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Old minimal Rþ R2 supergravity has a Uð1Þ R symmetry which rotates the chiral curvature superfield.
We gauge this R symmetry and study new interactions involving the gauge multiplet in the context of
inflation and supersymmetry breaking. We construct models where supersymmetry and the R symmetry are
spontaneously broken during and after Starobinsky inflation, and one-loop gauge anomalies are canceled
by the Green–Schwarz mechanism which can also generate Standard Model gaugino masses. The hierarchy
between the auxiliary fields, hFi≳ hDi, leads to split mass spectrum where the chiral multiplet masses are
around the inflationary scale (1013 GeV), while the gauge multiplet masses can be arbitrarily small.
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I. INTRODUCTION

Observations of cosmic microwave background (CMB)
fluctuations are in a good agreement with predictions of
single-field inflation, and favor models with concave scalar
potentials predicting low tensor-to-scalar ratio [1]. One of
these models is the Starobinsky model [2], which is a
theory of Rþ R2 modified gravity, where the quadratic
term in the scalar curvature R gives rise to an additional
scalar degree of freedom (called the scalaron) with a
particular form of the scalar potential that makes it a good
candidate for the inflaton field.
N ¼ 1 supersymmetrization of Rþ R2 gravity is not

unique. This is because in standard two-derivative super-
gravity there are multiple choices of auxiliary fields to
complete an off-shell supergravity multiplet. Well-known
minimal examples, with 12þ 12 degrees of freedom, are
old minimal and new minimal multiplets [3]. The former
includes a real vector and a complex scalar as auxiliary
fields, while the latter includes a real vector and a two-form
auxiliary field. In fact, the auxiliary vector of new minimal
supergravity is a gauge field of R symmetry, Uð1ÞR. This is
inconsequential for two-derivative supergravity, because
upon eliminating the auxiliary fields, both old minimal and
new minimal approaches describe the same Einstein super-
gravity. But if we include higher derivatives, namely an R2

term, the two approaches lead to two different super-
symmetric extensions of Rþ R2 gravity, due to the fact
that the auxiliary fields become dynamical. See, e.g.,
Refs. [4–8] for the realization of inflation in these modified
supergravity models.
Rþ R2 supergravity in the new minimal formulation can

be equivalently described by Einstein supergravity coupled
to a massive vector multiplet which gauges the R symmetry
(spontaneously broken everywhere in field space) and
includes a real scalar (scalaron) and a massive vector as
bosonic degrees of freedom [9]. On the other hand, the old
minimal Rþ R2 supergravity is equivalent to Einstein
supergravity coupled to two chiral (scalar) multiplets
[10]. Notably, this theory has global exact R symmetry,
for a suitable choice of Kähler potential and superpotential,
which rotates one of the chiral scalars (in the higher-
derivative formulation, this scalar can be seen as the leading
component of the chiral curvature superfield). In this work
we gauge the R symmetry and study the resulting theory in
the context of inflation and supersymmetry breaking.
Supersymmetry breaking in pure old minimal Rþ R2

supergravity has been studied for example in [11] where
the SUSY-breaking vacuum found by the authors also
spontaneously breaks global R symmetry. This leads to
two problems: a massless R axion, and the fact that the
inflationary attractor trajectory generally leads SUSY-
preserving vacuum instead of the SUSY-breaking one
(see Fig. 2 of [12] which shows the scalar potential and
inflationary trajectory of this model). In Ref. [13] the
authors studied new SUSY-breaking vacua in old minimal
Rþ R2 supergravity by introducing explicit R symmetry-
breaking terms, which solves both of the above problems.
In our approach, these problems are solved by instead
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gauging the R symmetry and arranging for its spontaneous
breakdown both during and after inflation.
We start in Sec. II by introducing general old minimal

Rþ R2 supergravity, and in Sec. III we describe dual
scalar-tensor theories first in terms of the component fields,
and then in superspace. We show that one (out of four) real
scalar can be integrated out when describing inflation, and
obtain convenient form of the effective Lagrangian. In
Sec. IV we gauge the R symmetry of the model, and use
the resulting theory in Sec. V to describe inflation and
SUSY breaking in Minkowski vacuum. In Sec. VI we study
anomaly cancellation condition by the Green–Schwarz
mechanism, and obtain the fermion mass spectrum.
Finally, in the conclusion section we summarize the results.

