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Continuous gravitational waves represent one of the long-sought types of signals that have yet to be
detected. Due to their small amplitude, long observational datasets (months–years) have to be analyzed
together, thereby vastly increasing the computational cost of these searches. All-sky searches face the most
severe computational obstacles, especially searches for sources in unknown binary systems, which need to
break the data into very short segments in order to be computationally feasible. In this paper, we present a
new detection statistic that improves sensitivity by up to 19% compared to the standard F -statistic for
segments shorter than a few hours.
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I. INTRODUCTION

Continuous gravitational waves (CWs) are long-lasting
and nearly monochromatic signals, expected to be emitted
by asymmetric rotating neutron stars [1,2]. While there
have been many searches for CWs performed to date, none
has yet been able to make a detection. One of the main
difficulties in finding CWs is their small amplitude,
expected to be many orders of magnitude below the noise
floors of current detectors. In order to accumulate a
detectable signal-to-noise ratio, large datasets (spanning
months–years) therefore have to be combined in a search,
which complicates the analysis and results in a vast increase
in computing cost due to the astronomically large number
of templates to be searched.
We can divide searches for CWs into three main

categories, ordered by increasing computational cost:
(i) targeted searches, (ii) directed searches, and (iii) all-
sky searches. Directed and all-sky searches typically cannot
combine all the data coherently due to the unfeasible
computational cost this would entail and instead have to
employ semicoherent algorithms by breaking the data into
shorter segments (e.g., see [3,4]). Although the total signal
power does not depend on the number of segments used,
the background (i.e., noise) distribution worsens when the
number of segments increases. Therefore, while using more
segments dramatically alleviates the computational cost of

the search, it also reduces the resulting sensitivity.
The optimal search setup consists of using the longest
segments possible within a given computational cost
budget [4].
There are various ways to compute semicoherent detec-

tion statistics, but one widely used approach we focus on
here consists in summing coherent F -statistics [5,6] across
segments, known as the StackSlide approach (see also [7]
for more discussion and an overview of different
methods currently in use). The corresponding F -statistic
segments used have so far always been longer than ∼11 h.
At the other end of the spectrum are the “power” statistics,
which directly use Fourier power over short segments,
typically no longer than ∼1 h, as the per-segment
statistic.
A recent search [8] has bridged this gap for the first time

by employing a semicoherent F -statistic on short segments
of 900 s, designed to improve the sensitivity of an all-sky
search for signals from unknown neutron stars in binary
systems. Using the F -statistic on such short segments has
resulted in unexpected and previously unknown numerical
difficulties, with the F -statistic becoming singular in many
segments, especially those containing data from only one
detector. This degeneracy can be easily understood from
the underlying antenna-pattern matrix becoming ill con-
ditioned for short coherence times and the F -statistic
relying on inverting this matrix. Intuitively this corresponds
to a failure of the maximum-likelihood estimation of the
four unknown amplitude parameters (describing the “þ”
and “×” polarizations) for short coherence times, during
which the detector hardly moves.
In an attempt to fix this singularity by constructing a

well-behaved “fallback” statistic, we have discovered a
new detection statistic that is not just well behaved in the
short-segment limit but turns out to be more sensitive than

*pep.covas.vidal@aei.mpg.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW D 105, 124007 (2022)

2470-0010=2022=105(12)=124007(11) 124007-1 Published by the American Physical Society

https://orcid.org/0000-0002-1845-9309
https://orcid.org/0000-0002-3789-6424
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.124007&domain=pdf&date_stamp=2022-06-06
https://doi.org/10.1103/PhysRevD.105.124007
https://doi.org/10.1103/PhysRevD.105.124007
https://doi.org/10.1103/PhysRevD.105.124007
https://doi.org/10.1103/PhysRevD.105.124007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the F -statistic for segments shorter than a few hours, even
when the F -statistic is far from numerically singular.
This paper is organized as follows: in Sec. II, we

introduce the standard F -statistic. Section III discusses
the singular limit of the F -statistic for short segments, and
Sec. IV introduces the new statistic. Section IV character-
izes the sensitivity improvement of the new statistic
compared to the F -statistic, and Sec. V provides numerical
tests for these analytical results and further characterizes
the new statistic, followed by conclusions in Sec. VI. The
Appendix discusses an alternative short-segment statistic
construction that turns out to be unsuitable for multi-
detector setups.

II. THE STANDARD F -STATISTIC

A. The continuous-waves likelihood

We can parametrize the gravitational-wave signal from a
nonaxisymmetric rotating neutron star by four amplitude
parameters A and several phase-evolution parameters λ.
The four amplitude parameters consist of the overall signal
amplitude h0, the inclination angle ι between the line of
sight and the neutron star rotation axis, the phase ϕ0 at a
reference time, and a polarization angle ψ . The phase-
evolution parameters consist of the frequency of the signal
f (slowly changing over time), the sky position of the
neutron star, and binary-orbital parameters if the neutron
star is in a binary.
The CW signal depends nonlinearly on the physical

amplitude parameters fh0; cos ι;ψ ;ϕ0g, but in [5], the
authors found a set of four amplitude coordinates Aμ that
linearize the functional form of the signal, namely,

A1 ¼ Aþ cosϕ0 cos 2ψ − A× sinϕ0 sin 2ψ ;

A2 ¼ Aþ cosϕ0 sin 2ψ þ A× sinϕ0 cos 2ψ ;

