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We work out the description of the gauge symmetry of unimodular gravity in the constrained
Hamiltonian formalism. In particular, we demonstrate how the transversality conditions restricting the
diffeomorphism parameters emerge from the algebra of the Hamiltonian constraints. The alternative form
is long known as parametrizing the volume preserving diffeomorphisms by unrestricted two-forms
instead of the transverse vector fields. This gauge symmetry is reducible. We work out the Hamiltonian
description of this form of unimodular gravity (UG) gauge symmetry. Becchi-Rouet-Stora-Tyutin–
Batalin-Fradkin-Vilkovisky (BFV-BRST) Hamiltonian formalism is constructed for both forms of the
UG gauge symmetry. These two BRST complexes have a subtle inequivalence: Their BRST cohomology
groups are not isomorphic. In particular, for the first complex, which is related to the restricted gauge
parameters, the cosmological constant does not correspond to any nontrivial BRST cocycle, while for the
alternative complex it does. In the wording of physics, this means Λ is a fixed parameter defined by the
field asymptotics rather than the physical observable from the standpoint of the first complex. The second
formalism views Λ as the observable with unrestricted initial data.
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I. INTRODUCTION

Unimodular gravity (UG) is the version of general
relativity (GR) where the metrics are restricted by the
unimodularity condition,

det gαβ ¼ −1: ð1Þ
Given the restriction, the class of admissible gauge
transformations reduces to the volume preserving diffeo-
morphisms,

δξgαβ ¼ −∇αξβ −∇βξα; ∂αξ
α ¼ 0: ð2Þ

The Lie brackets of the transverse vector fields are
divergence-free, so the volume preserving diffeomor-
phisms (2) form a subgroup in the group of general
coordinate transformations. This subgroup is singled out
from the entire diffeomorphism group in a special way:
The partial differential equation (PDE) is imposed restrict-
ing the gauge parameters ξα rather than the subset being
explicitly picked out of the generators for the gauge

subgroup. This is an example of the general phenomenon
of unfree gauge symmetry [1], where the gauge variation
of the action functional vanishes provided that the gauge
parameters are subject to the PDE system. Among the
other examples of unfree gauge symmetry, we can
mention the spin-two Firtz-Pauli model [2,3] and some
higher spin field theories [4–6]. The usual general theory
of the systems with unconstrained gauge parameters
cannot be directly applied to the case of unfree gauge
symmetry as the PDEs restricting the gauge parameters,
being essential constituents of the gauge algebra, have to
be accounted for. The restrictions imposed on the gauge
parameters result in modifications of the second Noether
theorem and the Faddeev-Popov quantization rules [1].
Also the Batalin-Vilkovisky (BV) formalism has to be
modified [7] to account for the distinctions of the unfree
gauge symmetry from the case of unconstrained gauge
parameters. The specifics of unfree gauge symmetry
in the general constrained Hamiltonian formalism is
worked out in the articles [8,9], including the modification
of the Hamiltonian Becchi-Rouet-Stora-Tyutin–Batalin-
Fradkin-Vilkovisky (BFV-BRST) formalism. A common
feature for all the unfree gauge symmetries is that they
admit an alternative formulation with unconstrained gauge
parameters while the unrestricted gauge symmetry is
reducible. This general fact is first noticed in [7], though
for the specific models the reducible alternatives have
been previously known. For the UG, the reducible gauge
transformations can be parametrized by the two-form W,
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δWgαβ ¼ −
1

2
εγσμνð∂γgαβ∂σWμν þ gαγ∂β∂σWμν

þ gγβ∂α∂σWμνÞ; ð3Þ

where εγσμν is the Levi-Civita symbol. This parametriza-
tion of the volume preserving diffeomorphism is long
known [10–12], and it is studied once and again mostly at
the linearized level (see [13–15], and references therein).
The transformation (3) follows from (2) by substitution of

the transverse vector ξ as the Hodge dual of the exact three-
form ξ ¼ − � dW. This substitution can be inequivalent to
the original symmetry (2) if the manifold admits the third
group of De Rham cohomology. Possible consequences of
the inequivalence are discussed in the article [16]. Here, we
do not elaborate on this issue.
Gauge symmetry (3) is reducible as it admits the

sequence of gauge for gauge transformations:

δφWαβ ¼ ∂αφβ − ∂βφα;

δψφα ¼ ∂αψ : ð4Þ

The higher spin analogs of this form of reducible gauge
symmetry can be found in [6].
At the level of general constrained Hamiltonian for-

malism, the procedure of constructing the reducible
alternative formulation with unconstrained gauge param-
eters has been worked out in the recent article [16] for the
general unfree gauge symmetry. Proceeding from the two
forms of gauge symmetry, two different BRST complexes
can be associated with the same action functional. The
first one is for the unfree gauge symmetry, and another one
is for the reducible form of the symmetry. These two
complexes are connected, though they are inequivalent, in
general, in the sense that their BRST-cohomology groups
are not necessarily isomorphic.1

The Hamiltonian formulation of GR has a long story. In
particular, various ways have been discussed for decades of
reproducing 4d-diffeomorphism transformations of the
Arnowitt-Deser-Misner (ADM) variables, including laps
and shift functions, in Hamiltonian formalism. For peda-
gogical exposition of this subject, review, and references, see
[17–19]. The recent discussion of the same issue for the
Brans-Dicke theory can be found in [20]. Also for the UG,
the constrained Hamiltonian formulation has been known for

at least 30 years [11,12], and the topic has been extensively
studied since then; for review and bibliography we refer to
[21–23]. For the UG, unlike the GR, it is still not evident
how the Hamiltonian constraints can reproduce the 4d gauge
transformation (2) of the theory, including the transversality
condition imposed on the gauge parameters. This puzzle is
reported in the reviews (see, e.g., in [22]). Also the reducible
form of the UG gauge symmetry (3), (4) has never been
described in Hamiltonian formalism. Once the Hamiltonian
description is lacking for the gauge symmetry (2) or (3), (4),
the Hamiltonian BFV-BRST formalism is still unknown for
UG. In this article, following the general procedure of
Ref. [8], we work out the Hamiltonian description of the
volume preserving diffeomorphisms (2). We also construct
the Hamiltonian description for the alternative form of the
gauge symmetry (3), (4) following the general recipe of
Ref. [16]. Given the Hamiltonian form of the unfree gauge
symmetry for the UG, we construct the Hamiltonian BFV-
BRST complex for the UG following the prescription of the
articles [8,16] for the general case of unfree gauge symmetry.
The paper is organized as follows. To make the article

self-contained, in the next section we provide the general
basics of describing the unfree gauge symmetry in
Hamiltonian formalism. In Sec. III, proceeding from the
general scheme of Sec. II, we provide the Hamiltonian
description for the volume preserving diffeomorphisms and
also the Hamiltonian analogs for the reducible gauge
symmetry (3), (4). Section IV includes the BFV-BRST
complexes for both forms of the gauge symmetry in UG.
The last section includes concluding remarks.

