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Null geodesics and shadow of hairy black holes
in Einstein-Maxwell-dilaton gravity
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The timelike and null-like geodesics around compact objects are some of the best tools to classify and
understand the structure of a space-time. We study the null geodesics around charged static dilaton black
holes in Einstein-Maxwell-dilaton gravity. The physical parameters for nonradial geodesics, including the
effective potential, effective force, radius of the photon sphere, and impact parameter, are obtained, and
effects of the charge parameter and dilaton coupling constant on these quantities are studied. Possible
photon motions for different values of the impact parameter are analyzed, and unstable circular orbits and
unbounded orbits are plotted. These results are compared to that of Schwarzschild, Reissner-Nordstrom,
and Gibbons-Maeda-Garfinkle-Horowitz-Strominger black holes. Also, we study the shadow cast by a
dilaton black hole and investigate how the dilaton coupling affects the size of the black hole shadow.
Finally, as an application of null geodesics, we calculate the deflection of light and investigate the effects of

the model parameters on the bending angle.
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I. INTRODUCTION

Black holes are intriguing objects in our Universe. Ever
since Einstein predicted their existence in general relativity
(GR), the physics of black holes has attracted considerable
attention. However, theoretical results alone are not com-
plete until they are backed up with observational data. After
a century of theoretical research, remarkable success has
been achieved in the strong field regime around astro-
physical black holes in the past few years. In addition to the
discovery of gravitational waves from the merger of a black
hole binary by the Virgo and LIGO collaborations [1],
another important milestone is the direct observation of a
supermassive black hole at the core of the M87* elliptical
galaxy by the Event Horizon Telescope Collaboration
[2-4], which released the first image of a black hole
shadow. If the light rays get too close to a black hole,
they get strongly deflected, or even move along circular
orbits on the photon sphere. This strong deflection, along
with the fact that nothing can come out of the black hole,
makes the black hole seem like a dark disk in the sky
(called the black hole shadow). The first studies of a black
hole shadow for a Schwarzschild black hole and a rotating
Kerr space-time were carried out in [5,6], respectively.
Such studies have received significant attention in recent
years and have been widely investigated in modified
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theories of gravity [7-25]. Therefore, the study of null
geodesics around black holes would help us to understand
the properties of such objects and the geometric properties of
the corresponding space-times. Also, such studies are useful
for calculating other related observable quantities, such as
gravitational lensing and the deflection angle of light.

An effective way to understand the structure of a space-
time is to study the geodesics that have exact analytical
solutions. However, it is not always possible to solve the
geodesic equations analytically so that numerical solutions
would be in order. In such cases, one can qualitatively
analyze the behavior of geodesics from the effective
potential for the radial motion. The first exact solution
of geodesic equations in the space-time of a Schwarzschild
black hole was obtained in terms of elliptic functions by
Hagihara in 1931 [26], followed by others who, over the
years, have presented analytical solutions of the geodesic
equations of such a metric [27-31]. Exact solutions of
geodesic equations in of Schwarzschild, Kerr, Kerr—(anti—)
de Sitter, Reissner-Nordstrom, Reissner—Nordstrom—
(anti—)de Sitter, and Kerr-Newman space-times were stud-
ied in [32-40], respectively. In addition, the geodesic
structure around black holes in modified theories of gravity
has been extensively studied. For instance, the particle
motion around black holes in f(R) modified gravity and
Horava-Lifshitz gravity was studied in [41-45]. The
analysis of null geodesics in brane world scenarios and
conformal Weyl gravity were considered in [46—49]. In the
space-time of Born-Infeld black holes, the null geodesics
were studied in [50-53]. The timelike and null-like
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geodesics in the background of quintessential black holes
was considered in [54-58]. The study of geodesic structure
around hairy black holes was carried out in [59,60]. For
analyses of timelike and null-like geodesics in the back-
ground of wormhole geometries, see [61-63].