A3 ¼ −Aþ sinϕ0 cos 2ψ − A× cosϕ0 sin 2ψ ;

A4 ¼ −Aþ sinϕ0 sin 2ψ þ A× cosϕ0 cos 2ψ ; ð1Þ

where Aþ ¼ 0.5h0 ð1þ cos2 ιÞ and A× ¼ h0 cos ι are the
amplitudes of the “þ” and “×” polarization, respectively.
This allows one to write a signal sXðtÞ in the frame of
detector X as

sXðt;A; λÞ ¼
X4
μ¼1

AμhXμ ðt; λÞ; ð2Þ

where the matched-filter basis functions are defined as

hX1 ≡ aXðtÞ cosϕXðtÞ; hX2 ≡ bXðtÞ cosϕXðtÞ;
hX3 ≡ aXðtÞ sinϕXðtÞ; hX4 ≡ bXðtÞ sinϕXðtÞ; ð3Þ

in terms of the detector-frame signal phase ϕXðtÞ at time t
and the antenna-pattern functions aXðtÞ and bXðtÞ [5,9].

A detection statistic typically aims to distinguish two
basic hypotheses about the data xðtÞ: (i) the data only
consist of Gaussian noise n, i.e., x ¼ n, or (ii) the data
consist of an astrophysical signal s in addition to Gaussian
noise, i.e., x ¼ nþ s. The likelihood ratio L between these
two hypothesis is

lnLðx;A; λÞ≡ ln
PðxjsignalÞ
PðxjnoiseÞ ¼ ðxjhÞ − 1

2
ðhjhÞ

¼ Aμxμ −
1

2
AμMμνAν; ð4Þ

with implicit summation over μ; ν ¼ 1;…; 4 and where we
defined

xμ ≡ ðxjhμÞ; Mμν ≡ ðhμjhνÞ; ð5Þ

in terms of the multidetector scalar product1 [6,9]

ðxjyÞ≡ 2S−1
XNdet

X

ffiffiffiffiffiffi
wX

p Z
T

0

xXðtÞyXðtÞdt; ð6Þ

where S represents the overall noise floor, defined as

S−1 ≡ 1

Ndet

X
X

S−1X ; ð7Þ

and wX is a per-detector noise weight defined as

wX ≡ S−1X
S−1 : ð8Þ

For ease of notation, here we assume stationary noise floors
SX for each detector X, while the numerical implementation
[9,10] uses a more general formulation valid also for slowly
varying noise floors.
The antenna-pattern matrix Mμν defined in Eq. (5) can

be expressed more explicitly as

Mμν ¼ γ

0
BBB@

A C 0 0

C B 0 0

0 0 A C

0 0 C B

1
CCCA; ð9Þ

with the “data factor” γ defined as

γ ≡ S−1Tdata; ð10Þ

where Tdata is the total amount of data over all detectors
(e.g., Tdata ¼ NdetT if there are no data gaps) and the sky-
position dependent antenna-pattern coefficients

1For simplicity of notation, here we assume stationary noise
and contiguous data T, see [9] for a more general expression.
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A≡ ha2i; B≡ hb2i; C≡ habi; ð11Þ

using the noise-weighted multidetector time average

hQi≡ 1

Ndet

XNdet

X

ffiffiffiffiffiffi
wX

p hQXi; with

hQXi≡ 1

T

Z
T

0

QXðtÞdt: ð12Þ

We define the block determinant D of M as

D≡ AB − C2; ð13Þ

such that detM ¼ D2. Note that the xμ ¼ nμ þ sμ in
Eq. (5) are Gaussian distributed with expectation and
second moment

E½xμ� ¼ sμ; E½xμxν� ¼ Mμν þ sμsν: ð14Þ

B. The coherent F -statistic

The likelihood ratio in Eq. (4) can be analytically
maximized over the four amplitude coordinates Aμ, yield-
ing the maximum-likelihood estimates

A0μ ¼ Mμνxν; ð15Þ

where Mμν is the inverse of the antenna-pattern matrix.
Substituting back into Eq. (4) defines the F -statistic as

2F ðx; λÞ≡ lnLðx; λ;A0Þ ¼ xμMμνxν: ð16Þ

It is useful to write this out more explicitly in terms of the
antenna-pattern-matrix elements of Eq. (9) as

2F ¼ðx21þx23ÞBþðx22þx24ÞA−2ðx1x2þx3x4ÞC
γD

: ð17Þ

An alternative derivation of theF -statistic as a Bayes factor
[11] reveals the underlying amplitude priors to be unphys-
ical, which is why theF -statistic is not statistically optimal.
The main advantage of the F -statistic is the analytical
elimination of the four amplitude parameters, which gives it
a computational advantage over any alternative that would
require explicit numerical operations to deal with the
unknown amplitude parameters (e.g., see [12–14] for
further discussion).
Another useful property of the F -statistic is its known χ2

probability distribution with ν ¼ 4 degrees of freedom and
noncentrality parameter

ρ2 ≡ ðsjsÞ ¼ AμMμνAν: ð18Þ

The known mean and variance of this distribution are

E½2F � ¼ νþ ρ2;

var½2F � ¼ 2ðνþ 2ρ2Þ: ð19Þ

It will be useful to express the noncentrality as

ρ2 ¼ h20γðα1Aþ α2Bþ 2α3CÞ; ð20Þ

in terms of amplitude angle factors αiðcos ι;ψÞ defined as

α1 ≡ 1

4
ð1þ cos2 ιÞ2 cos2 2ψ þ cos2 ι sin2 2ψ ;