II. UNFREE AND REDUCIBLE GAUGE
SYMMETRY IN HAMILTONIAN FORMALISM

In this section, we briefly present the general scheme of
deriving the unfree gauge symmetry for Hamiltonian con-
strained systems for the simplest case without tertiary and
higher level constraints (the UG falls in this class of
systems). For justification of the scheme, see in [8]. The
Hamiltonian description of unfree gauge symmetry for the
most general case with the tertiary and higher level con-
straints can be found in [9]. The method of finding the
alternative Hamiltonian form of the unfree gauge symmetry
with unrestricted reducible gauge parameters is worked out
in the article [16]. It is briefly explained at the end of this
section.
We begin with the action functional of constrained

Hamiltonian system

S½qðtÞ; pðtÞ; λðtÞ� ¼
Z

dtðpi _qi −HTðq; p; λÞÞ;

HTðq; p; λÞ ¼ Hðq; pÞ þ λαTαðq; pÞ; ð5Þ

α ¼ 1;…; m, where the time dependence is made explicit,
while dependence on space points is implicit. Summation

1The subtle difference between the cohomology groups of the
two complexes is related to the global conserved quantities,
whose initial data are defined on the lower dimensional subset,
not at the Cauchy surface. All the field theories with unfree gauge
symmetry admit conserved quantities of this type (see in [16]).
The simplest example of such a quantity is the cosmological
constant of UG. For the first complex, these quantities turn out to
be a coboundary, while for the alternative one, they are nontrivial
cocycles (see in [16]). In this article, we notice this subtle
distinction for the UG in the end of Sec. IV, though we do not
elaborate on this fact in the present article.
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over any condensed index includes integration over space.
The action and the Hamiltonian H are supposed to be
integrated over the space. All the constraints are assumed
irreducible.
Let us assume the following involution relations of

the Hamiltonian H, the primary constraints Tα, and the
secondary ones τa:

fTα; Tβg ¼ Uγ
αβðϕÞTγ; ð6Þ

fTα; Hg ¼ Vβ
αðϕÞTβ þ Va

αðϕÞτa; ð7Þ

fτa; Hg ¼ Vα
aðϕÞTα þ Vb

aðϕÞτb; ð8Þ

fTα; τag ¼ Uβ
αaðϕÞTβ þ Ub

αaðϕÞτb; ð9Þ

fτa; τbg ¼ Uα
abðϕÞTα þ Uc

abðϕÞτc; ð10Þ

where the uniform notation is introduced for the phase
space variables ϕ ¼ ðq; pÞ. These involution relations
mean that conservation of the primary constraints Tα results
in the secondary constraints τa while no tertiary ones arise.
The complete set of constraints is of the first class. The
subtlety that distinguishes the unfree-generated gauge
symmetry from the case of symmetry with unconstrained
gauge parameters lies in the structure of the coefficient
Va
αðϕÞ in involution relation (7). This coefficient is sup-

posed to be a nondegenerate differential operator in the
sense that it has at most a finite dimensional kernel. The
inverse does not exist to V in the class of differential
operators, however. The simplest example of such Va

α is a
partial derivative. The kernel is one-dimensional (just any
constant), while the inverse is not the differential operator.
If the fields vanish at infinity, there is no kernel at all, while
the operator ∂i still does not admit a local inverse. In this
case, the secondary constraints τa should vanish on shell for
the sake of consistency of equations of motion, though
relations τa ≈ 0 are not differential consequences of the
primary constraints.
To represent the unfree gauge symmetry transformations

in an economic way, it is convenient to introduce
λ-dependent structure functions

W1
β
αðϕ; λÞ ¼ Vβ

α −Uβ
γαλγ;

W2
α
aðϕ; λÞ ¼ Vα

a −Uα
βaλ

β;

Γb
aðϕ; λÞ ¼ Vb

a −Ub
αaλ

α: ð11Þ

In terms of these structure functions, the involution
relations (6)–(9) read

fTαðϕÞ; HTðϕ; λÞg ¼ W1
β
αðϕ; λÞTβðϕÞ

þ Va
αðϕÞτaðϕÞ; ð12Þ

fτaðϕÞ; HTðϕ; λÞg ¼ W2
α
aðϕ; λÞTαðϕÞ

þ Γb
aðϕ; λÞτbðϕÞ: ð13Þ

In this form, the structure is evident of the Dirac-Bergmann
algorithm for the system: Conservation of the primary
constraints (12) leads to the secondary constraints τa as
the coefficient Va

α is nondegenerate even though it is not
invertible in the class of differential operators. Conservation
of the secondary constraints (13) does not lead to the tertiary
ones nor does it define any Lagrange multiplier.
As the consequence of involution relations (12) and (13),

the Hamiltonian action (5) is invariant [8] under the gauge
transformations of phase space variables ϕ ¼ ðq; pÞ and
Lagrange multipliers λα,

δϵϕ ¼ fϕ; Tαgϵα þ fϕ; τagϵa; ð14Þ

δϵλ
α ¼ _ϵα þW1

α
βðϕ; λÞϵβ þW2

α
aðϕ; λÞϵa; ð15Þ

provided that the gauge parameters ϵα and ϵa are subject to
the differential equations,

_ϵa þ Γa
bðϕ; λÞϵb þ Va

αðϕÞϵα ¼ 0: ð16Þ

If the structure coefficient Va
α admitted the inverse, being a

differential operator, the gauge parameters ϵα could be
expressed from (16) as combinations of gauge parameters
ϵa and their derivatives. In this case, we would have the
irreducible gauge symmetry with unconstrained gauge
parameters ϵa. This symmetry would involve the second
order time derivatives of the gauge parameters. Once the
nondegenerate structure coefficient Va

α does not admit any
local inverse, the gauge symmetry (14), (15), (16) is unfree
indeed. To demonstrate that the above transformation is a
gauge symmetry only under the restrictions (16) imposed on
the gauge parameters, let us compute the gauge variation
(14) and (15) of the action (5),

δϵS≡
Z

dt

�
ð_ϵa þ Γa

bðϕ; λÞϵb þ Va
αðϕÞϵαÞτa

−
d
dt

ðTαϵ
α þ τaϵ

aÞ
�
: ð17Þ

Once the secondary constraints τa are assumed to be
irreducible, the variation integrand can reduce to the total
derivative only under the condition that the coefficients
vanish at τa. This leads one to impose restrictions (16) on the
gauge parameters.
In the next section, the general relations (14)–(16) are

specified for the UG reproducing the volume-preserving
diffeomorphism in the Hamiltonian setup.
Any Hamiltonian action with unfree gauge symmetry

admits the alternative reducible form of the gauge symmetry
with unrestricted gauge parameters [16]. This reducible
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symmetry involves the higher order time derivatives of the
gauge parameters. To arrive to this form of gauge symmetry,
we introduce an alternative (overcomplete) set of the
secondary constraints τ̃α that absorbs the structure coef-
ficients Va

α,

τ̃α ≡ Va
αðϕÞτaðϕÞ: ð18Þ

In general, the constraints above are reducible unlike the
independent secondary constraints τa (7). In this article, we
assume the simplest possible form of the reducibility
conditions

Z1
α
Aτ̃α ¼ 0; Z2

A
A1
Z1

α
A ¼ 0; ð19Þ

with field-independent null vectors Z1
α
A and Z2

A
A1
. The

general case with off-shell nontrivial contributions to the
reducibility relations can be found in the paper [16]. Making
use of the reducible generating set of the secondary
constraints, the involution relations (6)–(10) are reorganized
as follows:

fTα; Tβg ¼ Uγ
αβðϕÞTγ; ð20Þ

fTα; Hg ¼ Vβ
αðϕÞTβ þ τ̃α; ð21Þ

fτ̃α; Hg ¼ Ṽβ
αðϕÞTβ þ Ṽ 0β

αðϕÞτ̃β; ð22Þ

fTα; τ̃βg ¼ Ũγ
αβðϕÞTγ þ Ũ 0γ

αβðϕÞτ̃γ; ð23Þ

fτ̃α; τ̃βg ¼ Ũγ
αβðϕÞTγ þ Ũ0γ

αβðϕÞτ̃γ: ð24Þ

We introduce λ-dependent structure functions, being analogs
of (11) for the reducible set of constraints:

W̃2
β
α ¼ Ṽβ

α − Ũβ
γαλγ; Γ̃β

α ¼ Ṽ 0β
α − Ũ 0β

γαλγ: ð25Þ

In terms of these structure functions, the involution relations
read

fTαðϕÞ; HTðϕ; λÞg ¼ W1
β
αðϕ; λÞTβðϕÞ þ τ̃αðϕÞ; ð26Þ

fτ̃αðϕÞ; HTðϕ; λÞg ¼ W̃2
β
αðϕ; λÞTβðϕÞ

þ Γ̃β
αðϕ; λÞτ̃βðϕÞ: ð27Þ

The key distinction of relations (26) from (12) is that
reducible secondary constraints τ̃α are the differential
consequences of the primary constraints while the irreduc-
ible ones τa are not. It is the distinction that leads to the
reducible gauge symmetry of the action (5) generated by Tα

and τ̃α with the second time derivatives of unrestricted
gauge parameters [16]. These gauge transformations read

δεϕ ¼ fϕ; Tαgð_εα þ Γ̃α
βε

β − Z1
α
Aε

AÞ
− fϕ; τ̃αgεα; ð28Þ

δελ
α ¼

�
δαβ

d
dt

þW1
α
β

�
ð_εβ þ Γ̃β

γ εγ − Z1
β
Aε

AÞ

− W̃2
α
βε

β: ð29Þ

Given the involution relations of reducible constraints
(19), (26), and (27), the above transformations leave the
Hamiltonian action (5) invariant modulo a total derivative
while no restrictions are imposed on the gauge parameters
εα and εA.
Because of the reducibility of secondary constraints (19),

gauge transformations (28) and (29) enjoy a gauge sym-
metry of their own. For the simplest case2 of the constant
null vectors, the gauge transformations of the original
gauge parameters read

δωε
α ¼ Z1

α
Aω

A; δωε
A ¼ _ωA − Z2

A
A1
ωA1 : ð30Þ

Because of (19), these symmetries are further reducible:

δηω
A ¼ Z2

A
A1
ηA1 ; δηω

A1 ¼ _ηA1 : ð31Þ

In the next section, proceeding from general relations
(28)–(31) we find the Hamiltonian form of the reducible
gauge transformations (3) and (4) for the UG.

III. UNIMODULAR GRAVITY

In this section, following the general scheme of the
previous one, we construct the transverse diffeomorphism
transformations in the Hamiltonian formalism of the UG.
We also find the Hamiltonian form of the reducible
description for the volume-preserving diffeomorphisms
(3) and (4).
In this section, we use the ADM variables

gαβ ¼
 
N2 þ NkNk Nj

Ni g
�
ij

!
;

gαβ ¼
 

N−2 −NjN−2

−NiN−2 g
�ij þ NiNjN−2

!
; ð32Þ

where Latin indices i; j; k;… run the values 1,2,3 and

Ni ¼ g
�ij
Nj. In these variables, the unimodularity condition

det gαβ ¼ −1 reads

N2 ¼ −
1

g
� ; g

� ¼ det g
�
ij: ð33Þ

2For the case of general reducibility, with off-shell nontrivial
contributions, see [16].

I. YU. KARATAEVA and S. L. LYAKHOVICH PHYS. REV. D 105, 124006 (2022)

124006-4



This allows one to exclude from the set of variables the laps

function N replacing it3 by ð−g�Þ−1=2.
In terms of the ADM variables, with N excluded

according to (33), the Einstein-Hilbert action4 of UG is
brought to the Hamiltonian form (5):

S¼
Z

d4xðΠij
∂0g

�
ij −HTÞ; HT ¼H0 þNiTi; ð34Þ

where the Hamiltonian reads

H0 ¼ −
1

g
� GijklΠijΠkl þ R

�
: ð35Þ

Here, the usual definition is adopted for the De Witt metrics

Gijkl ¼
1

2
ðg�ikg�jl þ g

�
ilg
�
jkÞ −

1

2
g
�
ijg
�
kl: ð36Þ

The inverse reads

Gijkl ¼ 1

2
ðg�ikg�jl þ g

�il
g
�jkÞ − g

�ij
g
�kl

;

GijklGklsm ¼ 1

2
ðδisδjm þ δimδ

j
sÞ: ð37Þ

The action includes the primary constraints

Ti ¼ −2g�ijð∂kΠkj þ Γ
� j
klΠklÞ; ð38Þ

with the shift functions Ni serving as the Lagrange multi-
pliers. The Hamiltonian is a scalar, while the constraints
(38) are covariant 3d vector densities.
The requirement of stability (12) of the primary con-

straints (38) reads�
Ti;
Z

d3xHT

�
¼ Tj∂iNj þ ∂jðTiNjÞ

þ ∂i

�
1

g
� Gsm klΠsmΠkl − R

��

≈ 0: ð39Þ

The role of the structure coefficient Va
α [cf. (7) and (12)] is

played by the operator of the partial derivative. This

operator does not admit the local inverse, while the one-
dimensional kernel of ∂i is formed by constants. So, we
arrive at the single secondary constraint τ which is defined
by the stability condition (39) modulo arbitrary additive
constant,

τ ¼ −
1

g
� Gij klΠijΠkl þ R

�
− Λ ≈ 0; Λ ¼ const: ð40Þ

The above constraint is the Hamiltonian counterpart of the
relation R ¼ Λ being the well-known consequence of the
UG field equations in Lagrangian formalism (see, e.g.,
[21]). The “integration” constant Λ is defined by the value
of the metric and its derivatives at any single point of space,
or by the asymptotics rather than by initial data at the entire
Cauchy surface. For asymptotically flat space, Λ ¼ 0, for
example. Existence of the conserved quantities of this type
is a common feature for all the systems with unfree gauge
symmetry (see in [16]). The secondary constraint τ is 3d
scalar, which differs from the Hamiltonian (35) by the
“integration” constant Λ. In this sense, the constraint (40)
means the off-shell conservation of energy density in the
UG, given the metrics at any single point of the spacetime.
This is in line with the recent discussion of the meaning of
the Hamiltonian in the UG [23].
Stability condition for the secondary constraint τ does

not lead to a tertiary constraint nor does it define any
Lagrange multiplier [cf. (13)]�

τ;
Z

d3xHT

�
¼ −∂iðð−g�Þ−1g�ijTjÞ þ Ni

∂iτ: ð41Þ

The involution relations of all the constraints can be
conveniently represented in terms of functionals being
contractions with arbitrary test functions

TðζÞ ¼
Z

d3x TiðxÞζiðxÞ;

τðρ0Þ ¼
Z

d3x τðxÞρ0ðxÞ; ð42Þ

where ξiðxÞ and ζiðxÞ are test vector fields and ρ0ðxÞ and
σ0ðxÞ are the test functions being arbitrary scalar densities
with weights 1 (letters with strokes). For these functionals,
the involution relations (equal time P.B.) read

fTðξÞ; TðζÞg ¼ Tð½ξ; ζ�Þ; ð43Þ

fTðξÞ; τðρ0Þg ¼ τð½ξ; ρ0�Þ; ð44Þ

fτðρ0Þ; τðσ0Þg ¼ Tð½ρ0; σ0�Þ; ð45Þ

where

½ξ; ζ�i ¼ ξj∂jζ
i − ∂jξ

iζj; ð46Þ

3Recently the modifications of the UG have been introduced
that suggest to replace formula (33) by a more general relation
between the lapse and the 3d metrics [24,25]. The techniques we
propose for describing the gauge symmetry of the Hamiltonian
formalism of UG are not particularly sensitive to the way of
excluding N.

