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HSC Year 1 cosmology results with the minimal bias method:
HSC x BOSS galaxy-galaxy weak lensing and BOSS galaxy clustering
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We present cosmological parameter constraints from a blinded joint analysis of galaxy-galaxy weak
lensing, AX(R), and the projected correlation function, w,(R), measured from the first-year HSC
(HSC-Y1) data and SDSS spectroscopic galaxies over 0.15 < z < 0.7. We use luminosity-limited samples
as lens samples for AX and as large-scale structure tracers for wy, in three redshift bins, and use the HSC-Y1
galaxy catalog to define a secure sample of source galaxies at z, > 0.75 for the AX measurements,
selected based on their photometric redshifts. As a theoretical template, we use the “minimal bias” model
for the cosmological clustering observables for the flat ACDM cosmological model. We compare the model
predictions with the measurements in each redshift bin on large scales, R > 12 and 84~! Mpc for AZ(R)
and w, (R), respectively, where the perturbation-theory-inspired model is valid. As part of our model, we
account for the effect of lensing magnification bias on the AX measurements. When we employ weak priors
on cosmological parameters, without cosmic microwave background (CMB) information, we find
Sg = 0.93670 062, o3 = 0.85701%, and Q,, = 0.28370,% (mode and 68% credible interval) for the flat
ACDM model. Although the central value of Sg appears to be larger than those inferred from other
cosmological experiments, we find that the difference is consistent with expected differences due to sample
variance, and our results are consistent with the other results to within the statistical uncertainties.
When combined with the Planck 2018 likelihood for the primary CMB anisotropy information
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(TT, TE, EE + lowE), we find Sg = 0.817%)057, o3

=0.8927001 Q= 0.246709 and the equation-

-0.056> -0.035>

of-state parameter of dark energy, wg, = —1 .281’8"128 for the flat wCDM model, which is consistent with the

flat ACDM model to within the error bars.
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I. INTRODUCTION

Wide-area imaging and spectroscopic galaxy surveys
provide us with powerful tools for constraining the energy
composition of the Universe, the growth of cosmic struc-
ture formation over time, and properties of the primordial
density perturbations [1]. In particular, when combined
with high-precision measurements of the cosmic micro-
wave background (CMB) [2,3], galaxy surveys allow us to
explore the origin of the late-time cosmic acceleration, such
as dark energy or a possible breakdown of general relativity
on cosmological distance scales. There are many existing,
ongoing, and upcoming galaxy surveys aimed at advancing
our understanding of these fundamental questions, e.g., the
SDSS-III/IV Baryon Acoustic Oscillation Spectroscopic
Survey (BOSS/eBOSS) [4,5], the Subaru Hyper Suprime-
Cam (HSC) survey [6], the Dark Energy Survey (DES) [7],
the Kilo-Degree Survey (KiDS) [8], the Subaru Prime
Focus Spectrograph survey [9], the Dark Energy
Spectroscopic Instrument survey [10], and then ultimately
the Vera C. Rubin Observatory Legacy Survey of Space and
Time (LSST) [11], Euclid [12], and the Nancy Grace
Roman Space Telescope [13].

fsunao.sugiyama@ipmu. ip
"masahiro.takada@ipmu.jp

A major challenge in the use of galaxy surveys for
precision cosmology lies in uncertainties in the relation-
ship between matter and galaxy distributions in large-scale
structure, i.e., uncertainties in the so-called galaxy bias [14]
(see also Ref. [15] for a thorough review). Since physical
processes inherent in galaxy formation and evolution are
still very challenging to accurately model from first prin-
ciples, we must empirically model the galaxy bias and/or
observationally constrain it. One promising observational
approach is a joint-probes cosmological analysis combin-
ing galaxy-galaxy weak lensing and galaxy clustering
[16-27]. The two-point correlation function &,, is the stan-
dard tool to characterize the large-scale structure through
galaxy clustering [28,29]. For a cold-dark-matter-dominated
universe with adiabatic, Gaussian initial conditions, the
galaxy correlation function is related to the two-point corre-
lation function of the underlying matter distribution &, on
large scales via a linear bias parameter as &, () ~ b3 mm(r)
[14], where b, is a scale-independent coefficient, the value
of which depends on galaxy properties [30]. Cross corre-
lating the positions of galaxies with the shapes of back-
ground galaxies as a function of their separations on the
sky provides a measurement of the average matter distri-
bution around the foreground (lensing) galaxies—the
so-called galaxy-galaxy weak lensing [31,32]. The
galaxy-galaxy weak lensing arises from the galaxy-matter
cross correlation .fgm, which is given, at large scales,
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by &om(r) = bi&um(r). Hence, combining &, and &y,
allows one to observationally constrain the galaxy bias
for the foreground galaxy sample, at least on large scales.

On the theory side, providing sufficiently accurate
theoretical templates for accurately extracting cosmological
information from the clustering observables remains diffi-
cult. There are two competing goals for the analysis:
“robustness” and “precision” (see also Refs. [27,33] for
a study based on similar motivation). Achieving robust
results requires us to minimize any possible bias or shift in
the estimated value(s) of the cosmological parameter(s)
from the true value(s). On the other hand, achieving precise
results involves obtaining as small of a credible interval
(error bars) in cosmological parameters as is possible from
the observables. Obviously, it is not straightforward to
achieve these two goals simultaneously. For example, since
the galaxy clustering observables have a higher signal-to-
noise ratio at smaller spatial scales, which are affected by
nonlinear structure formation and galaxy physics, increas-
ing the precision (reducing the error bars) in cosmological
parameters requires the use of the clustering observables
down to small scales in the nonlinear regime. If the
theoretical model is not sufficiently accurate on these small
scales, it can easily lead to a large bias in the estimated
cosmological parameters. The worst-case scenario is that
one could measure cosmological parameters that differ at
high significance from the true ones.

In this paper we show the results of cosmological
parameter estimation from a joint analysis of the galaxy-
galaxy weak lensing, AX(R), and the projected correlation
function of galaxies, w,(R), measured from the Subaru
HSC Year 1 data (hereafter HSC-Y1; see Refs. [6,34] for
details) and the spectroscopic LOWZ and CMASS galaxy
samples from the Sloan Digital Sky Survey (SDSS) [35].
For the theoretical template, we use the “minimal” bias
model motivated by the perturbation theory of structure
formation [36]; we model the galaxy-matter cross correla-
tion and the galaxy autocorrelation using a linear bias
parameter and the nonlinear matter power spectrum.
Sugiyama et al. [37] evaluated the performance of this
method by comparing the model predictions with simulated
AX(R) and w,(R) signals mimicking the HSC-Y1 and
SDSS measurements. They showed that the model can
recover the underlying cosmological parameters to within
the statistical errors as long as the parameter inference is
restricted to relatively large scales, R 2 10A~! Mpc, where
the cross-correlation coefficient, defined as r..(r) = Eom(r)/
[Eaa(F)Emm(r)]'/?, is close to unity for a ACDM-like
cosmology.

In our cosmological inference we perform a blind
analysis to avoid confirmation biases affecting our results.
After unblinding, we compare our results with the results
from other cosmological experiments such as Planck and
other weak lensing surveys. The results of this paper can be
compared with the results in our companion paper [27],

which infers cosmological parameters by applying the halo
model to exactly the same observables while including
smaller-scale information than in this paper.

This paper is organized as follows. We briefly review the
HSC-Y1 and SDSS data and catalogs used in this paper in
Sec. II, and then describe the measurements of AY and Wp
in Sec. III. Here we refer to Ref. [27] for the details. In Sec. IV
we describe our cosmological analysis method: the theoreti-
cal templates, the likelihood analysis, and the analysis setup.
In Sec. V we describe the blinding scheme for our cosmo-
logical analysis. In Sec. VI we show the resulting cosmo-
logical parameter constraints. Finally, we conclude in
Sec. VIL

Throughout this paper we quote 68% credible intervals
for parameter uncertainties unless otherwise stated.