α2 ≡ 1

4
ð1þ cos2 ιÞ2 sin2 2ψ þ cos2 ι cos2 2ψ ;

α3 ≡ 1

4
ð1 − cos2 ιÞ2 sin 2ψ cos 2ψ : ð21Þ

One can see that averaging over the unknown cos ι and ψ
yields hα1icos ι;ψ ¼ hα2icos ι;ψ ¼ 2=5 and hα3icos ι;ψ ¼ 0, and
therefore, the angle-averaged noncentrality parameter can
be found as

hρ2icos ι;ψ ¼ 2

5
h20γðAþ BÞ: ð22Þ

C. The semicoherent F̂ -statistic

The use of the coherent F -statistic as a search method is
practically limited to very small parameter spaces, due to the
rapidly growing computing cost of a coherent template bank
with increasing observation times T. Wide-parameter-space
searches therefore have to employ cheaper semicoherent
methods, which typically result in better sensitivity at
constrained computing cost [3]. In the following, we focus
on the semicoherent version of the F -statistic.
We can break the total observation time T into

l ¼ 1;…; Nseg segments of duration Tseg and define the

semicoherent F̂ -statistic as

F̂ ≡XNseg

l¼1

F l; ð23Þ

where F l is the coherent F -statistic computed on segment
l. Because this is a sum of χ2-distributed statistics, the
semicoherent F̂ -statistic is also χ2 distributed, with ν̂
degrees of freedom and noncentrality parameter ρ̂2, given by

ν̂ ¼
X
l

νl ¼ 4Nseg;

ρ̂2 ¼
X
l

ρ2l: ð24Þ

The optimal choice for the number and length of segments is
subject to a computing-cost-constrained optimization
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problem [4,15,16], but the general trend is that the larger the
parameter space is, the shorter the segmentsmust be in order
for the search to be computationally feasible.
For example, a recent all-sky search for continuous

waves from neutron stars in unknown binary systems [8]
had to use very short segments of Tseg ¼ 900 s over an
observation time of T ¼ 6 months. This has revealed
previously unknown problems and limitations of the F -
statistic over such short baselines, discussed in the next
section.

III. PROBLEMS WITH SHORT-SEGMENT F

A. The ill-conditioned short-segment limit

The F -statistic relies on the inverse antenna-pattern
matrix Mμν, as seen in Eq. (16). However, for a single
detector the short-duration limit of the matrix coefficients
A, B, and C of Eq. (11) is

fA; B;Cg !Tseg→0fa2; b2; abg; ð25Þ

which leads to a singular antenna-pattern matrix with
determinant detM ¼ D2 ¼ ðAB − C2Þ2 → 0. For short
segments, the matrix therefore becomes ill conditioned,
and computing D is unreliable or fails. For performance
reasons the lalsuite [17] codes computing the F -statistic
use single precision for the antenna-pattern matrix, and
computing D can therefore become problematic already at
condition numbers above cond½M�≳ 104, for which the
code will refuse to compute a result.
The problem for single-detector segments is illustrated in

Fig. 1: the left plot shows the block determinant D and the
critical condition-number contour cond½M� ¼ 104 over the
sky for a single segment of Tseg ¼ 900 s. The right plot
shows the fraction of segments with a supercritical con-
dition number over the sky. We see that near the equator
∼40% of the segments would be ill conditioned.

Combining data from more than one detector
generally alleviates this problem, as C now tends to
∝ ðPX a

XÞðPY b
YÞ, where the cross terms generally

prevent the determinant from vanishing even when
T → 0. In practice, however, due to commonly found gaps
in the detector data, a realistic segment setup with
Tseg ¼ 900 s segments for two detectors (H1þ L1) (such
as [8]) will contain many segments containing data from
only one detector. Therefore, computing the F -statistic on
such segments will still encounter numerical problems.
Dropping such segments would reduce the amount of

usable data and therefore sacrifice sensitivity (e.g., for the
O3a LIGO science run, this affects about a third of such
short segments [8]). This problem has motivated an inves-
tigation into a nonsingular “fallback” option for the
singular F -statistic on short segments.

B. Fallback construction for singular F -statistic

As discussed in the previous sections, the F -statistic
becomes singular in the limit Tseg → 0 for single-detector
segments due to failure of the maximum-likelihood esti-
mation for all four amplitude parameters Aμ that describe
the full “þ” and “×” polarization content of the CW. These
four amplitudes translate into ν ¼ 4 degrees of freedom of
the resulting χ2 distribution governing the F -statistic.
These considerations suggest a strategy for avoiding

degeneracy by reducing the number of amplitude parameters
(i.e., degrees of freedom) we try to infer about the signal:
evenwith a single stationary detector, two amplitudes should
always be perfectly well determined, namely, those corre-
sponding to the “þ” polarization alignedwith the arms of the
detector. In the F -statistic framework, the two antenna-
pattern functions aðtÞ and bðtÞ represent the responses to
the two gravitational wave polarizations projected on a
sky-position dependent coordinate frame [12].
Guided by this intuition, we construct a new detection

statistic by selecting the “dominant response” between a

FIG. 1. Antenna-pattern degeneracy for a single detector (H1) and short segments of Tseg ¼ 900 s. Left plot: block determinantD over
the sky for a single segment. Contour lines mark the region where M is considered numerically ill conditioned, i.e., cond½M� > 104.
Right plot: fraction of segments with ill conditioned antenna-pattern matrix as a function of sky position, using Nseg ¼ 96 segments.