4We use the following definitions for the 3d Riemann tensor,

Ricci tensor, and scalar curvature: R
� i

jkl ¼ ∂kΓ
� i
lj − ∂lΓ

� i
kjþ

Γ
� i
ksΓ

� s
lj − Γ

� i
lsΓ

� s
kj, R

�
ij ¼ R

� s
isj, and R

� ¼ g
�ij
R
�
ij.
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½ξ; ρ0� ¼ ∂iðξiρ0Þ; ½ρ0; ξ� ¼ −∂iðξiρ0Þ; ð47Þ

½ρ0; σ0�i ¼ 1

g
� g
�ijðρ0∂jσ0 − ∂jρ

0σ0Þ: ð48Þ

Here ½ξ; ζ�i is a vector, ½ξ; ρ0�; ½ρ0; ξ�—scalar density with
weight 1, ½ρ0; σ0�i—vector. The involution relations of the
constraints and Hamiltonian read

�
Ti;
Z

d3xH0

�
¼ −∂iτ; ð49Þ

�
τ;
Z

d3xH0

�
¼ −∂iðð−g�Þ−1g�ijTjÞ: ð50Þ

Relations (39) and (41) present the explicit form of
general involutional relations (12) and (13) in the case of
UG. This allows one to identify the unfree gauge symmetry
of the Hamiltonian UG action (34) making use of the
general recipe (14)–(16). The gauge variations (14) and
(15) for the case of UG read

δϵg
�
ij ¼ ϵk∂kg

�
ij þ g

�
ik∂jϵ

k þ g
�
jk∂iϵ

k −
2

g
� Gij klΠklϵ; ð51Þ

δϵΠij ¼ ∂kðΠijϵkÞ − Πik
∂kϵ

j − Πjk
∂kϵ

i

þ
�
2

g
� g
�
klΠikΠjl −

1

g
� ΠΠ

ij

−
1

g
� g
�ijGkl smΠklΠsm þ R

� ij
�
ϵ

− Gij kl

ffiffiffiffiffiffi
−g�

q
ð∂k∂l − Γ

� s
kl∂sÞ

ϵffiffiffiffiffiffi
−g�

q ; ð52Þ

δϵNi ¼ _ϵi þ ϵj∂jNi − Nj
∂jϵ

i −
1

g
� g
�ij
∂jϵ; ð53Þ

where Π ¼ g
�
ijΠij. The general equations (16) constraining

the gauge parameters are specialized for UG as

_ϵþ ∂iðϵi − NiϵÞ ¼ 0: ð54Þ

Relations (51)–(54), being deduced for the case of UG by
the general procedure of the previous section, should
represent the gauge symmetry of the Hamiltonian action
(34). Let us verify this fact by directly varying the action
given the variations of variables (51), (52), and (53),

δϵS≡
Z

d4xðδϵΠij
∂0g

�
ij − ∂0Πijδϵg

�
ij − δϵHTÞ

≡
Z

d4xðð_ϵþ ∂iðϵi − NiϵÞÞτ

− ∂0ðTiϵ
i þ τϵÞÞ: ð55Þ

As one can see, the gauge variation would vanish off-shell
modulo total time derivative provided that gauge param-
eters ϵ and ϵi are subject to Eq. (54).
Notice that the 4d diffeomorphism transformation

parameters ξμ (2) are connected with their (1þ 3)-split
Hamiltonian counterparts ϵ and ϵi involved in the trans-
formations (51)–(54) by relations

ξ0 ¼ −ϵ; ξi ¼ −ðϵi − NiϵÞ: ð56Þ

This locally invertible change of gauge parameters brings
Eq. (54) to the transversality condition ∂μξ

μ ¼ 0. Also
notice that Hamiltonian gauge transformations (51) and (53)

of g
�
ij and Ni define the transformations of 4d unimodular

metrics gμν as it is parametrized by the ADM variables (32)
and (33). The transformations (51) and (53) involve, besides

g
�
ij and Ni, also the canonical momenta Πij. The momenta
are defined by the Hamiltonian equations as functions of the
ADM variables and the time derivatives of 3d metrics:

∂0g
�
ij ¼

�
g
�
ij;
Z

d3xHT

�
⇒

Πij ¼ −
1

2
g
�
Gijkl

�
∂0g

�
kl − 2∂kNl þ 2Γ

� s
klNs

�
: ð57Þ

As a result, upon the change of parameters ϵ; ϵi ↦ ξμ [see
(56)], the Hamiltonian gauge transformations (51) and (53)
define the diffeomorphism of 4d unimodular metrics:

δϵgμνðg�ij;NiÞ
			ϵ↦ ϵðξÞ
Π↦Πðg�ij;Ni;∂0g

�
ijÞ

¼−∇μξν−∇νξμ: ð58Þ

So, one can see that the Hamiltonian gauge transformations
(51)–(54) represent indeed the (1þ 3)-split form of 4d
volume-preserving diffeomorphism (2).
Now, let us deduce the Hamiltonian form of the

reducible gauge symmetry (3) of the UG. The general
scheme of replacing the unfree gauge symmetry by the
alternative reducible counterpart with unrestricted gauge
parameters is described in the end of previous section. It
begins with absorbing the structure coefficient Va

α of the
involution relations (7) by the secondary constraint [see
(18)]. For the UG, relations (7) read as (39) and (40) with
Va
α identified as −∂i. So, the reducible secondary con-

straints for the UG are defined as
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τ̃i ¼ −∂iτ; ð59Þ

where τ is given by (40). Obviously, conservation of the
primary constraints (38) identifies τ̃i as the secondary ones�

Ti;
Z

d3xHT

�
¼ Tj∂iNj þ ∂jðTiNjÞ þ τ̃i: ð60Þ

These constraints conserve

�
τ̃i;
Z

d3xHT

�
¼ ∂i∂jðð−g�Þ−1g�jkTkÞ

þ ∂iðτ̃jNjÞ: ð61Þ

The involution relations of all the constraints can be
represented in terms of functionals

TðζÞ ¼
Z

d3x TiðxÞζiðxÞ;

τ̃ðρ0Þ ¼
Z

d3x τ̃iðxÞρ0iðxÞ; ð62Þ

where ρ0iðxÞ and σ0iðxÞ are the test functions being
arbitrary vector densities with weights 1 and ξiðxÞ and
ζiðxÞ are test vector fields. For these functionals, the
involution relations read

fTðξÞ; TðζÞg ¼ Tð½ξ; ζ�Þ; ð63Þ

fTðξÞ; τ̃ðρ0Þg ¼ τ̃ð½ξ; ρ0�Þ; ð64Þ

fτ̃ðρ0Þ; τ̃ðσ0Þg ¼ Tð½ρ0; σ0�Þ; ð65Þ

where the brackets denote the following bilinear skew-
symmetric forms of the test functions:

½ξ; ζ�i ¼ ξj∂jζ
i − ∂jξ

iζj; ð66Þ

½ξ; ρ0�i ¼ ξi∂jρ
0j; ½ρ0; ξ�i ¼ −ξi∂jρ0j; ð67Þ

½ρ0; σ0�i ¼ 1

g
� g
�ijð∂kρ0k∂j∂lσ0l − ∂j∂kρ

0k
∂lσ

0lÞ: ð68Þ

Here ½ξ; ζ�i is the vector field, ½ξ; ρ0�; ½ρ0; ξ� is the vector
density of the weight 1, and ½ρ0; σ0�i is the vector. The
involution relations of the constraints and Hamiltonian read

fTi;
Z

d3xH0g ¼ τ̃i; ð69Þ

�
τ̃i;
Z

d3xH0

�
¼ ∂i∂jðð−g�Þ−1g�jkTkÞ: ð70Þ

The secondary constraints (59) are reducible,

εAij∂iτ̃j ≡ 0; ð71Þ

where εAij is totaly antisymmetric, taking values f0; 1;−1g.
The role of the null vector Z1

α
A [see (19)] is played by

the dualized De Rham differential. This null vector is
reducible again. The role of the null vector Z2

A
A1

[see (19)]
is played by ∂A. This reducibility of the UG Hamiltonian
constraints corresponds to the general pattern described in
Sec. II [cf. (19)].
Given the explicit form of irreducible primary con-

straints, reducible secondary ones, and the sequence of
null vectors, the reducible gauge symmetry is constructed
for the UG by the general recipe (28)–(31):

δεg
�
ij ¼ ð_εk − Nk

∂sε
s − εksA∂sεAÞ∂kg�ij

þ g
�
ik∂jð_εk − Nk

∂sε
s − εksA∂sεAÞ

þ g
�
jk∂ið_εk − Nk

∂sε
s − εksA∂sεAÞ

þ 2

g
� GijklΠkl

∂sε
s; ð72Þ

δεΠij ¼ ∂kðΠijð_εk − Nk
∂sε

s − εksA∂sεAÞÞ
− Πik

∂kð_εj − Nj
∂sε

s − εjsA∂sεAÞ
− Πjk

∂kð_εi − Ni
∂sε

s − εisA∂sεAÞ

−
�
2

g
� g
�
klΠikΠjl −

1

g
� ΠΠ

ij

−
1

g
� g
�ijGkl nmΠklΠnm þ R

� ij
�
∂sε

s

þ Gijkl

ffiffiffiffiffiffi
−g�

q
ð∂k∂l − Γ

�m
kl∂mÞ

∂sε
sffiffiffiffiffiffi

−g�
q ; ð73Þ

δεNi ¼ d
dt

ð_εi − Ni
∂sε

s − εisA∂sεAÞ
þ ð_εj − Nj

∂sε
s − εjsA∂sεAÞ∂jNi

− Nj
∂jð_εi − Ni

∂sε
s − εisA∂sεAÞ

þ 1

g
� g
�ij
∂j∂sε

s; ð74Þ

δωε
i ¼ εijA∂jωA; δωεA ¼ _ωA − ∂Aω; ð75Þ

δηωA ¼ ∂Aη; δηω ¼ _η: ð76Þ

By construction, the reducible gauge variation of the ADM
variables (72)–(74) with unrestricted gauge parameters εi

and εA should leave the action (34) invariant modulo
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integral of a total divergence. This fact can be verified by
explicitly varying the action:

δεS≡
Z

d4xðδεΠij
∂0g

�
ij − ∂0Πijδεg

�
ij − δεHTÞ

≡ −
Z

d4xεAεAij∂jτ̃i ðmoddivÞ: ð77Þ

Given reducibility of the secondary constraints (71), the
action is invariant indeed.
Once the reducible gauge symmetry with the second

order derivatives of unrestricted gauge parameters have
been derived for the UG Hamiltonian action, the question
appears about connection of these transformations with
4d-covariant reducible symmetry (3), (4). To answer this
question, we first establish correspondence between the
gauge parameters of the Hamiltonian form of gauge
symmetry εi; εA;ωA;ω; η [see (72), (74)–(76)] and their
4d counterparts [see (3), (4)]:

εi ¼ 1

2
εijkWjk; εA ¼ W0A; ð78Þ

ωA ¼ φA; ω ¼ φ0; η ¼ ψ : ð79Þ

Second, the Hamiltonian gauge transformations of the
ADM variables involve the canonical momenta Πij, while
the 4d covariant transformations do not. Replacing Πij by
their on-shell expressions (57) in the reducible Hamiltonian
gauge transformations, we recover explicitly covariant
transformations (3), (4) upon the above identification of
gauge parameters.

IV. HAMILTONIAN BFV-BRST FORMALISM
OF THE UG

As we have demonstrated in the previous section, the
constrained Hamiltonian formalism of UG admits two
alternative formulations for gauge symmetry. The first
one corresponds to the diffeomorphisms generated by
transverse vector fields (2), while another one corresponds
to the reducible gauge transformations (3) with the second
order time derivatives of unrestricted gauge parameters
being components of antisymmetric tensor. Existence of
the alternative parametrizations of this type is a property of
any system with unfree gauge symmetry [16]. Therefore,
one can associate two different BRST complexes with the
same action functional once it enjoys the unfree gauge
symmetry. Given the Hamiltonian and constraints, these two
complexes can be constructed along the usual lines of
the BFV-BRST formalism in the minimal sector [26], while
the specifics of unfree gauge symmetry reveals itself in the
nonminimal sector [16] involved in the gauge fixing. For
GR, the Hamiltonian BRST invariant action has been first
constructed by Fradkin and Vilkovisky in the unpublished
preprint [27]. The Fradkin-Vilkovisky action included the

four ghost vertex in the gauge fixing terms due to the field
dependence of the structure functions of involution rela-
tions. This work includes the BRST transformations, though
it does not explicitly present the BRST charge for GR. The
latter has been first explicitly presented in the article [28].
For the UG, the Hamiltonian BRST formalism has been
unknown for the irreducible explicitly Λ-dependent set of
constraints (38) and (40), and it is not known for the
reducible Λ-independent generating set of constraints (38)
and (59). In this section, we construct the Hamiltonian BFV-
BRST formalism for the UG in both pictures (the first one
with irreducible constraints generating the transverse diffeo-
morphisms, and the second one for the reducible constraints
generating the second order reducible gauge symmetry)
proceeding along the lines of the general method recently
proposed in Refs. [8,16].
Let us begin with introducing the canonical set of ghosts

for the irreducible set of constraints (38) and (40). The
canonical ghost pairs of the minimal sector are assigned to
all the constraints

fCi; P̄jg ¼ δij; ghCi ¼ −ghP̄i ¼ 1;

εðCiÞ ¼ εðP̄iÞ ¼ 1; ð80Þ

fC; P̄g ¼ 1; ghC ¼ −ghP̄ ¼ 1;

εðCÞ ¼ εðP̄Þ ¼ 1: ð81Þ

The original Hamiltonian action (34) involves the primary
constraints Ti and corresponding Lagrange multipliers Ni.
It does not explicitly involve the secondary constraint τ, nor
does it contain any independent Lagrange multiplier for τ.
This action enjoys the volume-preserving diffeomorphism
(51)–(54).
Let us discuss now the gauge fixing for the UG in

Hamiltonian BRST formalism. Once the four gauge param-
eters are constrained by one equation, to fix this gauge
symmetry one has to impose three independent gauge
conditions.5 We are going to project out the three indepen-
dent conditions from the Lorentz-covariant gauge of GR.
We start with generalized de Donder–Fock conditions of
GR [29]