II. OLD MINIMAL R+R2 SUPERGRAVITY

We start with general (N ¼ 1, D ¼ 4) old minimal
modified supergravity Lagrangian (throughout the paper
we set MP ¼ 1 and use the conventions of [14])

L ¼
Z

d2Θ2E
�
1

8
ðD̄2 − 8RÞNðR; R̄Þ þ F ðRÞ

�
þ H:c:;

ð1Þ

where D2 ≡DαDα with supercovariant derivative Dα, E
and R are density and curvature chiral superfields, respec-
tively. NðR; R̄Þ is a real function, while F ðRÞ is hol-
omorphic. Neglecting the fermions, the component
expansion of E and R is

2Ej ¼ e; D22Ej ¼ −24eX̄; Rj ¼ X;

D2Rj ¼ 1

3
Rþ 16XX̄ −

2i
3
∇mbm þ 2

9
bmbm; ð2Þ

where j extracts Θ ¼ 0 component, e≡ det eam ¼ ffiffiffiffiffiffi−gp
, X

and bm are complex scalar and real vector auxiliary fields of
old minimal supergravity. The standard Poincaré super-
gravity corresponds to N ¼ 0 and F ¼ −3R, or equiv-
alently N ¼ −3 and F ¼ 0. For general function NðR; R̄Þ,
or more specifically if ∂R∂R̄N ≡ NRR̄ ≠ 0, the theory
includes an R2-term (R being the scalar curvature), while
X and bm become dynamical. This can be seen from the
component expansion of the Lagrangian (1),

e−1L ¼ −
1

12

�
F 0 þ F̄ 0 þ 2N þ 2NXX þ 2NX̄X̄ − 8NXX̄XX̄ −

1

9
NXX̄b

2

�
Rþ NXX̄

�
1

144
R2 − ∂mX∂mX̄ þ 1

36
ð∇bÞ2

�

−
i
3
bmðNX∂

mX − NX̄∂
mX̄Þ þ i

6
∇bðF 0 − F̄ 0 þ 2NXX − 2NX̄X̄Þ þ 6XF̄ þ 6X̄F þ 12NXX̄

−
�
F 0 þ F̄ 0 þ 2N þ 2NXX þ 2NX̄X̄ − 4NXX̄XX̄ −

1

18
NXX̄b

2

��
4XX̄ þ 1

18
b2
�
; ð3Þ

where NðR; R̄Þj ¼ NðX; X̄Þ, F ðRÞj ¼ F ðXÞ, and
F 0 ≡ ∂XF . We also denote ∇mbm ≡∇b and bmbm ≡ b2,
where ∇m is the spacetime covariant derivative. It is
convenient to introduce the mass scale M of the R2

modification of Einstein supergravity by the redefinitions
X → MX=

ffiffiffiffiffi
12

p
and bm →

ffiffiffiffiffiffiffiffi
3=2

p
Mbm, and rewrite the

Lagrangian as (up to total derivatives)

e−1L ¼ 1

2

�
Aþ 1

3
NXX̄b

2

�
Rþ NXX̄

12M2
R2

− NXX̄

�
∂mX∂mX̄ −

1

2
ð∇bÞ2

�
−MbmΣm

þM2

2
Ab2 þM2

12
NXX̄b

2b2 −U; ð4Þ

where A, Σm, and the Jordan frame scalar potential U, are
functions of X, X̄,

A¼−
1ffiffiffi
3

p
M

ðF 0 þ F̄ 0Þ− 1

3
ðNþNXXþNX̄X̄Þþ

4

3
NXX̄XX̄;

ð5Þ

Σm ¼ iffiffiffi
6

p ðNX∂mX − NX̄∂mX̄Þ

þ iffiffiffi
6

p ∂m

� ffiffiffi
3

p

M
F 0 −

ffiffiffi
3

p

M
F̄ 0 þ NXX − NX̄X̄

�
; ð6Þ

U ¼ 1

3
M2XX̄

� ffiffiffiffiffi
12

p

M
ðF 0 þ F̄ 0Þ þ 2ðNXX þ NX̄X̄Þ

− N − 4NXX̄XX̄

�
−

ffiffiffi
3

p
MðXF̄ þ X̄F Þ: ð7Þ

The bosonic degrees of freedom of this theory are com-
prised of the complex scalar X, one real scalar (the
scalaron) from the R2-term, and bm contributing another
real scalar in the form ∇b, which can be seen from its
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equation of motion (we will derive it in the next section).
See also Refs. [6,11] for further discussions of the vector
bm in old minimal Rþ R2 supergravity.

III. DUAL SCALAR-TENSOR THEORY

Here we dualize the Rþ R2 Lagrangian given by (4) to
scalar-tensor gravity. Although the dualization is often
performed in terms of the superfields, since the resulting
Lagrangian is that of the standard N ¼ 1 supergravity
coupled to matter, it is nevertheless useful to derive the
component dual theory from the Lagrangian (4) because it
will explicitly separate the Starobinsky-like potential for
the scalaron, from the Jordan frame potential UðX; X̄Þ as
well as the potential for the effective scalar ∇b. We then
find superfield dual theory and compare the results.