P. B. COVAS and R. PRIX PHYS. REV. D 105, 124007 (2022)

124007-4



and b in each sky position. In other words, we implicitly
use only two well-determined amplitude parameters and
neglect the other two, effectively reducing the χ2 degrees of
freedom of the resulting statistic to ν ¼ 2.2

An interesting alternative construction (described in the
Appendix) consists in completely neglecting the antenna-
pattern response, resulting in a pure “demodulated power”
statistic. While this works for a single detector, it does not
generalize well to multiple detectors (suffering destructive
interference), contrary to the dominant-response statistic
introduced here.

1. The dominant-response FAB-statistic

Let us consider the special case bðtÞ ¼ 0, which implies
B ¼ C ¼ 0, h2 ¼ h4 ¼ 0, and further x2 ¼ x4 ¼ 0, such
that the likelihood Eq. (4) reduces to

lnLA ¼ A1x1 þA3x3 −
1

2
γA½ðA1Þ2 þ ðA3Þ2�: ð26Þ

Maximization over the remaining two amplitude coordi-
nates A1 and A3 yields

2FA ¼ x21 þ x23
γA

: ð27Þ

Similarly, if one had assumed aðtÞ ¼ 0 instead, which
implies x1 ¼ x3 ¼ 0, we would find

2FB ¼ x22 þ x24
γB

: ð28Þ

Given the noise expectations of Eq. (14), in particular,
E½n21� ¼ E½n23� ¼ γA and E½n22� ¼ E½n24� ¼ γB, we see that
the two statistics FA;FB are squared sums of Gaussian
unit-variance variables; therefore, they are χ2 distributed
with ν ¼ 2 degrees of freedom. The corresponding non-
centrality parameters ρ2A; ρ

2
B, namely,

E½2FA� ¼ 2þ ρ2A; E½2FB� ¼ 2þ ρ2B; ð29Þ

can be expressed explicitly as

ρ2A ¼ s21 þ s23
γA

¼ h20γ

�
α1Aþ α2

C2

A
þ 2α3C

�
;

ρ2B ¼ s22 þ s24
γB

¼ h20γ

�
α1

C2

B
þ α2Bþ 2α3C

�
: ð30Þ

Note that the only difference to the F -statistic noncentrality
ρ2 of Eq. (20) is the replacement of B ↦ C2=A in ρ2A and

A ↦ C2=B in ρ2B. Given that M is a positive-definite
matrix, i.e., D≡ AB − C2 > 0 and α1, α2 > 0, this implies
that fρ2A; ρ2Bg < ρ2; i.e., unsurprisingly the “signal power”
in the statistic is reduced by neglecting one of the two
antenna responses. Further note that C2=A ¼ B −D=A and
C2=B ¼ A −D=B, and therefore,

ρ2A ¼ ρ2 − h20γα2
D
A
;

ρ2B ¼ ρ2 − h20γα1
D
B
: ð31Þ

We see that both ρ2A; ρ
2
B approach ρ2 as D → 0, so the more

degenerate the antenna-pattern matrix is, the less signal
power is lost. Following Eq. (22), we can obtain the
cos ι;ψ-averaged noncentrality parameters as

hρ2Aicos ι;ψ ¼ hρ2icos ι;ψ −
2

5
h20γ

D
A
;

hρ2Bicos ι;ψ ¼ hρ2icos ι;ψ −
2

5
h20γ

D
B
: ð32Þ

Given that the sensitivity of FA and FB is determined by
the respective noncentrality parameters, this suggests the
following practical construction for an F -statistic fallback
on degenerate segments: use eitherFA orFB depending on
which of hρ2Ai or hρ2Bi dominates for the current sky
position, which only depends on the ordering of A
and B. We therefore define the dominant-response statistic
FAB as

FAB ≡
�
FA if A > B;

FB otherwise;
ð33Þ

with the corresponding noncentrality parameter given
by ρ2AB ¼ fρ2A if A > B else ρ2Bg.

2. Semicoherent generalization F̂AB

The coherent dominant-response statistic FAB defined in
the previous section can be summed semicoherently in the
same way as the standard F -statistic; i.e., following
Eq. (23), we define

F̂AB ≡XNseg

l¼1

FAB;l; ð34Þ

which is χ2 distributed with ν̂AB ¼ 2Nseg degrees of free-
dom and noncentrality parameter ρ̂2AB given by

ρ̂2AB ¼
X
l

ρ2AB;l: ð35Þ

The dominant-response FAB-statistic can be semicoher-
ently combined with the standard F -statistic on a

2A somewhat-related ν ¼ 2 degrees of freedom variant is the
G-statistic [18], which assumes that the two amplitude parameters
cos ι and ψ are known from observations for a given pulsar.
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per-segment basis, for example, switching to FAB when-
ever D becomes too small in a segment. The resulting
“hybrid” semicoherent F̂ 0-statistic would be χ2 distributed
with ν̂0 ¼ 4N4 þ 2N2 degrees of freedom, where Nν is
the number of segments using the χ2ν statistic, such that
N4 þ N2 ¼ Nseg. The corresponding noncentrality para-
meter ρ̂02 would be the sum of per-segment ρ2 and ρ2AB
depending on the statistic used in a given segment.

