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In our previous work [Phys. Rev. D 100, 101501(R) (2019)], a novel idea that the Newman-Unti-
Tamburino (NUT) charge can be thought of as a thermodynamical multihair has been advocated to describe
perfectly the thermodynamical character of the generic four-dimensional Taub-NUT spacetimes. Accord-
ing to this scheme, the Komar mass (M), the gravitomagnetic charge (N), and/or the dual (magnetic) mass
(M̃ ¼ N), together with a new secondary hair (JN ¼ MN), namely, a Kerr-like conserved angular
momentum, enter into the standard forms of the first law and Bekenstein-Smarr mass formula.
Distinguished from other recent attempts, our consistent thermodynamic differential and integral mass
formulas are both obtainable from a meaningful Christodoulou-Ruffini-type squared-mass formula of
almost all of the four-dimensional NUT-charged spacetimes. As an excellent consequence, the famous
Bekenstein-Hawking one-quarter area-entropy relation can be naturally restored not only in the Lorentzian
sector and but also in the Euclidian counterpart of the generic Taub-NUT-type spacetimes without imposing
any constraint condition. However, only purely electric-charged cases in the four-dimensional Einstein-
Maxwell gravity theory with a NUT charge have been addressed there. In this paper, we shall follow the
simple, systematic way proposed in that article to further investigate the dyonic NUT-charged case. It is
shown that the standard thermodynamic relations continue to hold true provided that no new secondary
charge is added; however, the so-obtained electrostatic and magnetostatic potentials are not coincident with
those computed via the standard method. To rectify this inconsistence, a simple strategy is provided by
further introducing two additional secondary hairs, QN ¼ QN and PN ¼ PN, together with their
thermodynamical conjugate potentials, so that the first law and Bekenstein-Smarr mass formula are still
satisfied, where Q and P being the electric and magnetic charges, respectively.
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I. INTRODUCTION

In recent years, thermodynamics of the four-dimensional
Lorentzian Taub-NUT spacetimes in the Einstein-Maxwell
gravity theory have attracted a lot of attention [1–12]. In
particular, in our previous work [13], we have advocated
for a new idea that “the NUT charge is a thermodynamical
multihair” and put forward a simple, systematic way to
study the consistent thermodynamics of almost all of the
four-dimensional NUT-charged spacetimes. The consistent
first law and Bekenstein-Smarr mass formula of these
NUT-charged spacetimes are deduced by first deriving a
new meaningful Christodoulou-Ruffini-type squared-mass
formula satisfied by the four-dimensional NUT-charged
spacetimes with a new secondary hair; JN ¼ MN. In
contrast, it should be mentioned that there is no analogous
expression of the Christodoulou-Ruffini-type squared-mass

formula [14,15] in all of the previous works [1–12]. As a
fact that has already been demonstrated in Ref. [16], our
new secondary hair JN ¼ MN ≡M5 exactly corresponds
to the mass of the five-dimensional gravitational magnetic
monopole, so at least from the five-dimensional point of
view, it is very natural to consider it as a global conserved
charge; then it is reasonable to include it to the first law and
Bekenstein-Smarr mass formula. There are many reasons to
support such an idea. For instance, it helps to explain the
gyromagnetic ratio of Kerr-NUT-type spacetime [17], and
the quantization condition for a gravitational monopole
[18–20]. Additionally, it is proved in Ref. [21] that only by
considering the secondary hair JN ¼ MN as a independent
charge, can the area (or entropy) products of the NUT-
charged spacetimes be subject to the universal rules [22],
and the mass be expressed as a sum of the surface energy,
the rotational energy, and the electromagnetic energy [23].
According to the scheme advocated in our previous

paper [13], the traditional elegant Bekenstein-Hawking
one-quarter area-entropy relation can be naturally restored
in the Lorentzian and Euclidian sectors of the generic NUT-
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charged spacetimes (and all of their extensions) in the four-
dimensional Einstein-Maxwell gravity theory without
imposing any constraint condition. Due to the fact that
the NUT charge not only acts as a dual (magnetic) mass, but
also simultaneously has the rotationlike and electromag-
netic chargelike characters, we arrive at a new recognition
that it must be a thermodynamical multihair. This viewpoint
is in sharp contrast with all previous knowledge that it has
merely one physical feature, or that it is purely a single-
solution parameter, what is more, the physical meaning of
the NUT parameter as a polyfacet can be completely
uncovered in the thermodynamical sense.
The four-dimensional NUT-charged spacetimes studied

in our previous work [13] are either static charged (includ-
ing a nonzero negative cosmological constant) or rotating
charged (with a vanishing cosmological constant) in the
Einstein-Maxwell theory with a purely electric charge.
Note that the purelymagnetic-charged case can be identically
treated via the electric-magnetic duality relation. However,
that paper did not consider the case of the four-dimensional
dyonic NUT-charged spacetimes, nor did it deal with the
higher-dimensional case [24–30] and those four-dimensional
NUT-charged spacetimes beyond the Einstein-Maxwell
theory (such as Kaluza-Klein (K-K) theory [31–33],
Einstein-Maxwell-Dilaton-Axion (EMDA) theory [34],
and more general (gauged) STU supergravity theory [35–
37]), all of which need to be studied promptly. In the present
paper,we shall also focus on the thermodynamics of the four-
dimensional Lorentzian dyonic NUT-charged spacetimes in
the Einstein-Maxwell gravity theory.
The remaining part of this paper is organized as follows.

In Sec. II, we begin with a brief introduction of some
aspects of the four-dimensional Lorentzian dyonic
Reissner-Nordström-NUT (RN-NUT) solution and then
construct a new Christodoulou-Ruffini-like squared-mass
formula, from which both the differential and integral mass
formulas can be derived via a simple mathematical
manipulation by only including the secondary hair
JN ¼ MN, as did before in Ref. [13]. However, there
exists a contradiction between the obtained electrostatic
and he magnetostatic potentials with those computed by the
standard method. We demonstrated that this inconsistency
can be simply remedied by further introducing two new
additional secondary hairs, QN ¼ QN and PN ¼ PN,
together with their thermodynamical-conjugate potentials,
where Q and P are the electric and magnetic charges,
respectively, so that the standard thermodynamic relations
can continue to hold true. In Sec. III, we turn to discuss the
case of the dyonic RN-NUT-AdS4 spacetime. We show that
the dual (magnetic) mass must be further added to
reproduce the familiar thermodynamical volume delivered
in other literature. Then, in Sec. IV, we extend the above
work to the case of the four-dimensional dyonic Kerr-
Newman-NUT (KN-NUT) spacetime. In Sec. V, we discuss
the impact of the secondary hair, JN , on the mass formulas

and present the reduced mass formulas. Finally, we present
our conclusions in Sec. VI.

