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We extend to the Horndeski realm the irreversible thermodynamics description of gravity previously
studied in “first generation” scalar-tensor theories. We identify a subclass of Horndeski theories as an out-
of–equilibrium state, while general relativity corresponds to an equilibrium state. In this context, we
identify an effective heat current, “temperature of gravity,” and shear viscosity in the space of theories. The
identification is accomplished by recasting the field equations as effective Einstein equations with an
effective dissipative fluid, with Einstein gravity as the equilibrium state, following Eckart’s first-order
thermodynamics.
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I. INTRODUCTION

A connection between gravity and thermodynamics has
been drawn with the discovery of black hole and horizon
thermodynamics and has been augmented by the sugges-
tion that gravity may not be fundamental after all, but rather
that it emerges from more fundamental constituents in the
same way that a fluid emerges from its atoms or molecules.
An indication that this idea may not be too far fetched is the
derivation of the Einstein field equation of general relativity
(GR) by Jacobson as an equation of state, using thermo-
dynamical considerations [1]. This view of gravity has
profound implications for quantum gravity as well, since it
implies that quantizing the Einstein equation is rather
meaningless—the analogy would be that it amounts to
quantizing the macroscopic ideal gas equation of state.
Such a quantization could, at most, find phonons but
certainly not results as fundamental as the eigenfunctions
and energy spectrum of the Hamiltonian of the hydrogen
atom. If they exist, the “atoms of spacetime” would not be
directly related to the Einstein equation.
One then wonders what role extensions of GR may play

in the broader context of a gravity-thermodynamics con-
nection. A bold idea was advanced in the second seminal
paper [2], in which the field equation of metric fðRÞ gravity
was also obtained with thermodynamical considerations.
According to [2], this fourth order modification of GR
corresponds to a nonequilibrium state in a “thermodynam-
ics of gravitational theories.” Although the latter is not fully
developed, a “bulk viscosity of spacetime” is introduced to

drive a dissipation process of gravity towards a thermo-
dynamic equilibrium state, which is Einstein’s gravity as
previously indicated in [1]. In other words, GR would be an
equilibrium state while fðRÞ gravity is an excited (or
nonequilibrium) state. By extension, any gravity theory
containing extra dynamical degrees of freedom with respect
to the two massless spin-two modes of GR should
correspond to an “excited state”. Indeed, referring to extra
dynamical degrees of freedom makes the idea of GR as a
“ground state” appear very reasonable.
Extensions of gravity are well-motivated from the

theoretical point of view. It is well known that virtually
any attempt to introduce quantum corrections to GR
involves extending it by introducing higher order correc-
tions or extra degrees of freedom, and one expects
extensions to GR to appear as soon as one moves away
from the lowest energy regime. For example, one-loop
renormalization requires the introduction of terms quadratic
in the curvature and, to date, the most successful scenario of
early universe inflation [3,4], i.e., Starobinsky inflation [5],
is based on R2 corrections to the Einstein-Hilbert action.
The low-energy limit of the bosonic string, the most
rudimental string theory known, does not reproduce GR
but gives instead an ω ¼ −1 Brans-Dicke theory (where ω
is the Brans-Dicke coupling constant) [6,7].
Today, the main motivation for extended gravity theories

is no doubt given by cosmology [8]. The 1998 discovery of
the accelerated expansion of the universe made with type Ia
supernovae calls for an explanation. The standard Λ-cold
dark matter (ΛCDM) cosmological model based on GR
requires the introduction of either an incredibly fine-tuned
cosmological constant Λ, or of a completely ad hoc dark
energy (see [9] for a discussion). An alternative consists of
extending gravity at large cosmological scales without
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introducing dark energy [10,11]. Many approaches to
extended gravity theories motivated by cosmology have
been researched, with fðRÞ gravity probably being the most
popular (see [12–14] for reviews). Gravity is tested rather
poorly at many scales and in certain regimes [15,16], which
leaves ample room for extended gravity theories. In view of
the above, it is only natural to contemplate the role of
extensions when investigating the connection between
gravity and thermodynamics.
The seminal papers [1,2] have been very influential.

However, in spite of a large literature, no light has been
shed on the equations ruling the dissipation of gravity
towards the GR equilibrium state and the order parameter
indicating how close the nonequilibrium is to the GR
equilibrium state has not been identified. Overall, not much
progress has been made in this direction since the works
[1,2]. We ought to mention, however, an important result:
Ref. [17] identified the essential role played by shear
viscosity, while eliminating bulk viscosity from the thermo-
dynamics of spacetime picture.
Perhaps the lack of progress is due to the fact that the

ideas advanced in Refs. [1,2] are so fundamental that they
require at least some more advanced knowledge of the basic
ingredients in order to be developed. In previous papers
[18,19], we proposed a more modest approach in a very
different context, but in the same spirit. First, within the
wide spectrum of gravity theories, we identified the scalar-
tensor class generalizing Brans-Dicke gravity [20–24] as
the most suitable candidate for our new approach. This
class contains fðRÞ gravity as a subclass [12–14]. Brans-
Dicke gravity [20] and its scalar-tensor generalizations
[21–24] are minimal extensions of GR since they contain
only a scalar degree of freedom ϕ in addition to the usual
two massless spin two modes of GR. The description of
scalar-tensor gravity as an excited state of GR does not
require fundamental assumptions such as those of
Refs. [1,2] in spacetime thermodynamics (for instance,
the notions of local causal horizon and of local Rindler
frame to take advantage of a local Unruh effect). In fact, the
structure of a dissipative fluid containing GR as its limit is
already contained in the field equations of scalar-tensor
gravity. More precisely, the contribution of the scalar
degree of freedom ϕ to the field equations has the structure
of the energy-momentum tensor of an effective relativistic
dissipative fluid [25,26]. This fact can be derived in a
straightforward manner by rewriting the field equations and
is not an independent assumption.
By taking seriously the dissipative fluid nature of the

effective stress-energy tensor of ϕ, one wonders what
the minimal theory of relativistic dissipative fluids has to
say. With this question in mind, we have applied Eckart’s
first-order thermodynamics [27–29] (which is noncausal
and plagued by instabilities, but is nevertheless the most
widely applied formalism to describe dissipation in GR)
to the effective ϕ-fluid. Explicit expressions for the

corresponding thermodynamical quantities were obtained,
including the heat current density, the sought-for “temper-
ature of extended gravity,” and shear viscosity.
In the last decade, “first generation” scalar-tensor gravity

has been generalized by rediscovering and reformulating
[30–32] the old Horndeski gravity [33], which still contains
only an extra scalar degree of freedom obeying second
order equations of motion but is much more general. These
efforts were followed by the discovery that higher order
Lagrangians still admit second order equations of motion
and are healthy with respect to the Ostrogradski instability
when subjected to a degeneracy condition, resulting in the
so-called degenerate higher order scalar-tensor (“DHOST”)
theories [34,35]. These generalizations, developed in
[36–41], introduce a large number of terms in the gravi-
tational sector of the action and have generated a rich
literature (see Refs. [42,43] for reviews). DHOST theories
are restricted by theoretical constraints avoiding graviton
decay into scalar field perturbations [44] and, above all,
by the recent multimessenger observation of simultane-
ous gravitational waves and γ-rays in the GW170817/
GRB170817 event [45,46]. The latter sets severe con-
straints on the space of DHOST and Horndeski theories
from the observed upper limits on the difference between
the propagation speeds of gravitational and electromagnetic
waves [47]. Although these constraints are strong at the
present time, there is still some room for evading them in
the early Universe, which seems to be possible at least in
some theories with nonminimal derivative couplings of
physical interest (see the discussion in Sec. VII).
Motivated by the explosion of interest in Horndeski