II. SDSS AND HSC-Y1 DATA: LARGE-SCALE
STRUCTURE TRACERS AND SOURCE GALAXIES

We use the data from the first-year Subaru Hyper
Suprime-Cam survey (hereafter HSC or HSC-Y1) [6,34]
and the SDSS-III BOSS DRI1 spectroscopic sample of
galaxies [38] [39,40]. Hence, we refer readers to Ref. [27]
for details, and here we briefly review the most essential
aspects for this paper.

This paper focuses on cosmological parameter inference
from joint measurements of galaxy-galaxy weak lensing
(AY) and the projected galaxy autocorrelation function
(wp). As tracers of large-scale structure, we use luminosity-
limited samples selected from the SDSS spectroscopic
galaxy sample, after performing k corrections. We consider
three galaxy samples covering three distinct redshift ranges:
“LOWZ” galaxies in the redshift range z = [0.15, 0.35],
and two subsamples of “CMASS” galaxies, hereafter called
“CMASS1” and “CMASS?2,” respectively. These are
obtained by subdividing CMASS galaxies into two redshift
bins, z = [0.43,0.55] and [0.55, 0.70], respectively. More
precisely, we select SDSS galaxies with absolute i-band
magnitudes M; < —21.5, =21.9 and —22.2 for the LOWZ,
CMASSI, and CMASS2 samples, respectively, yielding
comoving number densities 7,/[10~*(h~! Mpc)™®] ~ 1.8,
0.74, and 0.45 for the ACDM model that is consistent with
the Planck 2015 “TT, TE, EE + lowP” constraints. These
are lower than those of the full LOWZ and CMASS
samples by a factor of a few. The luminosity-selected
samples will allow for a higher-fidelity cosmology analysis
because they minimize possible redshift evolution of
galaxy properties within the redshift bin (e.g., Ref. [41]).

We use the HSC-Y1 galaxy catalog to define a secure
sample of source galaxies behind the lens galaxies in each
SDSS galaxy sample, for galaxy-galaxy weak lensing
measurements. In this paper we use the HSC-Y1 shape
catalog of galaxies [42], in combination with photo-z
information [43]. While multiple photo-z catalogs based
on different methods are available, we use the catalog based
on the MLZ method as our fiducial catalog. The depth of
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HSC-Y1 data permits us to securely select background
galaxies behind the SDSS galaxies. We define a sample of
background galaxies by imposing the following cut for
each HSC galaxy:

7
[ )09, (1)

1.max+0.05

where P;(z) is the posterior distribution of photo-z for the
ith HSC galaxy. Here z; i, = 0.75 is chosen for the lower
bound of the integration so that the HSC source galaxies
are at redshifts greater than the highest redshift of SDSS
galaxies in the CMASS2 sample by more than Az = 0.05,
with a probability greater than 0.99. For the upper bound
we set Zg . = 7, the maximum redshift adopted in the
HSC photo-z catalog. We use 4308983 HSC galaxies
over about 140 deg? in total, corresponding to ii, =~
8.74 arcmin? for the net number density or i~
7.95 arcmin~ for the weighted number density (see
Ref. [44] for the definition). The unweighted mean redshift
of the sample is (z,) ~ 1.34.

In this paper we adopt a single population of source
galaxies for galaxy-galaxy weak lensing measurements
following the method in Ref. [45]; in other words, we
do not select source galaxies separately for each lens
sample. Comparing the relative amplitudes of AX for the
spectroscopic lens samples at different redshifts, while
using the same source sample, allows for a calibration
of the average redshift of the HSC source galaxies, i.e., a
self-calibration of the photo-z errors. In addition, it allows
for a self-calibration of the multiplicative shear biases that
may remain in the HSC shape catalog, because they cause
redshift-independent shifts in the AX amplitudes for all of
the lens samples. Moreover, the use of a single source
population also allows for relatively straightforward treat-
ment of the magnification bias effect on the galaxy-galaxy
weak lensing, as we will discuss later.

III. MEASUREMENTS

The details of the measurement methods for the
clustering observables, AX(R) and w,(R), can be found
in Ref. [27].

For the AX(R) measurements, we measure the average
shapes of background HSC galaxies around each SDSS
lens galaxy using the overlapping regions between the
HSC-Y1 and SDSS survey footprints, which cover about
140 deg®. The galaxy-galaxy weak lensing measures the
average excess surface mass density profile around the
SDSS galaxies in each redshift bin. The measurement
includes a correction for the lensing efficiency, . (zy, z),
and an estimate of the projected separation R from the
angular separation for each lens-source pair, which requires
us to assume a reference cosmology that generally differs
from the underlying true cosmology. For a flat wACDM

cosmology, the relevant cosmological parameters for the
conversion are Q, and the dark energy equation-of-state
parameter wy.. We use the method in Ref. [46] to account
for the Q. and wy. dependences of the AX measurement,
which is described in Appendix E in detail. Note that, once
the X, factor is included, the observable AX(R) depends
only on the clustering properties of the SDSS lens galaxies,
and does not depend on the redshifts of HSC source
galaxies.

For the w,(R) measurements, we use the Landy and
Szalay estimator [47] to estimate the three-dimensional
clustering correlation function of &,, (R, IT) for each SDSS
galaxy sample using the entire SDSS footprint covering
about 8000 deg”, and then project &g, (R,IT) over IT =
[~ maxs Tmax] tO Obtain the projected autocorrelation func-
tion w, (R). We adopt 7, = 100h~" Mpc as our default
choice. The projected correlation function is not very
sensitive to the redshift-space distortion (RSD) due to
peculiar motions of galaxies, but the RSD effect is not
completely negligible either [48,49]. We use the method in
Ref. [48] to include the RSD effect on w,(R) and its
cosmological dependence (see also Ref. [37]).

Figures 1 and 2 show the AX(R) and w,(R) signals
measured for the LOWZ, CMASS1, and CMASS?2 samples.
In this paper we use the signals over the range of R indicated
by the unshaded region for our cosmology analysis: we use
the measurements over 12 < R/[h~! Mpc| < 80 (8 bins)
for AZ(R) and 8 < R/[h~" Mpc| < 80 (14 bins) for w,(R),
respectively. Note that we do not include information
from the baryon acoustic oscillations in w,(R) at R~

100h~" Mpc for the cosmological parameter inference.
The red regions in each panel indicate the 68% and
95% intervals of the posterior distributions of the model
predictions in each separation bin, which we obtain from
the cosmological parameter inference using the measure-
ments of AX and w, for all three samples assuming a
flat ACDM model. The blue line indicates the model
prediction for the maximum a posteriori (MAP) in the
parameter estimation. It is clear that the model prediction
can fairly well reproduce all of the measurements simul-
taneously. However, one might notice a sizable discrep-
ancy in AX between the MAP model prediction and the
measurement for the LOWZ sample. The measured signals
at R > 30h~! Mpc are systematically lower than the model
prediction by more than 1o errors, although the data points
are highly correlated with each other at these scales.
Below, we will discuss in detail how the cosmological
constraints are changed if the LOWZ sample is removed
from the data vector in the parameter inference.