Dμ ¼ ∂νðð−gÞΔgμνÞ ¼ 0; Δ ∈ R: ð82Þ

5Imposing three independent conditions we break explicit
Lorentz invariance. To preserve the Lorentz symmetry explicitly
one could consider four redundant gauge conditions. For the unfree
gauge symmetry corresponding procedure of inclusion the redun-
dant gauges are presented in Ref. [7]. In this article the general
scheme is exemplified by the de Donder–Fock condition which is
redundant for the linearized UG. For the nonlinear UG, the de
Donder–Fock conditions are independent, so this gauge cannot be
imposed. At the moment, no redundant Lorentz covariant gauge is
known for the full nonlinear UG.
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The Hamiltonian BFV-BRST formalism implies to impose the gauge conditions in the canonical form which is explicitly
resolved with respect to the time derivatives of Lagrange multipliers. Let us express the gauge conditions (82) in terms of
ADM variables (the special case Δ ¼ 1 is skipped) and resolve with respect to ∂0N; ∂0Ni:

D0

2ðΔ − 1ÞN2Δ−3ð−g�ÞΔ
¼ ∂0N − Nj

∂jN −
Δ

2ðΔ − 1ÞN
2ð−g�Þ−1

2Πþ 2Δ − 1

2ðΔ − 1ÞN∂jNj ¼ 0; ð83Þ

−
Di þ NiD0

N2Δ−2ð−g�ÞΔ
¼ ∂0Ni − N2

∂jg
�ji − Nj

∂jNi − Δð−g�Þ−1g�ijð2N∂jNð−g�Þ þ N2
∂jð−g�ÞÞ ¼ 0: ð84Þ

For the UG, these conditions are simplified upon
the account of the unimodularity condition ð−gÞ ¼
N2ð−g�Þ ¼ 1:

D0

2ðΔ − 1Þð−g�Þ32
¼ 1

2ðΔ − 1Þð−g�Þ32
× ð−Πþ ð−g�Þ∂jNjÞ ¼ 0; ð85Þ

−
Di þ NiD0

ð−g�Þ
¼ ∂0Ni − ð−g�Þ−1∂jg�ji

− Nj
∂jNi ¼ 0: ð86Þ

One can see that the spatial projection (86) of the de
Donder–Fock Lorentz invariant conditions (82) is an
admissible gauge, while the time component (85) does
not involve the time derivative of any Lagrange multiplier
in the case of UG. So, we choose the independent gauge
conditions

∂0Ni − χi ¼ 0; χi ¼ ð−g�Þ−1∂jg�ji þ Nj
∂jNi: ð87Þ

This gauge does not depend on momenta, unlike the
complete de Donder–Fock conditions (83) in the GR.
Gauge conditions (87) imply to introduce Lagrange
multipliers πi being canonically conjugate to Ni,

fNi; πjg ¼ δij; ghNi ¼ −ghπi ¼ 0;

εðNiÞ ¼ εðπiÞ ¼ 0: ð88Þ

Given the canonical pairs of the above Lagrange multi-
pliers, we introduce corresponding ghosts of the non-
minimal sector,

fPi; C̄jg ¼ δij; ghPi ¼ −ghC̄i ¼ 1;

εðPiÞ ¼ εðC̄iÞ ¼ 1: ð89Þ

Since no gauge condition is imposed being paired with the
“super-Hamiltonian” constraint τ (40), then the correspond-
ing Lagrange multipliers and nonminimal sector ghosts are

not introduced. Given the involution relations, Lagrange
multipliers, and ghosts, the complete BRST charge reads

Q ¼
Z

d3xðTiCi þ τC − P̄iCj
∂jCi − P̄∂iðCiCÞ

þ P̄ið−g�Þ−1g�ijC∂jCþ πiPiÞ: ð90Þ

Notice that the cosmological constant Λ is explicitly
involved in this charge through the secondary constraint
τ defined by relation (40). This means the class of
admissible fields is assumed restricted by the boundary
conditions consistent with particular Λ.
Let us discuss the BRST invariant extension of the

Hamiltonian. In the minimal ghost sector, given the
involution relations (49) and (50), the BRST invariant
Hamiltonian of the UG reads

H ¼
Z

d3xðH0ðϕÞ − P̄∂iCi − P̄ið−g�Þ−1g�ij∂jCÞ; ð91Þ

where H0ðϕÞ is the original Hamiltonian (35). This
Hamiltonian is BRST-exact modulo the additive constant
Λ included in the secondary constraint (40),

H ¼
Z

d3xΛþ
�Z

d3xP̄;Q

�
: ð92Þ

At the level of BRST formalism, this corresponds to the
earlier noticed fact that the Hamiltonian of UG (35)
reduces on shell [given the secondary constraint (40)] to
the constant defined by the field value at single point, or at
asymptotics, rather than by the entire Cauchy surface.
Since this complex treats Λ as the predefined parameter, it
does not have the BRST cohomology element correspond-
ing to energy.6

Now, let us construct the complete gauge fixed BRST-
invariant Hamiltonian. Introduce the gauge fermion which
includes independent gauges (87)

6This contrasts to the alternative BRST complex associated
with the reducible form of the volume preserving diffeomor-
phisms. This issue is considered in the final part of this section.
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Ψ ¼
Z

d3xðC̄iχ
i þ P̄iNiÞ: ð93Þ

Given the gauge fermion Ψ and the BRST-invariant Hamiltonian of the minimal sector (91), the complete gauge-fixed
BRST-invariant Hamiltonian reads

HΨ ¼ Hþ fQ;Ψg

¼
Z

d3xfH0ðϕÞ þ TiNi þ πiχ
i

− P̄∂iCi − P̄ið−g�Þ−1g�ij∂jCþ P̄∂iðCNiÞ þ P̄ið∂jCiNj − Cj
∂jNiÞ

− C̄ið−g�Þ−1ð2∂jg�ij∇
�
kCk þ ∂jð∇

� j
Ci þ∇� i

CjÞÞ
þ C̄ið−g�Þ−1ð∂jg�ijð−g�Þ−1ΠC − 2∂jðð−g�Þ−1ΠijCÞ þ ∂jðg�ijð−g�Þ−1ΠCÞÞ
þ C̄ið∂jNiPj þ Nj

∂jPiÞ þ P̄iPig: ð94Þ

Let us notice the two distinctions of the UG Hamiltonian
HΨ from the long known GR counterpart [27]. First, the
UG Hamiltonian includes the term with the original
Hamiltonian H0ðϕÞ (35) while in the GR the analogous
term is absorbed by the super-Hamiltonian constraint
multiplied by the lapse function N being an independent
variable. In the UG, we do not have this variable, while the
super-Hamiltonian term can be reduced to the constant Λ
by shifting the gauge Fermion Ψ ↦ Ψ −

R
d3xP̄ [cf. (92)].

