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We study black hole binary mergers in certain cubic Horndeski theories of gravity, treating them fully
nonlinearly. In the regime of validity of effective field theory, the mismatch of the gravitational wave strain
between Horndeski and general relativity (coupled to a scalar field) can be as large as 10%–13% in the
Advanced LIGO mass range. The initial data and coupling constants are chosen such the theory remains in
the weakly coupled regime throughout the evolution. In all cases that we have explored, we observe that the
waveform in the Horndeski theory is shifted by an amount much larger than the smallness parameter that
controls the initial data. This effect is generic and may be present in other theories of gravity involving
higher derivatives.

DOI: 10.1103/PhysRevD.105.124004

I. INTRODUCTION

Detection of gravitational waves produced in stellar-mass
black hole binary mergers have revolutionized both the
experimental and theoretical studies of gravity. On the one
hand, the direct detection of gravitational waves allows for
the possibility to perform new tests of general relativity (GR)
in the strong field regime1 and, perhaps, observe deviations
from the established theory. To do so, one needs to be able to
compute theoretical waveforms from black hole binary
mergers in alternative theories of gravity, see e.g., [1].
This necessity has prompted a lot of activity in recent years
to study dynamics of black holes in such theories. On the
other hand, the current experimental data suggests that the
potential deviations from GR are small. Whilst it is unlikely
that the present generation of gravitational wave observato-
ries can detect such deviations, the future third generation of
detectors and/or the space based detectors will provide more
data andwith higher precision. Therefore, it is not impossible
that even small deviations from GR can be detected in the
future. However, there is a lack of full gravitational wave-
forms in alternative theories of gravity; this implies some
deviations from GR may be undetected.
To theoretically compute waveforms produced in the

strong field regime one needs to work with a theory that
has a well-posed initial value problem. This is not an issue if
the corrections to GR are treated perturbatively. In fact, in
recent years, significant progress has beenmade in studies of
the strong field dynamics of certain alternative theories of
interest using this approach [2–8]. However, it is well known

that perturbation theory may break down over sufficiently
long times due to secular effects.2 In addition, perturbation
theory may miss certain nonperturbative effects which, even
if very small, may be detectable over sufficientlymany orbits
of a binary, as future generations of gravitational wave
detectors expect to be able to observe. Therefore, it is of
interest to treat alternative theories of gravity fully non-
linearly and uncover some of their (perhaps) unique physical
effects that may break certain degeneracies.
In this article, when we discuss alternative theories of

gravity, we refer to the ‘strongly-coupled regime’ of the
theory as the regime in which the new terms in the
equations of motion that modify GR are comparable (or
even larger) to the original (two-derivative) terms.
Conversely, by the ‘weakly-coupled regime’ we will mean
the regime of the theory in which the modifications to the
GR equations of motion are small. This is compatible with
still being in the strong field regime of gravity. It is in the
weakly coupled regime that alternative theories of gravity
make sense as low-energy effective field theories (EFTs).
Up until recently, only the so-called scalar-tensor and the

scalar-vector-tensor theories of gravity had been studied fully
nonlinearly [10–13]. The reason is that for this class of
theories, it is straightforward to findawell-posed formulation.
For other, more general, classes of theories involving higher
derivatives and yet second-order equations ofmotion, such as
Horndeski orLovelock theories, finding a suitablewell-posed
formulation turns out to be far more difficult. In fact, it has
been shown that weak hyperbolicity can fail in Lovelock [14]
or Horndeski [15–21] theories if the spacetime curvature and/
or the derivatives of the scalar field become too large, i.e., in*p.figueras@qmul.ac.uk

†t.e.franca@qmul.ac.uk
1In this article, by the ‘strong field regime’we mean the regime

in which the nonlinearities of the theory are important.

2There are recent interesting attempts to resum the perturbative
series and hence alleviate these secular effects [9].
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the strongly-coupled regime. In a recent breakthrough,
[22,23] showed that these theories can be strongly hyperbolic
in certain modified generalized harmonic coordinates, also in
theweakly-coupled regime, i.e.,when thedeviations fromGR
are small. These theoretical developments have led to the first
studies of the fully nonlinear dynamics of black holes in a
particular subset of these theories; namely, scalar Einstein-
Gauss-Bonnet theory [24,25].
A more general approach to find well-posed formulations

of general alternative theories of gravity has been proposed
by [26,27]. This proposal is inspired by the Müller-Israel-
Stewart (MIS) formulation of relativistic viscous hydro-
dynamics [28–31], and in principle can work even for
theories with higher-than-second-order equations of motion,
as recently shown in [32] for a certain eight-derivative theory
of gravity and in [33,34] for scalar-tensor theories of gravity,
albeit with two-derivative equations of motion.
We should remark that even if a well-posed formulation

can be found for a certain alternative theory of gravity, it is
possible that during the dynamical evolution of certain
classes of initial data, the hyperbolicity of the equations of
motion is lost due to strong coupling effects. In the context
of Einstein-dilaton-Gauss-Bonet and Horndeski theories, it
has been shown that this loss of hyperbolicity is due to
Tricomi or Keldysh transitions, in which characteristic
speeds go to zero or diverge in finite time respectively,
effectively changing the character of the scalar equation of
motion from hyperbolic to parabolic or elliptic, after which
time evolution cannot proceed [15–19,21].
Therefore, given these recent theoretical developments, it

is the right time to start probing the nonlinear regime of
alternative theories of gravity and infer predictions for black
hole binary mergers. Building on our previous work [21],
hereinafter referred to as Paper I, in this paper we study black
hole binary mergers in cubic Horndeski theories. Horndeski
theories are themost general scalar-tensor theories of gravity
with second order equations of motion arising from a
diffeomorphism invariant action in four spacetime dimen-
sions [35,36]. Lettingϕ be a real scalar field, then the general
action for the Horndeski theories is given by

S ¼ 1

16πG

Z
dx4

ffiffiffiffiffiffi
−g

p ðL1 þ L2 þ L3 þ L4 þ L5Þ; ð1Þ

with

L1¼RþX−VðϕÞ;
L2¼G2ðϕ;XÞ;
L3¼G3ðϕ;XÞ□ϕ;

L4¼G4ðϕ;XÞRþ∂XG4ðϕ;XÞ½ð□ϕÞ2−ð∇μ∇νϕÞð∇μ∇νϕÞ�;
L5¼G5ðϕ;XÞGμν∇μ∇νϕ

−
1

6
∂XG5ðϕ;XÞ½ð□ϕÞ2−3□ϕð∇μ∇νϕÞð∇μ∇νϕÞ

þ2ð∇μ∇νϕÞð∇ν∇ρϕÞð∇ρ∇μϕÞ�; ð2Þ

where R and Gμν are the Ricci scalar and the Einstein tensor
respectively constructed from the spacetime metric gμν,
X ≔ − 1

2
ð∂ϕÞ2 and VðϕÞ is an arbitrary potential for the

scalar field, which may include a mass term. HereGiðϕ; XÞ,
i ¼ 2;…; 5 are arbitrary functions of their arguments. In this
notation,L1 is the standard Lagrangian corresponding to GR
coupled to a scalar field with potential VðϕÞ, and Li,
i ¼ 2;…; 5, can be interpreted as higher-derivative correc-
tions to GR in thematter sector, in this case comprised solely
by a scalar fieldϕ. The cubicHorndeski theories are given by
setting G4 ¼ G5 ¼ 0 in (1). The reason why we consider
these theories in the present paper and in Paper I is because
these theories are known to be well posed in the standard
gauges used in numerical GR [37]. As we previously
mentioned, the general case has also been shown be well
posed in [22,23], but in a modified version of the generalized
harmonic coordinates.While herewe only consider the cubic
case for simplicity and convenience, one may expect that
some of our conclusions hold for more general Horndeski
theories.
In Paper I we studied gravitational collapse of a massless

scalar in spherical symmetry in certain cubic Horndeski
theories3 given by the choices