IV. SURPASSING THE F̂ -STATISTIC
SENSITIVITY

The new dominant-response F̂AB-statistic of the pre-
vious section was constructed as a “fallback” for the
F̂ -statistic in the degenerate limit of an ill-conditioned
antenna-pattern matrix M. As we saw in Eq. (30), the
corresponding noncentrality parameter ρ2AB of FAB tends
toward the F -statistic signal power ρ2 in the limit of
D → 0. However, F̂AB only has two degrees of freedom per
segment instead of the four for the standard F̂ -statistic.
Fewer degrees of freedom means a lower detection thresh-
old at a given false-alarm probability, which implies that
there exists a range of nonzeroD values for which F̂AB will
be more sensitive than the F̂ -statistic, even when the F̂ -
statistic is still perfectly well defined and numerically
stable.3

A. Estimating the maximal sensitivity gain

We characterize the sensitivity [7,19] of a statistic s
by the smallest required “upper limit” signal amplitude
h�0 ¼ hpdet

0;pfa
for a population of signals to reach a certain

detection probability pdet at a given false-alarm probability
pfa. These probabilities are defined as

pfa ≡
Z

∞

sfa

Pðsjh0 ¼ 0Þds; ð36Þ

pdet ≡
Z

∞

sfa

Pðsjh0 ¼ h�0Þds; ð37Þ

where sfa denotes the detection threshold at the given false-
alarm probability pfa.
One can obtain an analytic estimate for the critical signal

amplitude h�0 in the limit of a large number of segments
Nseg ≫ 1, where the χ2ν̂ distributions tend toward Gaussians
with the same mean and standard deviation. Following
[4,19,20], we define the rescaled false-alarm threshold as

α≡ sfa − ν̂

2
ffiffiffî
ν

p : ð38Þ

Using the Gaussian approximation, we can solve Eq. (36)
for

α ¼ erfc−1ð2pfaÞ; ð39Þ

in terms of the inverse of the complementary error function
erfcðxÞ. Similarly, we define

β≡ −erfc−1ð2pdetÞ; ð40Þ

which is a monotonically increasing function of pdet with
β > 0 for pdet > 0.5. Further assuming a signal population
of fixed power ρ̂2 (instead of fixed amplitude h0), we can
express Eq. (37) as

β ¼ ρ̂2 − 2α
ffiffiffî
ν

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν̂þ 2ρ̂2

p : ð41Þ

For a given αðpfaÞ and βðpdetÞ, we can solve this for the
critical signal power as

ρ̂2�ðpfa; pdetÞ ¼ 2α
ffiffiffî
ν

p
þ 4β2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þQ

p
Þ; ð42Þ

with Q≡ ðν̂þ 4α
ffiffiffî
ν

p Þ=ð4β2Þ. As shown in [19], this
approximation produces a biased estimate for the critical
signal amplitude hpdet

0;pfa
, but we can use it to analyze the

scaling of sensitivity with search parameters.
We can use Eq. (38) to express the respective detection

thresholds in the large-Nseg limit as

F̂ fa

F̂ABfa

¼ ν̂þ 2α
ffiffiffî
ν

p

ν̂AB þ 2α
ffiffiffiffiffiffiffiffi
ν̂AB

p ⟶
Nseg≫1 ν̂

ν̂AB
¼ 2; ð43Þ

while the critical signal power of Eq. (42) tends to

ρ̂2� ⟶
Nseg≫1

2ðαþ βÞ
ffiffiffî
ν

p
: ð44Þ

Halving the degrees of freedom from ν̂ ¼ 4Nseg for the
standard F -statistic to ν̂AB ¼ 2Nseg for the dominant-
response statistic FAB therefore results in a maximal
sensitivity gain of

h�0;F
h�0;FAB

∼
ρ̂�;F
ρ̂�;FAB

⟶
Nseg≫1

�
ν̂

ν̂AB

�
1=4

¼ 21=4; ð45Þ

i.e., a gain of up to ≈18.9% compared to the standard
F -statistic.
Note that in this derivation, we assumed ρ̂2AB ≈ ρ̂2, i.e.,

D ≈ 0 in Eq. (31); therefore, the maximal sensitivity gain
would decrease when D increases, such as when using
longer segments or more detectors.

3This is another illustration that the F -statistic is not optimal,
as first shown in [11].
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B. The optimal choice between F̂ and F̂AB

We have seen in the previous section that when there is
no loss in noncentrality, i.e., ρ̂2AB ≈ ρ̂2, the halving of the χ2

degrees of freedom results in up to 18.9% sensitivity gain in
the large-Nseg limit. This argument suggests there should be
a critical level of noncentrality loss below which F̂AB is
more sensitive than F̂ .
In order to estimate this transition, we use Eq. (44) to

express β ¼ ρ̂2=
ffiffiffî
ν

p
− 2α, where β is a monotonic function

of detection probability pdet. Therefore the more sensitive
statistic is characterized by a higher ρ̂2=

ffiffiffî
ν

p
. This can be

reformulated into the condition

μ̂AB ≡ ρ̂2 − ρ̂2AB
ρ̂2

<

ffiffiffi
2

p
− 1ffiffiffi
2

p ≈ 0.29; ð46Þ

in terms of the noncentrality mismatch μ̂AB. Therefore, up
to a loss of μ̂AB ≲ 29% in noncentrality, there is still a net
sensitivity gain for the dominant-response statistic F̂AB due
to the reduction in degrees of freedom.
This condition is not practically usable as it depends on