II. CONSISTENT MASS FORMULAS OF THE
FOUR-DIMENSIONAL DYONIC RN-NUT

SPACETIME

Let us start by summarizing some essential facts of the
Lorentzian four-dimensional RN-NUT metric with both
electric and magnetic charges in the Lorentz sector [38,39].
We adopt the following exquisite form of the line element
in which the Misner strings [40] are symmetrically dis-
tributed along the polar axis,

ds2 ¼ −
fðrÞ

r2 þ N2
ðdtþ 2N cos θdϕÞ2 þ r2 þ N2

fðrÞ dr2

þ ðr2 þ N2Þðdθ2 þ sin2θdϕ2Þ; ð1Þ

where fðrÞ ¼ r2 − 2Mr − N2 þQ2 þ P2, in which M, N,
Q, and P are the mass, the NUT charge, and the electric and
magnetic charges of the spacetime, respectively. In addi-
tion, the electromagnetic gauge potential one-form and its
dual one-form are

A ¼ Qr − PN
r2 þ N2

ðdtþ 2N cos θdϕÞ þ P cos θdϕ; ð2Þ

Ã ¼ PrþQN
r2 þ N2

ðdtþ 2N cos θdϕÞ −Q cos θdϕ; ð3Þ

in which a gauge choice is made to let the temporal
components of both potentials (2), (3) be zero at infinity,
so that the corresponding electrostatic and magnetostatic
potentials vanish at infinity. Alternatively, other often used
expressions for them are given by [3,41]

A ¼ 2QNrþ Pðr2 − N2Þ
2Nðr2 þ N2Þ ðdtþ 2N cos θdϕÞ;

Ã ¼ 2PNr −Qðr2 − N2Þ
2Nðr2 þ N2Þ ðdtþ 2N cos θdϕÞ;

whose temporal components differ from ours by two
constants, P=ð2NÞ, and −Q=ð2NÞ, respectively.
Traditionally, the spacetime (1) is termed as being

asymptotically local flat. It has a lot of odd physical
properties that are mainly due to the presence of the
wire/line singularities at the polar axis (θ ¼ 0; π), which
are often dubbed the Misner strings, are an analog of the
Dirac string in electrodynamics. Misner [40] proposed to
remove this kind of wire/line singularities (so as to ensure
the regularity of the metric) by imposing a time periodical
identification condition, β ¼ 8πn. Then, the inevitable
appearance of closed timelike curves subsequently led
him [42] to claim that the NUT parameter was nonphysical
and the Taub-NUT spacetime was “a counterexample to
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almost anything” in General Relativity. However in recent
years, Clément et al. [43–45] demonstrated that it is not
actually necessary to remove the Misner string by imposing
a periodicity condition of the time coordinate. They
illustrated that the Misner string singularities are far less
problematic than previously thought, and argued that the
Lorentzian Taub-NUT solutions without the Misner time
periodicity condition are geodesically complete, and cau-
sality is not violated at all for geodesic observers, despite
the existence of regions with closed timelike curves. An
immediate consequence of their research is that the
Lorentzian Taub-NUT spacetimes with the Misner strings
may be physical in nature. This, in turn, invokes enthusiasm
to explore other properties of these NUT-charged
spacetimes.
In the following wewill derive various mass formulas and

discuss the consistent thermodynamics of the four-dimen-
sional Lorentzian dyonic RN-NUT spacetime. As was done
in Refs. [1,2,6,7,13,43,46–49], we will not impose the time-
periodicity condition. Meanwhile, we shall also keep the
Misner strings symmetrically present at the polar axes and
only consider the conical singularities satisfying fðrÞ ¼ 0;
namely, the outer and inner horizons located at

rh ¼ r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N2 −Q2 − P2

p
. Below, we will

focus on the (exterior) event horizon—the discussions are
also valid for the (interior) Cauchy horizon.
To beginwith, let us recall some known quantities that can

be evaluated via the standard method. First, the area and the
surface gravity at the horizon are easily computed as

Ah ¼ 4πðr2hþN2Þ¼ 4πAh; κ¼ f0ðrhÞ
2Ah

¼ rh−M
r2hþN2

; ð4Þ

with a reduced horizon area,Ah, being introduced [13,50] for
conciseness,

Ah ¼ r2h þ N2 ¼ 2Mrh þ 2N2 −Q2 − P2: ð5Þ

The electrostatic and magnetostatic potentials are gauge
independent by virtue of the above specific gauge choice.
They are simply given by

Φ ¼ Φh ¼ ðAμξ
μÞjr¼rh ¼

Qrh − PN
r2h þ N2

;

Ψ ¼ Ψh ¼ ðÃμξ
μÞjr¼rh ¼

Prh þQN
r2h þ N2

; ð6Þ

where ξ ¼ ∂t is a timelike Killing vector normal to the
horizon.
As far as the calculation of the global conserved charges

(M, N, Q, P) is concerned, the mass M can be computed
via the Komar integral related to the timelike Killing vector
∂t, while the electric and magnetic charges (Q, P) can be
integrated by using the Gauss’ law associated with the field

strengths (F ¼ dA, F̃ ¼ dÃ), respectively. The NUT
charge N, however, has several different meanings, and
so can be evaluated via different methods. If it appears as
the dual or magnetic-type mass [20,51–53], then it can be
determined via the dual Komar integral as M̃ ¼ N. On the
other hand, if it acts as the gravitomagnetic charge, it can be
calculated via the definition given in Ref. [54]. One cannot
distinguish the dual or magnetic-type mass from the
gravitomagnetic charge in the present case; however, we
shall see below that they are significantly different from
each other once a nonzero cosmological constant is
included. In addition, the conserved charges (M, N, Q,
P) as the primary hairs apparently appear in the leading
order of the asymptotic expansions of the following
components of the metric and the Abelian potentials at
infinity,

gtt ≃ −1þ 2M
r

þOðr−2Þ;

gtϕ ≃
�
−2N þ 4MN

r

�
cos θ þOðr−2Þ;

At ≃
Q
r
þOðr−2Þ; Ãt ≃

P
r
þOðr−2Þ;

Aϕ ≃
�
Pþ 2QN

r

�
cos θ þOðr−2Þ;

Ãϕ ≃
�
−Qþ 2PN

r

�
cos θ þOðr−2Þ: ð7Þ

Note that our previously included secondary hair,
JN ¼ MN, appears as the next-to-leading order of the
asymptotic expansion of the metric component gtϕ, and we
can find that there are also two similar next-to-leading-
order quantities,QN and PN, in the asymptotic expansions
of two Abelian potentials’ components, Aϕ and Ãϕ,
indicating that as two secondary hairs, they might also
play a key role in the mass formula.