G2ðϕ; XÞ ¼ g2X2; ð3Þ

G3ðϕ; XÞ ¼ g3X; ð4Þ

where g2 and g3 are arbitrary dimensionful coupling
constants that we can tune. This particular choice of G2

is well motivated by EFT, since it is the leading order
correction to GR minimally coupled to a scalar field [38].
On the other hand, this choice of G3 is a matter of
simplicity and convenience. Both choices have been
extensively considered in the literature (see e.g., [39–42]
and references therein). One of the main results of Paper I
was to identify the region in the space of initial conditions
and couplings such that the solution in the domain of
dependence of the initial data surface remained in the
weakly-coupled regime of the theory on and outside black
hole horizons if any are present, see Sec. II for more details.
This is relevant in the context of EFT to justify that one can
consistently keep only the leading order terms beyond GR,
i.e., Horndeski, and neglect the otherwise (presumably)
infinite number of higher-derivative corrections. At the
same time, it is consistent to treat the theory fully non-
linearly, as we do here.
In the present paper we consider the same theories as in

Paper I, namely (3)–(4). For the initial data, we choose two
boosted lumps of scalar field, with amplitudes chosen so
that they quickly collapse into black holes, thus forming a

3Whilst in this paper the initial data was chosen to be
spherically symmetric, our code did not assume spherical
symmetry.
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black hole binary. Whilst most of the scalar field is
absorbed by the black holes during the initial collapse
stage, a scalar cloud remains in their vicinity throughout the
lifetime of the binary. This scalar cloud can interact with
itself and with the black holes and, over sufficiently long
times, give rise to interesting effects. Furthermore, since
spacetime curvature can source the scalar field via the
Einstein equations, it is conceivable that when the space-
time curvatures are large, i.e., in the merger phase of a
binary, one can observe sizeable deviations from GR. We
mostly consider massive scalar fields and we restrict
ourselves to a choice of potential VðϕÞ ¼ 1

2
m2ϕ, where

m is the mass of the scalar field. The reason is that the
corresponding scalar cloud can remain in the vicinity of the
black holes for longer and hence, there is a greater chance
of producing larger deviations from GR. The initial
separations and velocities of the scalar lumps are tuned
so that the black holes that form describe an eccentric
binary that merges in five orbits. As we shall see in Sec. III,
eccentric binaries seem to be particularly well suited to
detect small deviations from GR since the system enters the
strong field regime in every close encounter of the binary
and not only in the merger phase. It is not clear if circular
binaries would also exhibit a build up of the deviations
from GR during the inspiral phase and not only in the
merger phase. If they do, then one should expect an even
larger deviations from GR. We leave this interesting
problem for future work.
Finally, we choose the coupling constants g2 and g3 such

that on the initial data surface, the solution lies well inside
the weakly-coupled regime and we monitor that the
solution remains in this regime throughout the evolution;
this is necessary to ensure the consistency of the trun-
cated EFT.
Note that for the cubic Horndeski theories, the natural

frame to consider is the Einstein frame. This would not be
the case had we considered more general Horndeski
theories such as L4 [43]. On top of this, since massive
scalar fields cannot propagate to the wave zone, the
waveforms presented in Sec. III would look the same in
the Einstein and Jordan frames, respectively.
The rest of the paper is organized as follows: In Sec. II we

describe our methods, numerical techniques and construc-
tion of suitable initial data. Section III contains the main
results of the paper. In Sec. III A, we present the waveforms
computed in various cubic Horndeski theories and we
compare them to the waveforms obtained in GR coupled
to a scalar field. In Sec. III B we discuss the properties of the
scalar cloud surrounding the black holes and in Sec. III Cwe
show that in our simulations, the weak coupling conditions
are satisfied throughout the evolution of the binaries. In
Sec. III D we analyze the mismatch between GR and
Horndeski. In Sec. IV we summarize the main results of
the paper and we discuss future directions for research. The
convergence tests are presented in Appendix.

We adopt the following notation: Greek letters
(μ; ν; ρ;…) to denote full spacetime indices and Latin
letters (i; j; k;…) for purely spatial indices. We adopt
the mostly plus metric signature and G ¼ c ¼ 1. Mass
scales are with respect to the Arnowitt-Deser-Misner
(ADM) mass of the spacetime.

II. METHODS

A. Equations of motion

The equations of motion for the theories that we
consider in this article are given by Eqs. (2.2)–(2.3) in
Paper I. In our numerical implementation, we write these
equations in the usual (3þ 1)- conformal decomposition
form and use the CCZ4 formulation of the Einstein
equations [44,45] (see also [46]). We use the replacement
κ1 → κ1=α and fix the constraint damping parameters to
κ1 ¼ 0.1, κ2 ¼ 0, κ3 ¼ 1.4 The matter contribution to the
Einstein equations as well as the scalar field equations of
motion written in the 3þ 1 form can be found in Appendix
of Paper I.

B. Initial data

For initial data, we consider the superposition of two
equal boosted scalar field bubbles, similarly to what was
done in [48]. Each individual scalar bubble is spherically
symmetric and has some ingoing momentum, which
prompts a quick collapse into a black hole without any
outgoing scalar wave while leaving some leftover dynami-
cal scalar hair surrounding the black hole. Whilst the
individual scalar bubbles satisfy the Hamiltonian and
momentum constraints, the superposition of the two does
not; however, we place them sufficiently far apart so that
the initial constraint violations due superposing the two
scalar bubbles are sufficiently small. Further details and
explicit form of the constraint satisfying scalar bubble
profiles used can be found in Paper I.
For binary systems, we boost the individual profiles with

a Galilean boost with velocity v⃗. This can be implemented
in the scalar momentum by adding to it (with the appro-
priate sign) the Galilean boost5

Πðt; x⃗Þjt¼0 ¼ Πoriginalðt; x⃗Þjt¼0 −
1

α
v⃗ · ∇⃗ϕðt; x⃗Þjt¼0; ð5Þ

4This is the default in the code used, namely GRChombo, and
it greatly improves the stability of black hole spacetimes, see [47]
for detailed studies.

5This follows simply from a transformation from unboosted
to boosted coordinates ðt0; x⃗0Þ → ðt ¼ t0; x⃗ ¼ x⃗0 þ v⃗t0Þ. With
the usual decomposition of the unit normal into the lapse
function and shift vector, nμ ¼ ð1α ;− βi

αÞ, then Π ¼ nμ∇μϕ ¼
1
α ð ∂∂t − βi ∂

∂xiÞϕ. The shift transforms as a vector under Galilean
boosts, whereas ∂

∂t ¼ ∂
∂t0 − vi ∂

∂x0 i0 , resulting in Eq. (5).
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where α is the lapse function and Π ¼ Lnϕ ¼ nμ∇μϕ is the
scalar momentum, where nμ is the unit normal 4-vector to
spatial hypersurfaces. Such a boost is valid for small
velocities and avoids the obstacle of having to evaluate
the initial data at different times for distinct points, as one
would need to do to implement a proper Lorentz boost.
Doing the latter would be unfeasible for nonstatic ini-
tial data.
To superpose the initial data of two scalar bubbles, A and

B, boosted in opposite directions, we use

ψ ¼ ψA þ ψB − 1;

Kij ¼ γmðiðKA
jÞnγ

nm
A þ KB

jÞnγ
nm
B Þ;

ϕ ¼ ϕA þ ϕB;