the unknown signal amplitude parameters cos ι and ψ , but
we can use the averages of Eq. (32) to obtain an estimate

m̂AB ≡ hμABicos ι;ψ ∼

P
l

Dl
maxðA;BÞlP

lðAl þ BlÞ
; ð47Þ

where we approximated the average of the fraction as the
fraction of averages, which is generally biased but numeri-
cally turns out to be a relatively good approximation in this
case. Therefore, we expect the dominant-response FAB-
statistic to be more sensitive than the F -statistic when

m̂AB ≲ 0.29: ð48Þ

For sufficiently short segments, this criterion will be
satisfied essentially over the whole sky, favoring F̂AB,
while for long-enough segments it will not be satisfied
anywhere, favoring F̂ , with an intermediate regime of
segment lengths where the optimal choice will depend on
the sky position.

V. NUMERICAL RESULTS

In this section, we numerically test the theoretical
predictions derived in the previous sections and further
characterize the performance of the new statistic F̂AB. We
use two complementary numerical methods for sensitivity
estimation in order to cross-check and validate the imple-
mentations and results:
(1) Direct numerical integration of the known χ2 dis-

tributions for the two statistics F̂ and F̂AB, using the
explicit noncentrality expressions for ρ̂2 and ρ̂2AB
given in Eqs. (20) and (30), respectively. This is

essentially the sensitivity-estimation method de-
scribed in [7,19].

(2) Sampling synthesized statistic values (per segment)
by drawing noise-realizations for the four Gaussian
variates nμ with covariance matrix Mμν of Eq. (14)
and adding signal contributions sμ ¼ MμνAν forAμ

drawn from their priors. Both the standard
F -statistic as well as FAB are fully determined by
the four numbers xμ ¼ nμ þ sμ, as seen in Eq. (17)
and Eqs. (27), (28), respectively. This synthetic
sampling method has been used previously
in [11,21].

Both these methods are substantially faster than full
injection-and-recovery simulations and “cleaner” in the
sense of not being affected by noise-estimation biases and
intrinsic implementation losses when computing F̂ -statis-
tics on actual data. Therefore, these methods allow us to
explore larger parameter spaces and characterize the
intrinsic properties of these statistics. Compared to direct
integration, sampling of synthetic statistic values is more
limited due to the finite number of samples generated in a
given amount of time, resulting in lower accuracy and
limitations on how small false-alarm probabilities pfa can
be simulated.
For these tests, we assume perfect Gaussian noise and

data without gaps. For the sake of example, sensitivity is
characterized at an “upper limit” confidence level of pdet ¼
90% and for a single-template false-alarm level of
pfa ¼ 10−10. This choice would correspond to an overall
false-alarm level of ∼1% over a parameter-space region
containing ∼108 (independent) templates, which would be
a reasonably realistic choice for typical wide-parameter-
space searches.
The sensitivity of a search can be conveniently charac-

terized by its sensitivity depth [7,22], defined as

Dpdet
pfa ≡

ffiffiffiffi
S

p

hpdet
0;pfa

; ð49Þ

in terms of the overall noise power spectral density S of
Eq. (7) and the sensitivity amplitude hpdet

0;pfa
introduced in

Sec. IVA. This definition scales out the noise-floor
dependence and better characterizes the intrinsic method
sensitivity.

A. Example: Segments of Tseg = 900 s over 6 months

We consider the following example setup4 to illustrate
the performance of the dominant-response statistic F̂AB

compared to the standard F̂ -statistic: an all-sky search on
6 months of data without gaps using Nseg ¼ 17 280 seg-
ments of length Tseg ¼ 900 s.

4Based on a recent all-sky binary search [8] on O3a data,
which used Nseg ¼ 16 966 segments (with gaps) of Tseg ¼ 900 s.
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The detection thresholds for the two statistics are found
as F̂ fa ≈ 6.4 × 104 and F̂ABfa ≈ 3.3 × 104, with a ratio of
≈1.97, very close to the theoretical prediction of Eq. (43).
We can numerically estimate the sensitivity depths for

the two statistics as shown in Table I, for one (H1), two
(H1þ L1), or three detectors (H1þ L1þ V1). We see that
for a single detector the sensitivity gain of F̂AB versus F̂ is
close to the theoretical maximum of 18.9%, while increas-
ing the number of detectors reduces the gain, down to about
9% for three detectors. This behavior stems from the short-
segment antenna pattern being more degenerate for a single
detector (i.e.,D is closer to zero), keeping the noncentrality
loss of ρ̂2AB versus ρ̂2 small, while using more detectors
reduces the degeneracy and thereby increases the mis-
match m̂AB.
Figure 2 shows the receiver-operator characteristic, i.e.,

pdet versus pfa, for two detectors (H1þ L1) and signals at
fixed depthD90%

10−10ðF̂ Þ of Table I. At the false-alarm level of
pfa ¼ 10−10, the detection probability of the dominant-
response statistic F̂AB is about 8% higher than that of the
F̂ -statistic. Figure 3 shows the efficiency curve, i.e., pdet
versus signal strength quantified in terms of the depth D.