To carry out the cosmological parameter inference, we
must model the covariance matrices that describe statistical
uncertainties in the AX(R) and w,(R) measurements. We
use the jackknife method to estimate the covariance for wy,.
On the other hand, we use mock catalogs of SDSS lens
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FIG. 1. Galaxy-galaxy lensing signal, AX(R), measured by combining the SDSS spectroscopic galaxies and the HSC photometric

galaxies for lens and source galaxy samples, respectively. For illustrative purposes, we show R x AX(R) so that the dynamic range of the
y axis is narrower. In this paper we consider three luminosity-limited lens samples—LOWZ, CMASS1 and CMASS2—in the redshift
ranges z = [0.15,0.35], [0.43, 0.55], and [0.55, 0.70], respectively (see text for details). The unshaded region shows the range of
separations used for cosmological parameter estimation in this paper: R = [12, 80]2~! Mpc. The label in the lower left corner of each
panel gives the cumulative signal-to-noise (S/N) ratio over the fitting range for each galaxy sample. The total S/N given in the upper right
corner of the right panel accounts for the cross covariances between the AX signals for the different lens samples. The red line in each
panel indicates the mode of the posterior distributions of the model predictions in each separation bin, which are obtained from Bayesian
inference applied to the AX and w,, data vectors for the three galaxy samples assuming a flat ACDM model. The dark and light red
regions are the 68% and 95% credible intervals of the posterior distribution in each bin. The posterior distributions include
marginalization over other parameters. The blue line displays the model prediction at maximum a posteriori (MAP) in the Bayesian
inference.

galaxies and HSC source galaxies to model the covariance
for AY, as described in Appendix B of Ref. [27]. The
covariance matrix for the AX data vector includes cross
correlations between the AX signals for different lens
samples, which arise from the shape noise from the same
source galaxies and the cosmic shear on the same source
galaxies due to the shared foreground large-scale structure.
In this and companion papers [27], we also include a
contribution of the magnification bias to the covariance
matrix of AX, as derived in Appendix A. We neglect the
cross covariance between AX and w,, because the over-
lapping area (~140 deg?) between the HSC-Y1 and SDSS
survey footprints is very small compared to the SDSS
survey area (~8000 deg?).

In the legend of Figs. 1 and 2, we give the total signal-to-
noise ratio (S/N) that is obtained by integrating the S/N at
each separation bin over the fitting range, R = [12, 80] or
[8,80]h~! Mpc for AX and wy, respectively, while account-
ing for the cross covariances between the different R bins.
For the total S/N for AX, we further take into account the
cross covariances between the different AX(R) signals
for the different lens samples. The S/N values for w,, are
higher than those for AX for each SDSS sample, meaning
that our cosmological constraints are dominated by w,(R).
However, combining it with galaxy-galaxy weak lensing,
AX(R), is critical to constrain cosmological parameters,
because the combination helps break degeneracies between
the galaxy bias and cosmological parameters that determine

T
—— MAP
—— mode

68%C.I1.

300 F . 1r

95%C.I.

x 1T {

Total S/N
—475 |

=z il
5 T
= 200 1r 1 1
(=% .
3
St
L LOWZ CMASS1 CMASS2
100F  S/N=27.9 1 S/N=26.5 11 S/N=2738 i
100 10t 10210° 10! 10%10° 10t 10?
R[h~Mpc] R[h™'Mpd] R[h""Mpc]

FIG. 2. Similar to the previous figure, but this figure shows the projected autocorrelation functions, R x wp(R), measured using the
same LOWZ, CMASSI1, and CMASS2 lens galaxy samples as in the previous figure. The unshaded region denotes the range of
separations used for cosmological parameter estimation: R = [8, 80|42~ Mpc.
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the underlying matter clustering. The total S/N of the
combined (all three samples) AX data vector is 10.5, while
the total S/N of the combined w,, data vector is 47.5.

IV. ANALYSIS METHOD

In this section, we describe our cosmological parameter
inference methods using the measured AX(R) and w,(R)
signals described in the preceding section.

A. Theoretical model

In this paper we adopt the “minimal bias” model to
interpret the measured AX(R) and w,(R) signals (see
Ref. [37] for details). This model is the simplest one
because it models AX(R) and w,(R) using a linear bias
parameter and the nonlinear matter correlation function.
Sugiyama et al. [37] demonstrated and validated this
method by comparing theoretical templates with mock
AX and w,, signals that mimic those of the SDSS galaxies
used in this paper, showing that this method can recover the
underlying cosmological parameters to within the statistical
errors for the ACDM cosmological model that is consistent
with the Planck data [3], as long as the analysis is restricted
to clustering information on large scales above R, = 12
and 8h~! Mpc for AT and wp, Tespectively. To be more
quantitative, Sugiyama et al. [37] showed that a shift in the
central value in Sg from its true value is found to be within
~0.50 (o is the marginalized 68% statistical error) for all of
the mock signals, one of which is implemented with an
extremely large assembly bias effect and has a factor of 1.5
larger amplitude in w, compared to that of the fiducial
mock. The results of this paper using the minimal bias
model can be compared with those of our companion paper
[27], which adopts the halo model approach to model the
smaller-scale clustering signals of the SDSS galaxies down
to (2,3)h~" Mpc for AZ and w,, respectively.

Using the minimal bias model we model AX(R;z;) for
each of the LOWZ, CMASSI, and LOWZ2 samples as

_ o kdk
AX(R:z) = bi(amo [ PR 2 (kR). ()

where J,(x) is the second-order Bessel function, p,, is the
mean matter density today, b;(z;) is the linear galaxy bias
parameter for each SDSS galaxy sample at the redshift z;,
and PNL is the nonlinear matter power spectrum at z;. In
this paper, we use the halofit fitting formula [50,51] to
model P\L for an assumed cosmological model.
Throughout this paper, we model the clustering observ-
ables at a representative redshift of each SDSS lens sample,
defined by the mean redshift of the lens galaxies within
each redshift bin. In other words, we do not include redshift
evolution of the clustering observables within the redshift
range. We employ z; = 0.26, 0.51, and 0.63 for the
representative redshifts of the LOWZ, CMASSI, and

CMASS2 samples, respectively. We checked that the
difference between the signal evaluated at the representa-
tive redshift and the signal averaged over the redshift bin is
below 4% of the square root of the diagonal element of the
covariance matrix in each R bin, and hence this treatment
should not cause any significant bias in cosmological
parameters. In the following we omit the argument zj,
e.g., in AX(R;z), for notational simplicity.

The large-scale structure between us and the lens
galaxies distorts the shapes of the background source
galaxies and modulates their number density. The same
large-scale structure also causes number density fluctua-
tions in the lens sample due to lensing magnification; these
correlate with the source galaxy shape distortions [52,53].
This effect adds a contamination term to the standard
galaxy-galaxy weak lensing, expressed as

AZO(R) = AZ(R) + AT (R). (3)

The first term on the rhs is the standard galaxy-galaxy
weak lensing contribution [Eq. (2)] and the second term
is the contamination due to magnification bias, which
is expressed in terms of the nonlinear matter power
spectrum as

3 adzH, (1 +z)?

AT (R) o 2[tae(21) — I]EHOQ“‘ o H(z) 14z

JunirPazes

_ kdk i . X
X /)m()/ o Pmm(k’ Z)JZ (kll R) s (4)

where a,,, is the power-law slope of the intrinsic number
counts of lens galaxies around the absolute magnitude cut,
P (z) is the stacked posterior distribution of photometric
redshifts for source galaxies, and y; and y, are the
comoving angular diameter distances to the lens redshift
and the source redshift, respectively. Note that AZ™ does
not depend on the galaxy bias. We include the redshift
distribution of source galaxies, P,(z;), but use the mean
redshift of lens galaxies for simplicity. An estimate of the
number counts slope, Pmag> for each of the absolute
magnitude-limited samples of LOWZ, CMASSI, and
CMASS?2 is relatively straightforward, compared to the
original parent samples, which have color-dependent flux
cuts that make it challenging to determine the slope for the
magnification bias calculation [53].

From the measured number counts, we estimate
Omag = 2.26 +0.03, 3.56 +0.04, and 3.73 £ 0.04 for the
LOWZ, CMASSI, and CMASS2 samples, respectively,
where the 1o error is estimated assuming Poisson errors in
the number counts in each magnitude bin around the
magnitude cut. Although we have a relatively accurate
estimate of a,, for each sample, we employ a conservative
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approach for our cosmological analysis: we treat ,,, as a
nuisance parameter in the cosmological analysis, employ-
ing a Gaussian prior with width ¢(a,,,) = 0.5 and a mean
value taken from the above measurement value. To check
for a possible redshift dependence of ay,,, We divide each
lens sample into five subsamples in different redshift bins,
and measure a,, for each subsample. We find that the
scatter in @y, of subsamples is within the prior width, and
hence a,,, can be treated as a constant nuisance parameter
as long as we use the prior with ¢ = 0.5. As we will show
below, AX™ constitutes a 1%, 7%, and 10% contribution
to the total AX™del for the LOWZ, CMASSI, and
CMASS?2 samples, respectively, for the Planck cosmology
[54]. Including the AX™2 contribution in the theoretical
template adds some cosmological information.
Encouragingly, we will show that the broad prior on
Amag causes almost no degradation in cosmological param-
eter constraints.