Π ¼ ΠA þ ΠB; ð6Þ

where ψ is the conformal factor associated with the induced
metric on the initial data surface, γij, so that γij ¼ ψ4γ̃ij and
γ̃ij is flat. The initial data corresponding to each of the
individual scalar bubbles is conformally flat, so
γ̃ij ¼ γ̃Aij ¼ γ̃Bij ¼ δij, and satisfies KA ¼ KB ¼ 0. For K ¼
0 and a conformally flat spatial metric, the condition forKij

reduces to Ãij ¼ ÃA
ij þ ÃB

ij, where Ãij is the conformal
traceless part of the extrinsic curvature given by
Ãij ¼ ψ−4Kij. In our simulations, we initialize the lapse
and shift vector as α ¼ 1 and βi ¼ 0.
Motivated by the similarity with previous studies of

binary black holes mergers in scalar field environments, we
also tried an alternative way of constructing initial data by
superposing scalar bubbles as suggested in [49]. The
construction of [49] produces initial data which is physi-
cally different from (6) but, for the large separations
between the initial scalar bubbles as in our paper, the
amounts of initial constraint violations are comparable.
Furthermore, the evolution of this initial data leads to
qualitatively similar results after one orbit. Therefore,
henceforth we will only discuss the evolution of the
binaries constructed using (6).
Using the notation of Paper I, we use initial scalar

bubbles with a profile

ϕðrÞ ¼ A

�
r2

r20 þ 2ω2

�
e−

1
2
ðr−r0ω Þ2 ; ð7Þ

where r is the Euclidean distance from the center of the

bubble, ðA; r0;ωÞ ¼ ð0.21; 5;
ffiffi
1
2

q
Þ and a scalar mass

parameter m ¼ 0.5. For an isolated scalar bubble, this
configuration has an ADM mass of approximately
M ≈ 0.53. The mass term in the scalar potential accounts
for about 10% of the total ADM mass, while the con-
tribution of the Horndeski terms for a coupling of g2 ¼ 0.02
or g3 ¼ 0.05 is of order Oð10−5Þ.

The binaries with the eccentric orbits presented in this
paper are obtained by choosing a “large” initial separation6

between the centers of the scalar bubbles of D ¼ 40 and an
individual scalar boost velocity of jv⃗j ¼ 0.17; after the
initial gravitational collapse, the resulting black holes have
an initial velocity of 0.042. We calculate numerically that
the superposed data has a total ADM mass of
M ¼ 1.0346� 0.0001. The values quoted above are in
code units, and the mass parameter m and couplings g2, g3
will be referred without units henceforth (e.g., g2 ¼ 0.02 as
opposed to g2 ∼ 0.0214 M−2 after taking into account that
the total mass is M ¼ 1.0346).

C. Weak coupling conditions

In order for the Horndeski theories to be valid EFTs, the
basic requirement is that corrections to the two-derivative
GR terms in the equations of motion on and outside black
hole horizons (if there are any in the spacetime) should be
small at all times. Inside black holes both GR and the
Horndeski theories break down but classically this region is
inaccessible to external observers. Therefore, in practice,
we only monitor the weak coupling conditions (WCCs) on
and outside black hole horizons.7

For the cases considered in this paper, the WCCs
translate into the requirement (see Paper I for further
details),

jg2L−2j ≪ 1; jg3L−2j ≪ 1; ð8Þ

where L is the typical length scale estimate for the system.
This can be computed as

L−1 ¼ maxfjRαβμνj12; j∇μϕj; j∇μ∇νϕj12; mg; ð9Þ

where Rαβμν is the spacetime Riemann tensor and m is the
mass parameter in the scalar field potential.8 We consider
values for the couplings g2 and g3 based on the valid values
of η2 and η3 displayed in Figs. 1 and 10 of Paper I. In
practice, for massive scalar fields, the scalar clouds that
form near black holes tend to be more extended, have lower
densities and smaller gradients than in the massless case,
thus allowing for larger couplings without violating the
WCCs that may lead to a loss of the hyperbolicity of the
scalar equations.

6This “large” initial separation makes a circular binary
unfeasible with our computational resources, but it helps to
minimize the errors from the initial data superposition.

7While the weak cosmic censorship conjecture [50,51] remains
unproven in the astrophysical settings considered in this paper,
we will assume that it holds. We do not find any evidence against
it in our setting.

8It turns out that for our choice of couplings and scalar mass
parameter m, near the black holes the contribution of m to L is
always smaller than the metric and scalar curvature terms.
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D. Excision

To control the gradients in the interior of black holes and
avoid issues such that a potential loss of hyperbolicity of
the scalar equations there, we implement the same form of
excision as in Paper I. More precisely, inside black holes we
modify the equations of motion by smoothly switching off
the Horndeski terms (see Appendix C of Paper I for the
details of our implementation). This procedure seems
justified since the EFT is no longer valid in these regions
of the spacetime. We only implement this form of excision
during the initial stages of the evolution, while t≲ 40M,
namely during gravitational collapse and gauge readjust-
ment phases.9 Once the black hole has stabilized, the matter
density at its center is very small and no loss of hyper-
bolicity of the scalar equations occurs. Note that as long as
the weak coupling conditions hold, the sound horizons
should be close to the usual metric horizon and therefore
excising a small enough region well inside the metric
horizon should not affect the physics in the domain of outer
communications.
This procedure of excision is not necessary with the

resolutions that we used in this paper if the coupling is
sufficiently small. However, for arbitrarily high resolutions,
the scalar field gradients near the center of the black holes
would grow unbounded and one would expect the code to
break down.

E. Gravitational wave extraction

We extract gravitational waves at finite radii by projec-
ting the Weyl scalar Ψ4 onto the spin-weighted spherical
harmonics on multiple spheres of fixed coordinate radius in
the standard way, obtaining the multipoles ψlm. Data on
each integration sphere is obtained from the finest available
level in the numerical grid at a given extraction radius,
using fourth-order Lagrange interpolation. We calculate the
Weyl scalar Ψ4 using the Newman-Penrose formalism [52]
and the electric and magnetic parts of the Weyl tensor, Eij

and Bij [53]. The latter can be computed from our evolution
variables using the following expressions adapted to the
(3þ 1)-CCZ4 formulation of the Einstein equations,

Eij¼½RijþDðiΘjÞþðK−ΘÞKij−KimKm
j−

κ

4
Sij�TF; ð10Þ

Bij ¼ ϵmnðiDmKjÞn; ð11Þ

where Rij is the three-dimensional Ricci tensor, Kij the
extrinsic curvature, Θ ≔ −nμZμ is the projection of the Z4
vector, Zμ,10 onto the timelike unit normal vector nμ, Sij ≔
γi

μγj
νTμν is the spatial projection of the stress-energy

tensor, γμν ≔ gμν þ nμnν is the induced metric on the

spatial hypersurfaces, ϵμνρ ¼ nσϵσμνρ is the volume form
on such hypersurfaces and ½·�TF denotes the trace-free part
of the expression in square brackets. Note that Eqs. (10)–
(11) guarantee that Eij and Bij are automatically trace free
and symmetric, unlike usual (3þ 1)-ADM expressions
[53], which require that the constraints are satisfied.

