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We present a new regularization of Euclidean Einstein gravity in terms of (sequences of) graphs. In
particular, we define a discrete Einstein-Hilbert action that converges to its manifold counterpart on
sufficiently dense random geometric graphs (more generally on any sequence of graphs that converges
suitably to the manifold in the sense of Gromov-Hausdorff). Our construction relies crucially on the
Ollivier curvature of optimal transport theory. Our methods also allow us to define an analogous discrete
action for Klein-Gordon fields. These results are part of the ongoing program combinatorial approach to
quantum gravity where we seek to generate graphs that approximate manifolds as metric-measure
structures.
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I. INTRODUCTION

While Gauss discovered intrinsic geometry with his
theorema egregium in 1827, and Riemann intuited mani-
folds in the 1850s, it was not until the 1930s that a more or
less modern mathematical definition of a differentiable
manifold was made [1–3]; also cf. [4,5] for important
contributions to this line of development and, e.g., [6,7]
for more recent reviews. The intervening period saw the
development of general relativity byEinstein (andothers) [8]
which was a fantastic corroboration of Gauss’s original
intuition—exemplified by his famous measurement of the
large Brocken-Hohehagen-Inselberg triangle—that the
geometry of space was a matter of empirical determination
[9]. Indeed the general program of relativity theory surely
represents one of the high points of the intersection between
physics and geometry in the modern period.
Recently there has been active mathematical research in

an area which might be loosely—and somewhat paradoxi-
cally—called discrete differential geometry examining
discrete analogs of smooth notions, driven by applications
in computer science—especially computer graphics and
mesh processing [11–13], but also more loosely as a natural
extension of methods of discrete topology (discrete Morse
theory and combinatorial algebraic topology [14,15]) to
e.g., topological data analysis [16]—network geometry
[17–19] and quantum gravity. Indeed, as a quite general

principle, it is desirable to find coarse formalisms for
gravity since quantum fluctuations of spacetime are
expected to ruin smooth structure. In approaches where
spacetime is fundamentally discrete, this coarseness obvi-
ously must be promoted to full discreteness [20]; even
without fundamental (physical) discreteness, however, it
may nonetheless be desirable to formulate a discrete—and
not simply coarse—approximation of gravity as a non-
perturbative regularization of the smooth theory in the
context of the asymptotic safety scenario [21]. Indeed, in a
gravitational context, the use of discrete methods dates
back to at least Regge’s classic paper [22] where he
introduced the eponymous calculus that allowed for the
calculation of curvature in terms of deficit angles on
manifold triangulations. Regge’s somewhat heuristic
account has been rigorously confirmed by Cheeger,
Müller and Schrader in their demonstration of the con-
vergence of curvature on suitable triangulations in a
manifold [23]. This has led to the development of simplicial
formalisms for quantum gravity [24], the foremost of which
is the dynamical triangulations approach [25–27].
The Euclidean dynamical triangulations approach [27]—

often in the form of a matrix model [28]—was assiduously
pursued in the 1980s and 1990s in two dimensions, after it
became clear that the scaling limit of this model was
quantum Liouville theory [29–31]; following an observa-
tion of Polyakov, this made it simultaneously a regulari-
zation of 2D gravity coupled to conformal matter and of
noncritical string theory [32]. Taking a gravitational inter-
pretation, it was realized in the process of this work that the
emergent structure of 2D-quantum Euclidean spacetime
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was that of a Brownian sphere, a topological 2-sphere with
Hausdorff dimension 4 and spectral dimension 2 [33,34].
These findings have recently been placed on a firm
mathematical footing: there is a large body of literature
in this direction, but most relevant results are referred to in
[35] which focuses on the key proof of the equivalence
betweenquantumLiouvillegravity and theBrownian sphere;
for rigorous spectral dimension results see [36,37]. In other
dimensions, however, the Euclidean dynamical triangula-
tions approach alternates between a highly crumpled
phase of infinite Hausdorff dimension and a branched
polymer phase of topological dimension 1, Hausdorff
dimension 2 and spectral dimension 4=3 [27,38–43].
Branched polymers are generally regarded as a pathological
model of quantum spacetime and for this reason the
Euclidean dynamical triangulations formalism has typically
been seen as inadequate for a general treatment of quantum
gravity. This perspective was only compounded by the
realization that the phase transition in Euclidean dynamical
triangulations is first order [44–46]. The causal dynamical
triangulations [25,26] program appears to do much better in
this regard. In this approach one typically fixes not only the
topology of spacetime but also a preferred foliation. These
models typically have a rich phase structure and have much
improved behaviorwith regards to the structure of the scaling
limit [47–51].
An alternative approach to quantum gravity that also

makes much of the causal structure of spacetime is causal
set theory; see [52] for a recent review. The basic insight is
that geometric structures on spacetime may be encoded in
causal relations and related topologies, an insight that in
modern form dates back to at least Zeeman in the 1960s,
who showed that the Lorentz group (augmented by
dilatations) was the group of causal automorphisms on
Minkowski space and found a suitable topology to encode
this information [53,54]. A decade later, these results were
vastly generalized by Hawking, King and McCarthy [55]
and Malament [56] who showed that causal structure on a
Lorentzian manifold encodes both the differential and
conformal structure. This work motivates the causal set
Hauptvermutung which purports that any Lorentzian mani-
fold should be characterized by an essentially unique causal
set, i.e., a locally finite poset describing the causal structure
of spacetime. A significant development in this regard is the
demonstration that the Benincasa-Dowker action—essen-
tially defined by counting short causal chains in a causal
set—converges to the Einstein-Hilbert action on causal sets
generated by Poisson processes in Lorentzian manifolds
(“sprinklings”) [57].
Returning to a Euclidean setting, a major recent develop-

ment in Riemannian geometry using ideas from optimal
transport theory [58,59] has been a synthetic characteriza-
tion of Ricci curvature using the metric-measure structure
of the manifold [19,58,60–66]: a Riemannian manifold M
is a metric space when equipped with the geodesic distance

ρ; it is made into a metric-measure space when equipped
with a random walk, i.e., a probability measure at each
point. This insight has allowed for the definition of coarse
notions of curvature valid in generic metric-measure
spaces. One notion due to Sturm [61] and independently
Lott and Villani [60] is related to the so-called L2-transport
cost; this is perhaps the canonical mathematical example of
a synthetic curvature, but is ill equipped for use in discrete
spaces. On the other hand an alternative notion due to
Ollivier [64,65,67] is well defined for discrete metric-
measure spaces and indeed has widely gained traction for a
variety of applications in the network theory community:
cf. e.g., [68–79]. The fundamental intuition captured by the
Ollivier curvature is that in a positively curved space, the
average distance between two nearby balls will be closer
than their centers. This entire line of development is a
natural extension of the program of metric geometry
[80,81], a coarse generalization of many ideas in
Riemannian geometry using the fact that many results of
the smooth theory rely only on its structure as a metric
space or length space. We give a slightly more formal
presentation of optimal transport theory and the Ollivier
curvature in Sec. II below.
In the context of Euclidean gravity the potential ram-

ifications are clear: the Ollivier curvature may be used to
specify a new regularization of Euclidean Einstein gravity
in terms of discrete structures such as graphs, regarded as
discrete metric spaces; concretely, the aim is to specify a
discrete action defined on graphs in terms of the Ollivier
curvature which will approximate the manifold Einstein-
Hilbert action whenever the graphs themselves are a good
approximation for the manifold. (This latter constraint of
course places limitations on the types of space that can be
approximated: we shall only be concerned with compact—
and ipso facto finite diameter—spaces throughout.) We
have begun to pursue this line of thought in [82–84], calling
the associated Ollivier curvature based model combinatorial
quantum gravity due to a formal analogy with Einstein
gravity. (Other than our ownwork, [85–89], are all examples
of similar works using Ollivier curvature in the context of
quantum gravity.) The basic result of this paper—presented
in Sec. III—is that, for a slightly different action to the one
adopted in [82–84], the formal analogy can be made precise
at the classical level in terms of a convergence result for a
particular discrete action. This is of course necessary if we
wish to pursue a putative dynamical quantum model. More
concretely, in theorem 9, we show that there is a discrete
action defined on graphs that converges to the Euclidean
Einstein-Hilbert action on any (compact) manifold for a
sequence of graphs converging to the manifold in a sense to
be discussed at length below.
We should stress that this result does not give a full

characterization of combinatorial quantum gravity insofar
as it says very little about the overall partition function of
quantum gravity. It merely shows that we can control the
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error in the phase associated to a manifold configuration,
which follows trivially from the fact that we can control
the error in the action. More precisely, if we imagine our
partition function is a sum over (the limit points of)
sequences of random graphs, those limit points which cor-
respond to a manifoldM will contribute expð−βAEHðMÞÞ
to the Euclidean partition function, where AEH is the
Einstein-Hilbert action. This is surely a necessary condition
for any proposed regularization of gravity. We suggest it is
also sufficient: away from the classical limit, it is precisely
the wager of approaches of this kind that the “tail”
dependence of the partition function on nonmanifold
configurations might ameliorate some of the problems
with the naive theory defined via a sum over smooth
classical metrics. Indeed, the results of 2D Euclidean
dynamical triangulations suggest that even the semiclass-
ical limit displays some rather nonregular behavior with
regards to smooth structure. Still, it might be said that a
regularization of gravity needs also to respect minima
(extrema) of the action, i.e., the “classical” (action mini-
mizing) configurations are dominated by “manifoldlike”
configurations. While we tend to agree with this assess-
ment, we regard this as an essentially dynamical problem of
the full quantum theory since it can be assessed by
examination of the structure of configurations actually
arising in some dynamical model. At any rate, apart from
a particular case already considered [84], we are not
currently capable of settling these questions analytically.
Instead we would hope to extend some already promising,
if preliminary, numerical results [83,84] to the convergent
model specified here. Note that these numerical results
have been extended and clarified in [90,91].
There are some important caveats, however, to the simple

application of Ollivier curvature as a direct graph-theoretic
regularization of the Ricci curvature: the metric-measure
structure of a graph is certainly not equal to the metric-
measure structure of a Riemannian manifold in general, and
as such the Ollivier curvature evaluated in a graph will
typically be quite different from the Ollivier curvature
evaluated in a manifold. The upshot, of course, is that
combinatorial quantum gravity as defined in [82–84] does
not converge to classical gravity in general; note that we
believe these models may nonetheless have something
relevant to say about Euclidean quantum gravity because
we obtain useful results on the Ricci flat sector, where the
action of combinatorial quantum gravity does agree with
the classical action. Since the Einstein-Hilbert action is
defined as the integral over spacetime of the scalar
curvature R, it is clear that even if the difference between
graph and manifold metric-measure structures can be
overcome, specifying a convergent model of combinatorial
gravity will involve both approximating spacetime integrals
(via graph vertex sums) and finding some way of carrying
out a trace at each point—since R ¼ trðRicÞ.
An important development in this direction was the

recent demonstration that the Ollivier curvature of a

random geometric graph in a Riemannian manifold con-
verges to the Ollivier curvature of the underlying manifold
[92,93]. The essential idea is that for a sufficiently dense
sampling of a Riemannian manifold M, a random geo-
metric graph G will approximate M as a metric space,
while one can choose local measures that simultaneously
converge to a random geometric graph in G. In this way the
associated Ollivier curvature κδGðu; vÞ converges to the
manifold Ollivier curvature κδM. At one level, the main
result of this paper can be seen as a fairly elementary
extension of this edge-curvature convergence result to show
that we have a discrete Einstein-Hilbert action that con-
verges on random geometric graphs.
While convergence on random geometric graphs is

essentially sufficient for a kinematic characterization of a
given Riemannian manifold in terms of a graph, a key step
in the proof of convergence relies heavily on the fact that
random geometric graphs are obtained via Poisson proc-
esses in Riemannian manifolds, since it involves an
extension of certain probabilistic grid matching results
due to Talagrand and others; see [94] for a review of these
results. In the context of (quantum) gravity, it is desirable
for the limiting configuration to be determined dynami-
cally, and hence convergence of the Ollivier curvature on
random geometric graphs in a fixed Riemannian manifold is
not sufficient. As such we will try to avoid the assumption
that our graphs are obtained from Poisson processes,
instead preferring to think of them as arising from an as
yet unspecified dynamical model of random graphs. Since
this model is left unspecified, we are forced in this paper to
deal with graphs that are not in fact random. Another aim of
this paper is to show that there is a more general kinematic
context in which we may talk about both Ollivier curvature
and Einstein-Hilbert action convergence for a given (com-
pact) Riemannian manifold M.
This more general context is specified in terms of the