It is generally accepted that the theory of GR is the
theory of gravity most successful in offering a correct
description of the Universe, from the planetary motion to
the large-scale structure. Despite these persuasive successes
of GR, there are still many open problems, including
inflation, dark matter, and dark energy. Also, at small
scales where quantum gravity is important, there is no
plausible theory of gravity. However, string theory, in a
manner dictated by its low energy limit and by supple-
menting the usual Einstein-Hilbert action with higher-order
curvature invariants, along with an extra scalar field non-
minimally coupled to gravity, could open the way for
quantum gravity [64]. In this regard, a well-known scenario
in which a dilaton field is nonminimally coupled to the
Maxwell field has been the focus of attention in the last
decade and is known as the Einstein-Maxwell-dilaton
(EMD) gravity. Static, spherically symmetric charged black
hole solutions of the theory were initially found by Gibbons
and Maeda [65] and also, independently, by Garfinkle ef al.
[66]. These solutions have the following line element:

e 2
(1) (1) P
n r2<1 _%>%(d02 + sin*0dg?), (1)

where «a is the dilaton coupling constant and r, and r_
represent the radii of outer and inner horizons, respectively.
In the special case of @ = 1 (the simplified heterotic string),
the metric corresponding to the Gibbons-Maeda-Garfinkle-
Horowitz-Strominger (GMGHS) black hole is given by

2M 2
i (12

r -2
QZ
n ,(, - ﬁ) (d6? +sin*0d¢?),  (2)

where M and Q are the Arnowitt-Deser-Misner mass and
the electric charge of the black hole, respectively. The
geodesic structure of massive and massless particles in the
space-time of a GMGHS black hole has been extensively
studied. For instance, the geodesic structure of test particles
and light rays around a GMGHS black hole was studied in
[67-70]. Also, the null geodesics and motion of charged
test particles around a magnetically charged GMGHS black
hole were discussed in [71,72], respectively. The timelike
and null-like geodesics around rotating dilaton black holes
were considered in [73]. The geodesic structure of normal
and phantom EMD black holes presented in [74] and EMD

axion black holes in [75] have also been investigated. The
deflection of light and shadow of charged stringy black
holes was studied in [76]. Alternatively, interesting physi-
cal aspects of dilaton black holes with the metric given in
Eq. (1) have been widely studied. An extension of this
solution to slowly rotating dilaton black holes was carried
out in [77-79]. The black hole superradiance, phase
transition, and quasinormal modes of dilaton black holes
were considered in [80-82]. Shadows of EMD axion black
holes and charged dilaton wormholes, thin accretion disks,
and black hole mergers in EMD gravity were studied in
[83—89]. Also, the light deflection of EM(anti-)D black
holes, using the Gauss-Bonnet theorem, was studied in [90]
together with the effect of the dilaton parameter o on the
bending of light. The motion of electric and dilatonic
charged particles with arbitrary mass around dilaton black
holes has also been studied [91]. However, the motion of
massless particles in the space-time of dilaton black holes
with arbitrary values of a has not been attracting as much
attention. Therefore, in this paper we consider charged
static dilaton black holes, study photon trajectories on the
null geodesics, investigate the effects of both the dilaton
coupling and charge parameter, and compare the results to
that of the Schwarzschild solution and to Reissner-
Nordstrom (a = 0) and GMGHS (a = 1) black holes.

The structure of the paper is as follows. In Sec. II, we
briefly introduce the charged static dilaton black holes and
some of their features. The radial geodesics and null
geodesics with angular momentum are studied in detail
in Sec. III. A study of the black hole shadow is done in
Sec. IV. In Sec. V, we study the bending of light in the
space-time of dilaton black holes. Finally, our conclusions
are presented in Sec. VL.

II. STATIC CHARGED DILATON BLACK HOLES
IN EMD GRAVITY

The action of EMD gravity with an arbitrary dilaton
coupling is given by

S= / d*x\/=g[R = 29"V, ®V,® — e 2®F, F*]  (3)

where g, R, and @ are the metric determinant, scalar
curvature, and dilaton field, respectively. Also, F w =
0,A, —0,A, is the strength of the Maxwell field, with
A, being the electromagnetic vector potential. The coupling
constant o determines the strength with which the dilaton is
coupled to the Maxwell field, and without loss of generality
we consider a to take positive values. The low energy limit
of string theory corresponds to the case of @ = 1 and a =
/3 represents the five-dimensional Kaluza-Klein theory.
Moreover, in the case of @ = 0 we obtain Einstein-Maxwell
theory coupled to a scalar field where the static black hole
solution is identical to the Reissner-Nordstrom solution of
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GR. Varying action (3) with respect to metric, dilaton, and
Maxwell fields results in