gravity, we apply the effective fluid formalism which was
successful in “first generation” scalar-tensor gravity to this
more general scenario. In particular, we rewrite the field
equations as effective Einstein equations containing an
effective dissipative fluid in their right-hand side (at this
stage, we complete and correct the previous work [48]
which computes some of the effective fluid quantities for a
subclass of Horndeski theories but does not work out the
thermodynamics of the corresponding dissipative fluid).
Then, we proceed to identify the corresponding heat flux
density, anisotropic stresses, “temperature of gravity,” and
shear viscosity whenever possible.
As a result, the effective thermodynamics of scalar-

tensor gravity does not apply to the most general Horndeski
theory because some terms in the field equations explicitly
break the thermodynamic analogy by spoiling the con-
stitutive equations of Eckart’s theory for the effective
ϕ-fluid, contrary to the first generation scalar-tensor the-
ories examined in [18,19]. However, this situation returns
to “normal” when the most general Horndeski action is
restricted by eliminating the terms violating the equality
between the propagation speeds of gravitational and
electromagnetic waves. In this sense, the thermodynamics
of gravity seems to indicate the way to the physical
constraints on Horndeski gravity. Notably, the equivalent
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thermodynamical description breaks down for those oper-
ators which contain derivative nonminimal couplings and
nonlinear contributions in the connection. Those are
exactly the operators which do not permit a local field
redefinition into the Einstein frame and give rise to intrinsic
modifications of the helicity-2 field. It is intriguing that
Eckart’s first-order thermodynamical description is tightly
related to these intrinsic changes of the helicity-2 sector.
However, since the failure of rewriting the theory in the
Einstein frame is directly related to the failure of separating
the “gravity effects” from the “effective matter fluid” it is
not a surprise after all.
We follow the notation of Ref. [49]: the metric signature

is ð−þþþÞ and units are used in which the speed of light
c and Newton’s constant G are unity.

II. KINEMATIC QUANTITIES FOR THE
EFFECTIVE FLUID

Assuming that the scalar field gradient is timelike,
∇aϕ∇aϕ < 0, and using the notation,

X ≡ −
1

2
∇aϕ∇aϕ > 0; ð2:1Þ

it is natural to define the 4-velocity of the effective fluid
associated with the scalar field ϕ as

ua ¼ ∇aϕffiffiffiffiffiffi
2X

p ; ð2:2Þ

which satisfies uaua ¼ −1. Identifying the field ua iden-
tifies uniquely a frame comoving with the effective fluid
and a 3þ 1 splitting of spacetime in the time direction of
these observers with 4-tangent ua and their 3-space.
The Riemannian metric on the 3-space orthogonal to ua

(i.e., the 3-space of the observers comoving with the
effective fluid) is

hab ¼ gab þ uaub ¼ gab þ
∇aϕ∇bϕ

2X
; ð2:3Þ

while hab is the projection operator onto this 3-space. The
4-velocity gradient is

∇aub ¼
1ffiffiffiffiffiffi
2X

p
�
∇a∇bϕ −

∇aX∇bϕ

2X

�
: ð2:4Þ

Using the fact that

∇aX ¼ −
1

2
∇að∇eϕ∇eϕÞ ¼ −∇eϕ∇a∇eϕ; ð2:5Þ

this 4-velocity gradient is written as

∇aub¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∇eϕ∇eϕ
p �

∇a∇bϕþ
∇bϕ∇cϕ∇a∇cϕ

−∇eϕ∇eϕ

�
; ð2:6Þ

that coincides with the corresponding expressions appear-
ing in Refs. [18,26].
The effective fluid has 4-acceleration,

_ua ≡ uc∇cua ¼
∇cϕffiffiffiffiffiffi
2X

p 1ffiffiffiffiffiffi
2X

p
�
∇c∇aϕ −

∇cX∇aϕ

2X

�

¼ −
1

2X

�
∇aX þ∇X · ∇ϕ

2X
∇aϕ

�
; ð2:7Þ

where ∇X ·∇ϕ≡ gab∇aX∇bϕ.
Using hab ¼ δa

b þ uaub and ua∇bua ¼ 0, the (double)
spatial projection of the velocity gradient is

Vab ≡ hachbd∇duc ¼ ∇bua þ _uaub

¼ 1ffiffiffiffiffiffi
2X

p
�
∇b∇aϕ −

∇bX∇aϕ

2X

�

−
∇bϕffiffiffiffiffiffi
2X

p 1

2X

�
∇aX þ∇X ·∇ϕ

2X
∇aϕ

�

¼ 1ffiffiffiffiffiffi
2X

p
�
∇a∇bϕ −

∇ðaX∇bÞϕ
X

−
∇X · ∇ϕ
4X2

∇aϕ∇bϕ

�
:

ð2:8Þ
This tensor is symmetric, Vab ¼ VðabÞ, and its antisym-
metric part vanishes identically,

ωab ≡ V ½ab� ¼ 0; ð2:9Þ
so that the 4-velocity ua of the effective ϕ-fluid is irrota-
tional1 and hypersurface-orthogonal, the spacetime line
element ds2 ¼ gabdxadxb becomes diagonal in adapted
coordinates fxag, and a foliation of three-dimensional
hypersurfaces with Riemannian metric hab always exists
[49]. The expansion scalar of the effective fluid is

θ ¼ ∇aua ¼
1ffiffiffiffiffiffi
2X

p
�
□ϕ −

∇X · ∇ϕ
2X

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p �
□ϕ −

∇aϕ∇bϕ∇a∇bϕ

∇eϕ∇eϕ

�
; ð2:10Þ

while the trace-free shear tensor reads

σab ≡ VðabÞ −
θ

3
hab ¼ Vab −

θ

3
hab

¼ 1ffiffiffiffiffiffi
2X

p
�
∇a∇bϕ −

∇ðaX∇bÞϕ
X

−
∇X · ∇ϕ
4X2

∇aϕ∇bϕ

−
hab
3

�
□ϕ −

∇X ·∇ϕ

2X

��
: ð2:11Þ

1This feature was missed in Ref. [48].
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These kinematic quantities for the effective ϕ-fluid coin-
cide with those reported in the previous Refs. [18,26] for
the “old” scalar-tensor gravities of [20–24]. This fact is
expected because shear, expansion and vorticity are purely
kinematic quantities, and cannot depend on the particular
theory (i.e., on the action or the field equations), provided
that only a scalar degree of freedom ϕ is added to the
ordinary spin 2 massless polarizations of the metric tensor
in Einstein gravity, as done in Brans-Dicke or in Horndeski
gravity.

