axis. It can be shown from
these figures that for ðlϕ1

; lϕ2
Þ ¼ ð0; 0Þ, U is negative

(hence U does not have a U ¼ 0 curve) and has a local
minimum at the center (0,0). Therefore, stable bound orbits
do not exist for massless particles but exist for massive
particles. In particular, massive particles at (0,0) remain at
rest. Moreover, U is monotonically increasing at large
distances and U → −1 at r → ∞, stable bound orbits exist
for massive particles even at infinity.
Next, we consider the case of lϕ1

≠ 0; lϕ2
¼ 0 under the

same parameter setting as the above case. Figure 5 displays
the typical contour plots of U for particles with nonzero
angular momenta, where we plot the case ðlϕ1

; lϕ2
Þ ¼

ð−14; 0Þ as an example. It should be noted here that each
figure differs only in the scales of the horizontal axis and
vertical axis. For particles with ðlϕ1

; lϕ2
Þ ¼ ð−14; 0Þ, there

are four U ¼ 0 curves: (i) the inner U ¼ 0 curve which
surrounds the two centers at z ¼ z2ð≃ − 0.000227Þ and
z ¼ z3ð¼ 0Þ and intersects with I1 and I3 [the U ¼ 0 curve
in the upper left figure and the lower U ¼ 0 curves in
the upper middle and upper right figures], (ii) the inner
U ¼ 0 curve which surrounds the two centers at z ¼
z4ð≃0.000227Þ and z ¼ z5ð≃0.0298Þ and intersects with
I3 and Iþ [the upper U ¼ 0 curves in the upper middle and
the upper right figures, the U ¼ 0 curve in the middle left
figure, the upper U ¼ 0 curve in the middle figure, and the
smaller U ¼ 0 curve in the middle right figure], (iii) the
intermediate U ¼ 0 curve which surrounds the two inner
U ¼ 0 curves with the z axis, and intersects with I1 and Iþ
[the larger U ¼ 0 curve in the middle right figure], and
(iv) the outer U ¼ 0 curve which surrounds the intermedi-
ate U ¼ 0 curve and intersects with only Iþ [the U ¼ 0

FIG. 4. The figures show the contours of the potential U under the parameter setting ðk1; k2; k3; k4; k5Þ ¼ ð1;−0.192; 0;−0.192; 1Þ
and angular momenta ðlϕ1

; lϕ2
Þ ¼ ð0; 0Þ, where j2 ≃ 0.919 and ða; bÞ ≃ ð0.0296; 0.000227Þ. The solid curves denote the contours

U ¼ constantð< 0Þ, and the black circles correspond to the centers at ðρ; zÞ ¼ ð0; ziÞði ¼ 1;…; 5Þ.
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curves in the three lower figures]. It can be seen from
these figures that U > 0ð< 0Þ inside (a little outside) the
inner U ¼ 0 curves, U < 0ð> 0Þ a little inside (a little
outside) the intermediate U ¼ 0 curve, and U > 0ð< 0Þ a
little inside (outside) the outer U ¼ 0 curve. Thus, U has
two negative local minima in the closed region sur-
rounded with the two inner U ¼ 0 curves, the intermedi-
ate U ¼ 0 curve and the z axis. Therefore, there are
stable bound orbits for both massive and massless
particles in the region. Moreover, a stable circular orbit
exists for massive particles at the local minimum of U,
which is on I3 and hence particles at the point must move
along ∂=∂ϕ1.

2. j2 ≃ 14.8

Finally, we study the case j2 ≃ 14.8 as the much larger
example than the upper bounds for the angular momenta of
the BMPV black holes. Figure 6 shows the contours of U
for ðlϕ1

; lϕ2
Þ ¼ ð0;0Þ and the parameters ðk1;k2;k3;k4;k5Þ¼

ð1;−1.01;0;−1.01;1Þ, which correspond to the solutions
with j2 ≃ 14.8 and ða; bÞ ≃ ð4.83 × 10−7; 1.01Þ, where the
figures differ only in the scales of the horizontal axis and
the vertical axis. As can be seen from these figures, U does
not have a U ¼ 0 curve, and hence stable bound orbits do
not exist for massless particles. On the other hand, it can be
seen from the middle figure that U has two negative local

FIG. 5. The figures show the contours of the potential U under the parameter setting ðk1; k2; k3; k4; k5Þ ¼ ð1;−0.192; 0;−0.192; 1Þ
and angular momenta ðlϕ1

; lϕ2
Þ ¼ ð−14; 0Þ, where j2 ≃ 0.919 and ða; bÞ ≃ ð0.0296; 0.000227Þ. The bold solid curves denoteU ¼ 0 and

the white regions denote the forbidden regions of U > 0 where massive and massless particles cannot move. The black circles
correspond to the centers at ðρ; zÞ ¼ ð0; ziÞði ¼ 1;…; 5Þ.