1
G =2 [V”¢VDCI) =59V, OV @

1
+ ¢ 20® <FW,F,’5 - Zng2>] , (4)
a _ a
V, Vi = — 2P, (5)
V(e 2@ Fm) =0, (6)

where we use the shorthand notation F> = F 2oF77. As we
mentioned before, the solution for a spherically symmetric
static charged dilaton black hole with arbitrary values of a
is given by [65,66]
) dr? .
ds* = —f(r)dt* + m + R(r)(d6? + sin?> 0dg?*), (7)

where

and

R(r) = r2<1 —’——> 9)

The behavior of the vector potential and the dilaton field is
given by

A="" (10)
O(r) = - _fazlog (1 —%‘) (11)

Also, the radii of the outer and inner horizons are as
follows:

r+:M[1+ 1—02(1—(12)], (12)

M +a) [1 V=2 (1= a2)] )
T (1-a) ’

where M is the mass of the black hole and v denotes the
ratio of the electric charge to the black hole mass, v = %
Clearly, from the reality of r, and r_, a constraint 1 >
v*(1 — @?) should be imposed. Also, for all values of «,
these solutions have an event horizon at r = r, but for any

nonzero value of « the inner horizon at r=r_ is a
curvature singularity. Thus, these solutions describe
black holes only when r_ < r, [66]. The extremal limit
of the metric, for which r, =r_, is achieved for

Omax = M1 + o?. Here, it should be mentioned that
we will restrict our studies to the region r, <r < oo
because in this region the ¢ direction, 9/0¢, is timelike
and the r direction, d/0r, is spacelike, while in the region
between the two horizons, r_ < r < r,, 0/0t is spacelike
and 0/0r is timelike.

It is easy to see that in the limit » = 0, with arbitrary
values of a, we have the Schwarzschild metric with event
horizon at r, = 2M and an intrinsic singularity at r_ = 0.
Also, in the case of «a =0 we obtain the Reissner-

Nordstrom space-time metric with . = M[1 + V1 — 2?].
Although r_ appears to be ill defined at o = 1, it is well
behaved in the limit of @ — 1 and approaches a finite value.
It is easy to see that, in this case, r, =2M, r_ = % the
metric in Eq. (7) reduces to the GMGHS metric in Eq. (2).
Note that this solution is almost identical to the
Schwarzschild black hole, but the difference is that areas
of spheres of constant ¢ and r depend on Q. When
r = Q%/M, the area approaches zero and the surface is
singular. For Q% < 2M? the singular surface is inside the
event horizon, while for Q> = 2M? the surface coincides
with the horizon and a transition between the black hole
and naked singularity occurs [66]. The behavior of the areal
radius, \/R(r,.), as a function of the dilaton coupling « and
charge parameter v is shown in Fig. 1. It is seen that the
areal radius decreases with increasing v and increases very
slowly with increasing a. Also, it can be seen that in the
Schwarzschild case with v = 0 we have \/R(r,) = 2M.
The dilaton charge is defined as [65]

aM |1 =T (1=

=- L (14)

D=-r®(r)

i’|r—>00

(-

FIG. 1. Behavior of the areal radius at r = r, as a function of
the charge parameter and dilaton coupling.
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FIG. 2. Behavior of the dilaton charge as a function of the
charge parameter and dilaton coupling.

We plot the behavior of the dilaton charge as a function of
dilaton coupling and charge parameter in Fig. 2. As can be
seen, with an increase both v and a the dilaton charge
increases. Moreover, for a Reissner-Nordstrom black hole
with @ = 0 and Schwarzschild solution (v = 0) in GR, the
dilaton charge is zero, as one would expect.

III. NULL GEODESICS

In this section, we aim to investigate the geodesic
structure of massless particles in the space-time of dilaton
black holes. Thus, we consider the Euler-Lagrange equa-
tion

d (0L oL
pm <ax) “ow (15)

where 7 is the affine parameter of the light rays and the
Lagrangian for the metric in Eq. (7) has the following form:

1 o
L= Egm,x" xv

1

=5 <—f(r)i2+

i,2
£(r)

Since the space-time is static and spherically symmetric, we
can restrict our study to the equatorial plane, & = 7, without

+R(r)(6* + sin29¢2)> =0. (16)

loss of generality. Thus, by considering & = 7 and 6 =0,
the Euler-Lagrange equations for ¢ and ¢ coordinates are
given by

. E
= (17)
. L
¢:W’ (18)

where E and L, the energy-momentum and angular
momentum of the photon, are the conserved quantities.
Now, using the above equations, Lagrangian (16) takes the
form