III. IMPERFECT FLUID DESCRIPTION
OF HORNDESKI GRAVITY

The most general Lagrangian of Horndeski gravity reads

L ¼ L2 þ L3 þ L4 þ L5; ð3:1Þ

where the individual interactions are given by

L2 ¼ G2;

L3 ¼ −G3□ϕ;

L4 ¼ G4Rþ G4X½ð□ϕÞ2 − ð∇a∇bϕÞ2�;

L5 ¼ G5Gab∇a∇bϕ −
G5X

6
½ð□ϕÞ3 − 3□ϕð∇a∇bϕÞ2

þ 2ð∇a∇bϕÞ3�; ð3:2Þ

where ϕ is the scalar degree of freedom,∇a is the covariant
derivative of the metric gab (which has determinant g), and
□≡ gab∇a∇b is d’Alembert’s operator, Gab denotes the
Einstein tensor, while Giðϕ; XÞ (i ¼ 2; 3; 4; 5) are arbitrary
functions of the scalar field ϕ and of the canonical kinetic
term X. According to standard notation, Giϕ ≡ ∂Gi=∂ϕ
and GiX ≡ ∂Gi=∂X.
This Lagrangian represents the most general scalar-

tensor theory with second order equations of motion.
The local and second order nature of the field equations
then implies that the theory naturally avoids Ostrogradsky
instabilities.
We consider the subclass of Horndeski gravity that

implies a luminal propagation of gravitational waves, in
which the interactions are restricted to

L̄ ¼ G2ðϕ; XÞ − G3ðϕ; XÞ□ϕþ G4ðϕÞR; ð3:3Þ

that is, we set G4X ¼ 0, G5 ¼ 0. This last Lagrangian will
be the main focus in the following.
Performing its variation,

δð ffiffiffiffiffiffi
−g

p
L̄Þ ¼ ffiffiffiffiffiffi

−g
p X4

i¼2

GðiÞ
abδg

ab þ
X4
i¼2

ð� � �Þδϕ

þ total derivative; ð3:4Þ

and specializing the results of Ref. [50] to our specific
situation, we obtain

Gð2Þ
ab ¼ −

1

2
G2X∇aϕ∇bϕ −

1

2
G2gab; ð3:5Þ

Gð3Þ
ab ¼ 1

2
G3X□ϕ∇aϕ∇bϕþ∇ðaG3∇bÞϕ −

1

2
gab∇cG3∇cϕ;

ð3:6Þ

Gð4Þ
ab ¼ G4Gab þ gabðG4ϕ□ϕ − 2XG4ϕϕÞ

−G4ϕ∇a∇bϕ −G4ϕϕ∇aϕ∇bϕ: ð3:7Þ

Recalling now that ∇aG3 ¼ G3ϕ∇aϕþ G3X∇aX, one
can write

∇ðaG3∇bÞϕ ¼ G3ϕ∇ðaϕ∇bÞϕþ G3X∇ðaX∇bÞϕ

¼ G3ϕ∇aϕ∇bϕþ G3X∇ðaX∇bÞϕ ð3:8Þ

and

∇cG3∇cϕ ¼ G3ϕ∇cϕ∇cϕþ G3X∇cX∇cϕ

¼ −2XG3ϕ þG3X∇cX∇cϕ; ð3:9Þ

then we have that

Gð3Þ
ab ¼ 1

2
ð2G3ϕ þ G3X□ϕÞ∇aϕ∇bϕþG3X∇ðaX∇bÞϕ

−
1

2
gabð−2XG3ϕ þ G3X∇X ·∇ϕÞ: ð3:10Þ

For future convenience we also rewrite Gð4Þ
ab as

Gð4Þ
ab ¼ G4Gab þG4ϕðgab□ϕ −∇a∇bϕÞ

−G4ϕϕð2Xgab þ∇aϕ∇bϕÞ: ð3:11Þ

We can now compute the effective stress-energy tensor
of the ϕ-fluid, which is defined by writing the field
equations of the specific subclass of Horndeski theories
as the effective Einstein equations,

Gab ¼
1

G4

TðmÞ
ab þ TðeffÞ

ab ; ð3:12Þ

where the effective stress-energy tensor is

TðeffÞ
ab ¼ Tð2Þ

ab þ Tð3Þ
ab þ Tð4Þ

ab ð3:13Þ

with

Tð2Þ
ab ¼ −

Gð2Þ
ab

G4

¼ 1

2G4

ðG2X∇aϕ∇bϕþG2gabÞ; ð3:14Þ
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Tð3Þ
ab ¼ −

Gð3Þ
ab

G4

¼ 1

2G4

½gabðG3X∇X ·∇ϕ − 2XG3ϕÞ

− 2G3X∇ðaX∇bÞϕ − ð2G3ϕ þ G3X□ϕÞ∇aϕ∇bϕ�;
ð3:15Þ

Tð4Þ
ab ¼ −

Gð4Þ
ab −G4Gab

G4

¼ G4ϕ

G4

ð∇a∇bϕ − gab□ϕÞ

þG4ϕϕ

G4

ð2Xgab þ∇aϕ∇bϕÞ: ð3:16Þ

The effective tensor given by Eqs. (3.13)–(3.16) has the
form of an imperfect fluid stress-energy tensor,

Tab ¼ ρuaub þ qaub þ qbua þ Πab; ð3:17Þ

where

Πab ¼ Tcdhachbd ¼ Phab þ πab ð3:18Þ

is the effective stress tensor2 containing the isotropic
pressure,

P ¼ 1

3
gabΠab ¼

1

3
habTab; ð3:19Þ

the anisotropic stresses,

πab ¼ Πab − Phab; ð3:20Þ

the effective energy density,

ρ ¼ Tabuaub; ð3:21Þ

and the effective heat flux density,

qa ¼ −Tcduchad: ð3:22Þ

We compute these quantities separately for each contribu-

tion Tð2;3;4Þ
ab to the effective energy-momentum tensor TðeffÞ

ab .

Let us begin with the Tð2Þ
ab contribution. Recalling that

∇aϕ ¼ ffiffiffiffiffiffi
2X

p
ua and using the identities,

habub ¼ habua ¼ 0; ð3:23Þ

gaeheb ¼ hab; haeheb ¼ hab; ð3:24Þ

gabhab ¼ haa ¼ 3; ð3:25Þ

one finds

Tð2Þ
ab ¼ 1

2G4

ð2G2XXuaub þ G2gabÞ; ð3:26Þ

and the effective fluid quantities for this part of the effective
stress-energy tensor of the ϕ-fluid are

ρð2Þ ¼ Tð2Þ
ab u

aub ¼ 1

2G4

ðG2X2Xuaub þG2gabÞuaub

¼ 1

2G4

ð2XG2X −G2Þ; ð3:27Þ

qð2Þa ¼ −Tð2Þ
cd u

chad ¼ −
1

2G4

ðG2X2Xucud þ G2gcdÞuchad

¼ −
1

2G4

ð−2XG2Xud þG2udÞhad ¼ 0; ð3:28Þ

Πð2Þ
ab ¼ Tð2Þ

cd ha
chbd ¼

1

2G4

ðG2X2Xucud þ G2gcdÞhachbd

¼ G2

2G4

hab; ð3:29Þ

Pð2Þ ¼ 1

3
gabΠð2Þ

ab ¼ 1

3
gab

G2

2G4

hab ¼
1

3
haa

G2

2G4

¼ G2

2G4

;

ð3:30Þ

πð2Þab ¼ Πð2Þ
ab − Pð2Þhab ¼ 0: ð3:31Þ

Continuing with the effective fluid quantities associated

with the contribution Tð3Þ
ab to TðeffÞ

ab , one finds

Tð3Þ
ab ¼ 1

2G4

½gabðG3X∇X ·∇ϕ − 2XG3ϕÞ

− 2
ffiffiffiffiffiffi
2X

p
G3X∇ðaXubÞ − 2Xð2G3ϕ þG3X□ϕÞuaub�

ð3:32Þ

and

ρð3Þ ¼ Tð3Þ
ab u

aub

¼ 1

2G4

½−ðG3X∇X · ∇ϕ − 2XG3ϕÞ þ 2G3X

ffiffiffiffiffiffi
2X

p
ua∇aX

− 2Xð2G3ϕ þG3X□ϕÞ�

¼ −
1

2G4

ð−G3X∇X · ∇ϕþ 2XG3ϕ þ 2XG3X□ϕÞ:

ð3:33Þ

To compute qð3Þa one makes use of the facts that

gcduchad ¼ udhad ¼ 0; ð3:34Þ
2The stress tensor Πab, the anisotropic stresses πab, and the

heat current density are purely spatial tensors, Πabua ¼
Πabub ¼ πabua ¼ πabub ¼ 0, qaua ¼ 0.
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uchad∇ðaXubÞ ¼
1

2
uchadð∇aXubþ∇bXuaÞ ¼−

1

2
had∇dX;

ð3:35Þ

ucuduchad ¼ 0; ð3:36Þ

that yield

qð3Þa ¼ −Tð3Þ
cd u

chad ¼ −
G3X

2G4

ffiffiffiffiffiffi
2X

p �
∇aX þ∇X · ∇ϕ

2X
∇aϕ

�
:

ð3:37Þ

Now, to compute Πð3Þ
ab one uses

hachbdgcd ¼ hab; ð3:38Þ

hachbd∇ðaXubÞ ¼
1

2
hachbdð∇aXub þ∇bXuaÞ ¼ 0;

ð3:39Þ

hachbducud ¼ 0; ð3:40Þ

which lead to

Πð3Þ
ab ¼ hab

2G4

ðG3X∇X · ∇ϕ − 2XG3ϕÞ; ð3:41Þ

Pð3Þ ¼ 1

3
gabΠð3Þ

ab ¼ 1

2G4

ðG3X∇X · ∇ϕ − 2XG3ϕÞ; ð3:42Þ

and

πð3Þab ¼ Πð3Þ
ab − Pð3Þhab ¼ 0: ð3:43Þ

Finally, the Tð4Þ
ab contribution,

Tð4Þ
ab ¼ G4ϕ

G4

ð∇a∇bϕ − gab□ϕÞ þ 2X
G4ϕϕ

G4

ðgab þ uaubÞ

ð3:44Þ

is calculated using the intermediate result reported in
Appendix A, obtaining

ρð4Þ ¼ Tð4Þ
ab u

aub ¼ uaub
�
G4ϕ

G4

ð∇a∇bϕ − gab□ϕÞ

þ 2X
G4ϕϕ

G4

ðgab þ uaubÞ
�

¼ G4ϕ

G4

�
□ϕ −

∇X · ∇ϕ
2X

�
; ð3:45Þ

qð4Þa ¼ −Tð4Þ
cd u

chad

¼ −
G4ϕ

G4

uchad∇c∇dϕ

¼ −
G4ϕ

G4

∇cϕffiffiffiffiffiffi
2X

p
�
∇c∇aϕþ∇aϕ∇dϕ∇c∇dϕ

2X

�

¼ G4ϕ

G4

1ffiffiffiffiffiffi
2X

p
�
∇aX þ∇ϕ ·∇X

2X
∇aϕ

�
ð3:46Þ

and

Πð4Þ
ab ¼ Tð4Þ

cd ha
chbd

¼
�
G4ϕ

G4

ð∇c∇dϕ − gcd□ϕÞ

þ 2X
G4ϕϕ

G4

gcd þ ð∝ ucudÞ
�
hachbd

¼ G4ϕ

G4

hachbd∇c∇dϕþ hab

�
2X

G4ϕϕ

G4

−
G4ϕ

G4

□ϕ

�
;

ð3:47Þ

or

Πð4Þ
ab ¼ G4ϕ

G4

�
∇a∇bϕ −

∇ðaX∇bÞϕ
X

−
∇X ·∇ϕ

4X2
∇aϕ∇bϕ

�

þ hab

�
2X

G4ϕϕ

G4

−
G4ϕ

G4

□ϕ

�
; ð3:48Þ

while

Pð4Þ ¼ 1

3
gabΠð4Þ

ab

¼ −
G4ϕ

3G4

�
2□ϕþ∇X · ∇ϕ

2X

�
þ 2X

G4ϕϕ

G4

; ð3:49Þ

πð4Þab ¼ Πð4Þ
ab − Pð4Þhab

¼ −hab
�
−
G4ϕ

3G4

�
2□ϕþ∇X ·∇ϕ

2X

�
þ 2X

G4ϕϕ

G4

�

¼ G4ϕ

G4

�
∇a∇bϕ −

∇ðaX∇bÞϕ
X

−
∇X ·∇ϕ

4X2
∇aϕ∇bϕ

þ hab
3

�∇X · ∇ϕ
2X

−□ϕ

��
: ð3:50Þ

To summarize, the field equations of the chosen subclass
of Horndeski theories of gravity have been rewritten in
the form of effective Einstein equations by moving the
Horndeski terms to their right-hand side and leaving the
Einstein tensor in the left-hand side. It is a fact that
the right-hand side of the field equations, recast in this
form, assumes the form of the stress-energy tensor of a
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dissipative effective fluid. Thus far, only a manipulation of
the field equations has been performed and no extra
assumption has been made. The results presented in this
section confirm the ones discussed in [48].

IV. THERMODYNAMIC ANALOGY FOR THE
EFFECTIVE DISSIPATIVE ϕ-FLUID

We are now ready to examine the consequences of
writing the Horndeski field equations (for the class of
Horndeski theories considered) in the form of effective
Einstein equations with an effective dissipative fluid.
Although this reduction has been performed many times
in the literature in various special contexts [including
Brans-Dicke or fðRÞ gravity, nonminimally coupled scalar
fields, Friedmann-Lemaître-Robertson-Walker metrics or
cosmological perturbations in extended gravity], the physi-
cal interpretation of the effective dissipative fluid and of its
thermodynamics is usually not attempted. We began look-
ing for this physical interpretation, for simple Brans-Dicke-
like and fðRÞ gravity, in [18,19]. To this end, we adopt the
most basic elements of Eckart’s theory of gravity [27].
While it is well known that this theory is riddled with
causality violation and instabilities, it is nevertheless the
model of dissipative fluid most frequently used in relativity
[28,29]. We assume the constitutive equations of Eckart’s
theory: these are phenomenological equations that could be
assumed in a variety of theories of dissipation and con-
stitute minimal assumptions on the physics of a (real or
effective) dissipative fluid [27–29].
The three constitutive equations ([27], see also [29]),

relate the viscous pressure Pvis with the fluid expansion θ,
the heat current density qa with the temperature T , and the
anisotropic stresses πab with the shear tensor σab,

Pvis ¼ −ζθ; ð4:1Þ

qa ¼ −Kðhab∇bT þ T _uaÞ; ð4:2Þ

πab ¼ −2ησab; ð4:3Þ

where ζ, K, and η are the thermal conductivity, bulk
viscosity, and shear viscosity, respectively.
Let us begin with the phenomenological extension of

Fourier’s law relating heat flux density and temperature.
The calculations of the previous section provide the
effective heat flux density,

qðeffÞa ¼ qð3Þa þqð4Þa ¼G4ϕ−XG3X

G4

ffiffiffiffiffiffi
2X

p
�
∇aXþ∇ϕ ·∇X

2X
∇aϕ

�
;