The projected autocorrelation function w,(R) is
defined in terms of the three-dimensional correlation
function &,, as

wp(Ri21) = 2f &P (R:2)) /) Taneg, (VR +1P),
(5)

where 7, is the projection length along the line of sight.
We employ 7,,,x = 100h~! Mpc as used in the measure-
ment. The projected correlation function is less sensitive to
the RSD effect compared to &y, because the line-of-sight
projection reduces the RSD effect, but the effect is not
completely negligible, especially at large R. We account for
the residual RSD effect using the Kaiser RSD factor [14]:

RSD(R;z;) is the correction factor, which depends on
redshift and on the assumed €, and wy, for a flat wCDM
model [see Eq. (48) in Ref. [48] for the definition]. Using
the minimal bias model, we model the three-dimensional,
real-space galaxy correlation function as

o 12
ulr) =7 "G WAk, (0

where jo(x) is the zeroth-order spherical Bessel function,
and b; is the same bias parameter as in Eq. (2) for each
SDSS galaxy sample. While the galaxy clustering signal is
also affected by magnification bias, we have checked that
its contribution is at the subpercent level compared to
Eq. (5), and hence neglect it in our model.

Throughout this paper, we use the logarithmic center of
each separation bin as a representative projected separation,
R; = (R; maxRimin) /%, and evaluate the model prediction at
the representative projected separation. We have checked
that the difference between the model signal evaluated at
the representative separation and the area-averaged model

signal within each separation bin is below 2% of the square
root of the diagonal element of the covariance matrix.
In this minimal bias model, the relation between the real-

space correlation functions &u(7)//&ee(7)émm(r) = 1
always holds by construction. Hence, as long as the
correlation functions for real galaxies follow this relation
for large separations, our model can accurately model the
measured correlation functions at such separations.

We use Dark Emulator [33] to compute the linear matter
power spectrum, Py, (k), for an input cosmological model,
which is constructed from the CLASS [55] outputs. We
then use the updated version of halofit [50,56] to compute
the nonlinear matter power spectrum, Py (k), from the
linear power spectrum for the cosmological model. We use
the FFTLog method [57], implemented in pyfftlog [58], to
perform the Hankel transforms in Egs. (2) and (6). The
integration for the galaxy clustering projection in Eq. (5) is
performed with the trapezoidal rule. The model parameters
are summarized in Table I.

TABLE I. Model parameters and priors used in our cosmo-
logical parameter inference. The label U/ (a, b) denotes a uniform
(or, equivalently, flat) distribution with minimum a and maxi-
mum b, while NV (i, ¢) denotes a normal distribution with mean p
and width ¢. The parameters above “Extended model” are the
parameters used in our baseline analysis: five cosmological
parameters, a linear galaxy bias parameter and a magnification
bias parameter for each of the LOWZ, CMASS1, and CMASS2
samples, and two nuisance parameters to model residual photo-z
and multiplicative shear errors: 13 =5+ 3 + 3 + 2 in total. We
perform the analysis for the “Extended model” after unblinding;
we further include the dark energy equation-of-state parameter,
Wge> and combine the information from AX and w,, with external
data sets (e.g., Planck) to estimate all of the cosmological
parameters in the extended model, wCDM.

Parameter Prior
Cosmological parameters
Qe U4(0.4594,0.9094)
In(10'°4;) U(1.0,5.0)
@y N (0.02268, 0.00038)
@, 14(0.0998,0.1398)
T N(0.9649, 3 x 0.0042)
Galaxy bias parameters
bi(z;) 4(0.1,5.0)
Magnification bias parameters
Umag (ZLOWZ) N(2.259,0.5)
Omag (ZcMASS1 N (3.563,0.5)
g (Zomass?) N (3.729,0.5)
Photo-z/shear errors
Azg N(0.0,0.1)
Am, N(0.0,0.01)
Extended model
After unblinding
Wde U(-4.0,-0.2)
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B. Modeling residual systematic errors
in galaxy-galaxy weak lensing

Miyatake et al. [27] performed various systematics
tests and null tests such as the B-mode signal and the
“boost” factor, and did not find any strong evidence for
residual systematic effects in the AX measurements,
reflecting the high quality of the HSC-Y1 data. In our
cosmological analysis, we introduce nuisance parameters
Azp, and Am, to model possible residual systematic
errors in the photo-z and multiplicative shear calibration,
and adopt conservative priors on those nuisance param-
eters. Hence, even if we have residual unknown system-
atic effects in the weak lensing measurements, the nuisance
parameters can at least partially absorb their impact on the
cosmological constraints. We assume that the systematic
effects of SDSS data are controled better because of the
spectroscopic information, and we do not consider any
residual systematic errors in the w, measurement.

1. Residual systematic photo-z error: Az,

Photo-z uncertainties are among the most important
systematic effects in weak lensing measurements. To study
the impact of photo-z errors on our results, we introduce a
nuisance parameter Az, to model the possible residual
uncertainty. More specifically, following the method in
Ref. [59] (see also Ref. [27] for a detailed discussion on this
modeling of systematics), we model the systematical error
in the mean source redshift by shifting the posterior
distribution of each source galaxy by the same amount,
Azph, as

Ps(zs) - PS(ZS + Ath)- (7)

We then use the shifted distribution to compute the
averaged lensing efficiency (Xg'); and the weight wy
for the source-lens pairs using the actual HSC-Y1 and
SDSS catalogs. We find that the lensing signal after this
shift can be well approximated by the following multipli-
cative form:

AZ(R; Az) = £y (A2 )AZ (R; Azyy, = 0), (8)

where f é’ff (Az) is a multiplicative factor to model the effect

of systematic photo-z error and i; =“LOWZ,” “CMASS1,”
or “CMASS?2” is the index of the lens galaxy sample [60].
While using a single population of source galaxies, we find
that the shift Az, leads to different changes in the
amplitudes of AX for the different lens samples (LOWZ,
CMASSI, and CMASS?2) depending on the lens redshift.
Conversely, we can use the relative variations in the AX
amplitudes at different lens redshifts to calibrate out Az,
simultaneously with cosmological parameter estimation, if
the data has a sufficiently high signal-to-noise ratio. This is
a self-calibration method for photo-z error that was

proposed in Ref. [45]. We will see how effectively the
self-calibration method works to calibrate photo-z errors
to higher precision than the prior, given the statistical
power of the HSC-Y1 data and the scale cuts adopted in
this paper.

Specifically, we have to use a shift in the intrinsic
redshift distribution of source galaxies, rather than the
posterior distribution, to estimate the impact of residual
photo-z errors on AX. As discussed in Ref. [27], even if
we use the intrinsic distribution estimated by matching
the source galaxies to the calibration sample of the
COSMOS catalog in magnitude-color space, the effect
is very small, compared to the change caused by using
the parameter Azph. Hence, we conclude that our treat-
ment of the residual photo-z error is sufficient to capture
the possible impact.

In our method, we apply the inverse of the photo-z error
factor as a correction to the theoretical template for AX(R),
rather than changing the measurement, as follows:

Azmodel(R)
- (i) ’
fph (Azph)

This treatment permits us to use an unchanged data vector
and its covariance matrix for the cosmological parameter
inference. The multiplicative correction factor for photo-z
dependence is summarized in Appendix E.