E? = i + Vg (r), (19)
where the effective potential is given by

L2
R(r)’

Ve = f(7) (20)

In order to study the path of light rays, we need the relation
between r and ¢ which can be obtained by eliminating =
from Egs. (18) and (19),

(5_;)2 - RZ(;) = R(r)f(r), 21)

where we have substituted the effective potential from
Eq. (20) and defined the impact parameter, b = % In
particular, for light rays with a critical value of the impact
parameter b = b., an unstable circular null trajectory
occurs at the maxima of the effective potential r = r,,
known as the photon sphere [92]. In what follows, we
investigate the radial null geodesics and null geodesics with
angular momentum, separately.

A. Radial null geodesics (L=0)

For the radial motion with vanishing angular momentum,
L = 0, the effective potential is zero. So, from Egs. (17)
and (19), one may find the differential equations governing
the coordinate time ¢ and affine parameter z as follows:

dt 1
TR G) >
dr 1

where the upper and lower signs denote the outgoing and
ingoing motion, respectively. Assuming photons are at
r =r; when t = 7 = 0 and approaching r = r,, we have
plotted the behavior of both ¢ and 7 in the space-time of a
charged dilaton black hole for ingoing photons in Fig. 3. It
is seen that in the affine parameter framework, the photons
reach the horizon in a finite affine parameter, while for the
time coordinate it takes an infinite time, which is the same
behavior as that in the Schwarzschild case [32].

B. Geodesics with angular momentum (L # 0)

Now, we will consider the angular motion of photons in
the space-time around EMD black holes.
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FIG. 3. The behavior of the time coordinate ¢ (solid curve) and
affine parameter 7 (dashed curve) as a function of radius r. We
have set v = 0.9 and a = 0.1. The vertical line represents the

location of the event horizon at r, = 1.44508.

1. The effective potential

In this case, using Egs. (8), (9), and (20) we find that the
effective potential reads
r_
r

x5 (-

For nonradial geodesics, it is convenient to set L = 1, and
thus from now on we will consider b :% in our calcu-
lations. We plot the effective potential in Fig. 4. In the left
panel, we have shown the effect of the dilaton parameter on
the potential. It is clear that by increasing « the maxima of
effective potentials decrease such that a GMGHS black
hole with @ =1 has the lowest maximum. For different
values of v with a fixed value of «a, the effective potential is
plotted in the right panel. It is clear that with increasing v
the maxima of effective potentials assume higher values.
From Eq. (19), one can see that the photon motion strongly
depends on its energy levels. Thus, in order to discuss

1-3¢2 12
1+a? L
rr

Ve = f(r) L (24)

various cases of motions of photons, we have shown the
effective potential and some energy levels in Fig. 5.
Assuming that light rays move in a radially inward direction,
we summarize different kinds of motion as follows:

(1) For b < b, the photon starts at infinity and, since it
does not encounter the potential barrier, falls into the
black hole.

(2) The trajectories with impact parameter b = b,. start
falling inward from r > r_. and “reach” the point r =
r. only in an infinite affine time, i.e., the correspond-
ing photons actually never reach this point but spiral
with an infinite time around the photon sphere.

(3) In region 1, when b > b, the light rays that start
from r > r( reach the potential barrier, and thus are
pushed back at r = ry. However, when the photon
starts at r, < r < ry it will cross the horizon.

Another quantity of interest is the effective force on the

photons which is given by

—4g2
1dv, (1-L)0e?
F — _ Cff: r
N==3"ar 2701+
x[2(1+a?)r?=3(1+a®)ror—(3—a®)r_r+4r r_].
(25)

The factor% appears because of the form of Eq. (19) [54]. In
Fig. 6, the total force on the photons as a function of r is
shown. As one expects from the shape of the potential, the
effective force at the photon radius is zero. In other words, the
point at which the force is zero, i.e., r = r,, is important
because it gives the location of the stationary point corre-
sponding to circular geodesics. For r . < r < r, the force is
negative and photons feel an attractive force and as a result
are pulled back toward the black hole and fall into it. It is
interesting to note that for » < r, the force is attractive and
that is due to the fact that we are studying the configuration
between r, and r.. However, for r. < r < oo, the force
becomes positive, driving photons away from the black hole
which corresponds to photons being deflected at the turning