Gromov-Hausdorff distance [80,81]. We discuss this
notion at more length in Sec. II, but it is worth making
a few remarks here: the Gromov-Hausdorff distance is a
metric ρGH on the space of isometry classes of compact
metric spaces, and provides us with a notion of conver-
gence for such spaces. In particular, any compact length
space—metric space where the distance between two points
is the shortest length of an admissible curve between those
points—is obtained as the Gromov-Hausdorff limit of a
graph. The basic idea in specifying the Gromov-Hausdorff
distance is that for any metric space, there is a natural
distance function (the Hausdorff distance) on the compact
subsets of the space in question; the Gromov Hausdorff
distance between two compact metric spaces X and Y is
then given by minimizing the Hausdorff distance between
X and Y over all isometric embeddings of X and Y into
some arbitrary ambient space Z.
As discussed at length in the appendix to [84], Gromov-

Hausdorff distances and limits naturally respect gauge
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invariance because gauge transformations of the manifold
structure (i.e., smooth local isometries with smooth inver-
ses) turn out to be global length space isometries: any gauge
transformation turns out to be a local metric isometry—that
is it preserves the distance function on certain open balls of
a point—and any local metric isometry with continuous
inverse is a global isometry. The Gromov-Hausdorff dis-
tance also realizes a kind of background independence
insofar as it is obtained by minimizing the Hausdorff
distance over all possible backgrounds. At the same time,
it will be helpful for the purposes of the results in this paper
to treat the graphs as embedded in some background
manifold. This can be done if we realize that ρGH has
another interpretation: the Gromov-Hausdorff distance
ρGHðX; YÞ may be regarded as the obstruction to the
existence of an isometric embedding X ↪ Y. In particular,
in a precise sense to be specified below, the Gromov-
Hausdorff distance ρGHðX; YÞ is small if and only if the
spaces X and Y are nearly isometric.
Let us be very clear: strictly speaking our configurations

are sequences of (unlabeled weighted) graphs, but in fact
the convergence result which holds for sequences follows
from an approximation result for individual graphs. The
only restriction we put on these graphs is that they are
finite, simple, connected and Gromov-Hausdorff close to a
given manifold. The discrete Einstein-Hilbert action on
graphs may be defined in terms of purely combinatorial
structures viz. the graph distance and graph Ollivier
curvature, and so is specified for arbitrary graphs. The
substance of our approximation result is then that if a graph
G admits a nearly isometric embedding into a (compact)
Riemannian manifold M, i.e., if G is Gromov-Hausdorff
close to M, then the discrete Einstein-Hilbert action on G
is close to its continuum counterpart. Note that it is crucial
to show that this holds for arbitrary nearly isometric
embeddings in order to show that the approximation result
is in some sense “generally covariant”; this is of course
easily achieved if we leave the explicit embedding inde-
terminate throughout and only rely on the existence of such
an embedding.
This result remains kinematic: we know very little about

the kinds of configuration obtained from dynamical models
based on the action introduced here. Such models may well
result in pathologies. Evidently, our hope is that this is not
in fact the case; we feel that our other results suggest
[82,84,95] have given clear indications that there is in fact
something novel about Ollivier curvature driven random
graph models, but clearly the question has yet to be settled.
Nonetheless, we suggest that the broader kinematic inter-
pretation proposed here—viz. considering sequences of
graphs that converge to a given manifold in the sense of
Gromov-Hausdorff—is preferable to a treatment in terms
of random geometric graphs insofar as we do not see how
the latter can be realized in terms of any dynamical model
whereas the former is in principle compatible with all

dynamical models. Even further, a dynamical model of
random unweighted graphs based on a very similar Ollivier
curvature based discrete Einstein-Hilbert action has been
shown to generate configurations that converge in the sense
of Gromov-Hausdorff to the circle [84] after appropriate
rescaling. If our proposed generalization of the random
geometric graph kinematics is valid, then we may in fact
reinterpret the van der Hoorn et al. convergence result as a
demonstration of the expected Gromov-Hausdorff proxim-
ity of random geometric graphs to their underlying mani-
folds for suitable parameter choices.
Finally let us say some words on the novelty and

significance of our results: if we restrict ourselves to the
context of random geometric graphs, the main result
(theorem 9) follows from some rather elementary consid-
erations, given the convergence result of van der Hoorn
et al. [92,93]. Explicitly we show how to approximate
traces and integrals onM via sums on the graph G when G
is Gromov-Hausdorff proximal to M; these results are
fairly elementary and as such they are almost certainly not
new, though we are not aware of their statement or
application in the existing literature. The delicate nature
of the proof is their combination: there are several different
scales involved in the problem and each approximation
result places different constraints on these scales. It is not at
all clear that these constraints are consistent, and in fact the
most naive approach to taking the trace is not consistent
with the other constraints on the available scales.
On the other hand, if we are to consider the more general

kinematic context we need to extend the van der Hoorn
et al. convergence result to a geometric one. From a
mathematical perspective the idea is to introduce a suitable
topology on the space of (compact) metric-measure spaces
in which the Ollivier curvature is “stable,” i.e., curvature
(bounds) respect limits in the relevant topologies. In fact,
two relevant topologies already exist in the literature: in the
first topology—in which Sturm-Lott-Villani curvature
bounds are stable—one metric-measure space converges
to another if it converges as a metric space in the sense of
Gromov-Hausdorff and all the measures converge weakly
to suitable corresponding measures as identified by (meas-
urable) near isometries. In this topology the measures may
converge arbitrarily slowly which unfortunately makes this
topology unsuitable for present purposes: the requirement
that the Ollivier curvature approximates the manifold Ricci
curvature puts constraints on the rate at which the discrete
Ollivier curvature is to converge if we wish to approximate
the manifold Ricci curvature. Ollivier also introduced a
topology on metric-measure spaces for which his curvature
is stable: cf. proposition 47 of [64]. Unfortunately the
topology introduced here is so fine as to preclude even
the van der Hoorn et al. derivation of convergence in
random geometric graphs. Thus our “extension” of the van
der Hoorn et al. result amounts to a demonstration
that convergence in the Sturm-Lott-Villani topology can
be made sufficiently rapid to ensure that the Ollivier
curvature continues to approximate the Ricci curvature.
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This extension requires the application of known Euclidean
semidiscrete optimal transport results [96] and turns out to
be more “costly” than the van der Hoorn et al. result in the
sense that it imposes stricter constraints on the available
scales of the problem.
Given that we expect the graph Ollivier curvature to

converge to its manifold counterpart in suitable circum-
stances, out main result—that there is a convergent discrete
Einstein-Hilbert action defined on networks—is then also
no surprise. Indeed, had an analogous result not existed
the Ollivier curvature would have been, at some level, the
“wrong” notion. We have, of course, believed that the
Ollivier curvature represents an interesting tool in this
context for some time; nonetheless, as suggested in [84,91],
the precise relation between our previous work and
quantum gravity proper was not entirely clear. We hope
that this paper helps to clarify this issue.

II. MATHEMATICAL PRELIMINARIES

The main purpose of this section is to introduce the
Ollivier curvature and the Gromov-Hausdorff distance
since these ideas will play a basic role in the subsequent.
However before beginning these more in depth discussions
we shall make some points on notation and briefly review
some simple ideas in metric and Riemannian geometry.

A. Some points from metric and Riemannian geometry

We shall throughout be concerned with metric spaces.
For a set X, a metric on X will be denoted ρX unless we
specify otherwise. The open ball of radius r > 0 centered at
a point x ∈ X is denoted

BX
r ðxÞ ¼ fy ∈ X∶ρXðx; yÞ < rg: ð1Þ

The boundary of this ball is then given

∂BX
r ðxÞ ¼ fy ∈ X∶ρXðx; yÞ ¼ rg: ð2Þ

Later on we shall be concerned with the shell or annulus of
radius R and width r centered at x ∈ X, which is defined as
the set

SXR;rðxÞ ¼ BX
RþrðxÞnBX

R−rðxÞ: ð3Þ

We shall use a special notation for Euclidean space RD:
the metric is denoted ρD, an open ball of radius R and center
x ∈ RD by BD

r ðxÞ, and the annulus of radius R, width r and
center x ∈ X by SDR;rðxÞ. We also let BD

r ≔ BD
r ð0Þ and

SDR;r ≔ SDR;rð0Þ. The volume form on RD will be denoted
volD. The volume of the unit ball in RD is denoted by ωD.
The unit (D − 1)-sphere is the subset of unit vectors in RD

and will be denoted SD−1. For any two points x1; x2 ∈ RD,
we let θDðx1; x2Þ denote the angle ∠x1Ox2 with O the
origin; by the cosine rule we have

θDðx1; x2Þ ¼ arccos

�kx1k2 þ kx2k2 − kx1 − x2k2
2kx1k · kx2k

�
: ð4Þ

It will be convenient to introduce the function
d∶RDnf0g → R which gives the scale factor of the
spherical volume element of the normalization of its argu-
ment in Cartesian coordinates: let x ¼ ðR;φ1;…;φD−1Þ ∈
RDnf0g in spherical coordinates; then

dðxÞ ¼ sinD−2ðφ1ÞsinD−3ðφ2Þ � � � sinðφD−2Þ: ð5Þ

We extend this function to all of RD by choosing dð0Þ ¼ 0.
Gwill always denote a graph, by which we mean a finite,

simple, connected, weighted graph. Also N ¼ jGj for the
rest of the text. The weights will be given by a weight
function wG∶EðGÞ → R, where EðGÞ is the set of edges of
G. G may be regarded as a metric space, equipped with its
geodesic distance: the length of a path γu;v ¼ v0 � � � vn
between the vertices u ¼ v0 and v ¼ vn is defined as

Lðγu;vÞ ¼
Xn−1
k¼0

jwðvkvkþ1Þj: ð6Þ

Then

ρGðu; vÞ ¼ inf
γu;v

Lðγu;vÞ ð7Þ

where the infimum is taken over all paths γu;v between u
and v. With this metric G has the discrete topology, i.e.,
every subset of G is open and hence Borel measurable. We
shall assume G is equipped with a natural measure of the
volume of a subset given by the counting measure: jEj is
the number of points in E ⊆ G.
Similarly, M will always denote a D-dimensional

Riemannian manifold which is implicitly equipped with
some Riemannian metric. This means in particular for each
p ∈ M we have an inner product h·; ·ip on the tangent
space TpM; we use the notation k · kp for the associated
norm. The angle between two vectors V1; ∶V2 ∈ TpM is
defined

θMp ðV1; V2Þ ¼ arccos

� hV1; V2ip
kV1kp · kV2kp

�
: ð8Þ

We assume that these local inner products vary smoothly
overM and as such extend immediately to an inner product
h·; ·i on smooth vector fields ofM. Associated to the inner
product is a unique metric compatible affine connection ∇
known as the Levi-Civita connection. This defines a notion
of differentiation on vector fields on M. Associated to this
connection is also a natural volume form volM, and
Riemmann, Ricci and scalar curvatures tensors, denoted
Riem, Ric and R respectively. A subscript p ∈ M on any
of these tensors refers to the restriction of the tensor to the
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point p ∈ M. The (Riemannian) Einstein-Hilbert action
on M is defined

AEHðMÞ ¼
Z
M

d volMðxÞRðxÞ: ð9Þ

This action, of course, governs gravitational dynamics in
general relativity and is certainly well defined and finite if
M is compact.
A smooth curve in M is a smooth mapping

γ∶ða; bÞ → M, where we assume a < 0 < b; we let the
tangent vector to the curve at t ∈ ða; bÞ be denoted by _γt.
We say that a smooth curve γ with domain ða; bÞ connects
p ∈ M to q ∈ M if and only if we have unique c; ∶d ∈
ða; bÞ such that p ¼ γðcÞ, q ¼ γðdÞ and c ≤ d. The length
of a curve γ between p and q is then given

Lp;qðγÞ ¼
Z

t¼d

t¼c
dth_γt; _γtiγðtÞ: ð10Þ

γ is a geodesic if and only if ∇_γt _γt ¼ 0 for all t ∈ domðγÞ; a
geodesic is unit-speed off k_γtkγðtÞ ¼ 1 for all t ∈ domðγÞ.
M is a metric space when equipped with the geodesic
distance:

ρMðp; qÞ ¼ inf Lp;qðγÞ ð11Þ
where the infimum is taken over all curves that connect p
and q. It turns out that for any point p ∈ M and any
V ∈ TpM, there is a maximal domain ða; bÞ ⊆ R such that
there is a unique geodesic γ satisfying domðγÞ ¼ ða; bÞ,
γð0Þ ¼ p and _γ0 ¼ V. By making k_γ0kp ¼ V smaller we
may extend the domain ða; bÞ such that for V sufficiently
small 1 ∈ ða; bÞ. Since the tangent vector V identifies the
geodesic uniquely, we can thus define a mapping expp
known as the exponential map at p ∈ M via exppðVÞ ¼
γð1Þ where γ is the unique geodesic such that γð0Þ ¼ p and
_γ0 ¼ V. The domain of expp is some subset of TpM that
contains the origin. A metric ball in TpM (M) centered at
the origin (p ∈ M) will be called geodesic if and only if it
is a subset of the domain (codomain) of the exponential
map at p. Note that for sufficiently small balls about the
origin in RD, the exponential map is smooth and a radial
isometry: the latter in particular means that ρDð0; xÞ ¼
ρMðp; exppðxÞÞ for all x sufficiently close to the origin.
Henceforth, we assume that M is complete, connected

and without boundary. From Sec. II C onwards, M will
also be compact unless specified otherwise.
We shall use the big O notation—a little loosely—

throughout to specify errors: for functions f; g∶U → R,
where U ⊆ R is some suitable subset, we write

fðxÞ ¼ OðgðxÞÞ ð12Þ

if and only if jfðxÞj < KgðxÞ for some constant K > 0 in
some suitable limit of x. We are always concerned with

limits of x such that gðxÞ → 0: typically when we specify g
in terms of the variable x ¼ N ∈ N, we are interested in the
limit N → ∞ and we have a typical form gðNÞ ¼ N−a for
some a > 0. Otherwise we shall typically specify x in terms
of variables such as δ, ε, l etc. and we are interested in
limits as these variables go to 0.

B. Ollivier curvature

The Ollivier curvature utilizes ideas from optimal trans-
port theory [58] for its construction so we begin with a
review that follows closely the cited reference. We will also
need some elementary ideas from measure theory and
Riemannian geometry, e.g., cf. [97,98] for nice reviews.
Finally, we will also use ideas from [64] in this section
without much comment.
Let ðX; ρXÞ be a complete separable metric space and let

PðXÞ denote the set of Borel probability measures on X;
every measure considered in this text will be of this type,
i.e., defined on the Borel σ-algebra of a complete separable
metric space. Recall that for any measurable spaces
ðΩ1;Σ1Þ and ðΩ2;Σ2Þ, the pushforward of the measure
μ∶Σ1 → R under a measurable map f∶Ω1 → Ω2 is defined
as the measure

f�μðEÞ ¼ μðf−1ðEÞÞ ð13Þ

for all E ∈ Σ2. The basic fact about pushforward measures
is the following: let f∶Ω1 → Ω2 be measurable and let μ be
a Borel measure on Ω1. A mapping g∶Ω2 → C is f�μ-
integrable if and only if g∘f∶X → C is μ-integrable. Then

Z
Ω1

dμðxÞgðfðxÞÞ ¼
Z
Ω2

df�μðyÞgðyÞ: ð14Þ

The basic notion in optimal transport theory is that of a
transport plan: for any μ, ν ∈ PðXÞ, a transport plan
betweenμ andν is a probabilitymeasure ξ onX × X such that

ðπ1Þ�ξ ¼ μ; ðπ2Þ�ξ ¼ ν ð15Þ

where π1∶ðx; yÞ ↦ x and π2∶ðx; yÞ ↦ y are the projections
onto the first and second elements respectively. We refer to
Eqs. (15) as marginal constraints and μ and ν are said to be
marginals of the transport plan ξ. Roughly speaking, wemay
suppose we have a distribution μ of dirt on X which wewish
to transform into a distribution ν; then given measurable
subsets E1, E2 ⊆ X, the idea is that ξðE1 × E2Þ denotes the
amount of earth to be transported fromE1 toE2 according to
the transport plan ξ. The marginal constraints are required to
ensure that we do indeed have the correct initial and final
distributions and that no dirt is somehow lost in the process.
The space of all transport plans between μ and ν is

denoted Πðμ; νÞ. The transport cost of a transport plan ξ ∈
Πðμ; νÞ is defined
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T XðξÞ ¼
Z
X×X

dξðx; yÞρXðx; yÞ; ð16Þ

while the optimal transport cost is then given

T Xðμ; νÞ ¼ inf
ξ∈Πðμ;νÞ

T XðξÞ: ð17Þ

This is also called the Wasserstein distance between μ and
ν. A transport plan ξ ∈ Πðμ; νÞ is said to be optimal if and
only if T XðξÞ ¼ T Xðμ; νÞ.
It can be shown that optimal transport plans always exist.

Moreover, the mapping T ∶ðμ; νÞ ↦ T ðμ; νÞ is a metric
on PðXÞ, i.e., T is positive definite, symmetric and
subadditive. There is a slight caveat in that T ðμ; νÞ is
not necessarily finite, but this problem can be avoided if
we restrict consideration to spaces with bounded diameter
or only consider measures with finite first moment. For
the purposes of this paper, both restrictions can in fact be
assumed to hold. With this in mind, we note that the
Wasserstein distance metrizes the topology of weak con-
vergence on the space of all probability measures with
finite first moment.
A Riemannian D-manifold M can obviously be

regarded as a metric space where the distance ρMðp; qÞ
between two points p, q ∈ M is given by the length of the
shortest geodesic between those points. Moreover, sinceM
comes with a natural volume form vol, we may define the
uniform probability measures

μδpðEÞ ¼
volðBM

δ ðpÞ ∩ EÞ
volðBM

δ ðpÞÞ ; ð18Þ

for any pair ðp; δÞ ∈ M × ð0;∞Þ, where E is any (Borel)
measurable set of M. The idea is to specify the uniform
measure with support given by (the closure of) the (open)
ball BM

δ ðpÞ. Equipping M with such measures for each
p ∈ M gives M the structure of a metric measure space,
i.e., a metric space equipped with a (Markovian) ran-
dom walk.
The basic connection between optimal transport and

Ricci curvature arises in the following manner: let p, q ∈
M such that their geodesic distance l ¼ ρMðp; qÞ is
sufficiently small. For δ > 0 sufficiently small (i.e., for δ
less than the injectivity radius), we may identify every point
of BM

δ ðpÞ with an element of BD
δ ⊆ TpM ≅ RD and

similarly for q. Parallelly transporting BM
δ ðpÞ along a

minimal geodesic connecting p and q thus gives us a
bijection BM

δ ðpÞ ≅ BM
δ ðqÞ which defines a so-called

deterministic transport plan ξ0 ∈ Πðμδp; μδqÞ. It turns out
that this transport plan is in fact optimal—at least up to
negligible errors—i.e., T Mðμδp; μδqÞ ¼ T Xðξ0Þ. A fairly
basic application of the Jacobi equation, however, gives
us the asymptotic expression:

T Mðμδp; μδqÞ ¼ l
�
1þ δ2RicpðV; VÞ

2ðDþ 2Þ þOðδ2ðδþ lÞÞ
�
;

ð19Þ

where V is the velocity of the unique unit-speed geodesic
connecting p and q at p. Thus, if we define the manifold
Ollivier curvature by

κδMðp; qÞ ¼ 1 −
T Mðμδp; μδqÞ
ρMðp; qÞ ; ð20Þ

we see that

κδMðp; qÞ ¼ δ2RicpðV;VÞ
2ðDþ 2Þ þOðδ2ðδþ lÞÞ: ð21Þ

In this sense, up to a scale-dependent factor and small
corrections, the manifold Ollivier curvature gives the local
Ricci curvature.
It should be clear that the manifold Ollivier curvature

[Eq. (20)] is determined by the metric-measure structure of
M so we have the following generalization: let ðX; ρXÞ be a
complete separable metric space equipped with a random
walk fμxgx∈X. The Ollivier curvature of X is then defined as
the function

κXðx; yÞ ¼ 1 −
T Xðμx; μyÞ
ρXðx; yÞ

; ð22Þ

on all sufficiently nearby but distinct points x; y ∈ X.
Because the domain of κX is not (necessarily) all of
X × X, it is convenient to regard κX as a partial function
on X × X.
We finish this section by noting that the above definition

applies fairly trivially to graphs. Each graph G is regarded
as a metric space as described above, so we are only
concerned with the specification of the random walk on G.
There is some freedom in the choice of graph measures; by
analogy with the manifold measures Eq. (18) we consider
the uniform measures:

mδ
uðEÞ ¼

jBG
δ ðuÞ ∩ Ej
jBG

δ ðuÞj
; ð23Þ

for any u ∈ G and all measurable E ⊆ G, where δ > 0
takes on any (small) strictly positive real value. Note that
since G has the discrete topology, the Borel σ-algebra of G
is simply the set of all subsets ofG, i.e., every subset ofG is
measurable. In specifying the measures via Eq. (23), the
hope is that the uniform graph measures mδ

u will approxi-
mate the uniform manifold measures μδu, allowing one to
approximate the manifold Ollivier curvature by the graph
Ollivier curvature. We show below that this is indeed
the case.
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C. Gromov-Hausdorff distance

As mentioned in the Introduction, the Gromov-
Hausdorff distance between two compact metric spaces
X and Y is defined by taking the infimum of the Hausdorff
distance between the images of X and Y under isometric
embeddings into some ambient metric space Z. Thus to
introduce the Gromov-Hausdorff distance we begin by
introducing the Hausdorff distance between subsets of a
metric space. For more general references on the material in
this section see [80,81].
Let ðX; ρXÞ be a metric space. For any point x ∈ X and

any set A ⊆ X, we have

ρXðx; AÞ ¼ inf
y∈A

ρXðx; yÞ: ð24Þ

The Hausdorff distance between two subsets A; B ⊆ X is
then defined

ρXHðA; BÞ ¼ maxfsup
x∈A

ρXðx; BÞ; sup
y∈B

ρXðy; AÞg: ð25Þ

There is an alternative formulation of the Hausdorff
distance that permits us to introduce some useful notation.
Let BX

δ ðxÞ be the (open) δ-ball centered at x for any x ∈ X.
We define the ε-thickening of any set A ⊆ X as the set

Aε ¼ ∪
x∈A

BX
ε ðxÞ ð26Þ

for any ε > 0. With this notation we note that

ρXHðA;BÞ ¼ inffε > 0∶B ⊆ Aε and A ⊆ Bεg: ð27Þ

The positivity, semidefiniteness and symmetry of ρH are
trivial consequences of the definition; note that symmetry
requires both B ⊆ Aε and A ⊆ Bε since if A ⊆ B, A ⊆ Bε for
all ε > 0. For subadditivity we note that if ρXHðA;CÞ ¼ ε
and ρXHðC;BÞ ¼ δ we have A ⊆ Cε and C ⊆ Bδ and so A ⊆
Bδþε since U ⊆ V implies Uε ⊆ Vε for all ε > 0 and all
U;V ⊆ X and ðUεÞδ ⊆ Uδþε for all U ⊆ X and all δ; ε > 0.
Similar remarks show that B ⊆ Aδþε and subadditivity
follows from the infimum.
ρXH is thus a pseudometric on the set of subsets of X. To

show that it is not a metric, let clðAÞ denote the closure of A
and note that BεðxÞ ∩ A ≠ ∅ for any ε > 0 for any
x ∈ clðAÞnA. Hence clðAÞ ⊆ Aε for all ε > 0, while
A ⊆ clðAÞ, and ρXHðA; clðAÞÞ ¼ 0. Taking A not closed
shows the failure of definiteness. ρXH thus defines a metric
on the equivalence classes of subsets of X, where two
subsets A and B of X are equivalent if and only if
ρXHðA;BÞ ¼ 0. It turns out that we may represent these
equivalence classes by the closed subsets of X: we have
already shown that every set is equivalent to its closure so it
is sufficient to show that two distinct closed sets are
inequivalent. In particular suppose that A;B ⊆ X are closed

and A ≠ B, i.e., without loss of generality we may assume
that there is an x ∈ AnB. Since x ∉ clðBÞ ¼ B, there is an
ε > 0 such that BX

ε ðxÞ ∩ A ¼ ∅; then ρXHðA;BÞ ≥ ε > 0
and A and B are inequivalent as required.
The Hausdorff distance is thus a metric on the closed

subsets of a space; we show that it is a finite metric on the
closed and bounded subsets of X if the metric on X is finite:
in particular suppose that A and B are bounded, i.e., A ⊆
BrðxÞ and B ⊆ BRðyÞ for some r; R > 0 for all x ∈ A and
all y ∈ B. Since ρX is finite we may pick ðx; yÞ ∈ A × B so
that A ⊆ BrþRþρXðx;yÞ and B ⊆ ArþRþρXðx;yÞ as required.
Since every compact set is both closed and bounded, the
Hausdorff dimension naturally induces a finite metric on
the compact subsets of a space.
With this in mind we automatically see that if we define

the Gromov-Hausdorff distance ρGHðX; YÞ between two
compact metric spaces X and Y as the infimum of the
Hausdorff distance over isometric embeddings of X and Y
into all possible ambient metric spaces Z, we have a finite
pseudometric on the space of compact metric spaces, and
which clearly gives 0 if and only if X and Y are isometric.
For the purposes of this paper we shall need a basic result

on the characterization of the Gromov-Hausdorff distance
in terms of near isometries. We need the following notions:
(1) Let ðX; ρXÞ be a metric space. An ε-net in X is a

subset A ⊆ X such that Aε ¼ X.
(2) Now let ðX; ρXÞ and ðY; ρYÞ be metric spaces; we

define the distortion of a map f∶X → Y as the
quantity

disðfÞ ¼ sup
ðx1;x2Þ∈X×X

jρYðfðx1Þ; fðx2ÞÞ − ρXðx1; x2Þj:

ð28Þ
(3) An ε-isometry between X and Y is a mapping

f∶X → Y such that disðfÞ ≤ ε and fðXÞ is a ε-net
in Y.