As another sanity check, we also study the impact of
different photo-z methods on the cosmological results.
Table 11 gives differences in (X5') when using a photo-z
estimate for each source galaxy based on different photo-z
methods, relative to that for the fiducial photo-z method.
Note that we repeat the cut defined by Eq. (1) to define the
source galaxy sample for each method, so the source
samples are different for each photo-z method. The differ-
ent photo-z methods give a few-percent change in the AX
amplitudes; these changes differ depending on the lens
samples. We will explicitly study to what extent the

A Zmodel ( R)

©)

TABLE II. Differences in the averaged (X7') using different
photo-z methods relative to that for the fiducial photo-z method
(MLZ). We use the same method given in Eq. (1) to select source
galaxies, and compute the average (X') over all lens-source
pairs in the separation 3 < R/[h~' Mpc| < 30, for each lens
sample (LOWZ, CMASSI1, and CMASS2). The number after
“+” denotes the 1o uncertainty in the difference, estimated from

the width of the photo-z posterior of each source galaxy.

Photo-z

method LOWZ CMASS1 CMASS2
DEmP —0.048 +0.034 —0.000 + 0.029 -0.030 £ 0.026
Ephor AB —-0.046 £0.035 0.052 £0.033  0.129 + 0.055
Franken-Z —0.003 £0.023  0.002 +0.027  0.003 + 0.030
Mizuki —0.042 £0.022 —-0.050 +0.011 -0.041 £0.012
NNPZ —0.049 £ 0.030 —-0.018 =0.043  0.061 £ 0.050
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cosmological results are changed by using different photo-z
catalogs.

2. Residual error in multiplicative shear bias: Am,

An accurate weak lensing measurement requires an
unbiased measurement of the shear using the ensemble
average of the shape information for the source galaxies.
Past work has studied the impact of imperfect shape
measurements and the resulting residual systematic uncer-
tainties in the AX measurements for the HSC-Y1 sample
[61]. To model the impact of possible residual systematic
error in the shear calibration, we introduce a nuisance
parameter, Am,, and shift the theoretical template as

AX(R) = (1 + Am,)AX(R; Am, = 0). (10)

Then, we treat Am, as a nuisance parameter in the cosmo-
logical parameter inference and impose a conservative
prior, as discussed in Sec. IV C. Since we use a single
population of source galaxies as in Ref. [45], we can use the
same bias parameter Am, for the lensing signals for the
three lens samples (LOWZ, CMASS1, and CMASS?2). This
is a good approximation as long as the source galaxies are
well separated from the lens galaxies. Thus, the effect of
Am, does not depend on the lens redshift, so we can
distinguish between the two systematic effects of Az, and
Am,, if the signal-to-noise ratio of the AX measurement is
sufficiently high.

When we include both the photo-z errors and the shear
multiplicative errors in the parameter inference, we simply
multiply the model prediction AX by the multiplicative
functions, 1/fpn(Azp) and (1 + Am,), assuming that
these corrections are independent.

C. Likelihood and parameter estimation

We assume that the likelihood of the HSC-Y 1 and SDSS
galaxy clustering data follows a multivariate Gaussian
distribution:

1

—In £(d]0) = 5 [d; = mi(0)][C™'];[d; —m;(0)]. (1)

ijl
We employ 14 bins in the range 8 < R/[h~! Mpc] < 80 for
w,(R) and eight bins in the range 12 < R/[h~" Mpc| < 80
for AX(R), respectively. The dimension of the data vector
is 66 = 3 x (14 + 8) for our baseline analysis setup. We
use 13 model parameters: five cosmological parameters,
three bias parameters and three magnification bias param-
eters for the three galaxy samples (LOWZ, CMASSI, and
CMASS?2), and two nuisance parameters (Az,, and Am,).
We adopt the five cosmological parameters that specify a
flat ACDM model in our baseline analysis: Q. is the
present-day density parameter of the cosmological constant,
In(10'°A,) and n, are the amplitude and tilt parameters of the

primordial curvature power spectrum normalized at
kpivot = 0.05 Mpc™!, @y, (=Q,h?) is the physical density
parameter of baryons, and @, (=Q_h?) is the physical density
parameter of CDM. Throughout this paper we employ
adiabatic initial conditions.

We use Bayesian parameter inference, where the pos-
terior distribution of the model parameters with a given data
vector is expressed as

PO|d) x L(d|0)I1(0), (12)

where I1(@) is the prior on the parameters. The choice
of prior is summarized in Table I. Since the clustering
observables AX and w, are not sensitive to w, and n,, we
employ priors on those parameters from other experiments.
For the prior on w, we employ a normal distribution
with mean and width inferred from big bang nucleosyn-
thesis (BBN) experiments [62-65]. For the prior ng
we employ the normal distribution given in Table I,
where we adopt the Planck 2018 result (see the
“TT, TE, EE + lowE + lensing” column of Table 2 in
Ref. [62]) for the mean and a width 3 times wider than
the Planck error as a conservative choice. For the residual
photo-z error parameter, we employ a normal distribution
with zero mean and width 6(Azy,) = 0.1, which is a
conservative choice and larger than the uncertainty inferred
from the photo-z method (a few percent) (see Table. 5 in
Ref. [66]). For the residual shear error parameter, we
employ a normal distribution prior with zero mean and
width ¢(Am,) = 0.01, which is estimated from HSC
galaxy image simulations [61]. For other parameters we
adopt a uniform distribution with sufficiently wide width so
that these priors are not informative for the cosmological
parameter constraints.

We sample the posterior distribution in a multidimen-
sional parameter space by using the nested sampling
technique implemented in MultiNest [67—69] and its
PYTHON wrapper, PyMultiNest [70], through the interface for
cosmological parameter inference MONTEPYTHON [71,72].
We set the following MultiNest hyperparameters: the sampling
efficiency parameter ef r=0.8, the evidence tolerance factor
t01=0.5, and the number of live points N11ive=1000.

After sampling the posterior distribution, we estimate the
central value and credible interval for the cosmological
parameter(s) from the chain. In this paper, we report the
mode as the central value and the 68% highest density
interval as the credible interval. The definitions of the mode
and the highest density interval are illustrated in Fig. 3. The
mode is defined by the parameter value that has the highest
posterior probability, and the 68% highest density interval
is defined so that the probability integrated within the
interval is 68%. To obtain the mode and the highest density
interval from a given chain, we first estimate the margin-
alized posterior distribution by using kernel density esti-
mation using the public code getdist [73], and then find the
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Prob=68%
S
& 68% highest
density interval
mode
1 n \AA " 1 n n
0
FIG. 3. [Illustration of the definitions of the mode and 68%

highest density interval. The black line is the 1D marginalized
posterior distribution, P(0), of a model parameter . The mode
is defined as the parameter value that has the highest proba-
bility. The 68% highest density interval is an interval in which
the probability is higher than outside and the total probability
is 68%, where the probability density is normalized so that
Je2 doP(6) = 1.

mode and the highest density interval from the posterior
distribution.

Among the sampled model parameters, we focus on Q,,,,
o3, and Sg = 63(Q,,/0.3)%3, which are derived from the
sampled parameters. In Appendix B, we show the con-
vergence of our sample chains and that our setup is suitable
to infer the cosmological parameters to within the sub-
percent level of the 68% credible interval.

V. BLINDING SCHEME AND VALIDATION

In this section, we describe our strategy of analysis to
secure the robustness of the results to confirmation bias and
systematics in the data, analysis, and model.

To avoid confirmation bias we perform our cosmological
analysis in a blind fashion. The details are described in

TABLE III.

Sec. 3.2 of Ref. [66]. We employ a two-tier blinding
strategy to avoid accidental unblinding during the cosmo-
logical analysis, namely, both at the catalog level and at the
analysis level.

(1) Catalog level: The analysis team performs the full
cosmological analysis using three different catalogs
of galaxy shapes for weak lensing measurements,
one of which is the true catalog and the other two are
fake (see below for details). No member in the
analysis team knows which catalog is the true
catalog.

(2) Analysis level: The analysis team is not allowed to
make a plot comparing the measurement with
theoretical models. When the analysis team makes
a plot showing the credible regions of cosmological
parameters (i.e., the posterior distribution), the
central value(s) of parameter(s) are shifted to zero,
and only the shifted range of the credible region(s)
can be seen.