0.05 — g 005
A a=0...Reissner-Nordstrom - v=0...Schwarzshild
1 ]
004t [/ { 004
[ O ]
I 4
l' 4
003 [ . 0.03
5 vl 1 35
< Y] 1
S ] ]l s
0.02f [:] - 0.02
il i
vl ]
i i
0.01F [t 1' 4 0.01}
il ]
) i
[} J
000 L 1 1 1 1 000 1 1 1 1
4 6 8 10 2 4 6 8 10

2

FIG. 4. The effective potential for massless particles around a static EMD black hole. In the left panel V ; is shown for different values
of a with » = 0.8, and in the right panel for different values of v for @ = 0.5.
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0.05}
= 0.04f g
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B gl TR T
0.02f .
0.01F
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0.00 L : .
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FIG. 5. The effective potential of photons around an EMD

black hole and some energy levels. We set @ = 0.1 and v = 0.9.
Region 2 corresponds to Vg (r) = 1/b%, while regions 1 and 3
correspond to Vg (r) < 1/b2 and Vg (r) > 1/b2, respectively.

point » = ry. When r — oo, the force tends to zero and
photons experience no force. Also, the left panel of Fig. 6
shows the effect of the dilaton parameter on the effective
force. As can be seen, increasing o decreases the effective
force. So, in the presence of dilaton hair, the force on the
photon decreases such that a Reissner-Nordstrém black hole
with a = 0 (the scalar-free solution) has the maximum value
of the force. The effect of the charge parameter on the
effective force is shown in the right panel. We see that
increasing v also increases the effective force. Meanwhile it
is easy to see that, in the limit of  — 1, Eq. (25) reduces to
the following relation:

1
r =
“ o 2(1-a?)

1 M Q2

P1-2)2 r

20?
2Mr r2

Fouens(r) = . (26)

which is the effective force in the space-time of a GMGHS
black hole. For Q = 0, the above equation reduces to the
effective force in the Schwarzschild space-time, that is,

1 3M
Fsen(r) =—=5——. (27)
r r
where the first term represents the centrifugal force and the
second term corresponds to the relativistic correction due to
GR [57].

2. Circular orbits

As mentioned in the previous section, the circular orbit
occurs at r = r. with b = b, so the conditions for such a
critical motion are given by

1
Vet = =R (28)
dVeff
ZTeff 2
dr 0 (29)
which leads to the following relation:
R(r)f'(r) = f(r)R'(r) = 0. (30)

The above equation has the following two solutions for
circular orbit radii:

[3M —2Ma* — Ma*y/1 — v*(1 — &?)

2
:I:\/(3M—2M02—Ma2 1—v*(1-a?)) —81}2(1—052)2}.

0.006 ——
0.004

0.002}

MPF(r)

0.000 -

—0.002

~0.004

-0.006 L L L L L L L L L L L L L L

2 4 6 8 10

(31)

0.006———
0.004] ]
0.002 ]
0.000} T

[ v=0...Schwarzshild ]
~0.002 ]
r v=0.4 g
-0.004[ v=0.6 1
[ v=0.8
_0006 L 1 i 1 i i 1 i 1
0 2 10 12 14

FIG. 6. Effective force as a function of r for different values of @ with v = 0.8 (left panel), and for different values of v with @ = 0.5

(right panel).
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FIG.7. Behaviorof r. , r. , and the event horizon radius r, as

a function of ». The dilaton parameter is set to a = 0.9.

FIG. 8. Dependence of the areal radius at r = r, on the charge
parameter and dilaton coupling.

We note that in the limit of @ — 1 the above solution
reduces to the radius of the circular orbit for the GMGHS
black hole—namely, Eq. (49) in [68]. In Fig. 7, we display
both r,., and r._together with the event horizon radius as a
function of » for ¢ = 0.9. We see that for v =0, r. =0
and r. = 3M, which is the radius of the unstable circular
orbit for the Schwarzschild black hole. Moreover, it is clear
that, for all values of v in Fig. 7, r.,_is always larger than
the event horizon radius, r., > r,, while r. is smaller,
r. < r,. Since we will consider the photon motion in the

TABLE II

TABLE I.  Values of the photon radius r,, the impact parameter
b., and the event horizon radius for different values of v with
a =0.2. The first column with » =0 corresponds to the
Schwarzschild black hole.