F. Gravitational strain

The natural observable measured in detectors and used
when constructing templates is the gravitational strain. In
the conventions of [53], the strain of a gravitational wave,
h, can be obtained from the Ψ4 Weyl scalar using the
transformation [54]

Ψ4 ¼ −ḧ ¼ −ḧþ þ iḧ×; ð12Þ

where the dot _ denotes a time derivative, and hþ and h× are
the usual plus and cross polarizations of thewave. This gives
the strain multipoles ḧþlm¼−ReðψlmÞ and ḧ×lm¼ ImðψlmÞ,
whereψlm are the amplitudes of eachmode in themultipolar
decomposition of theWeyl scalarΨ4. To avoid artifacts from
finite length of the wave, discrete sampling and noisy data,
we perform the double time integration in the frequency
domain using a fixed frequency filter [55], with a cutoff of
0.01 M−1 for low frequencies.11 We taper the signal in the
time domain with a Tukey window [56] of width ∼40M on
each side12 and zero-pad to the nearest power of two. We
further zero-pad the waveform to increase the length by a
factor of eight before applying the fast Fourier transform
[57], in order to increase the frequency resolution of the
discrete Fourier transform and reduce the noise for low
frequencies introduced by the discretization. Removing the
initial junk radiation of the inspiral from the time domain did
not result in any significant improvement. Finally, the signal
at null infinity can be obtained by extrapolating the results at
finite radii assuming a Taylor series expansion in 1

r� [58],
where r� ¼ rþ 2M log j r

2M − 1j is the tortoise radius, after
first aligning separate extraction radii in retarded
time, u ¼ t − r�.

G. Waveform mismatch

In order to estimate the difference between two wave-
forms, we compute the mismatch between the strain
resulting from each wave. First, given the strain of two

9The initial data is not in puncture gauge, so in the initial stages
of the simulation there is a certain amount of artificial dynamics
in grid variables due to the adjustment of the coordinates.

10The components of the Z4 vector essentially correspond to
the Hamiltonian and momentum constraints, assumed to be zero
in the BSSN formulation.

11This choice affects the noise in the strain, but low frequencies
have negligible effects in the final computation of the mismatch.
Furthermore, adding a cutoff for the high frequencies resulted in
no improvement.

12This choice reduces noise, but it does not affect the results in
any meaningful way, as the signal is essentially zero in this
region.
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waves, h1ðtÞ and h2ðtÞ, one can compute the overlap, O,
using the frequency domain inner product [59–61],

Oðh1; h2Þ ¼
Reðhh1; h2iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1ihh2; h2i

p ; ð13Þ

hh1; h2i ¼ 4

Z
fmax

fmin

h̃�1ðfÞh̃2ðfÞ
SnðfÞ

df; ð14Þ

where h̃ðfÞ denotes the Fourier transform of the function
hðtÞ, � denotes complex conjugation, SnðfÞ is the power
spectral density (PSD) of a detector’s strain noise as a
function of frequency f (e.g., updated Advanced LIGO
sensitivity design curve [62]), fmin and fmax is the lowest
and highest frequency cutoffs of the PSD of the detector or
the frequency minimum/maximum imposed by the time-
step and duration of the simulation. Notice that for h1 ¼ h2,
hh1; h2i is real.
Then, we compute the mismatch by maximizing the

overlap over time and phase shifts of the second wave,
hδt;ϕ2 ðtÞ ¼ h2ðtþ δtÞeiϕ,

mismatch ¼ 1 −max
δt;ϕ

Oðh1; hδt;ϕ2 Þ: ð15Þ

Noticing that h̃δt;ϕ2 ðfÞ ¼ h̃2ðfÞeiϕe2πiδt and

Oðh1; hδt;ϕ2 Þ ¼ Reðeiϕe2πiδthh1; h2iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1ihh2; h2i
p ; ð16Þ

then maximizing over phase shifts corresponds to simply
taking the absolute value of hh1; h2i as opposed to the real
part. Maximizing over time shifts is more subtle because
the discrete domain implies the Fourier transform changes
by more than a mere phase e2πiδt. Hence, we perform the
time shift maximization numerically. To allow for continu-
ous time shifts, we interpolate the data h1;2ðtÞ and re-
sample appropriately after the time shift. The number of
points when resampling the time series does not affect the
final result. When comparing two gravitational waves, the
length of the time interval used for the Fourier transform
and the size of the frequency domains used for integration
are the same for all waves (taking into account time shifts).
All in all

mismatch ¼ 1 −
maxδtjhh1; hδt2 ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1ihh2; h2i

p : ð17Þ

H. Numerical scheme

The equations of motion are evolved with GRChombo
[47,54,63,64], using MPI (Message Passing Interface),
OpenMP and templated vector intrinsics/SIMD (Single
Instruction, Multiple Data) to obtain a good performance

in the most common architectures. GRChombo uses the
Chombo adaptive mesh refinement libraries [65]. We use a
tagging criterion that triggers the regridding based on
second derivatives of both the scalar field and the con-
formal factor. GRChombo implements the usual puncture
gauge (i.e., 1þ log slicing plus Gamma driver [66–68]) for
the evolution of the gauge variables and N ¼ 3 Kreiss-
Oliger (KO) dissipation, with fixed σ ¼ 1 in all our
simulations. As of boundary conditions, we use
Sommerfeld boundary conditions and take advantage of
the reflective/bitant symmetry of the binary problem to
evolve only half of the grid. Sixth order spatial stencils are
used in order to improve phase accuracy of the binaries
[69]. Time updates are still made with a fourth-order
Runge-Kutta scheme, which implies that the global con-
vergence order cannot be higher than four.13 For the results
presented in this paper, we have a Courant-Friedrichs-Lewy
factor of 1=4, a coarsest level resolution of Δx ¼ 16

7
, with

eight additional refinement levels, and a computational
domain of size 10243.

III. RESULTS

In this section we present the results of our numerical
simulations for the various Horndeski theories that we have
considered and we compare them to GR. To carry out the
comparison, we consider standard GR coupled to a massive
scalar field (with same mass parameter m ¼ 0.5 as in
Horndeski). We comment on the massless scalar field case
in Sec. III B. We have also considered the evolution of a
black hole binary in vacuum GR with the same total ADM
mass and initial velocities for the black holes. In this case,
the binary describes many more orbits before merger, as
expected, since no energy is transferred to the scalar field.
We will not comment any further on this case since it is not
relevant for the kind of comparisons that we carry out.
We have constructed superposed initial data for GR

coupled to a massive scalar field and for Horndeski
theories. One could question whether different results arise
from small differences in the initial data. As discussed in
Paper I, the effect of the Horndeski terms in the initial data
is proportional to g2A2

r2
0

and g3Aw2

r4
0

depending on the theory.
For the values of the couplings g2 and g3 that we consider,
this results in a difference of order Oð10−5Þ between the
Horndeski and the GR counterpart. To confirm that the
small Horndeski corrections in the initial data do not affect
the subsequent evolution, we evolved the equations of
motion of the Horndeski theories using initial data con-
structed for GR. Clearly this procedure introduces extra
initial constraint violations proportional to the Horndeski
couplings. However, our results from the Horndeski

13Notice that this allows us to use the usual KO dissipation
stencils that are commonly implemented with fourth-order finite
differences.
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theories initialized with GR initial data and those results
obtained using proper Horndeski initial data do not exhibit
any significant or quantitative difference. Therefore, we
conclude that the differences observed between GR and
Horndeski theories are caused by the evolution with distinct
evolution equations and not by the extremely small
differences in the initial data. Henceforth, for the
Horndeski theories we will only present results obtained
with Horndeski initial data.
In Fig. 1 we display the trajectories of the punctures on

the orbital plane for GR and for a Horndeski theory with
g2 ¼ 0.02. This figure shows that after the first close
encounter of the binary, the trajectories that the black holes
follow in GR and in Horndeski are visibly different.
Interestingly, the black holes seem to recombine to the
same trajectory in the final stages of binary. In the
following subsections we will quantify the differences in
other observables such as the gravitational strain.