A. Mass formulas with the secondary hair:
JN =MN only

In order to derive the first law which is reasonable and
consistent in both physical and mathematical sense, we
adopt the method used in Refs. [13,50] to deduce a
meaningful Christodoulou-Ruffini-type squared-mass for-
mula. First, we rewrite the expression (5) of the reduced
horizon area and get the following identity:

ðAh−2N2þQ2þP2Þ2¼4M2r2h¼4M2Ah−4M2N2: ð8Þ

Next, supposed that we only need to introduce the
secondary hair: JN ¼ MN, as did in our previous work
[13], then we can obtain a useful identity,
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M2 ¼ 1

4Ah
ðAh − 2N2 þ P2 þQ2Þ2 þ J2N

Ah
; ð9Þ

which is a Christodoulou-Ruffini-like squared-mass for-
mula for the four-dimensional dyonic RN-NUT spacetime.
We point out that Eq. (9) consistently reduces to the one
obtained in the case of the four-dimensional RN-NUT
spacetime [13] when the magnetic charge P is turned off.
Below, we will derive the differential and integral mass

formulas for the dyonic RN-NUT spacetime, supposing that
the primary hairs are the mass M, the NUT charge N, the
electric and magnetic charges (Q, P) as well as the only one
secondary hair, JN ¼ MN. Given that the secondary hair JN
can be viewed temporarily as a independent variable1 at this
moment, then the above squared-mass formula (9) can be
viewed formally as a fundamental functional relation,
M ¼ MðAh; N; JN;Q; PÞ. Differentiating it (multiplied by
4Ah) with respect to the thermodynamical variables (Ah, N,
JN , Q, P) yields their conjugate quantities, as was done in
Refs. [50,55–60]. In doing so,we arrive at the differential and
integral mass formulas, with the conjugate thermodynamic
potentials given by the ordinary Maxwell relations.
Let us now demonstrate the above conclusion in more

detail. Differentiating the squared-mass formula (9) with
respect to the reduced horizon areaAh yields one half of the
surface gravity

κ ¼ 2
∂M
∂Ah

����
ðN;JN;Q;PÞ

¼ Ah − 2N2 þQ2 þ P2 − 2M2

2MAh

¼ rh −M
r2h þ N2

; ð10Þ

which is entirely identical to the one given in Eq. (4).
Similarly, by the differentiation of the squared-mass for-
mula (9) with respect to the NUT charge N and the
secondary hair JN, one can obtain the conjugate gravito-
magnetic potential ψh and the conjugate quasiangular
momentum ωh as

ψh ¼
∂M
∂N

����
ðAh;JN;Q;PÞ

¼ −NðAh − 2N2 þQ2 þ P2Þ
MAh

¼ −2Nrh
r2h þ N2

; ð11Þ

ωh ¼
∂M
∂JN

����
ðAh;N;Q;PÞ

¼ JN
MAh

¼ N
r2h þ N2

: ð12Þ

The electrostatic and magnetostatic potentials, which are
conjugate to Q and P, respectively, can be computed as

Φ̂ ¼ ∂M
∂Q

����
ðAh;N;JN;PÞ

¼ QðAh − 2N2 þQ2 þ P2Þ
2MAh

¼ Qrh
r2h þ N2

; ð13Þ

Ψ̂ ¼ ∂M
∂P

����
ðAh;N;JN;QÞ

¼ PðAh − 2N2 þQ2 þ P2Þ
2MAh

¼ Prh
r2h þ N2

; ð14Þ

which coincide with their corresponding ones only in the
purely electric- or purely magnetic-charged case [13]. In
the present dyonic case, these two quantities are apparently
different from those given in Eq. (6). Nevertheless, we can
verify that both the differential and integral mass formulas
are completely satisfied

dM ¼ ðκ=2ÞdAh þ ωhdJN þ ψhdN þ Φ̂dQþ Ψ̂dP; ð15Þ

M ¼ κAh þ 2ωhJN þ ψhN þ Φ̂Qþ Ψ̂P; ð16Þ

with respect to all the above thermodynamical conju-
gate pairs.
It is worth mentioning that the above differential and

integral mass formulas (15)–(16) can not only naturally
reduce to the purely electric- or purely magnetic-charged
casewhen themagnetic or electric charge vanishes (P ¼ 0 or
Q ¼ 0), but also smoothly recovers the dyonicRNblack hole
casewhen theNUTchargevanishes (N ¼ 0). Comparing our
new mass formulas presented in Eqs. (15)–(16) with the
standard ones, it is strongly suggested that one should use the
following familiar identities

T ¼ κ

2π
¼ rh −M

2πðr2h þ N2Þ ; S ¼ A
4
¼ πðr2h þ N2Þ; ð17Þ

which restores the famous Bekenstein-Hawking one-quarter
area-entropy relation of the dyonic RN-NUT spacetime in a
very comfortable way. It is worth noting that one should
assign a geometric entropy to the dyonic RN-NUT space-
time, which is just one-quarter of its horizon area. In the
above derivation, we do not require in advance that the
relation (17) must hold in order to obtain a reasonable first
law, but rather it is a very natural result from the above
thermodynamic derivation.
It is remarkable that unlike Ref. [3], our differential and

integral mass formulas (15)–(16) attain their traditional
forms which relate the global conserved charges (M, Q, P,
N, JN) measured at the infinity, to those quantities (T, S, Φ̂,
Ψ̂, ψh, ωh) evaluated at the horizon. In this sense, it is quite
reasonable to infer that the entire set of four laws of the
usual black hole thermodynamics is completely applicable
to the dyonic RN-NUT spacetime. It is time to formally call

1However, one may think that it actually is not independent. A
careful discussion about its impact on the mass formulas is
presented in Sec. V.
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the dyonic NUT-charged spacetimes real black holes, at
least from the thermodynamic point of view.