A. Component dual

First, let us write the gravitational part of (4) as

e−1Lg ¼
1

2

�
Aþ 1

3
NXX̄b

2

�
Rþ NXX̄

12M2
R2 ≡ f

2
; ð8Þ

where we have introduced the function f ¼ fðR;X; X̄; b2Þ.
We then rewrite Lg in terms of the (real) auxiliary field Z as

e−1Lg ¼
1

2
fZðR − ZÞ þ 1

2
f; ð9Þ

where f ¼ fðZ; X; X̄; b2Þ, and fZ ≡ ∂f=∂Z. Varying (9)
w.r.t. Z gives Z ¼ R and leads back to the original
Lagrangian (8). On the other hand, via the Weyl rescaling,

gmn → fZgmn; e → f−2Z e;

efZR → e
�
R −

3

2
f−2Z ∂mfZ∂mfZ

�
; ð10Þ

we can bring (9) to the Einstein frame where the canoni-
cally normalized scalaron φ is introduced as fZ ¼
expð ffiffiffiffiffiffiffiffi

2=3
p

φÞ, and the full bosonic Lagrangian [classically
equivalent to (4)] reads

e−1L ¼ 1

2
ðR − ∂φ∂φÞ − yNXX̄∂X∂X̄

þ 1

2
NXX̄ð∇bÞ2 −MybmΣm þM2

2
b2

−
3M2

4NXX̄
ð1 − AyÞ2 − y2U; ð11Þ

where we denote y≡ expð− ffiffiffiffiffiffiffiffi
2=3

p
φÞ.

Let us now look at the equation of motion for bm,

∇mðNXX̄∇bÞ þMyΣm −M2bm ¼ 0: ð12Þ

Taking the derivative of (12) we obtain

□ðNXX̄∇bÞ þM∇mðyΣmÞ −M2∇b ¼ 0; ð13Þ

which is a Klein–Gordon-like equation for the real scalar
field NXX̄∇b with the mass M2=hNXX̄i, interacting with X
and φ through derivative terms. If we identify the scalaron
with the inflaton, the mass parameter M is of order Hubble
scale. Assuming that the derivative terms are small com-
pared toM, i.e. taking the limitM2 → ∞ in Eq. (12) [since
it is more restrictive than (13)], the first term becomes
negligible, and we have

bm ≃
y
M

Σm; ð14Þ

which is reminiscent of algebraic equation of motion for
bm in standard supergravity where it serves as an auxiliary
field. Substituting (14) into (11) and neglecting
ð∇bÞ2 ∼M−2, we obtain the effective Lagrangian

e−1Leff ¼
1

2
ðR − ∂φ∂φÞ − yNXX̄∂X∂X̄

−
y2

2
ΣmΣm −

3M2

4NXX̄
ð1 − AyÞ2 − y2U; ð15Þ

which describes the dynamics of X and φ. For example the
quadratic term ∼ð1 − AyÞ2 is responsible for Starobinsky
inflation provided that X is stabilized at X ¼ 0 by its
potential U. In general however, X can deviate from zero
both during inflation and at the vacuum.
The Lagrangian similar to (15) was also obtained in [12]

for specific choices of N and F , where the effects of bm
and the R axion (logðX=X̄Þ) were ignored. The effective
Lagrangian (15) is our new result that holds for general
functions N and F (with the assumption NXX̄ ≠ 0).

B. Superfield dual

The superfield action (1) can be rewritten with the help
of auxiliary chiral superfield T as

L ¼
Z

d2Θ2E
�
1

8
ðD̄2 − 8RÞNðS; S̄Þ þ F ðSÞ

þ 6TðS −RÞ
�
þ H:c:; ð16Þ

where the original Lagrangian (1) is obtained by varying T,
which eliminates the chiral superfield S as S ¼ R. To
obtain the dual Lagrangian, we use the superfield identity

− 6

Z
d2Θ2ERT þ H:c:

¼ 3

8

Z
d2Θ2EðD̄2 − 8RÞðT þ T̄Þ þ H:c:; ð17Þ

GAUGING THE R SYMMETRY OF OLD MINIMAL Rþ R2 … PHYS. REV. D 105, 124008 (2022)

124008-3



and bring (16) to the standard matter-coupled N ¼ 1
supergravity form,

L ¼
Z

d2Θ2E
�
3

8
ðD̄2 − 8RÞe−K=3 þW

�
þ H:c:; ð18Þ

where, after the rescaling S → MS=
ffiffiffiffiffi
12

p
, Kähler potential

and superpotential are

K ¼ −3 log
�
T þ T̄ −

1

3
NðS; S̄Þ

�
; ð19Þ

W ¼
ffiffiffi
3

p
MST þ F ðSÞ; ð20Þ

such that the complex scalar S (we use the same letter for
the superfields S and T and their leading components) is in
one-to-one correspondence with X of the Rþ R2 formu-
lation described by the Lagrangian (4).
The component (bosonic) Lagrangian derived from (18)

has the familiar form

e−1L ¼ 1

2
R − KIJ̄∂mΦI

∂
mΦ̄J − VF; ð21Þ

VF ¼ eKðDJ̄W̄KJ̄IDIW − 3WW̄Þ; ð22Þ

where KIJ̄ ¼ ∂I∂J̄K is the Kähler metric, KJ̄I is its inverse,
andDIW ≡ ∂IW þW∂IK. The indices I, J run through the
chiral scalars of the model. In present model we have two
such scalars, ΦI ¼ fT; Sg. The complex scalar T includes
the degrees of freedom associated with the scalaron and
the effective scalar from bm of the Lagrangian (4) [or its
component-dual (11)]. More precisely, we can introduce
the scalaron φ through the parametrization