The basic relation between near isometries and the
Gromov-Hausdorff distance that we wish to show is that
there is aOðεÞ-isometry between two compact metric spaces
ðX; ρXÞ and ðY; ρYÞ if and only if ρGHðX; YÞ ¼ OðεÞ. More
precisely, note the following:
Lemma 1. Let ðX; ρXÞ and ðY; ρYÞ be compact metric

spaces. If ρGHðX; YÞ ≤ ε then there is a 2ε-isometry
f∶X → Y; conversely, given an ε-isometry f∶X → Y we
have ρGHðX; YÞ ≤ 2ε.
This lemma is a standard result and the interested reader

is directed to e.g., the monograph [81] for a proof; it allows
us to control the precision of a nearly isometric embedding
with the Gromov-Hausdorff distance between two metric
spaces.

III. THE DISCRETE ACTION

In this section we prove our main result, theorem 9. We
first present the theorem and proof in a heuristic outline,
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before giving a more formal presentation. This section
substantially overlaps with chapter 5 of the Ph.D. thesis of
one of the authors [99] which gives more complete proofs
of all the statements given here.

A. An informal outline of the main result

Our result concerns the following situation: recall that G
is a graph on N vertices and M is a compact Riemannian
manifold. We assume that we have an ε-isometry
ι∶G ↪ M. The assumption is that G arises from some
random dynamical process that does not fix the background
manifold M a priori; the graph G itself however is a fixed
configuration i.e., it has no random structure that we can
appeal to.
At its most elementary our main claim is the following:
Outline of Theorem 9: If ε ¼ εðNÞ is sufficiently small,

N sufficiently large and ιðGÞ samples M sufficiently
evenly, then there is a discrete Einstein-Hilbert action
ADEH ¼ ADEHðGÞ such that the error

δAðG;MÞ ≔ jADEHðGÞ −AEHðMÞj ð29Þ

is small where AEH is the Riemannian Einstein-Hilbert
action [Eq. (9)]. ADEH is defined in terms of the graph
Ollivier curvature and other graph-intrinsic quantities.
As suggested in the Introduction, we have long believed

that there should be some discrete Einstein-Hilbert action
ADEH such that the above is true and the main challenge is
to find the form of ADEH and specify any conditions that
need to be satisfied for the above to hold. A convergence
result also follows almost immediately from the above.
It is quite clear that going from the Einstein-Hilbert

action to the graph Ollivier curvature requires three
main steps:
(1) The Einstein-Hilbert action AEH is defined as the

integral over M of the scalar curvature R. Thus, if
we can approximate integrals over M via a suitable
operation in G, we reduce the problem of approxi-
mating AEH to approximating the Ricci scalar R at
each point.

(2) The Ricci scalar R at a point p ∈ M is defined as the
trace of the Ricci curvature Ricp at p ∈ M. If we
can approximate the trace, the problem thus reduces
to finding an approximation of the Ricci curvature at
each point p ∈ M.

(3) We know that the manifold Ollivier curvature
approximates the Ricci curvature. It is thus sufficient
for the purpose of theorem 9 to show that the graph
Ollivier curvature approximates in some sense the
manifold Ollivier curvature.

It turns out that the difficulty associated with each of the
three steps above is in ensuring that various graph theoretic
measures approximate relevant measures on manifolds.
This is no surprise in the case of the Ollivier curvature
which is explicitly defined in terms of metric-measure

structures. (Recall that in the basic setup above we have
assumed that the graph G approximates the manifoldM as
a metric space.) This is also trivially the case in the first step
where we wish to approximate an integral over M; for the
second step, however, the measure theoretic aspect of the
problem comes from the fact that taking the trace of a
bilinear form essentially involves averaging that bilinear
form over the sphere.
Why then is this a problem? The basic issue comes from

the fact that a graph G can metrically approximate a
manifold M without necessarily approximating M well
at the measure theoretic level. For instance ιðGÞ can be
regarded as a sample of points in M and this sample
might be highly uneven with respect to the volume measure
in M. In this way natural operations such as sums over
points in G correspond to integrals in M, distorted by the
sampling density.
At themost naive level these problems are circumvented in

two ways. In the case of approximating the Ricci curvature
and taking the trace, the manifold measures that we wish to
approximate via graph structures are local measures by
which we mean that the measures are associated to a given
point and supported in some small compact region of that
associated point. This allows us to exploit the universal local
structure of smooth manifolds and extract suitable local
subgraphs of G around each vertex in such a way that the
local subgraphs sample the relevant regions of M evenly
under the nearly isometric imbedding ι. In this way, both the
Ricci and scalar curvatures at a pointp ∈ M can be obtained
from the Ollivier curvature of a vertex u ∈ G, p ¼ ιðuÞ. On
the other hand, to obtain the full Einstein-Hilbert action, one
must integrate over M. Without fixing M in advance, the
only way to obtain a good approximation at this level is to
impose a condition on the evenness of the sample ιðGÞ ⊆ M.
While this can be done using entirely metric constraints—
i.e., without reference to the measure theoretic structure ofG
or M—it imposes severe restrictions on the kinds of
sequence of graph converging to M we can consider and
imposesmajor restrictions on the scope of the present results.
Let us consider each step in slightly more detail. We first

consider step 1, relating to integration over M. A formal
statement of the relevant result along with proof is given in
Appendix A. Essentially the idea is to replace

Z
M

d volMðxÞfðxÞ ↔
X
u∈G

ωDε
DfðιðuÞÞ; ð30Þ

where the right-hand side is interpreted as a kind-of
Riemann sum for the function f on the cover
fBM

ε ðιðuÞÞgu∈G of M. In particular, the factor ωDε
D

corresponds to the volume of the Euclidean D-ball of
radius ε. Two restrictions have to be imposed however to
make this approximation work well. Firstly, f cannot vary
too much over the balls BM

ε ðιðuÞÞ, u ∈ G, if it is reasonable
to set it constant over the entire ball. Concretely, this can be
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achieved by restricting the class of functions f under
consideration to e.g., those that restrict to K-Lipschitz
functions on the balls for a suitable Lipschitz constant K.
Since every smooth function is locally Lipschitz continu-
ous, this restriction on the class of functions f considered is
sufficiently generous to allow the approximation to be valid
for any smooth function, as long as we are free to decrease ε
(increaseN). The second condition relates to the fact that the
cover fBM

ε ðιðuÞÞgu∈G is not pairwise disjoint so we need
some way to control the overlap error. This is achieved, for
instance, by assuming that the ballsfBM

εð1−αÞðιðuÞÞgu∈G are in

fact pairwise disjoint for some α ∈ ð0; 1Þ. Note that we will
find that we require α ≪ 1 which places a severe restriction
on the class of nearly isometric imbeddings ι that can be
considered.
Two basic steps are required in showing that we may

approximate the trace. Fundamentally, we use the fact that
the trace in RD has the following integral representation:

trDðTÞ ¼
1

ωD

Z
SD−1

d volSD−1ðxÞTðx; xÞ

¼ 1

ωD

Z
SD−1

dDxdðxÞTðx; xÞ: ð31Þ

[Recall that d is a function that assigns to x the Jacobean
determinant for spherical coordinates evaluated on x=kxk;
cf. Eq. (5).] This can be checked explicitly with an
elementary, if tedious, calculation. The factor ωD arises
because the trace of the constant bilinear form 1∶ðx; xÞ ↦
1 is D and we have the relation DωD ¼ volDðSD−1Þ. In
fact, with minimal adjustment we can clearly express
Eq. (31) as an integral over ∂BD

l for any l > 0:

trDðTÞ ¼
1

ωD

Z
∂BD

l

dDxdðxÞT
�

x
kxk ;

x
kxk

�
: ð32Þ

We have thus introduced a scale l > 0 into the problem.
The first step in approximating the trace involves discretiz-
ing this result; to do so, we note that we may choose a set of
points U in RD such that a sum of the integrand over these
points constitutes a Riemann sum for the integral Eq. (32).
We shall call any such set a trace grid. It is natural to
assume that these points lie in the annulus SDl;r—introduc-
ing a secondary scale r > 0 that determines the thickness of
the shell—and that the points are regular in the sense that
adjacent points have constant separation. Since we wish to
use SDl;r to approximate ∂BD

l , we have

r ≪ l; ð33Þ

while the distance between points is essentially determined
by the size jUj of the setU. In particular if we letM ∈ N be
such that

jUj ¼ 2MD−1; ð34Þ
the angular difference between adjacent points of U will be
OðM−1Þ. The metric distance between adjacent points is
consequently Oððlþ rÞM−1Þ ¼ OðlM−1Þ. We also find
that the discretization error is of order OðM−1Þ.
We now turn to the intrinsic characterization of the trace

approximation above. The idea is that for any u ∈ G,
we may recursively construct a set Ũ ⊆ SGl;rðuÞ ⊆ G such
that ιðŨÞ is almost exppðUÞ, p ¼ ιðuÞ, for some trace grid
U ⊆ TpM. When we say that ιðŨÞ is almost exppðUÞ
this means there is a bijection u ↦ ũ such that
ρMðexppðuÞ; ιðũÞÞ < ε. In fact we require slightly more
since in the specification of the set Ũ we also need to be
able to assign angular coordinates to elements of Ũ in
such a way that the spherical volume element function d
can be approximated on Ũ. Since ιðGÞ is, by assumption,
a ε-net in M it is at some level obvious that we may find
a set Ũ and a (surjective) mapping u ↦ ũ such that
ρMðexppðuÞ; ιðũÞÞ < ε for a trace gridU. It is a little harder,
however, to ensure that this mapping is a bijection: the point
is thatwhile the exponentialmap is a radial isometry it is not a
full isometry. Hence even though exppðSDl;rÞ ¼ SMl;rðpÞ, we
may find points in U moved closer together by a distance
determined by the distortion of the exponential map. This
distortion can be characterized more or less precisely for
manifolds with bounded sectional curvature:

disðexpp jBD
R Þ ¼ OðR3Þ ð35Þ

for geodesic balls BD
R with radius 0 < R ≪ 1. In particular

this means that the points in U are shifted by a distance
Oððlþ rÞ3Þ ¼ Oðl3Þ and adjacent points in exppðUÞ can
be as close as OðlM−1 − l3Þ. Thus if lM−1 − l3 ∼ ε we
may have several points of exppðUÞ nearby the same point of
ιðGÞ; if this occurs sufficiently often then the sumover points
inGmatched to exppðUÞwill not approximate the sum over
U after all and we require

ðεþ l3ÞM ≪ l: ð36Þ
This constraint is essentially a constraint on M: M must be
large since the error arising from treating Eq. (32) via a
Riemann sum goes with the inverse of M. However if M is
too large, the points in U become too close together to
guarantee that a sum over matching points in G will in fact
approximate the Riemann sum of trD.
The recursive construction of Ũ itself ultimately boils

down to being able to specify a notion of relative angle
between points of G, essentially via the cosine rule. For
sufficiently nearby points we have a precise estimate of
the error of this assignment when nearly isometrically
imbedded in M; thus if this error is much smaller than the
angular separation between adjacent points in U, we can
reliably pick out elements of G which “should be” adjacent
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to points v ∈ Ũ if Ũ is almost a set. Such points will exist if
G approximates M since such points exist in M. Note,
however, that the recursive construction of Ũ proceeds
intrinsically and as such it should be specified in such a way
that the recursion terminates in all graphs; however the
recursion will obviously fail to produce a set Ũ satisfying
the above properties if G is not Gromov-Hausdorff close to
M since, for instance, there is no need for the points that
“should be” adjacent to v ∈ Ũ to exist.
Finally we note that a similar procedure takes place in the

case of the Ollivier curvature: the problem reduces to
showing that the uniform measure on the (discrete) set
ιðBG

δ ðuÞÞ approximates the uniform measure on the ball
BM
δ ðιðuÞÞ. Showing that this is in fact the case essentially

involves showing that the discrete measure is nearly a
uniform discrete measure on an even grid of points in
Euclidean space; then known Euclidean semidiscrete opti-
mal transport problems can show that this is near the
uniform measure in RD which is near to the relevant
uniform measure in M. Translating between M and RD

involves the use of the exponential map which introduces
an error δ3 according to its distortion on the δ-ball. Also, as
in the case of the trace grid above, the evenly spaced points
in Euclidean space must be sufficiently separated that they
remain identifiable after a distortion of εþ δ3. The details
are discussed in Appendix C.