A. Waveform strain

In this subsection we compare the waveform strain for
eccentric binaries in GR and in different Horndeski
theories. For the latter, we consider both the G2 and the
G3 theories for different values and signs of the coupling

constants. In Figs. 2 and 3 we present the ðl; mÞ ¼ ð2; 2Þ
mode of the plus polarization of the strain, hþ, extrapolated
to null infinity using six radii between 50M − 150M, for
the G2 and G3 theories respectively. The strain for higher
ðl; mÞ modes exhibits qualitatively similar features.
Referring to Figs. 2 and 3, the two peaks that can be seen

at t ∼ 400M and t ∼ 850M correspond to the bursts of
radiation emitted during the first two close encounters of
the eccentric binary14 before the final merger phase. The
latter starts at around t ∼ 1100M and ends by t ∼ 1200M,
depending on the theory and the value and sign of the
coupling constants. As for the final state, to the best of our
knowledge, it is not known if the class of theories that we
consider admit stationary hairy black holes.15 However, we
find evidence that the end state of the evolution is a Kerr
black hole surrounded by a scalar cloud that decays in time
on a time scale much longer than that set by the initial
ADM mass. This evidence is reinforced by the similarity
between the final scalar cloud profiles between GR and
Horndeski, as described in Sec. III B. For the runs shown in
Figs. 2 and 3, the estimated parameters of the final black
holes are summarized in Table I. Note that any junk
radiation caused by the initial constraint violations or
choice of initial data is very small on the scale of these
figures, but still visible in the first ∼50M.
As Figs. 2 and 3 show, the waveforms obtained in GR

and in the various Horndeski theories that we considered,
coincide during the initial stages of the binary, but a clear
misalignment builds up over time, starting from the second
close encounter of the binary and becoming more pro-
nounced in the merger phase. This misalignment is much
larger than the smallness parameter controlling the weak
coupling conditions of the initial data.16 In Sec. III C we
will provide evidence showing that a suitable local weak-
coupling condition remains small during the whole evolu-
tion of the binary and hence, in our setting, the Horndeski
theories should be valid (and predictive) classical EFTs.
The large misalignment that we observe in Figs. 2 and 3 is a
cumulative effect arising from the locally small differences
between GR and Horndeski, and it gets enhanced whenever
the system enters the strong field regime, which happens in
each close encounter of the eccentric binary and in the
merger phase. This is expected since the corrections to GR
are sourced by spacetime and scalar curvature and those

FIG. 1. Orbits of the two black holes in Horndeski for
g2 ¼ 0.02 and GR. For clarity, in the Horndeski case we only
show one of the black holes.

14It may be useful for the reader to match the gravitational
wave signal in these figures with the visual animation of
one of our simulations; https://www.youtube.com/watch?
v=uOed4AG1ulg.

15For the theories considered in this paper and in the shift-
symmetric case, Refs. [70–73] have proven that no slowly
rotating hairy black holes exist, but in our case the mass term
explicitly breaks the scalar shift symmetry in the equations of
motion.

16Here, we refer to the dimensionless parameters η2 and η3
defined in Paper I Eqs. (2.8)–(2.9), which are Oð10−5Þ, as
previously mentioned in Sec. II B.
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FIG. 3. Comparison of gravitational wave between GR and Horndeski theories with g3 ¼ 0.05 and g3 ¼ −0.03, in retarded time,
u ¼ t − r�, with r� the tortoise radius. Displaying the ðl; mÞ ¼ ð2; 2Þmode of the plus polarization of the strain, hþ22, extrapolated to null
infinity. As in the G2 theory, Fig. 2, we observe a misalignment that builds up over time.

FIG. 2. Comparison of gravitational wave between Horndeski theory with g2 ¼ 0.02, g2 ¼ 0.04 and GR in retarded time, u ¼ t − r�,
where r� is the tortoise radius. Displaying the ðl; mÞ ¼ ð2; 2Þ mode of the plus polarization of the strain, hþ22, extrapolated to null
infinity. There is a visible misalignment between GR and Horndeski that builds up over time, becoming larger during the merger phase.
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become more important precisely in the strong field regime.
Therefore, eccentric binaries seem to be useful to poten-
tially detect deviations from GR sourced by curvature
through the built up of small cumulative effects and their
enhancement in the close encounters. It is conceivable that
linearizing the Horndeski theories around GR may allow
one to compute some of the misalignment (at least for some
small enough couplings) during the merger phase since its
duration is relatively short and secular effects may not be an
issue. However, it seems unlikely that such an approach
would be able to capture the cumulative large deviations
that arise from successive close encounters of an eccentric
binary, such as in the examples considered here. The
relatively long times that we have evolved the binaries
require a full nonperturbative treatment of the theory to
avoid potential secular effects.
For the G2 theory (3), a positive g2 coupling induces a

delay of the waveform when compared to GR, whilst a
negative g2 gives rise to an advancement of the signal. On
the other hand, for the G3 theory (4) the effect is the
opposite; a positive g3 coupling leads to an advancement of
the signal while a negative g3 leads to a delay when
compare to the GR waveform. In general, the observed
misalignment between GR and Horndeski seems to be a
rather generic effect that does not depend on the specifics of
the theory. Of course, the details such as the amount or the
sign of the deviations will depend on the details theory
under consideration. Therefore, we are tempted to con-
jecture that gravitational strain computed in general
Horndeski theories of gravity that do not admit equilibrium
hairy black holes but with dynamical long-lived scalar
clouds surrounding black holes will be misaligned with
respect of the GR signals. Finally we note that the peak
amplitude of the waveforms seems to be very similar across
all theories and couplings. We will point out in the Sec. IV
how this misalignment may be potentially detected in
gravitational wave observations.
Note that the final state of GR and Horndeski simulations

for g2 ≤ 0.04 seems to have the same exact mass and only
tiny differences in spin (see Table I). This is counterintui-
tive given the differences that the gravitational waveforms
exhibit and it could be related to the fact that the trajectories
of the black holes in the two theories visibly differ in the
intermediate stages of the binary, but coincide again near
the merger phase (see Fig. 1). The physical mechanisms
behind this observation may be related to the frequency
shifts analyzed in Sec. III D. The fact that the initial and
final state coincide and yet the waveforms are different
indicates that, at least for equal mass nonspinning binaries,
the degeneracy between the class of Horndeski theories that
we have considered and GR is broken. This suggests that
the degeneracy between GR and Horndeski may also be
broken for unequal mass nonspinning configurations. It
would be interesting to study the effects of the intrinsic
spins in alternative theories of gravity.

When comparing the waveforms between different
theories, one might alternatively want to align the main
peaks. However, clearly the misalignment would not
disappear; it would simply be translated along the time
axis. This can be seen in Fig. 4, where the misalignment is
now seen at the early encounters of the inspiral. This shows
that the gradual phase shift is a physical effect that cannot
be ignored by a constant phase shift and does not depend on
how one does the comparison. For long-lived inspirals
beyond the strong field regime simulated with numerical
relativity, the effect would be enhanced and the misalign-
ment would be present regardless of the time or phase shift
considered.

B. Scalar cloud

In Fig. 5 we display a snapshot of a binary for the G2

theory with g2 ¼ 0.005 at a representative instant of time
before the merger. This figure shows that the energy density
of the scalar field (in blue) is localized in the region near the
black holes, being largest near the horizons. It is in this
regions where the spacetime and scalar field curvatures are
largest, even though theWCCs remain small on and outside
the black holes.

TABLE I. Parameters of the final state Kerr black hole for each
coupling g2 and g3. The mass and spin are estimated from the
final apparent horizon since the ADM quantities are typically
significantly nosier. The errors are estimated from the differences
between the medium and high resolution runs.