(3) Analysis level: The analysis team is not allowed to
compare the posterior of cosmological parameter(s)
or the inferred model predictions with external
results such as the Planck CMB cosmology.

Use of the three shape catalogs means that the
analysis group must perform three analyses, but this
method avoids the need for reanalyses once the catalogs
are unblinded.

In addition we do not make any comparison between the
posterior distributions of parameters obtained from this
paper and from the companion paper using the halo model
method [27] during the blind analysis stage. Our cosmo-
logical analysis method has been tested and demonstrated
to be valid in Ref. [37].

In addition to our baseline analysis, we employ alter-
native analysis setups to quantify internal consistency and
systematic effects in parameter estimation before unblind-
ing, as summarized in Table III.

Our analysis setups: the baseline analysis setup, and those designed to check for internal consistency. The marks “v” or “...”

in each column denote whether each analysis does or does not include the parameter(s) in the inference. The column labeled as 0.,y
denotes the set of cosmological parameters, Ocogmo = {Qqe, IN(10'°A,), ng, @, w, }. The other parameters are the same as in Table L.

Sample parameter

Setup label

0cosmo (bl.i) Amy Ath amag w

Comment

Baseline

w/o LOWZ

w/o CMASSI1

w/o CMASS2

w/o photo-z error

w/o shear calibration error

w/o magnification bias effect error
Two cosmological paras

PANANANA NN
SSSNSNSASANSN
AN N N NN
SN SSNAS

wCDM

<
<
N
<

DN N N NN

N

Baseline analysis: O.ogmo = {Qae. In(101°A)), ng, 0., 0, }
w/o the LOWZ sample
w/o the CMASS1 sample
w/o the CMASS2 sample
Fixing Azp, =0
Fixing Am, =0
Fixing ap,e = 0
Fixing (ng, oy, @) to the Planck best-fit values:
0cosmo = {Qdeﬁ ln(lOlOAS)}

v Including the DE equation-of-state parameter,
Wqe, dfter unblinding
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VI. RESULTS
A. Cosmological parameters for the ACDM model

In this section, we present the results of cosmological
constraints in a flat ACDM model. All of the analyses we
show in this section were done before unblinding [74]. We
neither saw the actual values of the cosmological param-
eters, nor compared our results with those from any other
analysis, including those from Planck or our companion
paper [27].

Figure 4 shows the posterior distributions of Sg, og, and
Q. for the baseline analysis. The central value and the
credible interval of each parameter are, respectively,

Sg = 0.9367 005
og = 0.851019,
Q,, = 0.28370 3. (13)
Thus, the joint measurements of AX and w;, from the HSC-
Y1 and SDSS catalogs achieve a precision of ¢(Sg) =~ 0.09.
This precision can be considered as a conservative and
robust constraint, because we demonstrated in Ref. [37]
that any systematic bias in Sg due to inaccuracies in the

minimal bias model is very unlikely to become larger than
the 68% credible interval. However, our result displays a

Q= 0.2837002,

Sy = 0.93619992

S N I I P= "I BRI B

1 n |
02 03 04 05 0.7 1.0 1.3 08 1.0 12

Qm agg Sg
FIG. 4. 1D and 2D posterior distributions of the three main

cosmological parameters, Q,, og, and Sg, obtained from the
baseline analysis (see Table III), where we use the galaxy
clustering signals over 8 < R/[h~! Mpc] < 80 and the galaxy-
galaxy lensing signals over 12 < R/[h~! Mpc] < 80. The dark
(light) shaded region shows the 68% (95%) credible interval. The
posterior distributions over the full 13-parameter space are shown
in Fig. 16.

slightly larger value of Sg compared to other results such
as the Planck result, as we discuss below in more detail.
For completeness, we show the posterior distributions
of all 13 parameters (and several derived parameters) in
Appendix C. A closer look at Fig. 4 shows that the posterior
distribution of Q,, has a flat-shaped peak. We found that
this arises when we combine the cosmological information
from the three galaxy samples, while the cosmological
parameters from each of the galaxy samples alone differ
due to sample variance, as shown in Appendix D 1 (see also
Ref. [75]). The flat-shaped peak is also partially a conse-
quence of the degeneracy between Q, and w.. If we fix @,
to the Planck 2015 best-fit value, €2,, shows a narrower and
“peakier” distribution.

As discussed in detail in Ref. [37], using either AX(R) or
wp(R) alone cannot constrain these parameters simultane-
ously and suffers from severe degeneracies. On large scales
where linear theory holds, AZ(R) is proportional to b;o3,
while w,(R) is proportional to bicg. Thus, either alone
cannot constrain b; and oy separately. If oy is very large, that
assumption is incorrect, and our model will overpredict AX
and w,, around the minimum scale because the stronger
nonlinear effect boosts the amplitudes around the scale
compared to what the linear theory predicts. Because of
this, a model with an extremely large og is disfavored in
parameter inference, while there is no such penalty for
arbitrarily small values of og. Thus, the resultant posterior
distribution with either AX or w;, alone depends on the lower
limit of the prior range of og. Hence, only the joint analysis of
AZX and w, gives meaningful constraints on o3 and Sg (see
also Fig. 7 of Ref. [37]). As shown in Appendix C, the bias
parameter for each galaxy sample is determined to a frac-
tional precision of about 20%. Q,, is constrained relatively
well because a change in €, causes a scale-dependent
modification in w;, (and AX), so the w, information in our
data sets can give a meaningful constraint on the parameters.

Figure 5 shows the posterior distributions of Sg with the
nuisance parameters characterizing photo-z errors and multi-
plicative shear bias. The posterior distributions of the
nuisance parameters are prior-dominated (see Table I), mean-
ing that AX(R) and w,(R) on large scales alone cannot
constrain these parameters well. As shown in Ref. [27], the
inclusion of smaller-scale information in the analysis con-
strains the photo-z parameter better than the prior range. In
addition, Miyatake et al. [27] presented the cosmological
parameters when employing an even broader width of
o(Azy,) = 0.2, instead of o(Azy,) = 0.1 in the fiducial
prior, and showed that the data allows for a self-calibration
of the residual photo-z bias, indicating Az, = —0.113 for
the central value, as can be seen in Fig. 26 of their paper. As
for the post-unblinding analysis, we found that Sg is changed
to Sg = 0.90210577 from Sg = 0.936 5% if we adopt the
fixed value of Azy, = —0.113 in the parameter inference.
Thus, the larger value of Sg in our results might be partly due
to the possible residual photo-z bias. However, the shiftis not
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FIG. 5. Similar to the previous figure, but now showing the 1D

and 2D posterior distributions for Sg and the nuisance parameters
Am, (multiplicative shear error) and Az, (photo-z bias) for the
HSC source galaxies used in the weak lensing measurements. The
vertical dashed lines in the 1D distributions of Am, and Azg,
denote the widths of the Gaussian priors of these parameters.

significant, and we need more HSC data to obtain a more
definite conclusion.