ð4:4Þ

in the subclass of Horndeski theories. One infers from
Eq. (2.7) that

qðeffÞa ¼ −
ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ
G4

_ua: ð4:5Þ

Turning to Eq. (4.2), it turns out [18,19,26] that for “old”
scalar-tensor gravity, the spatial gradient hab∇bT vanishes
in the comoving frame,3 leaving only the inertial term in the
heat flux density,

qa ¼ −KT _ua: ð4:6Þ

Comparing Eqs. (4.4) and (4.6), one can make the
identifications,

Khab∇bT ¼ 0; ð4:7Þ

and

KT ≡
ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ
G4

; ð4:8Þ

where K and T denote, respectively, the thermal conduc-
tivity and effective temperature of the ϕ-fluid for the
subclass of Horndeski gravity considered. Here T is the
“temperature of gravity,” which reduces to the quantity
already identified in “old” (i.e., Brans-Dicke-like) scalar-
tensor theories in Refs. [18,19,26].
To continue on the lines of [18,19], we identify a shear

viscosity for the effective ϕ-fluid. The latter has anisotropic
stress tensor,

πðeffÞab ¼ πð4Þab ¼ G4ϕ

G4

�
∇a∇bϕ −

∇ðaX∇bÞϕ
X

−
∇X ·∇ϕ

4X2
∇aϕ∇bϕ −

hab
3

�
□ϕ −

∇X · ∇ϕ
2X

��
;

ð4:9Þ
and, from Eq. (2.11), one infers that

πðeffÞab ¼ G4ϕ

ffiffiffiffiffiffi
2X

p

G4

σab: ð4:10Þ

We now assume the second constitutive equation of
Eckart’s theory relating the anisotropic stresses πab with
the shear tensor σab in a dissipative fluid [27],

πab ¼ −2ησab; ð4:11Þ

where η is the shear viscosity. Comparing Eqs. (4.4) and
(4.6), one is naturally led to identify

3The spatial temperature gradient of a fluid does not always
vanish in the frame comoving with it: for example, in a static fluid
in thermal equilibrium in a static gravitational field, the temper-
ature obeys the Tolman condition T

ffiffiffiffiffiffiffiffiffiffi−g00
p ¼ const. [51].
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η ¼ −
ffiffiffiffi
X

p
G4ϕffiffiffi
2

p
G4

; ð4:12Þ

with the shear viscosity of the effective ϕ-fluid, where it is
G4 > 0 to guarantee a positive gravitational coupling
of gravity to matter. Since one can always redefine the
scalar field ϕ according to ψ ¼ G4ðϕÞ (this relation is
invertible whenever G4ϕ ≠ 0), the shear viscosity becomes

η ¼ −
ffiffiffi
X

p
ψ ;ϕffiffi
2

p
ψ

and is positive whenever G4ϕ < 0 and negative

otherwise, for example in Brans-Dicke theory where
G4ðϕÞ ¼ ϕ [20]. Negative viscosities can occur in fluid
mechanics, atmospheric physics, ocean currents, liquid
crystals, etc. Typically, they are related with turbulence
and occur in nonisolated systems which receive energy
from the outside (see, e.g., Refs. [52]). Indeed, the effective
ϕ-fluid is not isolated since the scalar ϕ couples explicitly
to gravity through the term G4R in the Horndeski
Lagrangian.

The structure of TðeffÞ
ab (in the form that we have chosen)

does not allow for a viscous pressure; hence the bulk
viscosity vanishes, ζ ¼ 0. It is interesting that, in the very
different context of spacetime thermodynamics in fðRÞ
gravity, bulk viscosity is absent and shear viscosity is
important [this fact was emphasized in Ref. [17] and
corrects the previous interpretation of [2] of the thermo-
dynamics of spacetime in fðRÞ gravity].
A general interpretation of K and T emerges from the

thermodynamic analogy. If one chooses

K≡ ffiffiffiffiffiffi
2X

p
ðG4ϕ − XG3XÞ ð4:13Þ

and

T ≡ 1

G4

; ð4:14Þ

then T automatically satisfies hab∇bT ¼ 0. Indeed, T ¼
T ðϕÞ sinceG4 ¼ G4ðϕÞ, thus∇aT ∝ ∇aϕ. Furthermore, it
must beG4 > 0 to guarantee a positive coupling strength of
gravity to matter, as is clear from Eq. (3.12), and the
“temperature” of gravity T is non-negative. This fact was
not guaranteed a priori. GR corresponds to ϕ ¼ const: and,
therefore, to a unit value of the temperature (if coupling
with matter is considered) and vanishing thermal conduc-
tivity in the spectrum of the specific subclass of Horndeski
theories. This fact embodies the idea that GR is a “state of
equilibrium” in a wider space of theories of gravity and any
extension of gravity corresponds to a deviation from
equilibrium, which is rather natural if extra degrees of
freedom (in this case the scalar ϕ) are excited.
One can describe the approach to the GR equilibrium, or

the departure from it, by differentiating Eq. (4.8) with
respect to the proper time τ along the worldlines of the
effective fluid,

dðKT Þ
dτ

≡ uc∇cðKT Þ ¼ ∇cϕffiffiffiffiffiffi
2X

p ∇c

� ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ
G4

�

¼ ∇X · ∇ϕ
ð2XÞ3=2 KT þ∇cϕ∇c

�
G4ϕ − XG3X

G4

�
: ð4:15Þ

The use of the expression (2.10) of the expansion θ to
eliminate ∇ϕ · ∇X yields

dðKT Þ
dτ

¼
�

□ϕffiffiffiffiffiffi
2X

p − θ

�
KT þ∇cϕ∇c

�
G4ϕ − XG3X

G4

�
:

ð4:16Þ

The second piece in the latter equation can be expanded as

∇cϕ∇c

�
G4ϕ − XG3X

G4

�
¼ −

2X
G2

4

½G4G4ϕϕ − XG4G3Xϕ

−G4ϕðG4ϕ − XG3XÞ�

−
ð2XÞ3=2
G4

�
□ϕffiffiffiffiffiffi
2X

p − θ

�
× ðG3X þ XG3XXÞ; ð4:17Þ

where we have used again Eq. (2.10) to eliminate ∇ϕ · ∇X
and the definition of X.
Therefore, for the viable class of Horndeski theories one

obtains

dðKT Þ
dτ

¼
�

□ϕffiffiffiffiffiffi
2X

p − θ

��
KT −

ð2XÞ3=2
G4

ðG3X þXG3XXÞ
�

−
2X
G2

4

½G4G4ϕϕ−XG4G3Xϕ−G4ϕðG4ϕ−XG3XÞ�:

ð4:18Þ

The function G2 does not enter this evolution equation,
although it still plays a role by determining the dynamics of
the scalar field ϕ and of its gradient, from which KT
depends explicitly.
The physical interpretation of Eq. (4.18) describing the

approach to the GR equilibrium or, possibly, the departure
from it, is made difficult by the many free functions
appearing in it. However, one can extract some physics
at least in simple cases. Consider, for illustration, vacuum
Brans-Dicke theory with constant Brans–Dicke parameter
ω and massless Brans–Dicke scalar ϕ, which is reproduced
by the choice,

G4 ¼ ϕ; G3 ¼ 0: ð4:19Þ

In this case, Eq. (4.8) reduces to KT ¼ ffiffiffiffiffiffi
2X

p
=ϕ and the

equation of motion for the Brans-Dicke scalar is simply
□ϕ ¼ 0. Then, Eq. (4.18) becomes [18,19]
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dðKT Þ
dτ

¼ −θKT þ ðKT Þ2: ð4:20Þ

When the effective ϕ-fluid is focused, i.e., θ < 0, we have

dðKT Þ
dτ

> ðKT Þ2; ð4:21Þ

and KT diverges away from the GR equilibrium state very
fast [if θ was constant, there would be a pole in ðKT ÞðτÞ
because of the superexponential growth]. In regions where
the effective fluid gets concentrated (notably, near space-
time singularities) the deviations of Horndeski gravity from
GR become extreme.
If instead θ > 0, it is possible that the term −θKT in the

right-hand side of Eq. (4.18) dominate, in which case the
solution KT of (4.18) tends to zero and gravity approaches
the GR equilibrium state (“expansion cools gravity”). This
is not the only a priori possibility, though: if KT is large,
the positive term ðKT Þ2 dominates the right-hand side of
(4.18) and makes the solutionKT move away from the GR
equilibrium. Approaching GR does not necessarily happen
all the time.
Lastly, it is worth noting that if one expands the general