T ¼ 1

2

�
tþ i

ffiffiffi
2

3

r
τ

�
; t ¼ e

ffiffi
2
3

p
φ þ 1

3
NðS; S̄Þ; ð23Þ

where the imaginary part τ describes the same degree
of freedom as the effective scalar ∇b of the Rþ R2

formulation.
After using (23), the Lagrangian (21) reads

e−1L ¼ 1

2
ðR − ∂φ∂φ − y2∂τ∂τÞ − yNSS̄∂S∂S̄

−
iffiffiffi
6

p y2ðNS∂mS − NS̄∂mS̄Þ∂mτ

þ 1

12
y2ðNS∂mS − NS̄∂mS̄Þ2 − VF; ð24Þ

where, again, y ¼ e−
ffiffi
2
3

p
φ. Following the same pattern as the

previous subsection, we can integrate out τ taking the limit
M2 → ∞. For this we write down the τ-dependent part of
the scalar potential,

VFðτÞ ¼ M2y2τN−1
SS̄

�
iffiffiffi
6

p
� ffiffiffi

3
p

M
F̄ 0 −

ffiffiffi
3

p

M
F 0

þ NS̄S̄ − NSS

�
þ 1

2
τ

�
; ð25Þ

which leads to its equation of motion,

∇mðy2∂mτÞ þ
iffiffiffi
6

p ∇m½y2ðNS∂
mS − NS̄∂

mS̄Þ�

þM2y2N−1
SS̄

�
iffiffiffi
6

p
� ffiffiffi

3
p

M
F 0 −

ffiffiffi
3

p

M
F̄ 0

þ NSS − NS̄S̄

�
− τ

�
¼ 0: ð26Þ

When M2 → ∞, we can integrate out τ as

τ ≃
iffiffiffi
6

p
� ffiffiffi

3
p

M
F 0 −

ffiffiffi
3

p

M
F̄ 0 þ NSS − NS̄S̄

�
; ð27Þ

and the resulting effective Lagrangian obtained from (24)
coincides with the Lagrangian (15) (after identifying S
with X).

IV. GAUGING THE R SYMMETRY

Having established the effective Lagrangian in the
convenient form (15) (with τ or bm integrated out), we
now discuss the R symmetry of the model and its gauging.
We can derive the extension of (15) due to the gauging, by
using standard matter-coupled supergravity formulas.
First, let us review the global Uð1Þ R symmetry of old

minimal Rþ R2 supergravity in the dual formulation given
by Eqs. (18)–(20). The main feature of the Uð1Þ R
symmetry, which we call Uð1ÞR, is that it transforms
superpotential and the Grassmann coordinate Θ. We use
the convention where superpotential and Θ have the R
charges qðWÞ ¼ 1, qðΘÞ ¼ 1=2,

W → Weiα; Θ → Θeiα=2; ð28Þ

where α is the transformation parameter. By looking at the
Kähler potential (19) and superpotential (20), it can be seen
that R symmetry fixes the R charges of the chiral super-
fields as qðTÞ ¼ 0 and qðSÞ ¼ 1 (the curvature superfield
R also has unit R charge), while the function F must be
proportional to S. We can write it as F ¼ −

ffiffiffi
3

p
McS=2,

with some constant c. Assuming that c is real and positive
(the latter is needed for Starobinsky-like inflation), it can be
absorbed in Eqs. (19) and (20) by the redefinitions T → cT,
N → cN, andM →

ffiffiffi
c

p
M followed by the constant Kähler–

Weyl transformation K → K þ 3 log c, W → c−3=2W. As
the result, we get the following Kähler potential and
superpotential without loss of generality,
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K ¼ −3 log
�
T þ T̄ −

1

3
NðSS̄Þ

�
; ð29Þ

W ¼
ffiffiffi
3

p
MS

�
T −

1

2

�
; ð30Þ

where NðS; S̄Þ ¼ NðSS̄Þ, as required by R symmetry.
After gauging the Uð1ÞR, the component Lagrangian

reads

e−1L ¼ 1

2
R − KTT̄∂mT∂

mT̄ − KTS̄∂mTD
mS

− KST̄DmS∂mT̄ − KSS̄DmSDmS

−
1

4
hRFmnFmn þ 1

4
hIFmnF̃mn − VF − VD; ð31Þ

where Fmn ¼ ∂mAn − ∂nAm and F̃mn ¼ 1
2
ϵmnklFkl for the

Uð1ÞR gauge field Am, and ordinary derivative ∂mS has
been replaced by the gauge-covariant derivative,