v=0 =01 v=03 v=05 v=07 v=09
ro/M 3 2.9935 2.9406 2.8286 2.6402 2.3254
b./M 5.1962 5.1875 5.1168 49681 4.7219 4.3250
ro/M 2 1.9952 1.9558 1.8718 1.7277 1.4716
r_/M 0 0.0052 0.0479 0.1389 0.2949 0.5724

region r. < r < oo, the radius denoted by r,._is that of the
unstable circular orbit and will be represented by r. from
now on. The dependence of the areal radius at r = r. on the
dilaton coupling and charge parameter is shown in Fig. 8.
As can be seen, the areal radius is a decreasing function of v
and a very slowly increasing function of a. Also, as is clear
for an extremal Reissner-Nordstrom black hole with o = 0
and v = 1, we have r, = 2M.

Now, using Eqgs. (19) and (20), the impact parameter of
these unstable circular orbits is given by

p = Le_ [R(re) _ re
Ec f(rc) \/(l _rr_:)( 1-3a?

(32)

1 —_ r;) 1+a?
re

We present the results of the event horizon radius, photon
radius, and impact parameter of the photon sphere for
different values of v and « in Tables I and II. We see that for
a fixed value of a, as one increases the charge parameter v,
the size of the event horizon radius, photon radius, and
impact parameter b, decreases. However, Table II shows
that, for a given value of v, increasing the dilaton parameter
a causes the event horizon radius, the photon radius, and
also the value of the impact parameter to increase.

1
r

The aim of this section is to study the geometry of null
geodesics in the EMD black hole space-time. In order to do
so, it 1s more convenient to use the variable u = %

Therefore, we rewrite Eq. (21) in terms of the variable u,

C. Analysis of geodesics in terms of the variable u =

Values of the photon radius r., the impact parameter b, and the event horizon radius for different

values of a with » = 0.6. The results in the first and sixth columns correspond to that of Reissner-Nordstrom and

GMGHS black holes, respectively.

a=0 a=0.1 a=0.3 a=0.5 a=0.7 a=1 a=13 a=1.7 a=2
re/M 2.7369 2.7391 2.7566 2.7905 2.8391 2.9343 3.0514 3.2302 3.3764
b./M 4.8587 4.8588 4.8599 4.8619 4.8649 4.8707 4.8775 4.8877 4.8957
r /M 1.8000 1.8023 1.8200 1.8544 1.9036 2 2.1173 2.2963 2.4422
r_/M 0.2000 0.2017 0.2156 0.2427 0.2818 e 0.4547 0.6098 0.7370
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FIG. 9. Polar plot of null geodesics around an EMD black hole for @ = 0.1 and o = 0.8 with v = 0.9. The red, blue, and green curves
represent the null trajectories with b = b.., b > b, and b < b, respectively. In each panel, a black disk shows the event horizon at

r, = 1.44508 and r, = 1.84167, respectively.

7= \/(1 SO ()1 = g = @)

(33)

As can be seen, for v = 0 the above equation reduces to
(43)° = 3 + 2Mu’ — u?, which is the equation of motion
of photons in the space-time of the Schwarzschild black
hole and, to the Reissner-Nordstrom black hole for a = 0,
for which it takes the form (45)* = 3 — Q*u* + 2Mu’ — u?
[32]. Also, in the case of @ = 1 with metric functions given
by Eq. (2), we find the corresponding result for GMGHS
black holes—namely, Eq. (41) in [68].

As explained in the previous section, the photon motion
depends on its energy level; see Fig. 4. When b = b, the
photons have an unstable circular orbit with radius r = r,
and circle the black hole on the photon sphere. However,
when b < b, the light rays will continue moving inward
until they are captured by the black hole. Photons with

b > b. will deflect at the point u, = rlu which is the root of

the function ®(u). In other words, the photon with b > b,
reaches the turning point u =u, (or r =ry) and is
reflected, following an unbounded orbit. Since Eq. (33)
does not have an analytical solution, we numerically plot
the resulting photon paths in Fig. 9. The red curve shows
photons coming from infinity and reaching the critical
distance r = r,, after which they revolve around the black
hole on the photon sphere. However, the blue curves show
the light deflection around an EMD black hole for light rays
with b > b.. The null geodesics falling into the black hole
are shown as green curves.