Horndeski action on a spatially flat, homogeneous, and
isotropic background to second order in the linear pertur-
bations, then the corresponding dynamics is controlled by
four functions of time (see e.g. [53,54], and references
therein). Among these functions one finds the effective
Planck mass M2⋆ and the braiding αB, quantifying the
strength of the kinetic mixing between scalar and tensor
perturbations, that for the case of the specific subclass of
Horndeski theories simply read

M2⋆ ¼ 2G4 and αB ¼ 2 _ϕ

HM2⋆
ðXG3X −G4ϕÞ; ð4:22Þ

where ϕ, G3, G4, and their derivatives are evaluated on
the background configuration and with H denoting the
Hubble parameter. A comparison between (4.13), (4.14),
and (4.22) shows that T ∝ 1=M2⋆ and K ∝ −αB in this
specific realization of the analogy. This suggests a deeper
physical significance behind the choice of (4.13) and
(4.14), beyond their simplicity, among the broader class
of solutions of the system (4.7)–(4.8). However, the
derivation of the functions M2⋆ and αB is performed on
cosmological backgrounds, which is a context that still
escapes the formalism discussed here [18,19]. Hence,
further consideration of this matter is postponed to future
investigations.

V. MORE GENERAL HORNDESKI THEORIES

We now move on to more general Horndeski theories of
gravity. Consider a Horndeski model such that

δð ffiffiffiffiffiffi
−g

p
LÞ ¼ ffiffiffiffiffiffi

−g
p

Gabδgab þ ð� � �Þδϕþ total derivative;

ð5:1Þ

with

Gab ⊃ ξðϕ; XÞRacbd∇cϕ∇dϕ; ð5:2Þ

which is a common feature of theories beyond the subclass
we considered so far (see Ref. [50] for the corresponding
field equations). As it becomes clear, they contain non-
minimal derivative couplings. This choice implies

Tab ⊃ ζðϕ; XÞRacbd∇cϕ∇dϕ; ð5:3Þ

where ζðϕ; XÞ is a function proportional to ξðϕ; XÞ; from
this one concludes that

Πab ¼ Tcdhachbd ⊃ ζðϕ; XÞhachbdRcedf∇eϕ∇fϕ

¼ ζðϕ; XÞRaebf∇eϕ∇fϕ; ð5:4Þ

taking advantage of the symmetries of the Riemann tensor,
which lead to Rcedf∇eϕ∇fϕ∇cϕ∇dϕ ¼ 0. Taking the trace
of the stress tensor yields

P ¼ 1

3
gabΠab ⊃

ζðϕ; XÞ
3

gabRaebf∇eϕ∇fϕ

¼ ζðϕ; XÞ
3

Ref∇eϕ∇fϕ; ð5:5Þ

and then we have

πab ¼ Πab − Phab ⊃ ζðϕ; XÞRaebf∇eϕ∇fϕ

−
ζðϕ; XÞ

3
habRef∇eϕ∇fϕ: ð5:6Þ

While the term containing the Ricci tensor can, in principle,
cancel out with similar terms coming from the field
equations and contained in the effective energy-momentum
tensor, the contribution to the right-hand side depending on
the Riemann tensor cannot be traced away.4 This Riemann
tensor term breaks the proportionality between σab (which
is a kinematic quantity and, therefore, does not depend on
the specific model) and πab. As a consequence, the three
constitutive equations of Eckart’s theory [27] no longer
hold for the effective fluid. Of course, this proportionality
could be broken by other terms coming from the variation
of L4 and L5, though the feature discussed here involves a
property that seem to be shared by the vast majority of
models beyond the specific luminal Horndeski class.

4Although it is not a priori unconceivable that this contribution
is removed by imposing some relation between G4 and G5, the
latter would be extremely fine-tuned and would give rise to a
completely artificial theory.
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As an example, let us discuss the Horndeski theory, not belonging to the restricted class (3.3), with Lagrangian density,

L ¼ G4ðXÞR ¼ XR; ð5:7Þ

for which the effective energy-momentum tensor of the ϕ-fluid is

TðeffÞ
ab ¼ 1

X

�
R
2
∇aϕ∇bϕþ□ϕ∇a∇bϕ −∇a∇eϕ∇e∇bϕ −

1

2
gab½ð□ϕÞ2 − ð∇∇ϕÞ2� − 2Reða∇bÞϕ∇eϕ

þgabRef∇eϕ∇fϕ − Raebf∇eϕ∇fϕ

�
; ð5:8Þ

where ð∇∇ϕÞ2 ≡∇c∇dϕ∇c∇dϕ. The effective stress tensor is then

ΠðeffÞ
ab ¼ TðeffÞ

cd hachbd ¼
1

X

�
□ϕ∇c∇dϕ −∇c∇eϕ∇e∇dϕ −

1

2
gcd½ð□ϕÞ2 − ð∇∇ϕÞ2�

þ gcdRef∇eϕ∇fϕ − Rcedf∇eϕ∇fϕ

�
hachbd: ð5:9Þ

The terms hachbd□ϕ∇c∇dϕ and hachbd∇e∇cϕ∇e∇dϕ appearing in this expression are computed in Appendix B;
substituting them into Eq. (5.9), one obtains

ΠðeffÞ
ab ¼ 1

X

�
□ϕ

�
∇a∇bϕ −

1

X
∇ðaX∇bÞϕ −

1

4X2
∇aϕ∇bϕ∇cϕ∇cX

�
−∇a∇eϕ∇e∇bϕþ 1

X
∇ðaϕ∇bÞ∇eϕ∇eX

−∇aϕ∇bϕ
∇eX∇eX

4X2
−
1

2
hab½ð□ϕÞ2 − ð∇∇ϕÞ2� þ habRef∇eϕ∇fϕ − Rcdefhachbd∇eϕ∇fϕ

�
: ð5:10Þ

From this one computes the effective fluid pressure,

PðeffÞ ¼ 1

3
gabΠðeffÞ

ab ¼ 1

3X

�
−
ð□ϕÞ2

2
þ 3

2
ð∇∇ϕÞ2 −□ϕ

2X
∇cϕ∇cX −

∇cX∇cX
2X

þ 3Ref∇eϕ∇fϕ −∇a∇eϕ∇a∇eϕ

�
: ð5:11Þ

The anisotropic stresses are then obtained as

πðeffÞab ≡ ΠðeffÞ
ab − PðeffÞhab

¼ 1

X

�
□ϕ

�
∇a∇bϕ −

∇ðaϕ∇bÞX
X

−
∇cϕ∇cX

4X2
∇aϕ∇bϕþ∇cϕ∇cX

6X
hab

�

−∇a∇eϕ∇e∇bϕþ∇ðaϕ∇bÞ∇eϕ∇eX

X
−∇aϕ∇bϕ

∇eX∇eX
4X2

þ∇eX∇eX
6X

hab −
ð□ϕÞ2

6
hab

−Rcdefhachbd∇eϕ∇fϕþ 1

3
ð∇a∇eϕ∇a∇eϕÞhab

�
: ð5:12Þ

This quantity is definitely not proportional to the shear

σðeffÞab , thus breaking the analogy with Eckart’s constitutive
relation (4.3). Similarly, one computes the effective heat
current density,

qðeffÞa ¼ −
1

X
½□ϕ∇c∇dϕ −∇c∇eϕ∇e∇dϕ

− Rcedf∇eϕ∇fϕ�uchad; ð5:13Þ

which cannot be reduced to the Eckart constitutive relation
(4.2). It is exactly the presence of such derivative non-
minimal couplings that breaks down the thermodynamical
description. They are exactly those operators which quite
generically forbids a dual description in the Einstein frame
due to intrinsic changes in the gravity sector. In terms of a
nonlocal field redefinition one could write the dual de-
scription in the Einstein frame where the effective fluid and
its stress energy tensor would become nonlocal. However,
in terms of a local description the separation in terms of
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“gravity” and “matter fluid” fails and therefore also the
application of Eckart’s formalism.