B. Two new secondary hairs QN =QN and PN =PN

In the last subsection, we derived the differential and
integral mass formulas of the four-dimensional dyonic RN-
NUT spacetime via differentiating the squared-mass for-
mula (9), but with a fly in the ointment as mentioned
earlier; namely, the derived expressions for the conjugate
electrostatic and magnetostatic potentials are inconsistent
with those previously calculated by using the standard
method. In order to get a consistent and reasonable first law
and Bekenstein-Smarr mass formula, this inconsistency
must be removed. Noting that the expressions ψh ¼
−2Nrh=ðr2h þ N2Þ and ωh ¼ N=ðr2h þ N2Þ in the mass
formulas (15)–(16) do not explicitly contain the electric
and magnetic charges (Q, P), so we can leave them
unchanged and replace only the electrostatic and magneto-
static potentials (Φ̂, Ψ̂) by the standard ones (Φ,Ψ) given in
Eq. (6). First, using Φ̂Qþ Ψ̂P ¼ ΦQþΨP, the integral
mass formula (16) can be rewritten as

M ¼ 2TSþ 2ωhJN þ ψhN þΦQþ ΨP: ð18Þ

Next, the first law (15) can be rewritten as

dM ¼ TdSþ ωhdJN þ ψhdN þΦdQþ ΨdP

þ N
r2h þ N2

ðPdQ −QdPÞ;

¼ TdSþ ωhdJN þ ψhdN þΦdQþ ΨdP

þ PdðQNÞ −QdðPNÞ
r2h þ N2

;

¼ TdSþ ωhdJN þ ψhdN þΦdQþ ΨdP

þΦNdQN þ ΨNdPN; ð19Þ

provided that one further introduces two new additional
secondary hairs, QN ¼ QN and PN ¼ PN, together with
their thermodynamic conjugate potentials,

ΦN ¼ P
r2h þ N2

; ΨN ¼ −Q
r2h þ N2

: ð20Þ

Also, since ΦNQN þ ΨNPN ¼ 0, so the Bekenstein-Smarr
mass formula (18) can be further rewritten as

M¼ 2TSþ2ωhJN þψhNþΦQþΨPþΦNQN þΨNPN:

ð21Þ

From the first law (19), it is easy to see that there are five cases
with noneed to introduce the secondaryhairs,QN ¼ QN and
PN ¼ PN as well as their conjugate potentials (ΦN , ΨN):

(i) purely electric-charged case (P ¼ 0); (ii) purelymagnetic-
charged case (Q ¼ 0); (iii) dyonic RN solution (N ¼ 0);
(iv) self-dual vector-potential case (Q ¼ P); and (v) antiself-
dual vector potential case (Q ¼ −P).
The above identities (18)–(19) are the expected standard

forms of our consistent first law and Bekenstein-Smarr
mass formula for the dyonic RN-NUT spacetime, sug-
gesting that the NUT charge should be treated as a
thermodynamic multihair. The advantage of introducing
the above secondary hairs is as follows: 1) it can smoothly
recover the cases where the solution parameters take some
special values in our previous work [13]; 2) it can retain
some thermodynamic quantities calculated by the standard
method; 3) all the expressions of the related thermody-
namic quantities are very concise and much more simple
than those appeared in other literature.
Finally, if the squared-mass (9) is viewed as a binomial

of the reduced horizon area

A2
h þ 2ðP2 þQ2 − 2N2 − 2M2ÞAh

þ 4M2N2 þ ðP2 þQ2 − 2N2Þ2 ¼ 0; ð22Þ

then the area product of the inner and outer horizons,

AþA− ¼ 4J2N þ ðP2 þQ2 − 2N2Þ2; ð23Þ

can only be quantized when JN ¼ MN is quantized in a
manner like the quantization of the angular momentum, and
the charges (Q, P, N) also take discrete values.

III. EXTENSION TO THE DYONIC RN-NUT-AdS4
SPACETIME

In this section, we would like to extend the above
work to the Lorentzian dyonic RN-NUT-AdS4 spacetime
with a nonzero cosmological constant. The metric, the
Abelian gauge potential and its dual, are still given by
Eqs. (1)–(3), but now fðrÞ ¼ r2 − 2Mr − N2 þQ2 þ P2þ
g2ðr4 þ 6N2r2 − 3N4Þ, in which g ¼ 1=l is the gauge
coupling constant.
First, we will determine the conserved charges (primary

hairs) of the dyonic RN-NUT-AdS4 solution. The electric
and magnetic charges (Q, P) as well as the gravitomagnetic
charge N can be computed just like the case without a
cosmological constant. We will adopt the conformal com-
pletion method to calculate its electric mass M and dual
(magnetic) mass [61], and show that the dual (magnetic)
mass M̃ is now different from the NUT charge N. The
conformal boundary metric of the dyonic RN-NUT-AdS4
spacetime is given by

ds2∞ ¼ lim
r→∞

ds2

r2
¼ −g2ðdtþ 2N cos θdϕÞ2

þ dθ2 þ sin2θdϕ2; ð24Þ
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with grr ¼ g2r4 being used to define a normal vector
Nr ¼ gr2, then the conserved charge Q½ξ� associated with
the Killing vector ξ ¼ ∂t is given by

Q½ξ� ¼ 1

8πg3

Z
rNαNβCμ

ανβξ
νdSμ; ð25Þ

where Cμ
ανβ is the Weyl conformal tensor and

dSμ ¼ g sin θdθ ∧ dϕ ð26Þ

is the area element of the two-spherical cross section of the
conformal boundary. The conformal (electric) mass M is
easily evaluated as

M ¼ Q½ξt� ¼ M: ð27Þ

Similarly, in order to evaluate the dual conformal mass,
we can define a dual conserved charge Q̃½ξ� via replacing
the Weyl conformal tensor by its left-dual

C̃μνρσ ¼
1

2
ϵμναβCαβ

ρσ; ð28Þ

where ϵμναβ is the Levi-Civita antisymmetry tensor. Then,
the dual (magnetic) mass is computed as

M̃ ¼ Q̃½ξt� ¼ Nð1þ 4g2N2Þ; ð29Þ

which is unequal to the NUT charge N.
Next, we want to calculate some thermodynamic quan-

tities associated with the Killing horizons defined by
fðrhÞ ¼ 0. The surface gravity at the horizon is given by

κ ¼ f0ðrhÞ
2Ah

¼ rh −M þ 2g2ðr2h þ 3N2Þrh
Ah

; ð30Þ

while the horizon area still reads Ah ¼
4πðr2h þ N2Þ ¼ 4πAh, in which the reduced horizon area
is now

Ah ¼ 2Mrh þ 2N2 −Q2 − P2 − g2ðr4h þ 6N2r2h − 3N4Þ
¼ 2Mrh þ 2N2 −Q2 − P2

− g2ðA2
h þ 4N2Ah − 8N4Þ: ð31Þ

The electrostatic and magnetostatic potentials are

Φ ¼ Qrh − PN
r2h þ N2

; Ψ ¼ Prh þQN
r2h þ N2

; ð32Þ

which are the same expressions as those given in Eq. (6),
although the horizon location rh now has a different
expression.