DmS≡ ∂mS − igAmS; ð32Þ

with gauge coupling g. Under the Uð1ÞR, S, and Am
transform as

S → eiαðxÞS; Am → Am þ 1

g
∂mαðxÞ: ð33Þ

As for the scalar potential, VF is given by (22) as before,
while VD reads

VD ¼ 1

2
h−1R D2; ð34Þ

where D is the Killing potential of Uð1ÞR,

D ¼ gSðKS þ ∂S logWÞ ¼ gðSKS þ 1Þ: ð35Þ

The gauge kinetic function h is generally a holomorphic
function of chiral superfields, hðT; SÞ (we denote hR ≡ Reh
and hI ≡ Imh). However, since T appears in (16) as a
Lagrange multiplier, in order to keep the modified super-
gravity structure we take h independent of T. On the other
hand, tree-level R symmetry prohibits the S-dependence
of h, but as the model is generally anomalous at one
loop (due to R charged fermions), it is possible to cancel
the anomalies by the Green–Schwarz mechanism where
S-dependent gauge kinetic function is employed, such
that the Chern–Simons term (proportional to hI) shifts
under Uð1ÞR, cancelling the gauge anomaly, see, e.g.,
Refs. [15–17] for more detailed discussions (gravitational
anomaly can also be cancelled in a similar fashion). At this
stage we take h ¼ 1, and return to the anomaly cancellation
conditions in Sec. VI, where it will be shown that h ¼ 1 is a
good approximation for inflationary models.

Finally, we use the parametrization (23) and integrate out
τ according to (27), where the R symmetry and the choice
of F leads to τ ≃ 0. Then the Lagrangian (31) becomes

e−1Leff ¼
1

2
ðR − ∂φ∂φÞ − yNSS̄DmSDmS

þ 1

12
y2ðNSDmS − NS̄DmSÞ2

−
1

4
FmnFmn − VF;eff − VD; ð36Þ

where VF;eff and VD are

VF;eff ¼
3

4
M2N−1

SS̄ð1 − AyÞ2 þ y2U;

VD ¼ 1

2
g2ð1þ yNSSÞ2: ð37Þ

VD is unaffected by integrating out τ, while
VF;eff ¼ VFjτ¼0. The functions A ¼ AðSS̄Þ and U ¼
UðSS̄Þ are defined in (5) and (7) (taking X ¼ S), now
with F ¼ −

ffiffiffi
3

p
MS=2. The main result of this section is the

Lagrangian (36) which we will use to describe inflation and
spontaneous SUSY breaking without additional matter
fields.

V. INFLATION AND SUSY BREAKING

To discuss inflation and SUSY breaking we consider a
concrete model where N is of the form

N ¼ SS̄ −
1

2
ζðSS̄Þ2 − 4

9
γðSS̄Þ3; ð38Þ

where ζ and γ are real constants. This form of N was used
in [12] in the context of ultraslow-roll inflation and
primordial black hole production (without SUSY break-
ing). Since the superpotential (30) is proportional to S, in
order to break supersymmetry in Minkowski vacuum we
need hSi ≠ 0, which in turn spontaneously breaks Uð1ÞR.
Thus, in the broken phase we can use the unitary gauge
where the angular part of S (R axion) is set to zero, and the
Uð1ÞR gauge field becomes massive. We parametrize
jSj ¼ σ=

ffiffiffi
2

p
, where σ is a (almost) canonical real scalar.

Then, by using (38) the Lagrangian (36) becomes

e−1Leff ¼
1

2
ðR − ∂φ∂φÞ − y

2
ð1 − ζσ2 − γσ4Þ∂σ∂σ

−
1

4
FmnFmn −

1

2
m2

Aðφ; σÞAmAm − V; ð39Þ

where the scalar potential is
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V ¼ VF;eff þ VD ¼ 3M2ð1 − AyÞ2
4ð1 − ζσ2 − γσ4Þ þ y2U

þ g2

2

�
1þ y

2
σ2
�
1 −

ζ

2
σ2 −

γ

3
σ4
��

2

: ð40Þ

The functions A and U can now be written as

A ¼ 1þ 1

6
σ2 −

11

24
ζσ4 −

29

54
γσ6; ð41Þ

U ¼ 1

2
M2σ2

�
1 −

1

6
σ2 þ 3

8
ζσ4 þ 25

54
γσ6

�
: ð42Þ

The mass mA of the vector field is a function of y and σ,

m2
A ¼ g2yσ2ð1 − ζσ2 − γσ4Þ þ 1

6
g2y2σ4

�
1 −

ζ

2
σ2 −

γ

3
σ4
�

2

;

ð43Þ

where the first term comes from the kinetic term jDmSj2 of
(36) as in the usual Abelian Higgs model, and the second
term from the second line of (36). In the Rþ R2 formu-
lation, the latter term originates from integrating out bm—
see (14) and (15).