Figure 6 shows an evaluation of the goodness of fit of the
best-fit model, evaluated at MAP of the posterior distri-
bution, for the baseline analysis. To make the reference e
distribution, we need to evaluate the effective degrees of
freedom, which generally differs from the naive evaluation
of degrees of freedom, i.€., v = gy — Vparam = 66 — 13 =
53 in our case, because of the parameter degeneracies. To
obtain the effective degrees of freedom, we first generate
noisy mock data vectors of AX(R) and w,,(R) for the galaxy
samples by adding random statistical scatter to the noiseless
mock signals of AX(R) and w,(R). Note that the noiseless
mock signals were generated using N-body simulation data
for the Planck 2015 cosmology [37] (see also Ref. [76]).
The histogram in the figure shows the distribution of y? for
the model at MAP for each of the 30 noisy mocks. The
magenta line denotes the best-fit y? distribution, specified
by the effective degrees of freedom v = 62.3. The actual
x> at MAP for the real analysis of HSC-Y1 and SDSS data
is *> = 69.1, corresponding to a p-value of 0.259, which
indicates that the minimal bias model gives an acceptable
fit to the data within the error bars. For a further compari-
son, we also compute the expected x> distribution follow-
ing the “Gaussian linear model” (GLM) in Ref. [77], which
assumes that both the data vector and model parameters are
Gaussian distributed. Here we generate 10 000 noisy mock

LI e B S L B — e ———
==+ GLM: P(X;—¢1.)
—— BF to mocks: P(x%_g3)
I, » —_— Xieal data = 69:1
/) \\ 30 noisy mocks
o I/ N
(]
: j
=
g / R\
& y D\
e / \
U, A\
/ \\
/ N
W
N
1 1 1 n n n 1 n
40 60 80 100 120

X2(91\1AP)

FIG. 6. Evaluation of the goodness of fit of the best-fit model at
MAP for the baseline analysis. The magenta histogram shows the
distribution of the )(2 value of the model at MAP, obtained by
applying the same baseline analysis to each of 30 noisy mock
data sets (see text for details). The magenta line is the best-fit y?
distribution, characterized by the degrees of freedom v = 62.3
estimated from the same mocks. The vertical black line indicates
7% = 69.1 at MAP for the real analysis of the HSC-Y1 and SDSS
data. The blue dashed line shows the y? distribution with degrees
of freedom v = 60.5 computed using the Gaussian linear model
(GLM) in Ref. [77] (see text for details).

data vectors around the above mock signals, compute the
MAP model for each of them, and compute y*> at MAP
using the GLM method. The blue dashed line gives the
best-fit y? distribution, specified by the effective degrees of
freedom v = 60.5 estimated from these 10 000 mocks.
The GLM method gives a y? distribution that is consistent
with that estimated from the analysis using the noisy mock
signals. Hence, we conclude that the MAP model gives an
acceptable fit to the measured signals.

Figure 7 summarizes the 1D posterior distributions of Sg,
oy, and Q_, for the different setups in Table III. We do not
identify any significant shift or sign of systematic effects in
the parameter estimation; in particular, all of the Sg results
are consistent with the baseline setup to within the 68%
credible interval. In the following, we discuss each of the
results.

Figure 8 shows the results if we remove one of the three
galaxy samples (LOWZ, CMASS1, or CMASS2) from the
parameter inference. In Fig. 9, we show the posterior
distributions for each galaxy sample separately. In both
cases, the results are consistent with one another. These
plots demonstrate that the scatter in the posterior distribu-
tion has an appreciable contribution from sample variance.

In Fig. 10, we study how the inferred cosmological
parameters are changed if we use the different photo-z
catalogs of HSC source galaxies based on Eq. (1) for the
AY measurements. We use the same covariance matrix as
for the fiducial photo-z catalog for these analyses, because
the effect of different photo-z methods on the covariance
matrix was shown to be small in Ref. [78]. Keeping the
covariance matrix fixed also allows for a more direct
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FIG. 7.

Summary of the constraints on cosmological parameters for the different setups (see Table III). Here the dot symbol and error

bar in each column denotes the central value and the 68% credible interval (Fig. 3). For comparison, the shaded band shows the 68%

credible interval of the baseline analysis.

comparison of the sensitivity of cosmological parameters
to the choice of photo-z catalog. We find consistent
results within the credible intervals for all photo-z samples
except for “Ephor AB,” which differs significantly from the

baseline

w/o LOWZ
w/o CMASS1
w/o CMASS2

3

Laf 1 1
o0

“0f T -
0.6F + 1

S I AP IR AT WU BU U S R SR P 3

0.2 03 04 05 05 1.0 1.5 06 1.0 14

Qm s S8
FIG. 8. Similar to Fig. 4, but now showing the posterior

distributions when we remove one of the galaxy samples (LOWZ,
CMASSI1, or CMASS?2) from the parameter inference.

results of the baseline analysis. The Ephor-AB sample has a
substantially smaller number of source-lens pairs, giving a
noisier AX signal. We explore this further in Appendix D 2,
where we find that the difference in og and Sy is caused
largely by the CMASS2 signal at large separations,

baseline
LOWZ alone
CMASSI alone
CMASS2 alone

0.2 0.3 04 0. ‘ 05 . 10 = ‘1A5‘ ‘ ‘0,5 ‘ 1.0 1.5

Qm og SS

FIG. 9. Similar to Fig. 4, but now showing the posterior
distributions for each galaxy sample alone.
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FIG. 10. Similar to Fig. 4, but now showing the results when we
use different photo-z catalogs used to define the HSC source
galaxies for the AX measurements (see text for details).

R > 10h~! Mpc; if we remove the CMASS2 sample, we
find much more consistent results.

Figure 11 shows the results when we allow only the two
cosmological parameters Q . and In(10!°A;) to vary, while

Bl bascline
BN 2 cosmo

02 03 04 0.
Qm

FIG. 11. Posterior distributions when using only the two cos-
mological parameters Q. and In(10'°A,) in the parameter infer-
ence, instead of the five parameters in the baseline analysis in Fig. 4.
We fix the values of the other three cosmological parameters to
those inferred from the Planck 2015 “TT, TE, EE + lowP” con-
straints, and we include the same nuisance parameters as in the
baseline analysis. The Sg result is almost unchanged.

keeping the other three parameters (my, @, 1) to the best-fit
values of the Planck 2015 “TT, TE, EE + lowP” constraints
[62]. Encouragingly, the Sg result is almost unchanged,
confirming that Sy is close to the principal parameter that the
clustering observables can most accurately constrain. In
other words, other three parameters do not strongly affect
the inference from clustering observables. On the other hand,
the Q, constraint is considerably weaker when we allow all
five parameters to vary, because of the strong degeneracy
between €, and @, in a flat ACDM model. Since 65 and Q,,
are correlated in our analysis (Fig. 16), this leads to a
degradation in the constraints on og.

B. Cosmological results of post-unblinded analyses

In this section, we show the results of post-unblinding
analyses.

In Fig. 12, we compare cosmological parameter estima-
tion results with those from other experiments for the flat
ACDM model. Throughout, we assume a fixed value of the
total neutrino mass, m,, . = 0.06 V. For the Planck result,

HSC Y1 GGCxGGL, minimal bias
HSC Y1 GGCxGGL, Miyatake HOD
HSC Y1 CS, Hikage et al.

DES Y1 GGCxGGL

KiDS-1000 CSxGGL

Planck 2018 TT,TE,EE+lowE

12 »- T T T il T T T ] ﬁ
I ; [ ] I
' . ' 1 l
J1of | T ] I
95) [ J [ / ] |
0.8 [ ~/ ) I ~ ] |
F ¥ = JEN
02 04 06 06 Lo i s 10 12
Qm s Sg
FIG. 12. Comparison of our constraints (“HSC-Y1

GCC x GGL, minimal bias) with other cosmological experi-
ments for flat-geometry ACDM cosmologies. For the galaxy
survey constraints, we focus on the results that are obtained from
clustering information using a similar setup to ours: “GGC”
denotes the projected galaxy clustering, “GGL” denotes the
galaxy-galaxy weak lensing, and “CS” denotes the cosmic shear
information. Magenta contours show the DES-Y1 results [23],
while brown contours show the KiDS-1000 result [81]. The
orange contours show the results obtained in our companion
paper [27] when including smaller scale information with the
HOD-based method for the same HSC-Y1 data, “HSC-Y1
GCC x GGL, Miyatake HOD.” The green contours show the
results for cosmic shear tomography, “HSC-Y1 GC, Hikage”
[66]. The cyan contours show the Planck CMB constraint.
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FIG. 13. Posterior distributions of parameters, including the
dark energy equation-of-state parameter wy,, for the joint param-
eter inference of the HSC-Y1, SDSS, and Planck 2018 data for
flat-geometry wCDM cosmologies. For Planck, we include the
primary anisotropy data for temperature and E-mode polariza-
tion, denoted as “TT, TE, EE + lowE” (see Ref. [62]); that is, we
do not include the CMB lensing information.

we consider the Planck 2018 [62] cosmological constraints,
in particular those derived from primary CMB informa-
tion, referred to as “TT, EE, TE + lowE” in their paper. In
other words, we do not include CMB lensing information.