A. Mass formulas with the secondary hair:
JN =MN only

Now, we assume that only the secondary hair JN ¼ MN
is needed as before, and deduce a squared-mass formula.
The reduced horizon area (31) can be written as

2Mrh ¼ ð1þ 4g2N2ÞðAh − 2N2Þ þQ2 þ P2 þ g2A2
h:

ð33Þ

After squaring this identity and then adding 4M2N2 to its
left-hand side and 4JN to its right-hand side, we obtain

M2 ¼ 1

4Ah
½ð1þ 4g2N2ÞðAh − 2N2Þ

þQ2 þ P2 þ g2A2
h�2 þ

J2N
Ah

; ð34Þ

which is nothing but the squared-mass formula

M2 ¼ 1

Ah

��
1þ 32π

3
PN2

�
ðAh − 2N2Þ

þQ2 þ P2 þ 8π

3
PA2

h

�
2

þ J2N
Ah

; ð35Þ

after introducing the generalized pressure P ¼ 3g2=ð8πÞ to
replace the cosmological constant. We also point out that
the squared-mass formula (35) consistently reduces to the
one obtained in the four-dimensional RN-NUT-AdS space-
time case [13] when the magnetic charge P vanishes.
In the following, the differential and integral mass for-

mulas for the dyonic RN-NUT-AdS4 spacetime are derived
by assuming that the whole set of thermodynamic quantities
is the massM, the NUT charge N, the electric and magnetic
charges (Q, P), the generalized pressureP, and the only one
secondary hair JN ¼ MN which will also be viewed as a
independent variable.2 In this way, the squared-mass for-
mula (35) then can be viewed as a fundamental functional
relation M ¼ MðAh; N; JN;Q; P;PÞ of its thermodynam-
ical variables.
Applying a similar procedure as manipulated in the last

section, i.e., performing the partial derivative of the above
squared-mass formula (35) (multiplied by 4Ah) with
respect to one of the thermodynamical quantities (Ah,
N, JN , Q, P, P) and simultaneously fixing the remaining
ones, respectively, leads to its corresponding conjugate
quantities. First, differentiating the squared-mass for-
mula (35) with respect to the reduced horizon area Ah
yields one half of the surface gravity,

2A detailed discussion about the impact of JN ¼ MN on the
mass formulas is presented in Sec. V.
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κ ¼ 2
∂M
∂Ah

����
ðN;JN;Q;P;PÞ

¼ rh −Mþ 2g2ðr2h þ 3N2Þrh
r2h þN2

; ð36Þ

which coincides with the one given in Eq. (30). Next, the
potential ψh and the quasiangular momentumωh, which are
conjugate to N and JN , respectively, are given by

ψh ¼
∂M
∂N

����
ðAh;JN;Q;P;PÞ

¼ 2Nrh
−1þ 2g2ðr2h − 3N2Þ

r2h þ N2
; ð37Þ

ωh ¼
∂M
∂JN

����
ðAh;N;Q;P;PÞ

¼ N
r2h þ N2

: ð38Þ

By differentiating the squared-mass formula (35) with
respect to the electric and magnetic charges (Q, P),
respectively, one can get the conjugate electrostatic and
magneto-static potentials as follows:

Φ̂ ¼ ∂M
∂Q

����
ðAh;N;JN;P;PÞ

¼ Qrh
r2h þ N2

; ð39Þ

Ψ̂ ¼ ∂M
∂P

����
ðAh;N;JN;Q;PÞ

¼ Prh
r2h þ N2

: ð40Þ

These two quantities are also different from those given in
Eq. (32). Finally, via the differentiation of the squared-mass
formula (35) with respect to the pressure P, one can obtain
a conjugate thermodynamical volume,

V ¼ ∂M
∂P

����
ðAh;N;JN;Q;PÞ

¼ 4πrhðr4h þ 6N2r2h − 3N4Þ
3ðr2h þ N2Þ : ð41Þ

Using all of the above thermodynamical conjugate pairs,
we can easily check that both differential and integral mass
formulas are completely obeyed,

dM ¼ ðκ=2ÞdAh þ ωhdJN þ ψhdN þ VdP

þ Φ̂dQþ Ψ̂dP; ð42Þ

M ¼ κAh þ 2ωhJN þ ψhN − 2VP þ Φ̂Qþ Ψ̂P: ð43Þ

It is natural to recognize

S ¼ Ah

4
¼ πAh; T ¼ κ

2π
¼ f0ðrhÞ

4πAh
; ð44Þ

so that the solution behaves like a genuine black hole
without violating the beautiful one-quarter area/entropy
law. In sharp contrast with Ref. [3], we do not require in
advance that the first law should be obeyed so as to obtain
the consistent thermodynamical relations—rather it is just a
very natural byproduct of the pure algebraic deduction.

B. Consistent mass formulas

One may notice that there are two shortcomings of our
work done in the last subsection. The first one is that the
obtained electrostatic and magnetostatic potentials do not
coincide with those computed via the standard method, and
the second one is that our derived conjugate thermody-
namical volume V is not equal to the familiar one,
Ṽ ¼ 4πrhðr2h þ 3N2Þ=3, which appeared in other literature
[1–4,62]. Below, we will resolve these two inconsistences
one by one.
To settle the first contradiction, like the case without a

cosmological constant, we just need to further introduce
two new additional secondary hairs, QN ¼ QN and
PN ¼ PN, together with their thermodynamic conjugate
electrostatic and magnetostatic potentials

ΦN ¼ P
r2h þ N2

; ΨN ¼ −Q
r2h þ N2

; ð45Þ

to get the standard forms of the Bekenstein-Smarr formula
and the first law as follows:

M ¼ 2TSþ 2ωhJN þ ψhN þΦQþ ΨP − 2VP; ð46Þ

dM ¼ TdSþ ωhdJN þ ψhdN þΦdQþ ΨdP

þ VdP þ PdðQNÞ −QdðPNÞ
r2h þ N2

;

¼ TdSþ ωhdJN þ ψhdN þΦdQþ ΨdP

þ VdP þΦNdQN þΨNdPN; ð47Þ

which are our consistent and reasonable thermodynamical
first law and Bekenstein-Smarr mass formulas for the dyonic
RN-NUT-AdS4 spacetime. The first law (47) indicates that
there are three classes of special cases without introducing
the secondary hairs, QN ¼ QN and PN ¼ PN, as well as
their conjugate potentials (ΦN , ΨN): (i) purely electric-
charged (P ¼ 0) or purely magnetic-charged (Q ¼ 0) case;
(ii) NUT-less dyonic solution (N ¼ 0); (iii) self-dual or
antiself-dual vector-potential case (jQj ¼ jPj).
On the basis of this modification, we are now ready to

remove the second conflict via replacing the derived con-
jugate thermodynamical volume V by Ṽ ¼ 4πrhðr2hþ
3N2Þ=3, and further introducing the dual (magnetic) mass
M̃ ¼ Nð1þ 4g2N2Þ into the above differential and integral
mass formulas (46)–(47). Now we get the following con-
sistent mass formulas

dM ¼ TdSþ ωhdJN þ fψhdN þ ζdM̃ þΦdQþΨdP

þΦNdQN þΨNdPN þ ṼdP;