A. During slow-roll

First, let us study the asymptotic form of the potential as
y → 0, or φ → ∞, which corresponds to early inflation,

V ¼ 3

4
M2ð1 − ζσ2 − γσ4Þ−1 þ 1

2
g2 þOðyÞ: ð44Þ

Here we have two extrema in σ-direction: σ ¼ 0≡ σa and
σ2 ¼ −ζ=ð2γÞ≡ σ2b. The second derivatives at these points
are [also ignoring OðyÞ]

Vσσja ¼
3

2
M2ζ; Vσσjb ¼ −3M2ζ

�
1þ ζ2

2γ

�
−2
: ð45Þ

For ζγ > 0, the only critical point is σa which is a local
minimum (maximum) if ζ is positive (negative). For γ < 0
and ζ > 0, σa becomes a local minimum and σb a local
maximum (and the potential becomes unbounded from
below), and for γ > 0, ζ < 0 they switch roles: σa is a
maximum, σb is a minimum (the potential is well behaved
in this case). The latter choice is suitable for our purposes
for the following reason (as opposed to the ζγ > 0 case).
If σa (i.e., σ ¼ 0) is a local minimum when y → 0, the
inflationary trajectory will follow the σa path until y
reaches unity, which is always a local minimum of the
two-field potential, regardless of the choice of the param-
eters. At this minimum R symmetry is unbroken (since
σ ¼ S ¼ 0), while SUSY is broken by our D-term cosmo-
logical constant g2=2, which is undesirable (SUSY

breaking scale cannot be of the same order as the
cosmological constant). Therefore we consider the case
where σa is instead a local maximum (at y → 0) and σb is a
minimum at which Uð1ÞR is spontaneously broken. This
corresponds to ζ < 0 and γ > 0. The inflationary trajectory
can then follow this σb path until it reaches a Minkowski
minimum at σ ≠ 0 (not necessarily σb) where Uð1ÞR and
SUSY remain broken. This minimum can always be
arranged with the suitable choice of the parameters.
Let us also comment on the stabilization of σ during

inflation. As can be seen from (45), for negative ζ the
effective mass of σ (around its local minimum σb) during
inflation is proportional to M

ffiffiffiffiffijζjp
. Moreover, its kinetic

term multiplies a factor of y which is very small at this
stage. Therefore σ is strongly stabilized during inflation as
long as ζ is not vanishingly small.
As for the inflationary observables ns and r, we can

expect the usual prediction of the Starobinsky model,

ns ≃ 1 − 2=Ne; r ≃ 12=N2
e; ð46Þ

with the number of e-folds Ne between 50 and 60. This is
because the effective scalar potential, after minimizing with
respect to σ, can always be written as

V ¼ Λ − Ze−
ffiffiffiffiffiffi
2=3

p
φ̂ þOðe−2

ffiffiffiffiffiffi
2=3

p
φ̂Þ; ð47Þ

where Λ and Z are some functions of the parameters
fζ; γ;M; gg, and φ̂≡ φ − hφi. Regardless of the values of
Λ and Z, the parameters ns and rwill be given by (46) when
using slow-roll approximation (assuming that slow-roll is
not broken during inflation).
Out of the four parameters fζ; γ;M; gg, the mass

parameter M is fixed by the CMB value of the amplitude
of scalar perturbations, As ¼ 2.1 × 10−9 [1], and one other
parameter, say γ, is fixed by Minkowski vacuum equations
V ¼ Vφ ¼ Vσ ¼ 0 (which we solve numerically). Hence,
we have two free parameters ζ and g, but with restricted
domains. We choose ζ < 0 (and γ > 0) as mentioned
earlier, and g=M ≤ Oð1Þ because too large g can spoil
(F-term-driven) inflation.
Let us demonstrate the scalar potential and inflationary

solution by fixing the parameters,

ζ ¼ −1; γ ¼ 0.232; g=M ¼ 0.1; ð48Þ

where M ¼ 1.77 × 10−5. We then numerically solve equa-
tions of motion for φðtÞ and σðtÞ in FLRW spacetime
gmn ¼ diagð−1; a2; a2; a2Þ, where a is time-dependent
scale factor. The inflationary solution is shown in Fig. 1,
where we take the initial conditions as φð0Þ ¼ 7,
σð0Þ ¼ _φð0Þ ¼ _σð0Þ ¼ 0.01. It can be seen that given a
small perturbation of σ around zero, it will quickly fall into
its local minimum where scalaron-driven slow-roll inflation
begins. Assuming the observable inflation lasts 55 e-folds,

YERMEK ALDABERGENOV PHYS. REV. D 105, 124008 (2022)

124008-6



we calculate the values of the spectral tilt ns and tensor-to-
scalar ratio r at the horizon exit,

ns ¼ 0.9650; r ¼ 0.0036; ð49Þ

which are in agreement with CMB data, and indistinguish-
able from the predictions of single-field Starobinsky
inflation.
After inflation, the fields start oscillating around the

Minkowski vacuum at hφi ≈ 1.01 and hσi ≈ 1.59. Figure 1
(left) also shows the additional local minimum at
φ ¼ σ ¼ 0, which is de Sitter since at this point we have
V ¼ g2=2. Therefore our Minkowski minimum at σ ≠ 0
is stable. In this example, the masses of φ and σ around
the SUSY breaking minimum are mφ ≈ 0.7 M and
mσ ≈ 1.44 M.