Coupling Final mass MF=M Spin parameter a=M

GR 0.973� 0.001 0.676� 0.001
g2 ¼ 0.005 0.973� 0.001 0.676� 0.001
g2 ¼ 0.02 0.973� 0.001 0.675� 0.001
g2 ¼ 0.04 0.973� 0.001 0.673� 0.001
g3 ¼ 0.05 0.975� 0.001 0.680� 0.001
g3 ¼ −0.03 0.972� 0.001 0.672� 0.001

FIG. 4. Comparison of realigned hþ22 between Horndeski theory
with g2 ¼ 0.02, g2 ¼ 0.04 and GR. The waves were aligned so
the peak of the amplitude of the complex strain coincides.
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For the Horndeski theories that we considered, the
accumulation of nonlinear effects is possible due to the
presence of long lived scalar cloud surrounding the black
holes. This scalar cloud survives all the way up to and well
beyond the merger. This is due to the presence of a mass
term in the scalar potential, since it is well-known (see e.g.,
[74–79]) that the effective potential that the scalar field
“sees” has a wall that makes it difficult for it to escape to
infinity. A scalar mass parameter of m ¼ 0.5 is comparable
to what has been seen to give rise to long-lived scalar
clouds [79], though the effects observed in this paper did
not require any fine tuning. We have also carried out
simulations of binaries with massless scalars and the
absence of a significant scalar cloud trivially removes
any long term effects of the scalar field on the evolution.
In Fig. 6 we display the evolution of the total energy of

the scalar field Eϕ and the evolution of the maximum of the
energy density ρ for GR (green), for the G2 theory with
g2 ¼ 0.005 (red) and for the same Horndeski theory but
with a massless scalar field (blue). These quantites are
defined as ρ ¼ nμnνTμν, where Tμν the energy-momentum
tensor of the scalar field, and Eϕ ¼ R

V ρ
ffiffiffi
γ

p
dV, where V is

the spatial volume on a given spacelike hypersurface. After
the initial gravitational collapse, most of the scalar field is
absorbed by the black holes, but in the massive scalar cases,
a long-lived scalar cloud forms around the black holes.
After the first close encounter of the eccentric binary
ðt ∼ 400MÞ, the maximum energy density of the scalar
cloud is of order 10−5M−2 for the massive scalar cases (GR
and Horndeski), and it decreases very slowly with time.
This long-lived cloud makes it possible for the scalar field
to interact with itself and with the geometry and give rise to

the build up of significant differences in the physical
observables such as the gravitational strain.
On the other hand, in the massless case, Fig. 6 shows that

a much larger amount of scalar field is absorbed by black
holes during the collapse phase. Furthermore, both the total
energy of the scalar field and its energy density show a
pronounced dip at t ∼ 850M, namely in the second close
encounter of the binary, indicating that any leftover amount
of scalar field in the vicinity of the black holes gets
absorbed. Beyond this point, the energy density of the
scalar field is less than 10−10M−2 while the total energy is
of the order of 10−5M (corresponding to scalar waves
radiated to infinity), and both continue to steadily decrease
with time. By the time the merger takes place the maximum
energy density of the scalar field is compatible with
numerical error. Therefore, we conclude that in the mass-
less case, after the second close encounter of the binary,
there is basically no significant amount of scalar field left in
the neighborhood of the black holes (as expected from the
no-hair theorems of [70–73]) to give rise to any sizeable
effect, at least for the duration of our simulations. As a
consequence, no noticeable differences between GR and
Horndeski are observed in the massless scalar field case.
Comparing Horndeski with GR in Fig. 6 shows that local

differences (in time) in the energy density between GR and
Horndeski for the massive scalar field are not significant for
most of the binary, including the two close encounters; only
during the merger phase one can see some differences of
order 10−5M−2. These results are expected if the weak
coupling conditions are satisfied. Furthermore, the fact that
the energy density of the massive scalar field around the
black holes is small during the highly dynamical stages of
the binary is necessary but not sufficient to ensure that the
WCCs are satisfied.

FIG. 5. Energy density (in blue) of the scalar field surrounding
the binary black holes for the Horndeski theory with g2 ¼ 0.005
at a representative instant of time during the inspiral phase,
t ∼ 450. The apparent horizon of the black holes is shown in
orange. The region where the weak-coupling conditions are larger
than one is depicted in brown. Clearly this region is contained
well inside the apparent horizon, as required.

FIG. 6. Total energy of the scalar field Eϕ and maximum value
of energy density ρ on the spacetime (excluding black holes, by
removing from the volume of integration the interior of apparent
horizons) for Horndeski with g2 ¼ 0.005 and a massive scalar
field (in red), the same theory with a massless field (in blue) and
GR with a massive scalar field (in green). A dashed black line is
used to indicate the estimated merger time for the Horndeski run
with a massive scalar field.
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C. Weak coupling conditions during the evolution

The results reported in Sec. III A can only be trusted as
long as the Horndeski theories that we consider are valid
(truncated) EFTs. In this subsection we provide evidence
that for the initial data and couplings that we considered in
the paper, the local WCCs (8) are satisfied at all times, thus
ensuring the predictivity of the EFTs.
In Fig. 7 we display the L2 norm of the WCCs (8)

integrated on the black holes’ apparent horizons, as a
function of time for an eccentric binary evolved with theG2

theory with different values of the coupling constant g2 and
one value g3 coupling for the G3 theory. Excluding the
interior of black holes, the apparent horizons are where the
WCCs have the largest values in the whole domain. This
plot shows that the weak-coupling condition (8) remains
approximately constant during the evolution, except in the
close encounters of the binary and the final merger phase.
The latter events correspond to the peaks in Fig. 7 that can
be seen at t ∼ 400M, t ∼ 850M, and t ∼ 1100M, when the
system enters the strong field regime. The constancy of (8)
during the inspiral phase is related to the fact the energy
density of the scalar field in the vicinity of the black hole
remains approximately constant during this phase. The fact
that the WCCs exhibits local maxima at the close encoun-
ters indicates that in an eccentric binary, we probe the
strong field regime during various phases of the binary and
not only near and during the merger phase as in a circular
binary. It is interesting to see that when one normalizes the
WCCs (8) by the coupling constant, the curves for the g2
couplings collapse onto a single curve, except in regions
where the system is in the strong field regime. This
indicates that the WCC depends on the coupling constant
in a trivial way when the system is not in the strong field
regime.

Fig. 7 shows that for our choice of initial data,
M2WCC=jg2j≲ 50 and M2WCC=jg3j≲ 20 at all times.
This implies that if we want the WCCs (8) to be roughly
less than one at all times, and hence guarantee that that the
Horndeski theory is a valid EFT throughout the evolution,
then one must choose jg2j≲ 0.02 or jg3j≲ 0.05. For values
larger than these, the WCCs become comfortably larger
than one at different (or all) stages of the binary. However,
after the initial collapse stage, even for large values of the
coupling g2 well beyond the regime of validity of EFT (e.g.,
g2 ¼ 0.1), the equations of motion of the scalar field remain
hyperbolic throughout the inspiral and merger phases as
long as the scalar density is small enough near the
black holes.
When evaluating the WCCs (8) on the apparent horizon

to produce Fig. 7, one has to be careful as we are actually
dealing with different trapped surfaces. Due to the slicing
condition used, each black hole has a trapped surface that
during merger shrinks to the puncture, while a larger
common apparent horizon forms, surrounding the previous
ones [80,81]. This implies that if one is computing the
WCCs (8) on the trapped surfaces collapsing to the
punctures, it will result in unreasonably large values. To
get around this gauge issue, we interpolate the data for the
WCC of the original black hole apparent horizons just
before merger with the data for the common apparent
horizon just after it forms, excluding the unphysically large
values right at the merger. The details of how one does the
interpolation and which data points are excluded do not
affect significantly the bounds M2WCC=g2 ≲ 50 and
M2WCC=g3 ≲ 20.
We close this subsection emphasizing that our assess-

ment of the regime of validity of EFT is qualitative at best
and, up to Oð1Þ factors, the unity value of the WCCs is a
mere order of magnitude; a more detailed study is needed in
order to precisely identify this regime for the cases that we
have considered. The conditions (8) are only local; over
time, the small effects accumulate giving rise to large
deviations in some nonlocal observables such as the
waveforms. In the context of complex scalar field with a
Mexican hat type of potential, in [82] is is proved that, for
sufficiently long times, the truncated EFT will inevitably
deviate from the UV theory. Therefore, one has to be
cautious when using a truncated EFT for very long times
compared to the UV mass scale, even if the local weak-
coupling conditions hold (see also [83]).