M ¼ 2TSþ 2ωhJN þ fψhN þ ζM̃ þΦQþ ΨdP − 2ṼP;

in which two new conjugate potentials are given by
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fψh ¼ −
2Nrh
Ah

− ð1 − 4g2N2Þζ; ζ ¼ rhðr2h − 3N2Þ
4NAh

:

It is of little possibility to reproduce the thermodynamical
volume Ṽ without the inclusion of the dual mass M̃.
It should be pointed out that unlike the formalism

advocated in other papers [3,8] where there are electric-
type, magnetic-type, mixed-type, and many other versions
of the ‘consistent’ first law in which the thermodynamic
mass also remains unmodified, here our consistent mass
formulas are unique. In contrast, Awad et al. [12] proposed
modifying the thermodynamic mass which includes the
contribution from the Misner string so that the first law
retains its usual form without introducing new thermody-
namical conjugate pairs, although they used a four-dimen-
sional planar NUT-charged spacetime as a special example.
According to this fashion, it is shown in Appendix A that
there are infinitely many consistent mass formulas for the
dyonic RN-NUT-AdS4 spacetime.

IV. CONSISTENT MASS FORMULAS OF THE
DYONIC KN-NUT SPACETIME

Finally, we will show that the general rotating Lorentzian
dyonic NUT-charged case without a cosmological constant
can be treated completely in the same pattern as did in the
last two sections. The line element of the dyonic KN-NUT
spacetime with the Misner strings symmetrically distrib-
uted along the rotation axis, the electromagnetic one-form
and its dual one-form are

ds2 ¼ −
ΔðrÞ
Σ

X2 þ Σ
ΔðrÞ dr

2 þ Σdθ2 þ sin2θ
Σ

Y2; ð48Þ

A ¼ Qr − PN
Σ

X −
P cos θ

Σ
Y

¼ Qr − PðN þ a cos θÞ
Σ

X þ P cos θdϕ; ð49Þ

Ã ¼ PrþQN
Σ

X þQ cos θ
Σ

Y

¼ PrþQðN þ a cos θÞ
Σ

X −Q cos θdϕ; ð50Þ

where Σ ¼ r2 þ ðN þ a cos θÞ2, and

ΔðrÞ ¼ r2 þ a2 − 2Mr − N2 þQ2 þ P2;

X ¼ dtþ ð2N cos θ − asin2θÞdϕ;
Y ¼ adt − ðr2 þ a2 þ N2Þdϕ:

The global conserved charges for this spacetime are the
Komar mass M, the angular momentum J ¼ Ma, the
electric and magnetic charges (Q, P), and the gravitomag-
netic charge or dual (magnetic) mass (both of which are
identical to the NUT charge N). These conserved charges

display obviously in the leading order of the following
asymptotic expansions of the metric components and the
Abelian potentials at infinity,

gtt ≃ −1þ 2M
r

þOðr−2Þ;

At ≃
Q
r
þOðr−2Þ; Ãt ≃

P
r
þOðr−2Þ;

gtϕ ≃
�
−2N þ 4MN

r

�
cos θ −

2Ma
r

sin2θ þOðr−2Þ;

Aϕ ≃
�
Pþ 2QN

r

�
cos θ −

Qa
r

sin2θ þOðr−2Þ;

Ãϕ ≃
�
−Qþ 2PN

r

�
cos θ −

Pa
r
sin2θ þOðr−2Þ: ð51Þ

Besides these primary hairs, there are also the secondary
hairs, (MN, QN, PN), electric-dipole, and magnetic-dipole
moments (Qa, Pa) appearing in the next-to-leading order
of the above asymptotic expansions.
The event and Cauchy horizons are determined

by ΔðrhÞ ¼ 0, which gives rh ¼ r� ¼ M�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N2 −Q2 − P2 − a2

p
. The event horizon area is

Ah ¼ 4πAh, with the reduced horizon area now
being Ah ¼ r2h þ a2 þ N2 ¼ 2Mrh þ 2N2 −Q2 − P2.
At the horizon, the surface gravity and the angular

velocity can be evaluated via the standard method as

κ ¼ Δ0ðrhÞ
2Ah

¼ rh −M
Ah

; Ω ¼ −gtϕ
gϕϕ

����
r¼rh

¼ a
Ah

: ð52Þ

The electrostatic and magnetostatic potentials simply iden-
tify with those at the horizons and read

Φ ¼ Φh ¼ ðAμξ
μÞjr¼rh ¼

Qrh − PN
Ah

;

Ψ ¼ Ψh ¼ ðÃμξ
μÞjr¼rh ¼

Prh þQN
Ah

; ð53Þ

where ξ ¼ ∂t þ Ω∂ϕ is the corotating Killing vector normal
to the horizon.

A. Mass formulas with the secondary hair:
JN =MN only

Adopting the same procedure as we did in the last two
sections and supposing that only one secondary hair,
JN ¼ MN, is needed to be included as before, we square
the following identity 2Mrh ¼ Ah − 2N2 þQ2 þ P2. Then
after adding 4M2ða2 þ N2Þ to its left-hand side and 4J2 þ
4J2N to its right-hand side, followed by dividing both sides
with 4M2, we can obtain a squared-mass formula,
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M2 ¼ 1

4Ah
ðAh − 2N2 þQ2 þ P2Þ2 þ J2N þ J2

Ah
; ð54Þ

which consistently reduces to the one obtained in the four-
dimensional KN-NUT spacetime case [13] when the
magnetic charge P is turned off.
Incidentally, if the squared-mass (54) is rewritten as a

binomial of the reduced horizon area,

A2
h þ 2ðP2 þQ2 − 2N2 − 2M2ÞAh

þ 4J2 þ 4M2N2 þ ðP2 þQ2 − 2N2Þ2 ¼ 0; ð55Þ

then the area product of the inner and outer horizons,

AþA− ¼ 4J2 þ 4J2N þ ðP2 þQ2 − 2N2Þ2 ð56Þ

can be quantized only when JN ¼ MN is quantized in a
manner just as the angular momentum J ¼ mℏ is quan-
tized, and the charges (Q, P, N) take discrete values.
Suppose for a moment that the secondary hair,