B. Spontaneous breaking of SUSY and Uð1ÞR
Supersymmetry breaking scale is characterized by the

auxiliary field values at the minimum, as well as the
gravitino mass hm3=2i ¼ heK=2jWji. Equations of motion
for the auxiliary F-fields yield

FI ¼ −eK=2DJ̄W̄KJ̄I: ð50Þ

In the standard SUGRA formulation of our model where
K andW are given by (29) and (30), we have two auxiliary
F-fields (using the parametrization (23) for T),

FT ¼ M
2

ffiffiffi
y
3

r �
ðN − 3Þ

�
S̄ −

NS

3NSS̄

�

−
2NSNS̄S̄
3NSS̄

þ 1

y

�
S̄ −

NS

NSS̄

��
; ð51Þ

FS ¼ M
2NSS̄

ffiffiffi
y
3

r �
3 − N − NSS −

3

y

�
; ð52Þ

and one D-field from the Uð1ÞR gauge multiplet,

D ¼ −D ¼ −gð1þ yNSSÞ; ð53Þ

where D is the Killing potential (35). Since we assume
g≲M, SUSY breaking is dominated by the F-terms which
are both nonzero, and are of order Hubble scale.
Let us consider three examples with ζ ¼ f−0.1;−1;−10g

keeping g ¼ 0.1 M, and compute the auxiliary field VEVs.
The results are presented in Table I wherewe also include the
values of γ found from the vacuum equations for each choice
of ζ. It can be seen that the values of the F-terms becomes
smaller as we increase jζj, while the D-term becomes only
slightly smaller. In particular for ζ ¼ −10 the F-terms and
the D-term are of the same order if g ¼ 0.1 M. Since g has
no lower bound, we can take much smaller values such that
the F-terms always dominate.
To complete the picture let us also write down the masses

of φ, σ, and Am:

mφ=M ≈ 0.94; 0.70; 0.45;

mσ=M ≈ 1.39; 1.44; 1.44;

mA=g ≈ 2.18; 1.71; 1.54; ð54Þ

for ζ ¼ −0.1, −1, and −10, respectively. Although we used
g ¼ 0.1 M to obtain the vacuum values of the scalar fields,
we keep the gauge coupling g in Eq. (54) and Table I, to
show explicitly the proportionality of mA and hDi to g.

VI. ANOMALY CANCELLATION AND FERMION
MASSES

Both chiral fermions of the model, which we call χT and
χS, as well as the R gaugino λ and the gravitino ψ , carry
nonzero R charges,

qðχTÞ ¼ −1=2; qðχSÞ ¼ qðλÞ ¼ qðψÞ ¼ 1=2; ð55Þ

which leads to gauge and gravitational anomalies at one
loop. These anomalies can be canceled by the Green–
Schwarz mechanism, where a set of appropriate Chern–
Simons terms is added to the Lagrangian, such that their
gauge transformations cancel the anomalies [15–17]. In
particular, for the cancellation of the ½Uð1ÞR�3 anomaly we
employ the S-dependent gauge kinetic function [17],

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

Mt

FIG. 1. Left: trajectory of the inflationary solution superim-
posed on the scalar potential V=M2. Right: evolution of the
scalars φðtÞ and σðtÞ with normalized time Mt. Initial conditions
are φð0Þ ¼ 7, σð0Þ ¼ _φð0Þ ¼ _σð0Þ ¼ 0.01; the vertical lines
show the start and end of the last 55 e-folds.

TABLE I. VEVs of the auxiliary fields and the gravitino mass,
in Minkowski vacuum. ζ are chosen by hand, while γ are found
from the vacuum equations (for g ¼ 0.1 M).

ζ −0.1 −1 −10

γ 0.013 0.232 5.898
jhFTij 0.7 M 0.39 M 0.21 M
jhFSij 2.26 M 0.95 M 0.33 M
jhDij 2.56 g 1.98 g 1.76 g
hm3=2i 1.03 M 0.54 M 0.29 M
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h ¼ 1þ β logS; β≡ −
g2CR

12π2
; ð56Þ

where CR is determined by the R charges q of the fermions,

CR ¼ Trðq3Þ ¼ qðχTÞ3 þ qðχSÞ3 þ qðλÞ3 þ 3qðψÞ3: ð57Þ

Using (55) we obtain CR ¼ 1=2, and the resulting Chern-
Simons term has the necessary transformation property
under the Uð1ÞR,

1

4
hIFmnF̃mn →

1

4
ðhI þ αβÞFmnF̃mn; ð58Þ

since S transforms as S → eiαS. Notice that the log-term of
h in (56) is proportional to g2, which makes it negligible
because g≲M ¼ Oð10−5Þ (using Planck units) and jSj ¼
σ=

ffiffiffi
2

p
generally stays at Oð1Þ during and after inflation.