IV. SHADOW OF EMD BLACK HOLES

Let us now consider the shadow cast by dilaton black
holes. To this end, it is appropriate to introduce the celestial
coordinates X and Y as follows [6]:

. . do
X = lim ( —rZsing,— |, 34
r1_1:110< rysind, dr> (34)
do
Y=1li 2—, 35
3;( d,) (35)

where r, is the observer distance to the black hole and 9, is
the angular coordinate of the observer, called the inclina-
tion angle. We restrict our study to the equatorial plane
0, = 7 so that the radius of the shadow is given by

R, = VX>+Y?=b,. (36)

In fact, it is found that in the particular case with 6, = 7, for
an asymptotically flat space-time with a line element in the
form (7), the radius of the black hole shadow is equal to
the critical impact parameter. Also, it can be seen that, for
the Schwarzschild black hole, the radius of the shadow
is R, = 33 ~5.1962.

In Fig. 10, we show the shadow boundaries of dilaton
black holes for different values of » and for changing values
of the dilaton parameter @. We see that the shape of the
black hole shadow is a perfect circle and, for a fixed value
of a, the shadow size decreases when v is increased. The
dilaton parameter runs from @ = 0 and corresponds to a
Reissner-Nordstrom solution, to ¢ = 1 in the case of a
GMGHS black hole. The effect of the charge and the
dilaton parameter on the shadow radius of a dilaton black
hole is shown in Fig. 11. It is seen that, for a given value of
v, the presence of the dilaton coupling « leads to larger
values for R, than in the case of a Reissner-Nordstrom
black hole (¢ = 0) in GR. We note that the rate of increase
in the shadow radius is larger for larger values of v. Also,
for an extremal Reissner-Nordstrom black hole with v = 1,
we have R, =4M. It is worth mentioning that the
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FIG. 10. Boundary of the shadow of a charged dilaton black hole for different values of the charge parameter » and dilaton coupling a. In
each panel, the solid red curve shows the shadow of the Schwarzschild black hole. The unit of length along the coordinate axes o and f is M.

FIG. 11. Behavior of the shadow radius as a function of the
charge parameter and the dilaton coupling.

measurements of the shadow size around the black hole
may help to estimate the black hole parameters and probe the
geometry of the background metric. However, for the EMD
black holes that we are studying here, as the results in
Tables I and IT show, the size of the shadow, thatis, R, = b,.,
clearly has a strong dependency on the charge parameter v,
while the dependency on « seems to be quite weak. In fact,
for fixed values of v and values of « from O to 2, the shadow
size changes by only about 0.037. Therefore, we find the
effect of the dilaton parameter on the shadow size to be
negligible in observational measurements.

On the other hand, astrophysical black holes are
expected to have a negligible electric charge such that
the charge parameter v is zero or small. Therefore, it may be
difficult to constrain the dilaton parameter « from obser-
vations of the shadow size or gravitational lensing.
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V. GRAVITATIONAL LENSING
BY EMD BLACK HOLES

The study of light paths is important for investigating the
gravitational lensing effects of compact objects. The
problem regarding light bending in the space-time of a
GMGHS black hole—and also an EM(anti-)D black hole—
using the Gauss-Bonnet theorem was considered in [90].
Now, we focus on the gravitational lensing of a dilaton
black hole and investigate the dependence of the bending
angle on the dilaton coupling @ and charge parameter v. As
explained in Sec. III C, when light rays with b > b, from
infinity encounter the potential barrier, they are deflected at
the turning point » = ry; see Fig. 4. Therefore, we first need
to find the closest distance r, which is the value of r when
j—(;) = 0. From Eq. (21), we have

2

da
dr\? (1 =22
(%) = 4})2’ —(r=ry)(r=r_)=¥(r). (37)
[ ! b=4.5
L 1
ar L b=5.5 1
i N — b=6.5
r / b=7.5
1
. =5 / i
e N / ]
N / 1
L \\ ,I 4
2t S’ ]
_45 ]
—6" L L L L L
0 2 4 6 8 10

™

FIG. 12. Behavior of ¥(r) as a function of r for different values
of the impact parameter. We set & = 0.1 and v = 0.9.

In Fig. 12, we display W(r) for different values of the
impact parameter b. As one can see, there are two values of
r for which ¥(r) = 0. Since we know from Fig. 4 that the
value of the turning point at r = ry is larger than the photon
radius at r = r., we consider the larger roots in Fig. 12 the
closest distance and identify them with r(. Also, we note
that with an increasing impact parameter the closest
distance increases as well.