STABLE BOUND ORBITS IN MICROSTATE GEOMETRIES PHYS. REV. D 105, 124014 (2022)

124014-7



minima at the z axis, so that stable bound orbits exist for
massive particles.
Figure 7 shows the contours of U for ðlϕ1

; lϕ2
Þ ¼

ð−15; 0Þ under the same parameter setting as the above.
As can be seen from these figures, there exists the single
nonclosed U ¼ 0 curve which intersects with Iþ and
extends to infinity. U > 0ð< 0Þ inside (outside) the U ¼
0 curve, and U does not has a local minimum, i.e., bound
orbits do not exist for massive/massless particles.
Moreover, particles coming in from infinity cannot enter
inside the U ¼ 0 curve, which also occurs for the over-
rotating BMPV black holes (so-called repulsons).

V. SUMMARY AND DISCUSSION

We have investigated the existence of stable bound orbits
for the massive and massless particles moving in the
simplest microstate geometry backgrounds with reflection
symmetry (three-center solutions and five-center solutions)
in the bosonic sector of the five-dimensional minimal
supergravity. In our analysis, reducing the motion of
particles to a two-dimensional potential problem, we have

plotted the contours of the potential. More specially, we
have shown the following points:

(i) We have numerically shown that the three-center
microstate geometries, which must have larger
angular momenta than the BMPV black holes, admit
the existence of stable bound for massive particles
near the three-center orbits but also even at infinity.
This is quite different from the geodesic behaviors in
the five-dimensional black hole backgrounds. We
could not confirm the existence of stable bound
orbits for massless particles. We have found numeri-
cally that there is such a finite region near the centers
that massive particles with nonzero angular mo-
menta coming in from infinity cannot reach (the
closed white regions in the upper left and upper right
figures of Fig. 3). This resembles the repulson
behavior of the BMPV black holes with over-
rotation (j2 > 1) [43,44], in which case since the
horizon area becomes imaginary, hence ill defined; it
simply becomes a smooth timelike hypersurface
(called a pseudohorizon). Though the geodesics
are complete in such a spacetime, surprisingly,

FIG. 6. The figures show the contours of the potential U under the parameter setting ðk1; k2; k3; k4; k5Þ ¼ ð1;−1.01; 0;−1.01; 1Þ and
angular momenta ðlϕ1

; lϕ2
Þ ¼ ð0; 0Þ, where j2 ≃ 14.8 and ða; bÞ ≃ ð4.83 × 10−7; 1.01Þ.

FIG. 7. The figures show the contours of the potential U under the parameter setting ðk1; k2; k3; k4; k5Þ ¼ ð1;−1.01; 0;−1.01; 1Þ and
angular momenta ðlϕ1

; lϕ2
Þ ¼ ð−15; 0Þ, where j2 ≃ 14.8 and ða; bÞ ≃ ð4.83 × 10−7; 1.01Þ.
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massive and massless particles cannot enter inside
the pseudohorizon.

(ii) We have compared the five-center solutions and the
BMPV black holes with the same mass and two
angular momenta. In the under-rotating BMPV
black hole background (0 < j2 < 1), stable bound
orbits do not exist outside the horizon for massive
and massless particles, whereas in the microstate
geometries, they exist (near the five Gibbons-Hawk-
ing centers) for both massive and massless particles.
In addition, the solutions also admit the repulson
behavior of the over-rotating BMPV black holes
since particles with nonzero angular momenta can-
not enter inside the two U ¼ 0 curves (see the
closed white regions in the upper middle and middle
figures of Fig. 5). Moreover, we have investigated
the five-center microstate geometries (with reflec-
tional symmetry) having angular momenta larger

than the BMPV black holes. At least, numerically,
we could confirm the existence of stable bound
orbits for massive particles with zero angular mo-
menta (not only near the centers but also at infinity)
but could not for massless particles. Moreover,
particles with nonzero angular momenta cannot reach
near the Gibbons-Hawking centers (see Fig. 7).

It is an interesting issue to analyze more general
microstate solutions with a larger number of centers or
without reflectional symmetry of centers. These deserve
our future work.
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