B. Sensitivity gain versus segment length Tseg

An interesting question of practical importance is up to
which “critical” segment length T�

seg the dominant-response
F̂AB-statistic performs better than the F̂ -statistic. The
answer to this question is shown in Fig. 4 for a two-
detector (H1þ L1) all-sky search. We see that the tran-
sition point is at about T�

seg ∼ 20 000 s, very similar to the
H1-only case (not shown here), while adding Virgo
(H1þ L1þ V1) would bring this down to about T�

seg ∼
15 000 s (not shown here).
The underlying reason for the decreasing gains of F̂AB

lies in the increasing noncentrality mismatch m̂AB, which
will also depend on the sky position. Therefore, searches

TABLE I. Sensitivity depth D (in units of 1=
ffiffiffiffiffiffi
Hz

p
) for the

standard F̂ -statistic and the dominant-response F̂AB-statistic at
pfa ¼ 10−10 and pdet ¼ 90%. The search setup consists of Nseg ¼
17 280 segments of Tseg ¼ 900 s, for different sets of detectors.

Detectors DðF̂ Þ DðF̂ABÞ Gain (%)

H1 18.3 21.7 18.6
H1, L1 26.3 30.5 16.2
H1, L1, V1 32.1 35.0 9.0

FIG. 2. Receiver-operator characteristic for the dominant-
response F̂AB-statistic and the standard F̂ -statistic, on a signal
population of fixed depth D90%

10−10ðF̂ Þ, using two different numeri-
cal methods: direct integration (solid lines) and synthetic statistic
sampling (error bars showing 90% confidence regions). The
search setup consists of Nseg ¼ 17 280 segments of Tseg ¼ 900 s
for two detectors (H1þ L1).

FIG. 3. Efficiency curves for the dominant-response F̂AB-
statistic and the standard F̂ -statistic, at a (single-template)
false-alarm level of pfa ¼ 10−10, using two different numerical
methods: direct integration (solid lines) and synthetic statistic
sampling (error bars showing 90% confidence regions). The
search setup consists of Nseg ¼ 17 280 segments of Tseg ¼ 900 s
for two detectors (H1þ L1).

FIG. 4. Sensitivity depthD90%
10−10 and relative sensitivity gain as a

function of segment length Tseg for the dominant-response F̂AB-

statistic versus the standard F̂ -statistic. The dotted horizontal line
indicates the theoretical maximal sensitivity gain of 8.9%. The
search setup spans 6 months using two detectors (H1þ L1).
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directed at a single sky position will have different
transition segment lengths dependent on that sky position.
To partially address this question, in Fig. 5, we plot the

mismatch distribution (for H1þ L1) versus segment
length. This shows that, somewhat consistently with
Fig. 4 and the theoretical estimate Eq. (48), the mean
noncentrality mismatch crosses the theoretical estimate of
the “critical” mismatch of m̂�

AB ∼ 0.29 (dashed horizontal
line) at about Tseg ∼ 22 000 s, while at the observed critical
segment length of Tseg ∼ 20 000 s in Fig. 5 the correspond-
ing empirical critical mismatch would be about

m̂�
AB ∼ 0.27: ð50Þ

From this plot, we would also predict F̂AB to be more
sensitive in every sky position below Tseg ≲ 15 000 s, while

F̂ should be more sensitive in every sky position above
Tseg ≳ 35 000 s. For intermediate segment lengths, the
choice of the optimal statistic will be a function of the
sky position.

C. Sensitivity gain versus mismatch m̂AB

From earlier theoretical considerations in Sec. IV B as
well as the empirical results in the previous section, we
expect the noncentrality mismatch m̂AB to be the intrinsic
factor determining the gain of F̂AB versus F̂ . This
mismatch is a function not only of the segment setup
and detectors but also of the sky position, as illustrated in
Fig. 6. Here, we see the noncentrality mismatch for a two-
detector (H1þ L1) setup over one day (the antenna
patterns are periodic over a day) for two different segment
lengths, Tseg ¼ 900 s and Tseg ¼ 17 100 s. This example
illustrates that the mismatch can be highest at the poles or
the equator, depending on the detailed setup (detectors,
segment lengths), and increases for longer segments.
Following the discussion in Sec. IV B and especially

Eq. (48), we expect the critical mismatch value to be around
m̂�

AB ≈ 0.29, while empirical results in Fig. 5 and Eq. (50)
suggest a slightly lower critical value of about m̂AB ∼ 0.27.
We can test these predictions by plotting the sensitivity

gain as a function of noncentrality mismatch m̂AB (by
varying the sky position), where we chose an example near
the transition, namely, Tseg ¼ 17 100 s. The result is shown
in Fig. 7, for a two-detector setup (H1þ L1) and a
6 months total observation span. These results confirm
that indeed the sensitivity gain correlates strongly with the
noncentrality mismatch and that the transition does happen
close to the theoretically predicted value, albeit with
the empirical prediction of m̂�

AB ∼ 0.27 being closer to
the truth.

FIG. 5. Distribution (over the sky) of the noncentrality mis-
match m̂AB as a function of segment length Tseg for a two-detector
search setup (H1þ L1). The solid line indicates the mean
mismatch, the dashed line the median, and the band the range
from the 10th to the 90th percentile. The horizontal dotted-dashed
line corresponds to the theoretical estimate m̂�

AB ≈ 0.29 of
Eq. (48) for the critical mismatch, while the dotted vertical line
indicates the observed transition segment length T�

seg ∼ 20 000 s
of Fig. 4. The resulting empirical estimate for the critical
mismatch is m̂�

AB ∼ 0.27 (dotted horizontal line).