Therefore we can safely use h ≈ 1 when studying infla-
tionary dynamics.
Once the supersymmetric Standard Model (SSM) is

added to the picture, it will bring additional R charged
fermions, depending on how the SSM superfields are
charged. For example, a fermion of any neutral chiral
superfield has the R charge of −1=2, while a gaugino has R
charge 1=2. This leads to mixed anomalies GSSM ×Uð1ÞR
which can be cancelled, similarly to the ½Uð1ÞR�3 anomaly,
by implementing S-dependent gauge kinetic matrix of the
Standard Model. The diagonal elements of the gauge
kinetic matrix will include terms ∼g2a logS (for Standard
Model gauge couplings ga), which would generate SSM
gaugino masses, often one or two orders of magnitude
smaller than the gravitino mass [17,18]. We leave the
implementation of the SSM in our model for future work,
and below we consider only the fermions χT , χS, and λ.
Since all three multiplets contribute to SUSY breaking,

the goldstino η is a linear combination,

η ¼ ∂IðK þ logWÞχI − igDffiffiffi
2

p
W

e−K=2λ: ð59Þ

In the unitary gauge η ¼ 0 we are left with two physical
massive spin-1=2 fermions. After fixing the parameters ζ
and γ as in Table I with g ¼ 0.1 M, and diagonalizing the
kinetic and mass matrices, we obtain the following masses
for the two Weyl fermions (at the Minkowski vacuum),

m1=M ≈ 1.00; 0.72; 0.45;

m2=M ≈ 0.07; 0.08; 0.11; ð60Þ

for ζ ¼ −0.1, −1, and −10, respectively. For larger jζj we
can see that the gap between the two masses becomes
smaller: m1 decreases while m2 slightly increases.
As we decrease g, the heavier fermion mass m1 is

unchanged and given by (60). On the other hand, m2 is

proportional to g2=M, which is consistent with the limit
g → 0 where the R gaugino becomes massless, because the
mass term of λ is proportional to FS

∂Sh (this contains g2),
while the mixing terms λχ are proportional to g. As there is
no lower limit on g, in principle the lighter physical fermion
(which is dominated by λ for small g) can be arbitrar-
ily light.

VII. CONCLUSION

In this work we studied a new class of old minimal
Rþ R2 supergravity models with gauged R symmetry in
the context of inflation and supersymmetry breaking. We
started from general (ungauged) old minimal Rþ R2

supergravity which is equivalent to Einstein supergravity
coupled to two chiral multiplets. For convenience we
derived a simplified effective Lagrangian (15) by inte-
grating out an irrelevant heavy scalar (sinflaton) τ, or in
the higher-derivative formulation ∇b. We then gauged the
R symmetry by introducing an abelian vector multiplet,
and studied inflation and SUSY breaking vacua in a
simple example where Kähler potential is given by (29)
and (38). The model has one mass parameter M from the
superpotential (30), which is fixed by the inflationary
scale, the Uð1ÞR gauge coupling g, and parameters from
the Kähler potential, of which there are two in our
example.
Inflation is effectively single-field Starobinsky-type,

driven mainly by the F-term, and consistent with CMB
data, while SUSY can be broken in Minkowski vacuum by
both F- and D-terms. R symmetry can be spontaneously
broken before the onset of observable inflation, and remain
broken at the Minkowski vacuum. This leads to the Higgs
mechanism where the gauge field becomes massive by
combining with the R axion. Of the two remaining
dynamical scalars, one (σ) is responsible for the afore-
mentioned R symmetry breaking, while the other one—the
scalaron φ—drives inflation. Because large D-term can
spoil inflation, it must be bounded from above, hDi ≲ hFi,
or in terms of the parameters, g≲M. This in turn creates
split mass spectrum after SUSY and Uð1ÞR breaking: three
real scalars fφ; σ; τg, one physical spin-1=2 fermion, and
the gravitino have masses of orderM, and on the other side
the vector boson and the second spin-1=2 fermion have
masses of order g and g2=M, respectively.
Cubic anomalies due to the non-zero R charges of the

fermions can be canceled by the Green–Schwarz mecha-
nism, which requires field-dependent gauge kinetic func-
tion transforming under the Uð1ÞR. Once the visible sector
is added, the same mechanism will also introduce field-
dependence to the Standard Model gauge kinetic matrix,
which will give masses to the gauginos. In future works it
would be interesting to study reheating, addition of super-
symmetric Standard Model, and dark matter candidates in
this setup.
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