D. Mismatch

In this subsection we discuss our results for the mismatch
between the GR and Horndeski waveforms. We start
focusing on comparing the G2 theory with g2 ¼ 0.02 to
GR, since this is an example of the limiting coupling that
still satisfies the WCCs. Hence, the results for the mismatch
presented should be understood as upper bounds. The
mismatch depends on the coupling constants in the

FIG. 7. L2 norm of the weak coupling conditions (8) integrated
over the apparent horizon and normalized by the coupling
constant g2 or g3. For the binary that we have evolved, this
shows that M2WCC=jg2j ≲ 50 and M2WCC=jg3j ≲ 20, which in
turn implies that jg2j≲ 0.02 and jg3j ≲ 0.05 to guarantee that the
WCC (8) is roughly less than one. The dashed black line
corresponds to the peak of the amplitude of the strain for
g2 ¼ 0.02.
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expected way, and the results are qualitatively the same for
the G3 theory.
In Fig. 8 we compare the frequencies of the real part of

h̃þ22, the discrete Fourier transform of the ðl; mÞ ¼ ð2; 2Þ
mode of the strain, extrapolated to null infinity.
Interestingly, this figure shows that in spite of both theories
having approximately the same amplitudes for each fre-
quency in the spectrum, the spectrum of the phase of the
complex-valued Fourier transform differs. In range of
medium frequencies, i.e., f ∼ 0.07M−1 − 0.08 M−1, GR
and Horndeski theory agree very well. However, for both
lower and higher frequencies, a significant discrepancy can
be clearly seen. This effect cannot be mitigated by a
constant time or phase shift of the time-domain waveform
and hence we conclude that it is a physical effect. This
discrepancy of both the high and low frequencies suggests
that Horndeski theory exhibits both an inverse and a direct
energy cascades. It would be interesting to confirm if this is
indeed the case and quantify these cascades. Note that
because the weak cosmic censorship holds in our scenarios,
there is a natural UV cutoff for the frequencies that are
accessible to external observers. As long as this cutoff is at
lower energies, i.e., larger distances, than the UV cutoff of
the theory, then the EFT should be valid; the fact that the
WCCs hold in our case, indicates that this is indeed
the case.
In Fig. 9 we quantify the mismatch for a detector setup

receiving the plus polarization of the strain, extrapolated to
null infinity, between GR and theHorndeski theory.We limit
ourselves to the ðl; mÞ ¼ ð2; 2Þ mode, hþ22, as this is the
dominant mode by an order of magnitudewhen compared to
higher modes. We use the updated Advanced LIGO sensi-
tivity design curve (aLIGODesign.txt in [62], which imposes
fmin ¼ 5 Hz) and flat noise (Sn ¼ 1) following the pro-
cedure described in Sec. II G. We compute the mismatch for
black hole masses in the typical range of stellar mass black

holes binaries observed so far, M ∈ ½10; 200� M⊙ [84]. As
mentioned in Sec. II B, the parameter g2 is dimensionful,
with units of M−2, and hence this value also varies as we
probe different masses in Fig. 9. This figure shows that the
mismatch varies between ∼13% at the low mass end and
∼10% at the high mass end. To confirm accuracy of these
results, themismatch between twodifferent resolutions of the
same GR evolution ranges between 0.3%–0.5% for the same
mass ranges. As a reference, for a signal to noise ratio of 25,
similar toGW150914 [85], theminimumexpectedmismatch
for detection is about 0.6% [86,87]. Additionally, [61]
estimated that a mismatch of 3.5% would result in a 10%
lower detection rate; therefore, the large mismatches
obtained for big enough values of the couplings suggest
that if the underlying theory of gravity was Horndeski with a
massive scalar field, some events could have goneundetected
if the black holes had sufficient scalar field surrounding them.
We additionally explore the degeneracy between G2 and

G3 Horndeski theories considered in this paper by evalu-
ating the mismatch between the waveforms obtained for
different values of the coupling g2 and a fixed value of
g3 ¼ −0.03 respectively.17 The results are shown in Fig. 10.
We can see that the waveforms in the two theories appear to
be nearly degenerate for g2 ≈ 0.04 and g3 ¼ −0.03. For
these values of the couplings, the mismatch is about 0.1%,
significantly below any detectability threshold or numerical
errors. As an additional remark, notice how the mismatch
between the G2 theory and GR starts decreasing for
g2 ≳ 0.1. This effect happens because for these values of
g2, the delay of the Horndeski waveform corresponds to
approximately one period of the GR wave in the region

FIG. 8. Real part of h̃þ22, the discrete Fourier transform of hþ22 for
positive frequencies. Notice that for frequencies around
f ∼ 0.07 M−1, Horndeski and GR align, but for lower and higher
frequencies they separate in phase in opposite directions. This
effect cannot be mitigated by a constant time or phase shifts of the
waveform.

FIG. 9. Mismatch for hþ22 between GR and Horndeski for
g2 ¼ 0.02, as a function of the final black hole mass (in units of
solarmasses,M⊙).Aspower spectral densities,weused the updated
Advanced LIGO sensitivity design curve (aLIGODesign.txt in [62],
which imposes fmin ¼ 5 Hz) and a flat noise mismatches (Sn ¼ 1).
This allows us to estimate a range for expected mismatches
of 10%–13%.

17We thank the anonymous referee for suggesting this
calculation.
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close to the merger phase in the frequency domain,
resulting in more aligned peaks and hence smaller mis-
match. Hence, we expect the mismatch to oscillate as we
vary g2 due to this effect, with the local minima bounded
above zero since the waveforms are significantly different
in spite of aligned peaks.

IV. SUMMARY AND CONCLUSIONS

In this article we have studied eccentric black hole binary
mergers in certain cubic Horndeski theories (3)–(4) with a
massive scalar field with mass parameterm ¼ 0.5. We have
chosen initial data and small enough coupling constants
such that a certain local weak-coupling condition (8) is
satisfied at all times during the evolution. This condition
monitors the size of the Horndeski terms in the equations of
motion compared to GR terms, and the fact it holds ensures
that the EFTs are in their regime of validity and hence we
can trust their predictions.
One of the goals of this article was to identify potential

deviations from GR in some physical quantities that
Horndeski theories of gravity may exhibit. We have
observed that locally small deviations from GR build up
over time and get enhanced whenever the system enters the
strong field regime. In the case of the eccentric binaries, this
happens during the successive close encounters of the black
holes and in the final merger phase. Since the modifications
of GR are locally small, large deviations may still arise in
nonlocal observables, such as gravitational waveforms,
through a cumulative build up. This cumulative effect gets
reflected in the gravitational waveforms as large shifts with
respect to the analogous waveforms computed in GR
coupled to a massive scalar field with the same mass
and angular momentum. Whilst the details, such as its sign
and size, of the observed shift in the waveforms depend on
the details of the theory and value of the coupling constants,
the effect seems to be generic, at least within the class of