VI. APPLICATION TO COSMOLOGICAL
BLACK HOLES

Let us consider an application to cosmological black
holes. The LIGO observations of black holes set constraints
on primordial black holes in the Universe and almost
eliminate the possibility that they explain a fraction of dark
matter [55], but research on primordial black holes has seen
a recent resurgence of interest following the LIGO detec-
tion of black holes in a mass range forbidden by stellar
evolution [56]. The possibility of relaxing the LIGO bounds
has been explored. In particular, it has been pointed out that
it is probably incorrect to use the Schwarzschild geometry
to describe a primordial black hole embedded in the early
Universe. In fact, the latter varies on a scale not vastly
separated from the local dynamical scale of the black hole
(as is instead the case in the present Universe, where the
Schwarzschild and the Hubble radii are completely sepa-
rated). As a result, a dynamical black hole model was
proposed to replace the Schwarzschild metric in this
context [57,58] (see [59,60] for alternative uses of dynami-
cal models of cosmological black holes). Although this
model has been heavily criticized [61,62], a debate con-
tinues [63–65] but the need for dynamical models of black
holes embedded in early FLRW universes seems clear. For
this purpose, one can use McVittie [66] and generalized
McVittie [67–69] metrics instead, and we expect to see
more models of this kind in the future.
In the following we discuss what the thermodynamic

formalism proposed in this work can say about this class of
primordial black hole models in the early Universe, where
deviations of gravity from GR are less constrained than
today. As an example, consider the viable Horndeski theory
described by the action [70],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− 3H2
0 þ 6H0

ffiffiffiffiffiffi
2X

p
− 6X

þ ln

�
X
Λ4

�
□ϕ

�
; ð6:1Þ

where H0 > 0 and Λ are constants (the specific values of
the coefficients in this action result from particular choices
of more general functions made in Ref. [70]). This action
was originally named “extended cuscuton” because it
generalizes the original cuscuton model of [71–73] (see
also [74–88]), but is now called “cuscuta-Galileon”
[89,90]. A new name is appropriate because it distinguishes
the original cuscuton model (and other models now called
“extended cuscuton” in the literature) in which the scalar
field ϕ does not propagate, from other models (such as the
“cuscuta-Galileon” [89,90]) in which ϕ is instead a
propagating degree of freedom [89,90].

In the standard Horndeski notation adopted here, it is

G4 ¼
1

16π
; ð6:2Þ

G2 ¼ −3H2
0 þ 6H0

ffiffiffiffiffiffi
2X

p
− 6X; ð6:3Þ

G3 ¼ − ln

�
X
Λ4

�
; ð6:4Þ

G5 ¼ 0: ð6:5Þ

The theory (6.1) admits the generalized McVittie solution
[70] given, in isotropic coordinates, by [cf. Eqs. (31)–(33)
of [70] ]

ds2 ¼ −

"
1 − mðtÞ

2aðtÞr
1þ mðtÞ

2aðtÞr

#2

dt2 þ a2ðtÞ
�
1þ mðtÞ

2aðtÞr
�
4

× ðdr2 þ r2dΩ2
ð2ÞÞ; ð6:6Þ

HðtÞ ¼ H0 cothðH0tÞ; ð6:7Þ

mðtÞ ¼ m0e−H0t sinhðH0tÞ; ð6:8Þ

ϕðtÞ ¼ ϕ0 þH0t − ln sinhðH0tÞ; ð6:9Þ

where m0 > 0 and ϕ0 are constants and dΩ2
ð2Þ ≡ dϑ2 þ

sin2 ϑdφ2 is the line element on the unit 2-sphere. The line
element (6.6) describes a black hole embedded in a FLRW
universe with a scale factor,

aðtÞ ¼ a0 sinhðH0tÞ ð6:10Þ

(with constant a0 > 0) and with time-dependent mass
function mðtÞ, with a radial energy flux onto this central
object [66–69]. The black hole nature of this central object
is shown explicitly in [70]; see [67–70,91] for discussions
of McVittie and generalized McVittie metrics. What is
relevant here is that, in the absence of matter (or in
situations in which the gravitational scalar ϕ dominates
over matter), the action (6.1) admits the above solution,
which could be taken as a model of a primordial black hole
(arguably, a better model than the nonrotating Thakurta
proposal of [57,58] criticized in [61,62]).
According to our prescription, the cuscuta-Galileon

theory (6.1) has

KT ¼
ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ
G4

¼ 16π
ffiffiffiffiffiffi
2X

p
: ð6:11Þ

Let us evaluate this quantity on the specific cosmological
black hole solution (6.6)–(6.9): one easily obtains
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2X ¼ −g00 _ϕ2 ¼
"
1þ mðtÞ

2aðtÞr
1 − mðtÞ

2aðtÞr

#2
H2

0e
−2H0t

sinh2ðH0tÞ
ð6:12Þ

and

KT ¼ 16πH0

eH0t sinhðH0tÞ

"
1þ mðtÞ

2aðtÞr
1 − mðtÞ

2aðtÞr

#
: ð6:13Þ

At late times, this black hole disappears and this solution
reduces to a de Sitter spacetime of GR with constant scalar
field and positive cosmological constant. In fact, as t → þ∞,
the scale factor (6.10) converges to the de Sitter exponential
a∞ðtÞ ¼ a0eH0t, mðtÞ=aðtÞ ¼ ðm0=a0Þe−H0t → 0,

ds2 → ds2∞ ¼ −dt2 þ a2∞ðtÞðdr2 þ r2dΩ2
ð2ÞÞ; ð6:14Þ

and KT → 0.
The solution relaxes to the GR solution and the action

(6.1), evaluated on this particular solution, reduces to that
of GR with a cosmological constant,

S → S∞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− 3H2
0

�
: ð6:15Þ

This example shows how a solution of Horndeski gravity
can approach a GR state of equilibrium solution. In
principle, one can consider an entire theory of gravity as
a state of equilibrium (as done here for GR), or one can
consider specific solutions of a theory of gravity and see
whether it approaches a GR solution. In this case, it is not
possible to make statements about the entire theory, but
only about specific solutions of the modified gravity with
extra degrees of freedom excited, and about “states of
equilibrium solutions,” which is what we do in this section.
The use of McVittie and generalized McVittie solutions as
models of primordial black holes in Horndeski gravity will
be explored in future publications.