In the GR, the Π-squared contribution cannot be eliminated
from the Hamiltonian HΨ by any admissible choice of the
gauge fermion. The second distinction concerns the gauge
fixing terms and related ghosts. In the UG, the relativistic
gauge (87), being the spatial projection of the Lorentz
invariant condition (82), does not result in the four ghost
vertices unlike the GR counterpart [27].
To summarize this version of the Hamiltonian BFV-BRST

formulation of the UG, we see that it corresponds to the fixed
asymptotics of the fields and explicitly involves the corre-
sponding cosmological constant as a predefined parameter.
It differs, however, from the BFV formulation of GR by the
content of the phase space, and by the structure of the
BRST-invariant gauge-fixed Hamiltonian. This version of
the BFV-BRST formalism suits well to the interpretation of
the UG as the system with the fixed field asymptotics such
that it corresponds to a certain predefined value of the
cosmological constant. If the gravity could be quantized
beyond the formal level (our consideration is formal)
proceeding from this version of the BRST formalism, the
cosmological constant would be involved in the quantum
theory just as a numerical parameter whose value is fixed
from the outset. This leaves no room for quantum transitions
between the states with different values of Λ.
Let us construct now an alternative BFV-BRST

formalism which proceeds from the reducible set of the

secondary constraints (59). As we shall see, this formal-
ism does not assume to fix the field asymptotics, nor does
it explicitly involve the cosmological constant as the
predefined parameter.
In the construction of the formalism, we follow the

general scheme of the article [16] concerning the BFV-
BRST formalism with reducible secondary constraints.
This scheme differs from the classical BFV construction
[26] by the nonminimal sector, including ghosts, Lagrange
multipliers, and gauge conditions.
Given the irreducible primary constraints (38), and

reducible secondary ones (59) and (71), we introduce the
ghosts of the minimal sector,

fCi; P̄jg ¼ δij; ghCi ¼ −ghP̄i ¼ 1;

εðCiÞ ¼ εðP̄iÞ ¼ 1; ð95Þ

fCi; P̄jg ¼ δij; ghCi ¼ −ghP̄i ¼ 1;

εðCiÞ ¼ εðP̄iÞ ¼ 1; ð96Þ

fCA; P̄Bg ¼ δBA; ghCA ¼ −ghP̄A ¼ 2;

εðCAÞ ¼ εðP̄AÞ ¼ 0; ð97Þ

fC; P̄g ¼ 1; ghC ¼ −ghP̄ ¼ 3;

εðCÞ ¼ εðP̄Þ ¼ 1: ð98Þ

The shift functions Ni, being the Lagrange multipliers
to the primary constraints, are complemented by the
conjugate momenta

fNi; πjg ¼ δij; ghNi ¼ −ghπi ¼ 0;

εðNiÞ ¼ εðπiÞ ¼ 0: ð99Þ
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These momenta are to serve as Lagrange multipliers to the
irreducible gauge conditions (87).
The canonical conjugate pairs of ghosts are introduced

for the irreducible gauge conditions

fPi; C̄jg ¼ δij; ghPi ¼ −ghC̄i ¼ 1;

εðPiÞ ¼ εðC̄iÞ ¼ 1: ð100Þ

As far as the primary constraints are concerned, the
nonminimal sector is constructed following the pattern
of the irreducible gauge symmetry and the gauge fixing
without redundancy.
Now, we turn to the nonminimal sector related to the

reducible secondary constraints (59). Neither are Lagrange
multipliers present in the theory for these constraints nor
are gauge conditions imposed being paired with these
constraints. So, the nonminimal sector of the secondary
constraints does not include the canonical pairs of Lagrange
multipliers, nor are introduced the ghosts related to the gauge
conditions. Once the secondary constraints are reducible,
they generate the redundant gauge symmetry (72)–(76) of
the original variables. This leads to the ghosts for ghosts in
the minimal sector, and this requires one to impose the gauge
conditions on the ghosts related to the secondary constraints
and their reducibilities. These gauge conditions, in their own
turn, require corresponding extra ghosts. These are intro-
duced following the pattern of redundant gauge conditions in
the sector of the gauge of the ghosts, while the Lagrange
multipliers and related ghosts are not introduced in this
sector.
The nonminimal sector ghosts of the first reducibility of

secondary constraints read

fPA; C̄
Bg ¼ δBA; ghPA ¼ −ghC̄A ¼ 2;

εðPAÞ ¼ εðC̄AÞ ¼ 0: ð101Þ

Also Lagrange multipliers are introduced to the first level
reducibility and corresponding gauge conditions imposed
on the original ghosts for reducible secondary constraints,

fλA; πBg ¼ δBA; ghλA ¼ −ghπA ¼ 1;

εðλAÞ ¼ εðπAÞ ¼ 1: ð102Þ

A similar set of the nonminimal sector ghosts and multi-
pliers is introduced at the second reducibility level,

fP; C̄g ¼ 1; ghP ¼ −ghC̄ ¼ 3;

εðPÞ ¼ εðC̄Þ ¼ 1; ð103Þ

fλ; πg ¼ 1; ghλ ¼ −ghπ ¼ 2;

εðλÞ ¼ εðπÞ ¼ 0: ð104Þ

The second reducibility also requires one to introduce
the extra ghosts

fλð10Þ; πð10Þg ¼ 1; ghλð10Þ ¼ −ghπð10Þ ¼ 1;

εðλð10ÞÞ ¼ εðπð10ÞÞ ¼ 1; ð105Þ

fPð10Þ; C̄ð1
0Þg ¼ 1; ghPð10Þ ¼ −ghC̄ð10Þ ¼ 2;

εðPð10ÞÞ ¼ εðC̄ð10ÞÞ ¼ 0: ð106Þ

Given the ghost and Lagrange multiplier spectrum,
constraints, and related null vectors, the complete BRST
charge for the reducible gauge symmetry of UG reads

Q ¼
Z

d3x

�
TiCi þ τ̃iCi þ P̄iε

ijA
∂jCA þ P̄A

∂AC

− P̄iCj
∂jCi − P̄iCi

∂jCj þ P̄ið−g�Þ−1g�ij∂kCk∂j∂lCl

þ 1

2
P̄AεAijCiCj

∂kCk þ
1

6
P̄εijkCiCjCk

∂lCl

þ πiPi þ πAPA þ πP þ πð10ÞPð10Þ
�
; ð107Þ

where εijk is totally antisymmetric and takes values

f0; 1;−1g, and εijkεksm ¼ −ðδisδjm − δimδ
j
sÞ.

This BRST charge involves the ghost terms up to the
fifth order even though the constraint algebra is closed [see
involution relations (63)–(65)]. These higher order ghost
terms are related to the off-shell disclosure of the algebra of
reducible constraints: the null vectors are involved in the
compatibility conditions for the structure functions of the
involution relations.
In the minimal sector, the BRST invariant extensionH of

the original UG’s Hamiltonian H0 reads

H ¼
Z

d3x

�
H0ðϕÞ − P̄iCi − P̄ið−g�Þ−1g�ij∂j∂kCk

þ 1

2
P̄AεAijCiCj þ 1

6
P̄εijkCiCjCk

�
: ð108Þ

Gauge fixing implies to involve the nonminimal sector
through the gauge fermion Ψ,