B. Taking the trace

As mentioned above, rigorous statements and proofs of
steps 1 and 3 have been given in the appendices. Because
several notions introduced in the process of taking the trace
are required to define the discrete action we shall consider
taking the trace in more detail here. Proofs of all theorems
etc. in this section are found in Appendix B.
In our informal outline above, we proceeded by discre-

tizing the Euclidean integral representation of the trace
(31). The idea is to introduce a set of points in TpM in such
a way that summing over these points gives a Riemann sum
for the integral (32). More precisely we define Euclidean
trace grids as follows:
Definition 2. Let M ∈ N be a (large) positive integer,

and consider the multi-index m ¼ ðm1;…; mD−1Þ where
m1;…; mD−2 ∈ f1;…;Mg and mD−1 ∈ f1;…; 2Mg. For
any l; r > 0 with r ≪ l, a Euclidean trace grid on 2MD−1

points in the annulus SDl;r is any set U ¼ fðtm; umÞg
indexed by the multi-index m such that

um ¼
�
πm1

M
;…;

πmD−1

M

�
ð37Þ

in spherical coordinates and l − r < tm < lþ r for all m
(up to a rigid rotation of the entire grid). For any trace grid
U and any bilinear form T∶RD × RD → R we define

trUðTÞ ¼
πD−1

ωDMD−1

X
m

dðumÞTðum; umÞ: ð38Þ

The point of this definition is that it immediately yields
the following:

jtrDðTÞ − trUðTÞj ¼ OðM−1Þ; ð39Þ

i.e., as long as M is large we may approximate the trace by
summing over the points in the trace grid.
The aim is to characterize trU via a sum over some set in

G. This involves (a) intrinsically specifying a set Ũ ⊆ G
such that ιðŨÞ is almost exppðUÞ for some Euclidean trace
grid U ⊆ TpM and (b) finding a way of characterizing
the summand dðumÞTðum; umÞ for each multi-index m via
some function on G that can be specified without reference
toM. For present purposes, we shall assume that we can in
fact do this for the bilinear form T—this is the substance of
the demonstration that the Ollivier curvature may be
approximated—and we need only specify the spherical
volume element function d. It turns out that both of these
tasks can be achieved at once: the idea is that for
each u ∈ G, we may recursively construct a mapping
θu∶SGl;rðuÞ → U ∪ f0g where U is a Euclidean trace grid,
such that if we take Ũ ¼ θ−1u ðUÞ ⊆ SGl;rðuÞ we have that
θujŨ is an injection and exppðUÞ approximates ιðŨÞ. By
construction, then, Ũ resolves point (a) and since θu
obviously assigns each u ∈ Ũ an angular coordinate (the
coordinate of the corresponding point in U), we see that the
summand of trU can also be well approximated on Ũ.
How does one construct the mapping θu? We begin by

noting that given any root point in a Euclidean trace grid
U—which by rotational invariance of the trace we may
identify as uð1;…;1Þ ∈ U—we can recursively obtain the
entire trace grid by successively moving to adjacent points
in the grid. In this sense it is sufficient to be able to identify
the analog of adjacent points in the set Ũ. It turns out
that this may be achieved given knowledge of the relative
angle between points in G. More precisely we define the
following:
Definition 3. For any u ∈ G and for suitable l; r > 0

and v1; v2 ∈ SGl;rðuÞ, we define the relative angle between
v1 and v2 with respect to u by

θGu ðv1; v2Þ ¼ arccos

�
a2 þ b2 − c2

2ab

�
; ð40Þ

where a ¼ ρGðu; v1Þ, b ¼ ρGðu; v2Þ and c ¼ ρGðv1; v2Þ.
We have a precise estimate for the error of the relative

angle when G is Gromov-Hausdorff close to M:
Lemma 4. Let p ¼ ιðuÞ ∈ M for u ∈ G and consider

v1; v2 ∈ SGl;rðuÞwith r;l > 0 and r ≪ l. For l sufficiently
small, we have
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jθDðV1; V2Þ − θGu ðv1; v2Þj ¼ jθDðV1; V2Þ − θMp ðV1; V2Þj ¼ jθMp ðV1; V2Þ − θGu ðv1; v2Þj ¼ Oðl2Þ; ð41Þ

where Vk ¼ exp−1p ðιðvkÞÞ for k ∈ f1; 2g and θDðx; yÞ is the
Euclidean angle between any vectors x; y ∈ RD.
We now turn to our recursive construction of θu.

Essentially we wish to prove the following:
Theorem 5. Let G be a graph and let l; r > 0 with

r ≪ l. For any positive integer M such that

Ml2 ≪ 1; ð42Þ

and for each u ∈ G, we can recursively construct a
mapping θu∶SGl;rðuÞ → RD satisfying the following
properties:
(1) θuðSGl;rðuÞÞ ¼ U ∪ f0g where U ⊆ SDl;r is a Euclid-

ean trace grid on 2MD−1 points.
(2) If ρGHðM; GÞ ¼ ε=2 for some ε ≪ r ≪ l such that

ε ≪ l3; 2MD−1 ≤ O
�
rlD−1

εD

�
; ð43Þ

then jθ−1u ðUÞj ¼ 2MD−1 and for any ε-isometry
ι∶G → M we have

ρMðexpιðuÞðθuðvÞÞ; ιðvÞÞ ¼ Oðl3Þ ð44Þ

for all v ∈ θ−1u ðUÞ.
Definition 6. The function θu defined in theorem 5

above is called the angular assignment at u ∈ G on n ¼
2MD−1 vertices. We then define the trace of a function
f∶SGl;rðuÞ → R at u via the expression

truGðfÞ ¼
πD−1

ωDMD−1

X
v∈SGl;rðuÞ

dðθuðvÞÞfðvÞ; ð45Þ

where the sum is over all multi-indices.
The point of this definition is ultimately the following

which shows that if we have a function on the graph that
approximates a bilinear form on a manifold then the traces
agree up to small errors:
Corollary 7. Let M be a Riemannian manifold and let

T be a bilinear form at p ∈ M. Let G be a graph and
ι∶G ↪ M an ε-isometry with p ¼ ιðuÞ for some u ∈ G.
Let l; r andM be as in theorem 5, i.e., we have constraints
(42) and (43). Finally suppose there is a mapping
f∶SGl;rðuÞ → R such that

jfðvÞ − TðθuðvÞ; θuðvÞÞj ¼ OðσÞ ð46Þ

for all v ∈ θ−1u ðUÞ. Then

jtrDðTÞ − truGðfÞj ¼ OðmaxðM−1; σÞÞ: ð47Þ

C. The main theorem

In this section we prove our main theorem, viz. there is a
discrete Einstein-Hilbert action that converges to its
counterpart on suitable sequences of graphs that converge
to a compact Riemannian manifold. We first define the
discrete Einstein-Hilbert action.
Definition 8. Let G be a graph with N vertices, let

δ;l; r > 0 be real numbers and let M be an integer smaller
than N. Then we define the discrete Einstein-Hilbert action
for parameters δ, l, r and M via the assignment:

ADEHðG; δ;l; r;MÞ ¼ 1

Nδ2
X
u∈G

4πD−1ðDþ 2Þ
MD−1

X
v∈SGl;rðuÞ

dðθuðvÞÞκδGðu; vÞ; ð48Þ

where for each u ∈ G, θu is an angular assignment on
2MD−1 points at u. For any given compact Riemannian
manifold M, the error in the discrete Einstein-Hilbert
action is thus defined:

δADEHðδ;l; r;MÞ ¼ jADEHðG; δ;l; r;MÞ −AEHðMÞÞj
ð49Þ

Theorem 9. Let G be a graph with N vertices, let M
be a compact Riemannian D-manifold, D > 1, and let
ι∶G → M be an εðNÞ-isometry such that the balls

fBM
εð1−αÞðιðuÞÞgu∈G are pairwise disjoint for some α > 0

with α ≪ 1. Let R be the Ricci scalar of M and suppose
that the positive constants K and K̃ are such that
RjBM

ε ðιðuÞÞ is K-Lipschitz for each u ∈ G, the uniform
norm jjRjj∞ ≤ K̃ and

Kε ≪ 1 ≪ K; K̃α ≪ 1: ð50Þ
Also let

εðNÞ ¼ N−1
D δðNÞ ¼ N−a lðNÞ ¼ N−b ð51aÞ
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rðNÞ ¼ N−c MðNÞ ¼ Nd: ð51bÞ

For N sufficiently large, any choice of numbers a; b; c; d >
0 such that

b < a; c <
1

D
ð52aÞ

ð3aþ bÞD < 1 < 4aD ð52bÞ

1

2
d < b ≤

1 − c
D − 1

− d ð52cÞ

ensures that

δADEHðδ;l; r;MÞ ¼ OðKε; K̃α; σÞ ð53Þ

where

σ ¼ max ðN−að3þ2bÞ; N−1−ðcþðD−1ÞbÞ
D−1 Þ: ð54Þ

Under these conditions, σ is small (≪ 1) for sufficiently
large N.
Remark.—We have two types of constraint in the state-

ment of the above theorem: the constraints (52) are
basically constraints on the relevant scales of the pro-
blem required in order to ensure convergence at various
different levels. There is a real possibility a priori that these
constraints are incompatible and part of the proof will
precisely be an attempt to show that the above constraints
are in fact compatible. The second type of constraints are
given by the inequalities (50) and are required due to their
role in lemma 12. Naively, these constraints are essentially
presented as a constraint on the type of limiting manifold
for which the above discrete Einstein-Hilbert action can be
shown to converge. Certainly the quantities K and K̃ are
defined as bounds on the Ricci scalar of the manifold.
However, it is perhaps better to interpret these as restric-
tions on the types of convergent sequence for which the
discrete Einstein-Hilbert action will converge.
Remark.—Note that to make the action ADEH intrinsic,

we need to be able to specify D independently of the
limiting manifold; noting that involved in the above claim
is the fact that small balls at each point converge to small
balls in the manifold, we see that the intrinsic Hausdorff
dimension—defined as the power relating the radius of a
ball to its volume—also converges and we may characterize
D intrinsically in this manner.
As an immediate corollary to the above theorem we thus

have the following:
Corollary 10. For any space of (weighted) graphs Ω,

there is a discrete Einstein-Hilbert action ADEH∶Ω → R
given by Eq. (48) such thatADEHðωNÞ → AEHðMÞ for any
suitable sequence of graphs fωNgN∈Nþ ⊆ Ω such that

jωN j ¼ N and ωN → M sufficiently rapidly in the sense
of Gromov-Hausdorff.