VII. DISCUSSION AND CONCLUSIONS

For first generation scalar-tensor theories, the description
in terms of an effective ϕ-fluid which is dissipative leads,
through Eckart’s first order thermodynamics [27], to a
formalism of “thermodynamics of gravity” in which GR is
seen as the state of equilibrium and scalar-tensor gravity,
with its extra scalar degree of freedom ϕ, as a nonequili-
brium state. In many situations, the dissipation leads to an
approach to GR [18,19]. It is natural to apply a similar
formalism to Horndeski theories of gravity, which general-
ize “old” scalar-tensor gravity [20–24] and which have seen
an explosion of activity during the past decade.
The first step consists of extracting an effective dis-

sipative fluid of the scalar degree of freedom ϕ from the
field equations. This step was started in Ref. [48], which we

generalize introducing minor corrections. In particular, the
kinematic quantities ua, _ua; θ;ωab; Vab, and σab are iden-
tical to the previous derivations in5 Refs. [18,26], since they
do not depend on the field equations. We emphasize that the
energy-momentum tensor of the effective ϕ-fluid obtained
does not satisfy any energy condition, nor it is expected to:
it is built out of gravitational terms and does not arise from
a kinetic theory. In spite of this shortcoming from a fluid-
mechanicist’s point of view, its interpretation as a dis-
sipative fluid à la Eckart can provide an intriguing view of
GR as the (constant) unit temperature state, with vanishing
thermal conductivity, and of Horndeski gravity as a non-
equilibrium state. This view is independent of Jacobson’s
thermodynamics of spacetime [1,2], but it echoes two of its
main ideas.
The next step consists of applying Eckart’s ther-

modynamics to this effective fluid. In comparison with
Jacobson’s thermodynamics of spacetime [1,2], the effec-
tive fluid approach and Eckart’s description are minimalist
in their assumptions.
The calculations are a bit tedious, according to how

many terms are allowed in the Horndeski action. It turns out
that our approach does not work for the most general
Horndeski theory: even though one can define the effective
fluid, including its heat current density and anisotropic
stresses, they do not satisfy the constitutive relations (4.1)–
(4.3) linking them with the viscous pressure, shear, fluid
four-acceleration, and temperature gradient in Eckart’s
formalism (or in any thermodynamical theory in which
reasonable constitutive relations are needed). However,
when the terms violating the constraints on the speed of
gravitational waves are dropped from the Horndeski action,
the “temperature of gravity” formalism makes sense again,
the temperature T is positive-definite, and GR corresponds,
for instance, to T ¼ 1 andK ¼ 0. This interpretation is not
the only possible one since T and K are ultimately defined
by the system of equations given by (4.7) and (4.8). One
could take this result to say that there could be a relation
between physical constraints such as those usually imposed
on Horndeski gravity (related to stability and the propa-
gation of gravitational waves) and the validity of the
thermodynamic analogy relating kinematic quantities and
the components of the ϕ-fluid through Eckart’s constitutive
equations. The effective temperature of gravity formalism
is still under development and far-fetching conclusions are
premature; however this result is rather suggestive.
The verdict is not out on Horndeski theories of gravity

with nonminimal derivative couplings. They do predict the
speed of gravitational waves to be different from the speed
of light [92–94], and this behavior is strongly constrained
by the GW170817/GRB170817A event [45–47]. However,
it is important to note that the constraint really applies to

5The previous Ref. [25] did not provide the kinematical
quantities.
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certain solutions of the theory and not to the entire theory. It
has been shown in Ref. [95] that the theory admits self-
accelerating cosmologies that are stable in the future and
with tensor perturbations propagating with speed very close
to the speed of light. More precisely, the difference between
the two speeds scales like a−3; therefore, it can agree with
high precision with the GW170817/GRB170817A limit
today [95]. Since there are no observational data on the
speed of gravitational waves at redshifts z > 0.3, it is
suggested in [95] that this physics can be extrapolated to
the early Universe. Therefore, Horndeski theories with
nonminimal derivative couplings are not ruled out obser-
vationally. These considerations point to the fact that the
failure of the scalar-tensor thermodynamical formalism to
apply to Horndeski theories with G4X ¼ G5 ¼ 0 is prob-
ably unrelated with the discrepancy between light cones
and “gravitational wave cones” and is related more with the
particular way in which the dynamical variables enter the
field equations. We are unable to offer more insight at the
moment, but this point deserves to be understood better in
the future.
Although intriguing, the approach followed here suffers

from the limitations intrinsic to Eckart’s first-order thermo-
dynamics [27] (or better, of its constitutive equations,
which is all that was used here). An attempt to generalize
the present work to causal (second-order) thermodynamics
will be presented elsewhere. Similarly, one can classify

different extensions of GR based on their “thermodynam-
ical running” to the GR fixed point, specifically based on
the presence or absence of hairy solutions away from GR.
Such an application to vector-tensor theories [96] is studied
elsewhere.
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APPENDIX A: USEFUL RELATIONS

The following relations are useful to compute the various
contributions to the stress-energy tensor of the effective
dissipative fluid associated with the scalar field ϕ,

∇ϕ ·∇X ¼ −∇aϕð∇cϕ∇a∇cϕÞ ¼ −∇aϕ∇bϕ∇a∇bϕ; ðA1Þ

hbd∇c∇dϕ ¼
�
δb

d þ∇bϕ∇dϕ

2X

�
∇c∇dϕ ¼ ∇c∇bϕþ∇bϕ∇dϕ∇c∇dϕ

2X
; ðA2Þ

and

hachbd∇c∇dϕ ¼
�
δa

c þ∇aϕ∇cϕ

2X

��
∇c∇bϕþ∇bϕ∇dϕ∇c∇dϕ

2X

�

¼ ∇a∇bϕþ∇bϕ∇dϕ∇a∇dϕ

2X
þ∇aϕ∇cϕ∇c∇bϕ

2X
þ∇aϕ∇cϕ∇bϕ∇dϕ∇c∇dϕ

4X2

¼ ∇a∇bϕþ∇bϕ∇dϕ∇a∇dϕ

2X
þ∇aϕ∇cϕ∇b∇cϕ

2X
þ∇aϕ∇bϕ∇cϕ∇dϕ∇c∇dϕ

4X2

¼ ∇a∇bϕ −
∇ðaX∇bÞϕ

X
−
∇X · ∇ϕ
4X2

∇aϕ∇bϕ: ðA3Þ

APPENDIX B: COMPUTATION OF hachbd□ϕ∇c∇dϕ AND hachbd∇e∇cϕ∇e∇dϕ

Here we compute two terms needed for the evaluation of the effective stress tensor (5.9). We have

hachbd□ϕ∇c∇dϕ ¼ □ϕ

�
δca þ

∇aϕ∇cϕ

2X

��
δdb þ

∇bϕ∇dϕ

2X

�
∇c∇dϕ

¼ □ϕ

�
∇a∇bϕ −

1

2X
ð∇aϕ∇bX þ∇bϕ∇aXÞ −

1

4X2
∇aϕ∇bϕ∇cϕ∇cϕ

�
: ðB1Þ
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We then need

hachbd∇e∇cϕ∇e∇dϕ ¼ ðδca þ
∇aϕ∇cϕ

2X
Þðδdb þ

∇bϕ∇dϕ

2X
Þ∇e∇cϕ∇e∇dϕ

¼ ∇e∇aϕ∇e∇bϕþ 1

2X
½ð∇e∇aϕ∇e∇dϕÞ∇bϕ∇dϕþ ð∇e∇cϕ∇e∇bϕÞ∇aϕ∇cϕ�

þ 1

4X2
∇aϕ∇bϕð∇e∇cϕ∇e∇dϕÞ∇cϕ∇dϕ

¼ ∇e∇aϕ∇e∇bϕ −
1

2X
½∇e∇aϕ∇eX∇bϕþ∇e∇bϕ∇eX∇aϕ� þ

∇eX∇eX∇aϕ∇bϕ

4X2
: ðB2Þ
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