JN ¼ MN, is an independent conserved charge (namely,
it can be treated as a independent thermodynamical
variable)3 then Eq. (54) formally represents a fundamental
functional relation M ¼ MðAh; J; JN; N;Q; PÞ with the
whole set of the extensive variables being the NUT charge
N, the electric and magnetic charges (Q, P), the angular
momentum J, the secondary hair JN, and Ah as the intense
quantity of the dyonic KN-NUT spacetime. Then, differ-
entiating the above squared-mass formula (54) with respect
to one variable of the whole set of the thermodynamical
quantities (Ah, J, JN , N, Q, P) and simultaneously fixing
the remaining ones, respectively, gives rise to its corre-
sponding conjugate quantities. Subsequently, one can
derive the differential and integral mass formulas with
the conjugate thermodynamical potentials reproduced by
the ordinary Maxwell relations.
The conjugate quantity of the reduced horizon areaAh is

one half of the surface gravity,

κ ¼ 2
∂M
∂Ah

����
ðJ;JN;N;Q;PÞ

¼ rh −M
Ah

: ð57Þ

The angular velocity, which is conjugate to J, is given by

Ω ¼ ∂M
∂J

����
ðAh;JN;N;Q;PÞ

¼ a
Ah

: ð58Þ

These two conjugate quantities are entirely identical to
those given in Eq. (52). Differentiating the squared-mass
formula (54) with respect to the NUT charge N and the
secondary hair JN, one can get the conjugate gravitomag-
netic potential,

ψh ¼
∂M
∂N

����
ðAh;J;JN;Q;PÞ

¼ −
2Nrh
Ah

; ð59Þ

and a conjugate quasiangular momentum,

ωh ¼
∂M
∂JN

����
ðAh;J;N;Q;PÞ

¼ N
Ah

: ð60Þ

Differentiating the squared-mass formula (54)with respect to
the electric andmagnetic charges (Q, P), respectively, yields
the conjugate electrostatic and magnetostatic potentials,

Φ̂ ¼ ∂M
∂Q

����
ðAh;J;JN;N;PÞ

¼ Qrh
Ah

; ð61Þ

Ψ̂ ¼ ∂M
∂P

����
ðAh;J;JN;N;QÞ

¼ Prh
Ah

; ð62Þ

which are different from those given in Eq. (53).
One can also easily demonstrate both the differential and

integral mass formulas are completely fulfilled

dM ¼ ðκ=2ÞdAh þΩdJ þ ωhdJN þ ψhdN

þ Φ̂dQþ Ψ̂dP; ð63Þ

M ¼ κAh þ 2ΩJ þ 2ωhJN þ ψhN þ Φ̂Qþ Ψ̂P; ð64Þ

after using all the above thermodynamical conjugate pairs.
The consistency of the above mass formulas (63)–(64)

suggests that one should restore the well-known
Bekenstein-Hawking area/entropy relation and Hawking
temperature

S ¼ Ah

4
¼ πAh; T ¼ κ

2π
¼ rh −M

2πAh
; ð65Þ

which means that the whole class of the four-dimensional
dyonic NUT-charged spacetimes should be viewed as
generic black holes.

B. Two new secondary hairs QN =QN and PN =PN

In this subsection, we will show that a consistent and
reasonable first law and Bekenstein-Smarr mass formula of
the dyonic KN-NUT spacetime can still be obtained via
introducing two new additional secondary hairs,QN ¼ QN
and PN ¼ PN, together with their thermodynamic con-
jugate potentials,

ΦN ¼ P
Ah

; ΨN ¼ −Q
Ah

: ð66Þ

By the replacement of the electrostatic and magnetostatic
potentials, it is not difficult to see that the integral mass
formula becomes3We will discuss the impact of JN ¼ MN in Sec. V.
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M ¼ 2TSþ 2ΩJ þ 2ωhJN þ ψhN þΦQþΨP; ð67Þ
while the differential mass formula is rewritten as follows:

dM ¼ TdSþ ΩdJ þ ωhdJN þ ψhdN þΦdQ

þ ΨdPþ PdðQNÞ −QdðPNÞ
Ah

;

¼ TdSþ ΩdJ þ ωhdJN þ ψhdN þΦdQ

þ ΨdPþΦNdQN þ ΨNdPN: ð68Þ

The first law (68) implies that there are three kind of special
cases with no need of introducing the secondary hairs,
QN ¼ QN and PN ¼ PN, as well as their conjugate
potentials (ΦN , ΨN): (i) purely electric-charged (P ¼ 0)
or purely magnetic-charged (Q ¼ 0) case; (ii) dyonic KN
solution (N ¼ 0); (iii) self-dual or antiself-dual vector
potential case (Q ¼ �P).
Both Eqs. (67) and (68) are expressed in the standard

forms, which are our expected consistent thermodynamical
first law and Bekenstein-Smarr mass formula for the four-
dimensional dyonic KN-NUT spacetime. They are not only
simple, but also unique, unlike the work [5] which declared
that there are several different versions for them.

V. REDUCED MASS FORMULAS

In the Secs. II A, III A, and IVA, the secondary hair,
JN ¼ MN, has been viewed as a independent thermody-
namic variable, its impact on the thermodynamical relations
has been ignored. In this section, we investigate this issue
and derive the corresponding reduced mass formulas of the
dyonic RN-NUT, dyonic RN-NUT-AdS4 and dyonic KN-
NUT spacetimes, respectively. This is somewhat analogous
to those about the chirality condition, J ¼ Ml, (l is the
cosmological radius) of the superentropic Kerr-Newman-
AdS4, ultraspinning Kerr-Sen-AdS4 and ultraspinning
dyonic Kerr-Sen-AdS4 black holes [55–57].
Now, considering JN ¼ MN as a redundant variable and

taking into account its differentiation dJN ¼ MdNþ
NdM, followed by eliminating them from the differential
and integral mass formulas with the help of N ¼ JN=M,
then the first law and Bekenstein-Smarr mass formula boil
down to their nonstandard forms, which are listed below for
the spacetimes considered before.
(a) Dyonic RN-NUT spacetime

ð1 − ωhNÞdM ¼ ðκ=2ÞdAh þ ψ̄hdN þ Φ̂dQþ Ψ̂dP;

ð1 − ωhNÞM ¼ κAh þ ψ̄hN þ Φ̂Qþ Ψ̂P;

(b) Dyonic RN-NUT-AdS4 spacetime

ð1−ωhNÞdM¼ðκ=2ÞdAhþ ψ̄hdNþΦ̂dQþΨ̂dPþVdP;

ð1−ωhNÞM¼ κAhþ ψ̄hNþΦ̂QþΨ̂P−2VP;

(c) Dyonic KN-NUT spacetime

ð1 − ωhNÞdM ¼ ðκ=2ÞdAh þΩdJ þ ψ̄hdN

þ Φ̂dQþ Ψ̂dP;

ð1 − ωhNÞM ¼ κAh þ 2ΩJ þ ψ̄hN þ Φ̂Qþ Ψ̂P;

where ψ̄h ¼ ψh þ ωhM in each case.
It is easy to see that all of the thermodynamic quantities

in these reduced mass formulas cannot constitute the
ordinary canonical conjugate pairs due to the presence
of a factor ð1 − ωhNÞ in front of dM andM. By the way, we
mention that the above nonstandard mass formulas partially
appeared in some papers [63–66].