D. Klein-Gordon fields

In this section we briefly summarize our method of
dealing with Klein-Gordon fields, defined as scalar fields
which locally satisfy the Euler-Lagrange equations asso-
ciated with the following Klein-Gordon Lagrangian:

LKGðφ; dφÞ ¼
1

2
trðdφ ⊗ dφÞ þ 1

2
mφ2: ð55Þ

The point is that previously derived results allow us to
approximate the Klein-Gordon action

AKG ¼
Z
M

d volMðxÞLKGðφðxÞ; dφðxÞÞ: ð56Þ

If we have points a; b ∈ M such that ρMða; bÞ < δ for δ
sufficiently small, then we have a unit tangent vector V at a
for the unique geodesic connecting a and b; by definition
this satisfies

����dφðVÞ − φðbÞ − φðaÞ
ρMða; bÞ

���� ¼ OðδÞ: ð57Þ

The following then follows immediately from an applica-
tion of lemma 12 and corollary 7:
Proposition 11. Let ωn → M in the sense of Gromov-

Hausdorff as above and let fn∶ωn → R be a sequence of
functions that converges pointwise to a smooth function
φ∶M → R. This means that for any sequence of εn-nets
ιn∶ωn → M such that εn → 0, and any sequence of points
un∈ωn such that ιnðunÞ→p∈M, we have fnðunÞ→φðpÞ.
If φ is a Klein-Gordon field, i.e., if it extremizes the Klein-
Gordon action AKG, then there is a discrete Klein-Gordon
action ADKG such that ADKGðfnÞ → AKGðφÞ.
Higher interaction terms can easily be incorporated, but

it is not clear how one might go about approximating higher
valence (vector/tensor) fields. The main point is that in
order to take the derivative of such fields one needs to be
able to approximate the smooth Levi-Civita connection; our
entire approach, however, has been based around the idea
that this can be dispensed with since the phenomenal
quantities of conventional Einstein-Gravity can be deter-
mined via the Ricci tensor alone, something which can be
determined by the metric and measure theoretic structure,
allowing us to dispense with the full smooth structure.
Presumably, given knowledge of the connection—a strictly
stronger requirement since it would permit us to reconstruct
the full Riemann curvature tensor—we would be much
closer to reproducing the full smooth structure of the
Riemannian manifold in question, and it seems unlikely
that we have many prospects in this direction. From
this perspective, the fact that we can nonetheless obtain
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convergent Klein-Gordon (scalar) fields appears to be
something of an accident.

IV. CONCLUSIONS

Let us briefly make some remarks about the significance
of this paper: this contribution is part of a program pursued
by the authors of combinatorial quantum gravity, in which
we have attempted to utilize new mathematical insights into
the characterization of course Ricci curvature to shed new
light on certain problems in Euclidean quantum gravity.
Thus far [82–84], we have investigated a suggestive
random graph model which displays some particularly
clear signatures of emergent geometric structure including
a classical phase dominated by near-lattice configurations
and good evidence of a continuous phase transition. It is not
entirely clear how that model relates to Euclidean quantum
gravity proper, however, because the action adopted is at
best a formal discretization of the continuum Einstein-
Hilbert action which agrees on the Ricci-flat sector. Indeed
Akara-pipattana, Chotibut and Evnin [91] have expressed
reservations about the gravitational interpretation of our
work. The result of the present paper is thus a necessary
step in the program of combinatorial quantum gravity, and
we hope it addresses some of these reservations.
Conceptually, the result shows that if a graph is like a

manifold—in the precise sense that it is Gromov-Hausdorff
proximal to a manifold—then the discrete Einstein-Hilbert
action of the graph will be very nearly the continuum
Einstein-Hilbert action of the manifold. By extension such
a graph will contribute a similar amount to the partition
function as its Gromov-Hausdorff proximal manifold
configurations. The partition function itself of any model
of random graphs will probably look rather different from
that of naive Euclidean quantum gravity or—less naively—
of Euclidan dynamical triangulations. As shown by Loisel
and Romon [100], discrete notions of curvature often differ
significantly even on the most simple configurations.
Ollivier curvature, in particular, is unlikely to look like
Regge calculus in many instances since it is sensitive to the
precise structure of local clustering; for instance if we take a
regular triangulation and regular quadrangulation of the
same surface, an Ollivier curvature based action will give
very different results for the two discrete configurations.
The nature of the configuration spaces on which the models
are defined are also potentially very different. We stress that
from our perspective, significant differences from Regge
calculus on discrete configurations is desirable: if Ollivier
curvature base models are too similar to dynamical trian-
gulations models we could hardly avoid pathologies like
the branched polymer phase.
There is a slightly different way of looking at the main

result of the present paper: we are now in a position to
specify a statistical model of random graphs that is
kinematically consistent with Euclidean gravity. The hope
is that the dynamics give rather different results from

Euclidean dynamical triangulations. From this perspective,
the present result is rather similar to the results of Benincasa
and Dowker [57] which gives an action on causal sets that
agrees on sprinklings in Lorentzian manifolds. However,
while it is not clear how a dynamical model of random
graphs (or causal sets) can result in a random geometric
graph (sprinkling) in some background manifold, it is quite
possible to obtain (even spontaneously) graphs that are
Gromov-Hausdorff proximal to particular manifolds as we
showed in [84].
Several difficulties remain, however. Firstly there is the

problem of noncompact manifolds: the Gromov-Hausdorff
metric is only defined on the space of (isometry classes of)
compact metric spaces and the question of noncompact
limits immediately arises. In fact there is a sense of pointed
Gromov-Hausdorff convergence for locally compact geo-
desic spaces, where one considers Gromov-Hausdorff
convergence with respect to some reference family of
compact subsets of the space. One potential issue with
this approach is that pointed Gromov-Hausdorff conver-
gence depends on a choice of reference point, leading to a
loss of gauge invariance. Another issue is that the Gromov-
Hausdorff distance is hard to compute [101], so even
knowing that a scaling limit exists may be somewhat
uninformative if the structure of the scaling limit is
not known.
There is an interesting question about connections to

causal models: all of our work has been firmly concerned
with Euclidean gravity, and due to the significance of
metric structure for the specification of Ollivier curvature it
is unclear to the authors how and if the present results
extend to Lorentzian contexts. It is worth noting that
Gorard [89] has suggested that the Ollivier curvature
extends to Lorentzian manifolds with little extra work,
while there has been some interesting work on optimal
transport in Lorentzian manifolds [102–104]. Another
interesting question is on the existence of coarse analogs
of the Einstein field equations: again, Gorard has suggested
that discrete Einstein-Field equations may be derived using
a kind of formal analogue of Chapman-Enskog theory,
though we confess that we have yet to fully understand this
argument. Conceptually, the role of the field equations is to
provide a “local” test of extremality in the sense that they
allow one to check extremality without knowledge of any
other configurations. As such, while undoubtedly conven-
ient, it is not clear that the existence of field equations has
any fundamental significance. In summary, we believe that
both the problem of Lorentzian coarse curvature and the
problem of rough Einstein field equations are worth
pursuing further, but we have little of interest to say about
them at present.
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APPENDIX A: APPROXIMATING INTEGRALS

In this appendix we formalize the discussion in Sec. III A
on the approximation of integrals of functions on M:
Lemma 12. Let α > 0 be a constant such that α ≪ 1

and such that the family fBM
εð1−αÞðιðuÞÞgu∈G is pairwise

disjoint. Let f∶M → R be a function which is K-locally
Lipschitz in the balls fBM

ε ðιðuÞÞgu∈G with bounded uni-
form norm kfk∞ ≤ K̃, where the constants K and K̃ satisfy

Kε ≪ 1 ≪ K; K̃α ≪ 1; ðA1Þ

and let g∶G → R be a function such that

jfðιðuÞÞ − gðuÞj ¼ OðσÞ ðA2Þ

for some σ > 0. Then if

ε ¼ N−1
D; ðA3Þ

we have

����
Z
M
dvolMðxÞfðxÞ−ωD

N

X
u∈G

gðuÞ
����¼OðmaxðKε; K̃α;σÞÞ:

ðA4Þ

Proof.—Recall that any measurable function f can be
expressed as a sum f ¼ fþ − f− where f� are positive
measurable functions; in this way

R
f ¼ R

fþ −
R
f− and

to show that we may approximate
R
f it is sufficient to

show we may approximate
R
f for f positive. Thus let us

assume that f∶M → R is positive without loss of
generality.
Now recall that ι∶G ↪ M is an ε-isometry, ιðGÞ is an ε-

net inM and the balls fBM
ε ðιðuÞÞgu∈G form an open cover

of M. We may choose a partition of unity fρugu∈G
subordinate to fBM

ε ðιðuÞÞgu∈G such that ρuðuÞ ¼ 1 for
all u ∈ G. Since ρu takes values in [0, 1] for all u ∈ G we
note that ρuf ≤ f and

Z
M

d volMðxÞfðxÞ ¼
X
u∈G

Z
BM
ε ðιðuÞÞ

d volMðxÞρuðxÞfðxÞ

≤
X
u∈G

Z
BM
ε ðιðuÞÞ

d volMðxÞfðxÞ

≤
X
u∈G

Z
BM
ε ðιðuÞÞ

d volMðxÞðfðιðuÞÞ þ jfðxÞ − fðιðuÞÞjÞ

≤
X
u∈G

Z
BM
ε ðιðuÞÞ

d volMðxÞðfðιðuÞÞ þ KρMðιðuÞ; xÞÞ

≤
X
u∈G

Z
BM
ε ðιðuÞÞ

d volMðxÞðfðιðuÞÞ þ KεÞ

¼
X
u∈G

ðfðιðuÞÞ þ KεÞvolMðBM
ε ðιðuÞÞÞ

¼ ωDε
D
X
u∈G

ðfðιðuÞÞ þ KεÞð1þOðεÞÞ

¼ ωD

N

X
u∈G

fðιðuÞÞ þOðKεÞ: ðA5Þ

We have used the Lipschitz continuity of fjBM
ε ðιðuÞÞ,

u ∈ G, in moving to the fourth line, the fact that
volðBM

ε ðqÞÞ ¼ εDωDð1þOðεÞÞ for all q ∈ M in moving
to the sixth line, and the identification N ¼ εD in moving to
the final line.

On the other hand, using the fact that the family
fBM

r ðιðuÞÞgu∈G is pairwise disjoint for r ¼ εð1 − αÞ we
note that there is a partition of unity fρugu∈G subordinate to
the cover fBM

ε ðιðuÞÞgu∈G such that ρujBM
r ðιðuÞÞ ¼ 1.

Then again by the definition of the integral we have
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Z
M

d volMðxÞfðxÞ ¼
X
u∈G

Z
BM
ε ðιðuÞÞ

d volMðxÞρuðxÞfðxÞ

≥
X
u∈G

Z
BM
r ðιðuÞÞ

d volMðxÞfðxÞ:

Note also that for every x ∈ BM
ε ðιðuÞÞ, we have

fðιðuÞÞ − Kε ≤ fðxÞ:

This is trivial if fðιðuÞÞ ≤ fðxÞ while if fðιðuÞÞ > fðxÞ we
have by Lipschitz continuity

fðιðuÞÞ − fðxÞ ¼ jfðιðuÞÞ − fðxÞj ≤ KρMðιðuÞ; xÞ < Kε:

Thus

Z
M

d volMðxÞfðxÞ ≥
X
u∈G

Z
BM
r ðιðuÞÞ

d volMðxÞfðxÞ

≥
X
u∈G

Z
BM
r ðιðuÞÞ

d volMðxÞðfðιðuÞÞ − KεÞ

¼
X
u∈G

ðfðιðuÞÞ − KεÞvolMðBM
r ðιðuÞÞÞ

¼ ωD

X
u∈G

ðfðιðuÞÞ − KεÞrDð1 −OðrÞÞ

¼ ωDε
D
X
u∈G

ðfðιðuÞÞ − KεÞð1 − αÞDð1 −OðεÞÞ

¼ ωD

N

X
u∈G

ðfðιðuÞÞ − KεÞð1 −OðαÞÞð1 −OðεÞÞ:

Multiplying out the right-hand side and using the fact that

OðαÞωD

N

X
u∈G

fðιðuÞÞ ≤ OðαÞωD

N

X
u∈G

K̃ ¼ OðK̃αÞ

means that we finally have Z
M

d volMðxÞfðxÞ ≥ ωD

N

X
u∈G

fðιðuÞÞ −OðmaxðKε; K̃αÞÞ:

Combining this inequality with inequality (A5) gives����
Z
M

d volMðxÞfðxÞ − ωD

N

X
u∈G

fðιðuÞÞ
���� ¼ OðmaxðKε; K̃αÞÞ:

But then by subadditivity we have����
Z
M

d volMðxÞfðxÞ − ωD

N

X
u∈G

gðuÞ
���� ≤

����
Z
M

d volMðxÞfðxÞ − ωD

N

X
u∈G

fðιðuÞÞ
����þ

����ωD

N

X
u∈G

fðιðuÞÞ − ωD

N

X
u∈G

gðuÞ
����

¼ OðmaxðKε; K̃αÞÞ þ
����ωD

N

X
u∈G

ðfðιðuÞÞ − gðuÞÞ
����

≤ OðmaxðKε; K̃αÞÞ þ ωD

N

X
u∈G

jfðιðuÞÞ − gðuÞj

¼ OðmaxðKε; K̃αÞÞ þ ωD

N

X
u∈G

OðσÞ

¼ OðmaxðKε; K̃αÞÞ þOðσÞ
¼ OðmaxðKε; K̃α; σÞÞ

as required. ▪
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APPENDIX B: TRACE ERROR PROOFS

Proof of Lemma 4.—Let p ∈ M and let γ1 and γ2 be
geodesics issuing from p, i.e., γ1ð0Þ ¼ γ2ð0Þ ¼ p. If θ is
the angle between the geodesics γ1 and γ2 at p, i.e., the
angle θMp ðð_γ1Þ0; ð_γ2Þ0Þ, then for s, t > 0 sufficiently small
we have the standard Taylor expansion

ρ2Mðγ1ðsÞ; γ2ðtÞÞ ¼ s2 þ t2 − 2st cos θ þOððs; tÞ4Þ

where Oððs; tÞ4Þ means that the error is fourth order in
products of s and t. This follows from the Jacobi equation.
Identifying p ¼ ιðuÞ, γ1ðsÞ ¼ ιðv1Þ and γ2ðtÞ ¼ ιðv2Þ for
u ∈ G and v1; v2 ∈ SGl;rðuÞ, we may replace manifold
distances by graph distances at the cost of an error of
order εl since disðιÞ ¼ ε:

ρGðv1; v2Þ2 ¼ x2 þ y2 − 2xy cos θ þOðmaxðεl; ðs; tÞ4ÞÞ;

where x ¼ ρGðu; v1Þ and y ¼ ρGðu; v2Þ. Rearranging this
expression gives

cos θ ¼ cos θGu ðv1; v2Þ þOðmaxðεl−1;l2ÞÞ;

if we note that s; t ¼ Oðlþ rÞ ¼ OðlÞ. But ε ≪ δ2l ≪
l3 and ε=l ≪ l2, i.e., cos θ ¼ cos θGu ðv1; v2Þ þOðl2Þ.
The smoothness of arccos then implies that

jθ − θGu ðv1; v2Þj ¼ Oðl2Þ:

But we also have the asymptotic expansion

hV1; V2ip ¼ kV1kp · kV2kp cos θ þOððkV1kp; kV2kpÞ4Þ;

and by the definition of θMp ðV1; V2Þ we have

cos θMp ðV1; V2Þ ¼ cos θ þOðl2Þ

where we have used kV1kp ¼ s, kV2kp ¼ t and
s; t ¼ OðlÞ. The smoothness of arccos then gives

jθMp ðV1; V2Þ − θj ¼ Oðl2Þ:

Hence the required result follows from subaddditivity.
▪

To prove theorem 5, it will be helpful to have some
terminology:
Definition 13. Let G be a graph and pick l; r > 0 and

the positive integer M as above, i.e., Ml2 ≪ 1 and r ≪ l.
Fix some u ∈ G.

(1) Two vertices v1; v2 ∈ SGl;rðuÞ are said to be ðM;lÞ
adjacent if and only if

����θuGðv1; v2Þ − π

M

���� ¼ Oðl2Þ: ðB1Þ

(2) Let v1; v2 ∈ SGl;rðuÞ be ðM;lÞ adjacent. A vertex
v3 ∈ SGl;rðuÞ that is ðM;lÞ adjacent to v1 is ðM;lÞ
perpendicular to the pair ðv1; v2Þ if and only if

����θGv1ðv2; v3Þ − π

2

���� ¼ OðMl2Þ: ðB2Þ

(3) A sequence of points v0;…; vn such that vk and vkþ1

are ðM;lÞ adjacent for all k ∈ f1;…; n − 1g are
said to be in line if and only if for all k1; k2; k3 ∈
f1;…; ng such that k1 < k2 < k3 we have

θuGðvk1 ; vk3Þ ¼ θuGðvk1 ; vk2Þ þ θuGðvk2 ; vk3Þ þOðl2Þ:
ðB3Þ

Proof of Theorem 5.—Recall that any Euclidean
trace grid on 2MD−1 points is given U ¼ fumg for the
multi-index m ¼ ðm1;…; mD−1Þ where m1;…; mD−2 ∈
f1;…;Mg and mD−1 ∈ f1;…; 2Mg. Thus it is sufficient
to pick out a suitable set V ⊆ SGl;rðuÞ such that V ¼ fvmg
and then identify

θuðvÞ ¼
�
um; v ¼ vm
0; otherwise:

The recursive construction of the set V must satisfy
the following properties if θu is to satisfy the required
properties: the mapping m → vm is injective and
ρMðexpιðuÞðumÞ; ιðvmÞÞ ¼ Oðl3Þ whenever G is Gromov-
Hausdorff close to M, where the precise meaning of
this phrase is given by the conditions on ε in the statement
of the theorem.
We now specify the recursive construction of V. First

note that the set U ∪ f0g can be given a graph structure in
the following manner: connect 0 to every vertex in U and
connect two vertices in U if and only if they are adjacent
i.e., their angular separation is π=M. Thus the notions of
ðM;lÞ-adjacency etc. extend to this graph. Given uð1;…;1Þ
note that we can obtain U (up to a relabeling, or equiv-
alently a rigid rotation about the axis of uð1;…;1Þ) recursively
in the following manner:
(1) Pick uð2;1;…;1Þ as any element of U that is ðM; 0Þ

adjacent to uð1;…;1Þ. Assume that we have picked
uð1;…;2;…;1Þ where the 2 is in the kth position, for all
k ≤ K < D − 1. Then uð1;…;2;…;1Þ with the 2 in the
ðK þ 1Þth position is an element of U that is ðM; 0Þ
adjacent to uð1;…;1Þ and ðM; 0Þ perpendicular to
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uð1;…;2;…;1Þ with 2 in the kth position for
all k ∈ f1;…; Kg.

(2) Now assume that we have obtained um for all
multi-indices m ¼ ðm1;…; mD−1Þ such thatP

D−1
k¼1 mk − ðD − 1Þ ¼ K, K ∈ f0; 1;…g. Let

m ¼ ðm1;…; mD−1Þ be a multi-index such thatP
D−1
k¼1 mk − ðD − 1Þ ¼ K þ 1. Either um is uniquely

specified as the unique vertex that is both ðM; 0Þ
perpendicular and ðM; 0Þ adjacent to some family of
points already specified, or it extends a sequence of
already specified points that are in line.

We define V by applying the above algorithm to points in
SGl;rðuÞ, where vð1;…;1Þ can be chosen arbitrarily and ðM; 0Þ
adjacency and ðM; 0Þ perpendicularity are replaced with
ðM;lÞ adjacency etc. There is a caveat insofar as unlike in
the case of the graph U ∪ f0g it is not clear that the
required “adjacent” point will exist according to this
algorithm; in such a situation the algorithm terminates
early (alternatively we set vm ¼ vð1;…;1Þ) and θu does not
have the desired properties (may not be well defined).
It is clear that the algorithm does not terminate early if G

is Gromov-Hausdorff close to a manifold M by lemma 4:
the graph U ∪ f0g pushes forward to a distorted graph in
M and so the required adjacent point exists in SMl;rðpÞ as
long as we weaken ðM; 0Þ adjacency etc. to ðM;lÞ
adjacency. But then we can pick points in SGl;rðuÞ that
are OðεÞ close to the relevant points of SMl;rðpÞ; we pick up
an angular error of Oðε=lÞ due to the metric distortion of
the near isometry ι. Thus ε ≪ l3 ensures that this error is
Oðl2Þ and thus that the algorithm does not terminate early.
This is not sufficient to ensure that θu is well defined: the
mappingm ↦ vm must also be injective. This is guaranteed
as long as we have

ρMðexpιðuÞðumÞ; ιðvmÞÞ ∼ R ≪
l
M

− l3

for all m: the quantity on the right-hand side controls (up to
scale factors) the distance between adjacent points of U in
M so if R controls the distance between expιðuÞðumÞ and
ιðvmÞ for all m, then the assignment must be injective since
the R-ball at ιðvmÞ can contain at most one point of

exppðUÞ. Since Ml2 ≪ 1 by assumption, l3 ≪ l=M
and so 2l3 ≪ l=M i.e., l3 ≪ l=M − l3 and we may take
R ¼ Oðl3Þ. It is thus sufficient to prove that the recursion
preserves the constraint:

ρMðexpιðuÞðumÞ; ιðvmÞÞ ¼ Oðl3Þ:

Let us consider the case that um is in line with some
sequence u1;…; un ∈ U and pick vm in line with the cor-
responding sequence v1;…; vn and ðM;lÞ adjacent to vn.
By construction, ιðvnÞ is in line with expιðuÞðfu1;…; ungÞ
which ensures the desired constraint. Similar remarks go
for joint neighbors [ðM;lÞ-perpendicular points]. Note that
we use the fact that perpendicular points in SDl;r are
separated by a distance Oðl=MÞ while they are distorted
by the exponential map a distance Oðl3Þ so the angular
error is Oðell3Þ=Oðl=MÞ ¼ OðMl2Þ. However since all
points lie in the sphere we only have to propagate this
angular error a distanceOðl=MÞ leading to an overall error
in the distance Oðl3Þ.
Note that the constraint 2MD−1 ≤ OðrlD−1=εDÞ is

required to ensure that it is indeed possible to pick a
subset of SGl;rðuÞ with 2MD−1 points. ▪

Proof of Corollary 7.—This is a simple consequence of
subadditivity and the definition of θu. In particular we have

jtrDðTÞ − truGðfÞj ≤ jtrDðTÞ − trUðTÞj þ jtrUðTÞ − truGðgÞj
¼ OðM−1Þ þ jtrUðTÞ − truGðgÞj:

But, assuming that θu is well formed, θu is injective on the
set θ−1u ðUÞ and we have a well-defined inverse vm ¼
θ−1u ðumÞ for each multi-index m; thus we see that

X
v∈SGl;rðuÞ

dðθuðvÞÞgðvÞ ¼
X
m

dðθuðvmÞÞgðvmÞ

¼
X
m

dðumÞgðvmÞ;

since by construction θuðvÞ ¼ 0 [and hence dðθuðvÞÞ ¼ 0]
if v ∉ θ−1u ðUÞ. Then by subadditivity we have

jtrDðTÞ − truGðfÞj ≤ OðM−1Þ þ πD−1

ωDMD−1

����
X
m

dðumÞðTðum; umÞ − gðvmÞÞ
����

≤ OðM−1Þ þ πD−1

ωDMD−1

X
m

dðumÞjTðum; umÞ − gðvmÞj

¼ OðM−1Þ þOðσÞ
which proves the statement. ▪

KELLY, BIANCALANA, and TRUGENBERGER PHYS. REV. D 105, 124002 (2022)

124002-18



APPENDIX C: THE ERROR FROM THE
OLLIVIER CURVATURE

In this section we find the error associated with the
Ollivier curvature. The basic result is the following lemma:
Lemma 14. Let G be a graph and let ι∶G ↪ M be an

ε-isometry. For any u ∈ G, let p ∈ M be such that
p ¼ ιðuÞ. Then given δ;l; r > 0 such that

δ4 ≪ ε ≪ minðδ2l2; δ3Þ; δ ≪ l; ðC1Þ

the mapping

f∶v ↦
2ðDþ 2Þ

δ2
κδGðu; vÞ ðC2Þ

is a mapping on SGl;rðuÞ such that

jRicðexp−1p ðιðvÞÞ; exp−1p ðιðvÞÞÞ − fðvÞj ¼ OðσÞ ðC3Þ

where

σ ¼ max

�
l;

ε

δ2l2
;
ε

δ3

�
; ðC4Þ

for all v ∈ SGl;rðuÞ.
Recall that we have a graph G, a compact Riemannian

manifold M and a ε-isometry ι∶G → M.
We begin by defining

δκðu; vÞ ¼ 2ðDþ 2Þ
δ2

jκδGðu; vÞ − κδMðιðuÞ; ιðvÞÞj

¼ 2ðDþ 2Þ
δ2l

jT δ
Gðmδ

u; mδ
vÞ − T δ

MðμδιðuÞ; μδιðvÞÞj

þO
�

ε

δ2l

�
ðC5Þ

where we have used the fact that disðιÞ ≤ ε and r ≪ l in
moving to the second line. We remark that

jT Gðmδ
u; mδ

vÞ − T MðμδιðuÞ; μδιðvÞÞj ¼ OðεÞ ðC6Þ

for all pairs ðu; vÞ ∈ G ×G such that u ∈ G and v ∈
SGl;rðuÞ since ι is a OðεÞ-net so

δκðu; vÞ ¼ 2ðDþ 2Þ
δ2l

jT δ
Mðι�mδ

u; ι�mδ
vÞ − T δ

MðμδιðuÞ; μδιðvÞÞj

þO
�

ε

δ2l

�
: ðC7Þ

δκ is thus small as long as

ε ≪ δ2ljT δ
Mðι�mδ

u; ι�mδ
vÞ − T δ

MðμδιðuÞ; μδιðvÞÞj ≪ δ2l

for all relevant pairs ðu; vÞ; by the triangle inequality the
latter follows as long as

T δ
Mðι�mδ

u; μδιðuÞÞ ≪ δ2l ðC8Þ

for all u ∈ G. Thus showing convergence of the Ollivier
curvature has reduced to showing that the semidiscrete
discrepancy T δ

Mðι�mδ
u; μδιðuÞÞ is small.