FIG. 6. Noncentrality mismatch m̂AB as a function of sky position for a two-detector search setup (H1þ L1) spanning one day, using
Nseg ¼ 96 segments of Tseg ¼ 900 s duration (left plot) and Nseg ¼ 6 segments of Tseg ¼ 17 100 s duration (right plot).
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VI. CONCLUSIONS

In this paper, we have shown that the standardF -statistic
becomes singular for very short segments due to the
degeneracy of the antenna-pattern matrix. This observation
lead us to construct a well-behaved “fallback” statistic,
referred to as the dominant-response FAB-statistic.
Somewhat surprisingly, however, this new statistic turns
out to bemore sensitive than the F -statistic by up to ≈19%,
even outside the degeneracy region of the F -statistic, when
semicoherently combining a large number of short seg-
ments. We have characterized the new FAB-statistic ana-
lytically and numerically and shown that it is more sensitive
than the F -statistic for segments shorter than Tseg ≲
15 000 s to 20 000 s (depending on the number of detectors
used).
We have further shown that the sensitivity gain is

determined by the noncentrality mismatch m̂AB of
Eq. (47), and theoretical and empirical estimates place
the transition at about m̂AB ∼ 0.27, below which FAB is
more sensitive than F .
The new detection statistic uses the same signal phase

model as the F -statistic and is therefore expected [10] to
require essentially the same number of templates and
computing cost for a given parameter space.
Future work will focus on reanalyzing this limit in a

Bayesian framework following the approach of [11].
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APPENDIX: CONSTANT-RESPONSE
STATISTIC Fϕ

As an alternative construction to the dominant-
response statistic FAB introduced in Sec. III B 1, it is
interesting to consider another special case obtained by
assuming a constant amplitude response, i.e., completely
neglecting the antenna-pattern modulation, and define a
template,

hXϕðtÞ ¼ A cosðϕXðtÞ þ ϕ0Þ
¼ Ac cosϕXðtÞ þAs sinϕXðtÞ; ðA1Þ

where Ac ≡A sinϕ0 and As ≡A cosϕ0. Using this tem-
plate family, the log-likelihood of Eq. (4) takes the form

lnL ¼ Asxs þAcxc −
γ

2
A2; ðA2Þ

where we defined

xc ≡ ðxj cosϕÞ; xs ≡ ðxj sinϕÞ; ðA3Þ

in terms of the (multidetector) scalar product ðxjyÞ of
Eq. (6). Maximizing this log likelihood over the two
unknown amplitudes Ac;As yields A0

s;c ¼ γ−1xs;c, and
substituting back results in the partially maximized like-
lihood

2Fϕ ≡ 2 lnL0 ¼ γ−1ðx2c þ x2s Þ; ðA4Þ

defining the constant-response Fϕ-statistic. Note that x2c þ
x2s in the single-detector case is precisely the Fourier power
of xðtÞ demodulated into the source frame.
In the short-segment limit Tseg → 0 for a single detector,

this would tend exactly to the dominant-response FAB-
statistic, as in this limit aðtÞ → a0, bðtÞ → b0, and there-
fore, A → a20, B → b20 and also xμ → fa0; b0gxs;c.
Similarly to Sec. III B 1, one can show that this statistic

follows a χ2 distribution with ν ¼ 2 degrees of freedom,
namely,

E½2Fϕ� ¼ 2þ ρ2ϕ; ðA5Þ

with a noncentrality parameter,

ρ2ϕ ≡ γ−1ðs2c þ s2s Þ; ðA6Þ

in terms of the signal projections ss;c ≡ ðsjfsin; cosgϕÞ.
Using the scalar product of Eq. (6) with the basis functions
of Eq. (3), we find

sc ¼ γðA1hai þA2hbiÞ;
ss ¼ γðA3hai þA4hbiÞ; ðA7Þ

FIG. 7. Sensitivity gain of the dominant-response F̂AB-statistic
over the standard F̂ -statistic for single-sky-position searches as a
function of the corresponding noncentrality mismatch m̂AB in the
sky position. The vertical dotted-dashed line corresponds to the
theoretical estimate m̂�

AB ≈ 0.29 of Eq. (48), while the vertical
dotted line indicates the empirical critical mismatch of m̂�

AB ∼
0.27 estimated in Fig. 5. The search setup consists of
Nseg ¼ 910 segments of Tseg ¼ 17 100 s duration using two
detectors (H1þ L1).
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using the noise-weighted multidetector average defined in
Eq. (12). Combining this with Eq. (21), we can express the
constant-response noncentrality as

ρ2ϕ ¼ h20γ½α1hai2 þ α2hbi2 þ 2α3haihbi�; ðA8Þ

which has an uncanny formal resemblance to the F -statistic
signal power expression of Eq. (20), except that the mean
squares of antenna-pattern functions of Eq. (11) are now
replaced by squared means, i.e., ha2i ↦ hai2, hb2i ↦ hbi2
and habi ↦ haihbi. This observation implies that for a single

detector in the short-segment limit, this statisticwill again have
the same noncentrality as the F -statistic with only half the
degrees of freedom, gaining the same≈18.9% in sensitivity as
the dominant-response FAB-statistic of Sec. III B 1.
For longer observation times as well as multiple detec-

tors, however, the antenna-pattern function can cancel out
in the averages, resulting in potentially significant sensi-
tivity losses. Especially for nonaligned detectors, the
multidetector averages can cancel strongly, potentially
makingFϕ more suitable as a “veto” rather than a detection
statistic.
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