Using Eq. (33), one can find the bending angle of a
charged static EMD black hole according to

(38)

where u :r—lo is the inverse of the closest distance. We
numerically plot the behavior of the bending angle as a
function of u, in Fig. 13. In the left panel of the figure, it is
clear that by increasing the dilaton coupling the bending
angle also increases, so a GMGHS black hole with a = 1
has the largest value of the deflection angle, whereas the
Reissner-Nordstrom black hole with @ = 0 has the smallest
value (see also Ref. [93]). In Table II, we see that by
increasing « the event horizon, photon, and shadow radii
increase too. This shows that increasing a enhances the
gravitational field, and thus the deflection angle also
increases with the dilaton parameter. The dependence of
the bending angle on the charge parameter is presented in
the right panel of Fig. 13, showing that, for a fixed value of
a, when the value of the charge parameter increases, the
bending angle decreases. The corresponding results for the
Reissner-Nordstrom and Schwarzschild black holes in GR
are also plotted. Moreover, as one expects, in the limit of

FT T T T T T T T T T T T T T T T

a=0...Reissner-Nordstrom

T T T T T T T T T T T T T T T T

v=0...Schwarzschild .

JECERIERE a=0.4 E
b 5 |-
5 e a=038 ’ r
[ % ¥
i a=1..GMGHS i af A
s = F
© b © [
=3[ s 3
S 3 o [
2f 2f )
s 1t
of —" of ]
[ n L n n n n 1 n n n n 1 n n n n 1 n " " " 1 " " " " 1 " " " " 1
0.00 0.00 0.05 0.10 0.15 0.20 025 0.30

uM

FIG. 13. Bending angle of charged static dilaton black holes as a function of the inverse of the closest distance, uy = rlT,’ for different
values of @ with v = 0.9 (left panel) and different values of v with @ = 0.1 (right panel).
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uy — 0 the bending angle is zero, while for larger values of
u, the deflection angle increases.

VI. CONCLUSIONS

In this paper, we studied the null geodesics structure of
charged static dilaton black holes in EMD gravity for
arbitrary values of the dilaton coupling constant a. A
detailed analysis of the null geodesics around a GMGHS
black hole with a specific value of @« =1 was done
previously by Fernando in [68]. However, in this work,
we considered EMD black holes with arbitrary values of a
and have investigated the effects of both the dilaton
coupling and the charge parameter » on the null geodesics
around them. For nonradial null geodesics, we numeri-
cally obtained the effective potential, the effective force
on the photons, the radius of the photon sphere, and its
impact parameter. We found that, for a given value of the
charge parameter, increasing the dilaton coupling «
causes the photon radius to increase. Therefore, in the
presence of dilaton hair, a black hole in EMD gravity has a
larger photon radius than a Reissner-Nordstrom black
hole (the scalar-free solution) in GR. Also, we showed
that, for a fixed value of a, by decreasing the charge
parameter, the photon radius is increased such that a
Schwarzschild black hole with » = 0 has the largest value
of the photon radius.

It was also shown that, depending on the photon’s energy
level, there can be different kinds of motion. In this regard,

by considering the incoming light rays from infinity, we
discussed the possible motions of photons around EMD
black holes. We showed that photons with a critical value of
the impact parameter, b., move along the unstable circular
orbits, while photons with b < b, eventually fall into the
black hole. In a different scenario, we considered the
unbounded orbits for light rays with b > b.. The null
trajectories of these three cases were also numerically
plotted. In addition, we studied the shadow cast by charged
static dilaton black holes. We found that in the presence of
the dilaton coupling the size of the black hole shadow
increases, while the shadow radius decreases when we
increase the charge parameter. Indeed, it was shown that the
shadow size has a strong dependency on the charge
parameter ». In Table I, we see that for « = 0.2 and a v
that varies from O to 0.9, the shadow size decreases by
about 0.871. However, the dependency on the o parameter
is very weak, as can be seen in Table II, where for a fixed
value of v = 0.6 and an « that varies from O to 2 the size of
the shadow increases by only about 0.037. It would
therefore be difficult to measure the parameter a using
observational measurements of the shadow. Finally, we
studied light bending in the space-time of EMD black holes
and investigated the effects of the charge parameter and
dilaton coupling on the bending angle. The results were
compared to dilatonic GMGHS black holes with o = 1, a
Reissner-Nordstrom black hole with a=0, and a
Schwarzschild black hole in GR.
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