Horndeski theories that we have explored here. We con-
jecture that the same effect should be present in more
general Horndeski theories. We have quantified the mis-
alignment of the ðl; mÞ ¼ ð2; 2Þ mode of the plus polari-
zation of the strain, hþ22, for one of the Horndeski theories
that we have considered. We find that the spectrum differs
both for low and high frequencies. Furthermore, for large
enough values of the couplings, still in the regime of
validity of the EFT, we find that the mismatch is around
10%–13% in the whole mass range of current detections.
This is quite significant and it suggests that if the under-
lying theory of gravity differs from GR, some events where
the black holes have sufficient scalar field surrounding
them may have been and continue to go undetected. For
smaller values of the couplings, the mismatch would be
smaller.
The misalignment that we have observed is a cumulative

effect and hence it only occurs if the black holes are
surrounded by a long-lived scalar cloud. In our case this is
possible because of the mass term in the scalar potential,
which ensures that a nontrivial scalar energy density
remains in the vicinity of the black holes for very long
times, thus allowing the scalar field to interact with itself
and with the geometry. We have also considered massless
scalars, but in this case we do not observe any significant
difference between Horndeski and GR. This is expected
because the theories considered do not admit stationary
hairy black holes for massless scalar fields (at least in the
slowly rotating limit [70–73]) and, hence, a massless scalar
field gets absorbed by the black holes or disperses to null
infinity on a time scale much quicker compared to the
binary lifetime. In our particular example, the scalar field is
essentially completely absorbed in the second close
encounter of the binary and by then there has not been
enough time to build up any sizeable deviation from GR.
In this article we considered both G2 and G3 Horndeski

theories and, as we have already mentioned, even though
the initial and final states are the same, both lead to
misaligned waveforms with respect to GR. Therefore, at
least for equal mass nonspinning binaries, the degeneracy
between the class of Horndeski theories that we have
considered and GR is broken. However, we do not see any
visible difference between the waveforms obtained in the
G2 or in the G3 theories. It would be interesting to
investigate if (or how) the degeneracy of the waveforms
is broken in Horndeski theories of gravity. It would be
interesting to extend our studies to unequal mass and
spinning binaries to see if the degeneracy with GR and with
the various Horndeski theories is broken when considering
different mass ratios and nonzero spins.
We have considered Horndeski theories simply as toy

models for EFTs with higher derivatives; in the Horndeski
case, the higher derivatives are in thematter (scalar) sector and
the equations of motion are of second order. However, more
fundamental theories of gravity, such as string theory, predict

FIG. 10. Mismatch between the G2 Horndeski theory for
several values of g2 and GR (blue curve) and between the same
G2 theory and the G3 theory with g3 ¼ −0.03 (yellow curve), for
a flat PSD. The two Horndeski theories appear to be degenerate
for certain values of the couplings.
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higher curvature corrections of the Einstein-Hilbert action. In
general, such new terms in the action will result in equations
of motion of order higher than two. Refs. [26,27,32] have
outlined how the strong field regime of such theories may be
probed, but it would bevery interesting to do so in the context
of a black hole binary. Our work suggests that in the weakly-
coupled regime, where these theories are valid EFTs, some of
the problems that may arise in general, such as loss of
hyperbolicity or shock formation, can be controlled in a
physical situation that probes the strong field regimes such as
a black hole binary merger.
The main goal of the present paper is to identify what

features in the physical observables extracted from black
hole binaries in Horndeski theories can allow one to
differentiate these theories from GR. Given that the
corrections to GR have to be locally small in order for
these theories be valid EFTs, nonlocal observables such as
gravitational waveforms are particularly useful because
small effects can accumulate and, for long enough times,
give rise to large deviations from GR. These or other
deviations from alternative theories of gravity are poten-
tially being undetected by current gravitational wave
observatories. Therefore, our results stress the importance
of modelling waveforms in alternative theories of gravity
treating them fully nonlinearly. It would be interesting to
identify other observables where large deviations show up.
In the case of waveforms, until complete waveform
templates are built for alternative theories, a potential
way to detect the misalignment that we have identified
is the following: future space-based gravitational wave
observatories such as LISA [88,89] are expected to be able
to detect gravitational waves produced in stellar mass black
hole binaries during earlier stages of the inspiral phase.
From these waveforms one should be able to extract the
parameters of the binary and, by using GR, predict the time
of merger of the binary. Some binaries should enter the
LIGO band in the final stages of the inspiral and merger
phase, thus allowing to contrast the GR prediction for the
merger time with the observation; a certain advancement or
delay of the merger could be attributed to the fact that
higher derivative corrections modify GR.
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APPENDIX: CONVERGENCE

In this Appendix we provide some details of the
convergence tests that we have carried out. As a repre-
sentative example, we considered the binary in the G2

Horndeski theory with coupling constant g2 ¼ 0.02,
and we performed three simulations with different reso-
lutions to study convergence. Our simulations are evolved
with a coarsest level resolution of Δx ¼ 16

7
(medium

resolution), with eight additional refinement levels and a
computational domain of size 10243. To carry out the tests,
we used one lower resolution changing Δx ¼ 8

3
(low

resolution) and one higher resolution with Δx ¼ 2 (high
resolution).
In Fig. 11 we show the error estimates in the quadrupole

mode h22 extrapolated to null infinity between low,
medium and high resolutions and the estimates for the
expected error assuming third- and fourth-order conver-
gence. We decompose the complex strain into its amplitude

and phase, hlm ¼ hþlm − ih×lm ¼ hAlme
ihϕlm . We compute

these expected errors using the continuum limit of the
convergence factor of order n,

Qn ¼
ðΔxLowÞn − ðΔxMedÞn
ðΔxMedÞn − ðΔxHighÞn

: ðA1Þ

This indicates the convergence order of h22 is consistent
with three.
We also tested convergence of other variables; for

instance, the trajectories of the two black holes, xi1ðtÞ
and xi2ðtÞ, shown in Fig. 1, can be used to test convergence.
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We rewrite these trajectories in terms of the radial distance
between the black holes,

DðtÞ ¼ jxi1ðtÞ − xi2ðtÞj; ðA2Þ
and the phase relative to the initial positions,

θðtÞ ¼ arccos

�ðxi1ðtÞ − xi2ðtÞÞ
DðtÞ ·

ðxi1ð0Þ − xi2ð0ÞÞ
Dð0Þ

�
: ðA3Þ

These quantities for the Horndeski theory are shown in the
top panel of Fig. 12 for the same binary as in Fig. 1. The
convergence analysis of these quantities across the three
resolutions is shown in the middle and bottom panels of
Fig. 12. These figures indicate that both quantities exhibit
between third- and fourth-order convergence.
For completeness, in Fig. 13 we show the L2 norms18

of the Hamiltonian and the Euclidean norm of the

FIG. 11. Convergence test for g2 ¼ 0.02 with different coarse
resolutions: low (3843Þ, medium (4483) and high (5122). Con-
vergence performed on the amplitude and phase of the complex
strain, h22, extrapolated to null infinity. Δt ¼ 0 is the peak of the
amplitude for the highest resolution. This figure indicates
consistency with third-order convergence.

FIG. 12. Top panel: Radial distance DðtÞ and relative phase
θðtÞ of the black holes’ trajectories as functions of time for the
g2 ¼ 0.02 Horndeski theory. Convergence tests for the radial
distance ΔDðtÞ (middle panel) and relative phase θðtÞ (bottom
panel). Both of these quantities exhibit between third- and fourth-
order convergence.

FIG. 13. L2 norm of the Hamiltonian and the Euclidean norm of
the momentum constraints for the medium resolution of the g2 ¼
0.02 Horndeski binary.18For a given quantity Q, we compute L2Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V

R
V jQ2jdV

q
.
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momentum constraints over the full computational
domain. This figure shows the constraint violations
remain stable at the level of 10−6M−2 − 10−5M−2

respectively throughout the whole evolution, with a

significant and sudden reduction at the merger.
Considering the results of our convergence analysis, we
conclude our simulations are stable and in the convergent
regime.
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