HΨ ¼ Hþ fQ;Ψg: ð109Þ

We suggest to choose the gauge Fermion in the following
way:
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Ψ ¼
Z

d3xðC̄iχ
i þ P̄iNi

þ ð−g�Þ−1C̄AεAji∇
� j
Ci þ P̄AλA

þ ð−g�Þ−1C̄∇� A
CA þ P̄λ

− ð−g�Þ−1∇� A
C̄ð1

0ÞλA þ C̄A∇� Aλ
ð10Þ

− C̄Pð10ÞÞ ð110Þ

This choice breaks the spatial reparametrization
invariance in the sector of original variables (as the de
Donder–Fock conditions χi are involved), while it
involves ghosts and ghost for ghosts in a reparametriza-
tion invariant way.
Given the gauge fermion, the gauge-fixed BRST invari-

ant Hamiltonian of UG reads

HΨ ¼
Z

d3x

�
H0ðϕÞ þ TiNi þ πiχ

i

þ ðεAji∇� jP̄i − ð−g�Þ−1∇� A
πð10ÞÞλA −∇� AP̄Aλ

þ πAðð−g�Þ−1εAji∇
� j
Ci þ∇� Aλ

ð10ÞÞ þ πðð−g�Þ−1∇� A
CA − Pð10ÞÞ

− P̄iðCi − Ni
∂kCkÞ − P̄ið−g�Þ−1g�ij∂j∂kCk þ P̄ið∂jCiNj − Cj

∂jNiÞ
− C̄ið−g�Þ−1ð∂jg�ijX þ ∂jXijÞ þ C̄ið∂jNiPj þ Nj

∂jPiÞ

þ C̄Aðð−g�Þ−1ðδBAΔ
� − ∇� B∇� AÞCB þ∇� APð10ÞÞ þ C̄ð−g�Þ−1Δ

�
C

þ P̄iPi þ ðP̄A − ð−g�Þ−1∇� A
C̄ð1

0ÞÞPA þ P̄P

þ 1

2
P̄AεAijðCiCj − 2CiNj

∂kCkÞ − C̄Að−g�Þ−1εAji∇
� jðCi

∂kCkÞ

þ C̄Að−g�Þ−1εAji
�
X∇� j

Ci þ Xjk∇� kCi −∇� j
Xi

kCk þ
1

2
∇� j

XCi
�
− C̄A∇� AXλð1

0Þ

−
�
∇� A

C̄ð1
0ÞX þ∇� iC̄ð1

0ÞXiA þ 3

2
C̄ð1

0Þ∇� A
X

�
ð−g�Þ−1λA

− C̄ð−g�Þ−1
�
X∇� A

CA þ∇� iðXiACAÞ −
1

2
∇� A

XCA

�

þ 1

6
P̄εijkðCiCjCk − 3CiCjNk

∂lClÞ þ
1

2
C̄ð−g�Þ−1εAij∇

� AðCiCj
∂kCkÞ

�
; ð111Þ

where Δ
� ¼ ∇� i∇

� i
and the following abbreviation is used:

Xij ¼ ∇� i
Cj þ∇� j

Ci þ ð−g�Þ−1ð2Πij − g
�ijΠÞ∂kCk;

X ¼ g
�
ijXij ¼ 2∇� kCk − ð−g�Þ−1Π∂kCk: ð112Þ

Covariant derivatives in (110), (111), and (112) are defined
as for tensor densities of corresponding weight

pðg�ij;ΠijÞ ¼ pðCi; P̄iÞ ¼ pðCA; P̄AÞ
¼ pðC; P̄Þ ¼ ð0; 1Þ;

pðCi; P̄iÞ ¼ ð1; 0Þ;
pðNi; πiÞ ¼ pðPi; C̄iÞ ¼ pðλA; πAÞ ¼ pðPA; C̄AÞ

¼ pðλ; πÞ ¼ pðP; C̄Þ ¼ ð−1; 2Þ;
pðλð10Þ; πð10ÞÞ ¼ pðPð10Þ; C̄ð1

0ÞÞ ¼ ð−2; 3Þ;
pðð−g�Þ12Þ ¼ pðεijkÞ ¼ −pðεijkÞ ¼ 1: ð113Þ
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As we have seen in this section, the same classical
Hamiltonian action of the UG (34) and (35) gives rise to
two different Hamiltonian BRST formalisms. The first one
involves the irreducible secondary constraints (40). Corre-
sponding constraint algebra generates the unfree gauge
symmetry with the gauge parameters obeying the trans-
versality condition (see in Sec. III). The irreducible secon-
dary constraints (40), and hence the BRST charge, explicitly
involve the cosmological constant as the parameter prede-
fined by the field asymptoptics. So, the cosmological
constant is not a physical quantity in this setup as no BRST
cocycle is associated with Λ. Another BRST complex,
being based on the reducible set of secondary constraints
corresponds to the reducible form of the volume preserving
diffeomorphisms (see in Sec. III). The reducible constraints
(59) do not explicitly involve Λ. Corresponding physical
quantity τ is a cocycle of the local BRST complex generated
by the BRST charge (107). So, this BRST complex captures
the UG dynamics with various cosmological constants. If
the gravity could be quantized beyond the formal level (we
do not discuss here the notorious problem of renormalizing
quantum gravity) proceeding from this BRST formulation,
this would mean that the initial quantum state could be a
mixture of various cosmological constants, and the quantum
transitions are admissible between the states with different
Λ’s. The choice between these two inequivalent BRST-
complexes depends on the setup of the physical problem. If
the asymptotics of the fields is predefined (hence, Λ is fixed
from the outset), the first option has to be chosen. If various
asymptotics are admitted for the metrics, the second option
is chosen where the cosmological constant is BRST co-
cycle, and hence it can enjoy dynamics at quantum level.

V. CONCLUSION

Let us briefly summarize the results and discuss further
perspectives.
For the UG, we have found the Hamiltonian form of the

volume preserving diffeomorphism transformations with
the gauge parameters restricted by the transversality equa-
tions. We also find the Hamiltonian counterpart of the
reducible form of UG gauge symmetry with the unrestricted
gauge parameters (3) enjoying gauge symmetry of their
own. Proceeding from these two alternative Hamiltonian
descriptions of the volume preserving diffeomorphisms, we
construct two alternative Hamiltonian BFV-BRST formal-
isms for the UG. These constructions are worked out along
the lines of the recent article [16] which formulates the
Hamiltonian description for a general system with unfree

gauge symmetry. Let us mention some specifics of these
BFV-BRST formalisms. The first of them, being related to
the unfree form of the gauge symmetry, explicitly involves
the cosmological constant Λ. This implies to fix the
asymptotics of the fields, and the constant Λ is a fixed
parameter from the viewpoint of this complex rather than an
element of the cohomology group. Also it is interesting to
note that this form of the UG Hamiltonian BFV-BRST
formalism, being very close to the GR analog, admits such a
projection of the de Donder–Fock condition that does not
result in the four ghost vertex in the gauge fixed BRST
invariant Hamiltonian, while for the GR this higher-order
ghost vertex is inevitable for any known relativistic gauge
fixing. The second form of the BFV-BRST Hamiltonian
formalism corresponds to the reducible form of the UG
gauge symmetry with unrestricted gauge parameters (3). In
this picture, the BRST charge does not explicitly involve the
cosmological constant, nor does the BRST invariant
Hamiltonian. From the standpoint of the latter complex,
the cosmological constant is a nontrivial element of the
BRST cohomology group. This corresponds to the inter-
pretation of Λ as the “global degree of freedom” while the
former BRST complex treats the constant as a fixed
parameter. In the BV formulation of the UG with the
reducible parametrization of gauge symmetry (3), the
cosmological constant is treated as the element of the local
BRST cohomology group in the recent work [30].
Let us mention that any case of unfree gauge symmetry

leads to the “global conserved quantities” [9,16,31]. Equally
uniform for any unfree symmetry is the existence of an
alternative form of gauge transformations with unrestricted
gauge parameters enjoying the gauge symmetry of their
own [16]. Various modifications of the UG are discussed in
the literature (see [24,25,32,33] and references therein)
where the cosmological constant, or even the Newtonian
one, arises as the global conserved quantity. If one is going
to treat these constants as the degrees of freedom, not as the
parameters fixed by the predefined asymptotics of the fields,
the reducible form of the gauge symmetry seems preferable.
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