For any u ∈ G, let Au be the set ιðBG
δ ðuÞÞε, i.e., the ε-

thickening of the set ιðBG
δ ðuÞÞ. Au is measurable set and let

μuA denote the uniform measure on Au:

μuAðEÞ ¼
volðE ∩ AuÞ
volðAuÞ

: ðC9Þ

By subadditivity we have

T δ
Mðι�mδ

u;μδιðuÞÞ≤ T δ
Mðι�mδ

u;μuAÞþT δ
Mðmu

A;μ
δ
ιðuÞÞ ðC10Þ

so the inequality (C8) holds as long as the analogous
inequality holds for each Wasserstein distance on the right-
hand side respectively.
Since ιðGÞ is a ε-net in M we have that

BM
δ−εðιðuÞÞ ⊆ Au ⊆ BM

δþεðιðuÞÞ ðC11Þ

so

T δ
Mðmu

A; μ
δ
ιðuÞÞ ≤ T δ

Mðμδþε
ιðuÞ ; μ

δ−ε
ιðuÞÞ: ðC12Þ

We may bound the right-hand side of the above, however,
by constructing an explicit transport plan from μδþε

ιðuÞ to μ
δ−ε
ιðuÞ.

One obvious candidate is as follows:
(1) We assume we have dirt distributed according

to μδþε
ιðuÞ . We leave all of the dirt on the subset

BM
δ−εðιðuÞÞ where it is. Since the dirt is not

moving this contributes nothing to the total
transport cost.

(2) Since the total amount of earth is normalized, the
remaining dirt on BM

δþεðιðuÞÞnBM
δ−εðιðuÞÞ is to be

spread evenly on BM
δ−εðιðuÞÞ. However this is done,

the contribution to the cost can be kept to order

O
�
ðδþ εÞ volðB

M
δþεðιðuÞÞnBM

δ−εðιðuÞÞÞ
BM
δ−εðιðuÞÞ

�
¼ OðεÞ:

ðC13Þ

Thus T δ
Mðμδþε

ιðuÞ ; μ
δ−ε
ιðuÞÞ ¼ OðεÞ which is sufficiently small

since we have assumed ε ≪ δ2l.
It thus remains to show that

T Mðι�mδ
u; μuAÞ ≪ δ2l: ðC14Þ
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To do this, let us first define A ¼ exp−1u ðsuppðι�mδ
uÞÞ ⊆ RD

and B ¼ exp−1ιðuÞðAuÞ ⊆ RD and let mA and μB denote the
uniform Euclidean measures on A and B respectively, i.e.,

mAðEÞ ¼
jA ∩ Ej
jAj ; μBðEÞ ¼

λðB ∩ EÞ
λðBÞ ðC15Þ

where λ is the D-dimensional Lebesgue measure. By
construction ðexpιðuÞÞ�mA ¼ ι�mδ

u and ðexpιðuÞÞ�μB ¼ μuA.
Thus, by Eq. (35) and the fact that the pushforward of a
transport plan between two measures is a transport plan
between the pushforwards of those measures, we see that

T Mðι�mδ
u; μuAÞ ≤ T DðmA; μBÞ þOðδ3Þ: ðC16Þ

This is sufficiently small as long as

δ ≪ l; T DðmA; μBÞ ≪ δ2l: ðC17Þ

Note that T D ¼ T RD . Let n ¼ jAj and let ñ be a positive
integer such that bñωDðδ − εÞDðδþ εÞ−Dð1 −OðεÞÞc ¼ n.
The idea is that if we evenly and deterministically distribute
ñ points in the cube ð−δ − ε; δþ εÞD, nð1 −OðεÞÞ of those
points will lie in the ball BD

δ−ε, and the fraction n=ñ is
the same as the fraction λðBÞ=λðð−δ − ε; δþ εÞDÞ. Also
ñ ¼ OðnÞ. The minimal distance between points in the
even grid is Oðn−1=DÞ trivially. Thus the minimal distance
between points in the pushforwards of the grid of points

under the exponential map is Oðn−1=D − δ3Þ so if ε ≪
n−1=D − δ3 there is at most one point of the grid within
a distance ε of some point of expuðAÞ. Moreover, since
ιðGÞ is a ε-net in M the grid points in BD

δ−ε under the
exponential map all lie within a distance ε of some point
of BM

δ−εðιðuÞÞ ∩ ιðGÞ. This defines a one-to-one corres-
pondence between grid points in BD

δ−ε and elements of
A ∩ BD

δ−ε, which in turn essentially defines a deterministic
transport plan between the empirical measure on the grid
points intersecting with B and the empirical measure on A
(elements of AnBD

δ−ε are matched to random grid points).
The cost of this plan will be Oðð1 − εÞδ3 þ εδÞ ¼ Oðδ3Þ.
Thus we can consider the transport cost from the empirical
measure on the intersection of the uniform grid with A to
μB; but since ε ≪ n−1=D this is less than the transport cost
of the grid points to the uniform measure on V where V is
the union over grid points of the Voronoi cells centered at
each such grid point. It is known that the transport plan that
sends each Voronoi cell to its center is optimal [96] and has
transport cost Oðn−1=DÞ. With this we finally find that we
may approximate the Ollivier curvature on M by the
Ollivier curvature on G as long as

εþ δ3 ≪ n−
1
D ≪ δ2l; δ ≪ l: ðC18Þ

Noting that

O
�
δD

εD

�
¼

�
volðBM

δ ðιðuÞÞÞ
volðBM

ε ðιðuÞÞÞ
�
≤ n ≤ N −

�
volðMnBM

δ ðιðεÞÞÞ
volðBM

ε ðιðuÞÞÞ
�
¼ O

�
δD

εD

�
ðC19Þ

we see that n−1=D ¼ Oðε=δÞ and n−1=D ≪ δ2l if
ε ≪ δ3l ≪ δ3. Thus εþ δ3 ≪ n−1=D if and only if
δ3 ≪ n−1=D, i.e., δ4 ≪ ε. Thus convergence of the Ollivier
curvature holds as long as

δ4 ≪ ε ≪ δ3l ðC20Þ

where δ ≪ l necessarily as a result of the above.

APPENDIX D: PROOF OF THEOREM 9

We now prove the main theorem.
Proof of Theorem 9.—Given the conditions in lemma

14, i.e.,

δ4 ≪ ε ≪ minðδ2l2; δ3Þ; δ ≪ l;

and r ≪ l, we have

2ðDþ 2Þ
δ2

κδGðu; vÞ ¼ Ricðexp−1p ðιðvÞÞ; exp−1p ðιðvÞÞÞ þ δκ

where

δκ ¼ O
�
max

�
l;

ε

δ2l2
;
ε

δ3

��
:

But by theorem 5 we have an angular assignment θu on
n ¼ 2MD−1 vertices at u ∈ G such that

ρMðexpιðuÞum; ιðvmÞÞ ¼ Oðl3Þ

as long as

Ml2 ≪ 1; 2MD−1 ¼ OðrlD−1=εDÞ:

Then

ρDðum; vmÞ ¼ Oðl3Þ
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and we may Taylor expand Ric about θuðvÞ for each v ∈
SGl;rðuÞ to obtain

Ricðexp−1p ðιðvÞÞ;exp−1p ðιðvÞÞÞ ¼RicðθuðvÞ;θuðvÞÞþOðl3Þ
i.e.,

jκδGðu; vÞ − RicðθuðvÞ; θuðvÞÞj ¼ Oðmaxðl3; δκÞÞ:
But noting that

ADEHðG; δ;l; rÞ ¼
ωD

N

X
u∈G

truGðfÞ;

we have by corollary 7 that

ADEHðG; δ;l; rÞ
¼ ωD

N

X
u∈G

truGðfÞ

¼ ωD

N

X
u∈G

trDðRicιðuÞÞ þOðmaxðl3; δκ;M−1ÞÞ

¼ ωD

N

X
u∈G

RðιðuÞÞ þOðmaxðl3; δκ;M−1ÞÞ

where R is the scalar curvature. The statement then follows
by lemma 12 and the definition ofAEH ¼ volMðRÞ as long
as ε ¼ N−1=D.
We have thus derived the desired result given the

following constraints:

ε ¼ N−1
D δ4 ≪ ε ≪ minðδ2l2; δ3Þ

ε ≪ δ; r ≪ l Ml2 ≪ 1 ≪ M

2MD−1 ¼ O
�
rlD−1

εD

�
:

Note that these constraints automatically ensure that the
error vanishes as N → ∞. We show that given the defi-
nitions (51), the constraints above follow from the con-
straints (52): ε ¼ N−1=D is directly stated in one of these
constraints as required. In particular it is easy to see that

δ4 ≪ ε comes from 1 < 4aD which is assumed in con-
straint 52. On the other hand ε ≪ δ3 is equivalent to
3aD < 1. The condition ε ≪ δ2l2 is equivalent to
2ðaþ bÞ < 1. Also δ ≪ l implies a > b so both of these
constraints follow from ð3aþ bÞ < 1, which is also
assumed in (52). ε ≪ r ≪ l gives c ≪ b < 1=Dwhile a <
1=D implies ε ≪ δ. It thus remains to derive the constraints
for M. But if 0 < d, 1 ≪ M while Ml2 ≪ 1 if d < 2b.
Also M ¼ OðrlD−1=εDÞ is equivalent to

dðD − 1Þ ≤ 1 − ðD − 1Þb − c or b ≤
1 − c
D − 1

− d

where we have used the fact that d > 0. This gives us the
final of the constraints in Eq. (52).
Finally it remains to show that the constraints (52) are

consistent. Pick some ϵ > 0 such that ϵ < 1=4 and let

a ¼ c ¼ 1þ ϵ

4D
; b ¼ 1 − 4ϵ

4D
:

Clearly, 0 < b < a ¼ c < 1=D trivially. For the second
constraint note that

ð3aþ bÞD ¼ 1 −
1

4
ϵ < 1 < 1þ ϵ ¼ 4aD

as required. For the final inequality we first note that since
b > 0 we can pick any d > 0 such that d < ð1 − 4εÞ=2D to
obtain the desired result here. On the other hand, since
d > 0, ð1 − cÞ=ðD − 1Þ − d > ð1 − cÞ=ðD − 1Þ − 2b and
the desired inequality certainly holds if 3bðD − 1Þ <
ð1 − cÞ. Multiplying both sides by 4D we obtain

3ðD− 1Þð1− 4ϵÞ< 4D− 1− ϵ or ð13− 12DÞϵ<Dþ 2:

The left-hand side of the second expression is negative for
all D > 1 while the right-hand side is positive so the
desired inequality holds for arbitrary choices of ϵ > 0. On
the other hand in D ¼ 1 we required ϵ < 3 which has
already been imposed by the choice ϵ < 1=4. ▪
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