VI. CONCLUDING REMARKS

In this paper, we have extended our previous work [13]
to the more general four-dimensional dyonic NUT-charged
cases, and followed a simple, systematic way to naturally
derive the thermodynamical first law and Bekenstein-Smarr
mass formula via differentiating the Christodoulou-Ruffini-
like squared-mass formula with respect to its thermody-
namic variables. If only a secondary hair, JN ¼ MN, is
included (as we did before) then the obtained thermody-
namical conjugate pairs fulfill the standard forms of the
differential and integral mass formulas, except that the
derived electrostatic and magneto-static potentials are not
equal to those calculated by the standard method. Then, we
demonstrated that this contradiction can be rectified via
further introducing two new additional secondary hairs,
QN ¼ QN and PN ¼ PN, together with their thermody-
namical conjugate potentials (ΦN , ΨN). We have deter-
mined some special cases with no need to include them, of
which theQ2 ¼ P2 case with the self-dual and antiself-dual
Abelian vector potentials is possible to be particularly
interesting. After that, the impact of the secondary hair,
JN ¼ MN, on the thermodynamics and the reduced mass
formulas are discussed.
Our work demonstrated that, not only can the beautiful

Bekenstein-Hawking one-quarter area-entropy relation be
naturally restored, but also that the four laws of the usual
black hole thermodynamics are completely applicable to
the dyonic Taub-NUT-type spacetimes. We are believed
that the strategy proposed in our papers has provided the
best and simplest scheme to formulate the consistent
thermodynamical relations for the NUT-charged space-
times. A related issue to investigate is the consistent
thermodynamics of the four-dimensional NUT-charged
spacetimes in the K-K theory [31–33] and the EMDA
theory [34]. We hope to report the related progress soon.
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APPENDIX MANY OTHER “CONSISTENT”
MASS FORMULAS

Currently, there exist three different fashions to formu-
late the consistent first law of the four-dimensional NUT-
charged spacetimes: (I) Keeping the thermodynamic mass
unmodified and introducing new global-like charges (sec-
ondary hairs) and their conjugate potentials [13];
(II) Retaining the thermodynamic mass unchanged and
introducing new nonglobal Misner charge and its conjugate
variable [1–5,8]; (III) Only modifying the thermodynamic
mass by including the contribution from the Misner string
[12]. In our formalism [13], the consistent mass formulas
are unique, and every expressions for the thermodynamical
quantities are very simple and concise. In contrast, not only
can the consistent first law of the NUTty dyonic spacetimes
have ironically different possibilities to be formulated as
the electric-type, magnetic-type, mixed-type versions [3,5],
and even many others [8], but also the expressions of some
related thermodynamical quantities are very complicated.
Below, we will show that there are infinitely many con-
sistent mass formulas for the dyonic RN-NUT-AdS4
spacetime if the thermodynamic mass is modified a la
the mode proposed by Awad et al. [12].

1. Infinitely many ‘consistent’mass formulas for dyonic
RN-NUT-AdS4 spacetime

In the spirit of Ref. [12] we consider modifying the
thermodynamic mass which receives the contribution from
the Misner string so that the first law retains its usual form
without introducing new thermodynamical conjugate pairs.
Then we can find that there are infinitely many consistent
mass formulas for the dyonic RN-NUT-AdS4 spacetime as
follows:

M̃ ¼ 2TSþΦQ̃þΨP̃ − 2ṼP þ Nχ; ðA1Þ

dM̃ ¼ TdSþΦdQ̃þ ΨdP̃þ ṼdP þ χdN; ðA2Þ

where the expressions of (T, S, Φ, Ψ) are given in Sec. III,
the pressure is P ¼ 3g2=ð8πÞ, and

M̃ ¼ M − Nχ; Ṽ ¼ 4π

3
rhðr2h þ 3N2Þ;

Q̃ ¼ Qþ ðw − 1ÞNΨ − 2w1NΦ;

P̃ ¼ Pþ ðwþ 1ÞNΦ − 2w2NΨ;

together with a new thermodynamic potential conjugate to
the NUT charge N,

χ ¼ N
M − rh þ g2rhðr2h − 3N2Þ

r2h þ N2

− wΦΨþ w1Φ2 þ w2Ψ2

¼ −N
2rh

½1 − 3g2ðr2h − N2Þ� þ NðQ2 þ P2Þ
2rhðr2h þ N2Þ

− wΦΨþ w1Φ2 þ w2Ψ2;

in which w, w1, and w2 are three arbitrary constants.
Some special cases may be very interesting. Let

w1 ¼ w2 ¼ 0, then Q̃ ¼ Q and P̃ ¼ Pþ 2NΦ≡ Ph when
w ¼ 1, whilst Q̃ ¼ Q − 2NΨ≡Qh and P̃ ¼ P when
w ¼ −1. A very simple case is to set w ¼ w1 ¼ w2 ¼ 0,
then χ is proportional to the value of the NUT (twist)
potential measured at the horizon relative to the infinity.
Since w, w1, and w2 can take arbitrary values, then a natural
consequence is that there are many different versions for
the Lorentzian dyonic RN-NUT-AdS4 spacetime.

2. Other type of mass formulas for Kerr-NUT spacetime

Extend to the rotating Kerr-NUT case, other consistent
mass formulas are given below,

M̃ ¼ 2TSþ 2ΩJ̃ þ Nχ; ðA3Þ

dM̃ ¼ TdSþ ΩdJ̃ þ χdN; ðA4Þ

where

T ¼ rh −M
2πAh

; Ω ¼ a
Ah

; χ ¼ −N
2rh

;

M̃ ¼ M − Nχ; J̃ ¼ ðM − 2NχÞa; S ¼ πAh:

in which Ah ¼ r2h þ a2 þ N2 ¼ 2Mrh þ 2N2.
Clearly, the above two appendixes show that there are

many different versions of the consistent first law and
Bekenstein-Smarr mass formula in the Lorentzian Taub-
NUT-type spacetimes by modifying the thermodynamic
mass without introducing a new thermodynamical con-
jugate pair. Thus, a natural puzzle is which version of the
‘consistent’ first law is the most appropriate one?
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