We used the publicly available likelihood code for the
Planck data [79] to infer the cosmological parameters
when the neutrino mass is fixed to 0.06 eV. The HSC-Y1
cosmic shear result [66] is taken from Ref. [80]. For the other
lensing experiments that we compare to, we use the
cosmological constraints that are obtained from lensing data
in a similar setup to what we employ in this paper. For the
DES-Y1 [23] and KiDS-1000 [81] results, we use cosmo-
logical constraints from a combination of galaxy-galaxy
lensing (GGL), galaxy clustering (GGC), and cosmic shear
(CS). These lensing surveys cover a wider area than HSC-Y1
(~1000 deg? compared to 140 deg?), but are shallower than
HSC-Y1. We use public results, available from the
Refs. [82,83], for DES-Y1 and KiDS-1000, respectively.
We note that the DES-Y1 result was obtained by varying the
neutrino mass. However, this difference is not important
because the neutrino mass is not well constrained by lensing
information or large-scale structure information alone. We
refer to the “CS”x“GGL” result for KiDS-1000, as that
KiDS-1000 analysis used redshift-space galaxy clustering
information, and included baryon acoustic oscillation infor-
mation. Hence, Fig. 12 tries to give an apples-to-apples
comparison between the lensing results.

Our cosmological results are weaker than the other
constraints we show because our method only uses
large-scale clustering information in the quasinonlinear
regime where the minimal bias model is valid. In our
companion paper [27], we incorporate smaller-scale data
using an halo occupation distribution (HOD) model. As
shown in Fig. 12, the resulting constraints, denoted as
“HSC-Y1 GGC x GGL, Miyatake HOD,” become com-
parable with the results of other lensing experiments,

TABLE IV. Summary of cosmological constraints for different analysis setups (see Table III). Here we report
the mode of the marginalized posterior along with the credible interval defined by the highest density interval

(see Sec. IV C and Fig. 3).

Setup Sg = 04(Q,,/0.3)%3 og Q. W
Baseline 093670592 0.85719 0.2837 03
w/o LOWZ 1131014 1.027017 0.32870:32,
w/o CMASS1 0.997019 0.947012 0.255704%,
w/o CMASS2 0.92°5-1] 0.827019 0.31959:2,
w/o multiplicative bias 0.932750% 0.847 017 0.288101%
w/o photo-z 0.94170578 0.85° 315 0.2981 001
w/o magnification bias effect 0.93970:088 0.867 013 0.287104%,
DEmP 0.931°5:083 0.85701% 0.2701011
Ephor AB 1.07150007 107018 0.26070070
Franken-Z 0.94870:08¢ 0.867 017 0.2781 044
Mizuki 0.8927 0082 0.7910:1 0.281073
NNPZ 0.9527050% 0.86701] 0.28870 0%
Two cosmo 0.9397 0099 0.909" 3% 0.311700%8

wCDM (HSC x Planck2018) 0.817-5032

osrdl  oxedtt 1oy
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despite the fact that the solid angle covered
by HSC-Y1 is 10 times smaller than that of DES-Y1 or
KiDS-1000. Hence, our constraints can be considered as a
conservative result. In addition, our result is consistent with
the results of both Planck 2018 and the HSC-Y1 cosmic
shear analysis.

In Fig. 13, we show the cosmological parameters
estimated from the joint analysis of our HSC-Y1 likelihood
and the Planck 2018 likelihood for a flat wCDM model.
Here we include the dark energy equation-of-state param-
eter wg., in addition to parameters we have used so far
for the ACDM model. We employ the priors described
in Sec. IV C and Table I except for @, and n,, for which
we employ the uniform priors 2/(0.02190, 0.02285) and
1(0.9500, 0.9781), respectively. We use the public Planck
2018 likelihood code, for the primary anisotropy informa-
tion (“TT, EE, TE + lowE”), to perform the joint analysis.
Since the Planck information strongly constrains some of
the cosmological parameters such as wy,, @., and ng, the
joint analysis helps to break parameter degeneracies.
Nevertheless, we note that the Planck information alone
cannot constrain wy.: the posterior distribution of wy, for
Planck alone extends to the lower edge of the prior range.
We also note that the addition of wy, causes strong
degeneracies between the cosmological parameters, reflect-
ing the fact that the Planck information alone cannot
constrain these parameters simultaneously. Hence, we
should not seriously consider the consistency between
the Planck result and our result. On the other hand, when
the HSC constraints in the local Universe are combined
with the Planck constraints, it allows us to infer the growth
of large-scale structure and then use it to constrain the
equation-of-state parameter of dark energy wg.. The joint
analysis now shows tightened constraints on Sg, €,,, and oy
(see Table IV). The joint analysis prefers a value of wy,
slightly smaller than —1, but the deviation from this value is

—— HSC2x2pt, Planck TT,TE,EE+lowE (wCDM)
—— Planck TT,TE,EE+lowE (wCDM)
—— HSC2x2pt (wCDM)

0.6 0.8 1.0 12
Ss

FIG. 14. Similar to the previous figure, but now showing a
zoomed-in version of the posterior distribution in the subspace
of (Wde7 Sg)

not significant (see also Fig. 14), meaning that the inferred
model is consistent with a flat ACDM model.

VII. SUMMARY

In this paper we have presented cosmological constraints
from a joint-probe cosmology analysis combining the
galaxy-galaxy weak lensing and the projected correlation
function, measured from the HSC-Y1 imaging galaxy
catalog and the spectroscopic SDSS galaxy catalog. To
do this, we adopted a conservative standing point: we
employed a perturbation-theory-based model, more spe-
cifically the “minimal bias” model, as the theoretical
template to interpret the clustering observables. As shown
in our validation paper [37], this method can properly
extract the cosmological parameters in an unbiased way
as long as the analysis is restricted to large scales
(R = 10h~" Mpc), as nonlinear effects such as nonlinear
clustering and baryonic physics are confined to local scales.
This method is also robust against the complication of
assembly bias, because assembly bias changes the cluster-
ing amplitudes on large scales in such a way that the
cross-correlation coefficient function rg,(r) = &em(r)/
[£4a(r)Emm(r)]/? is close to unity [84], which is satisfied
by the minimal bias model by definition.

For our baseline analysis we employed the BBN prior
on m, and the Planck prior on ny, but adopted broad
priors on other parameters including the linear galaxy
bias parameters b; for the three galaxy samples. The
cosmological constraints we obtained are summarized as
Sg = 0.93670002, 63 = 0.8570-/%, and Q,, = 0.28370 %
for the flat ACDM model. Thus, encouragingly, the
joint-probe cosmology helps to lift degeneracies between
the cosmological parameters and the bias parameters;
the bias parameters are constrained to a fractional preci-
sion of about 20% for each galaxy sample. However, we
found a non-negligible degeneracy between @, and the
aforementioned parameters. We further combined the
HSC-Y1 and SDSS constraints with the Planck likelihood,
and found Sg=0.8170%7 o65=0.8927001 Q=
0.246700%2, and wy, = —1.28707) for the flat wCDM
model. These parameters are consistent with the flat
ACDM model inferred from the Planck 2018 experiment.
The statistical errors on the parameters from our analysis
are still significantly larger than those that include small-
scale information [27]. However, we believe that the true
cosmological model should be contained within the
credible regions of our favored models, if the ACDM
framework is correct. In our analysis we found no evidence
for residual systematic errors comparable to the current
statistical errors.

We can expect further improvements in the cosmological
constraints with the upcoming HSC data. The galaxy shape
catalog of the HSC Year 3 data, covering 450 deg? (3 times
that of HSC-Y1) and described in Ref. [85], should
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considerably improve the statistical precision of the weak
lensing measurements. We have now developed the cos-
mology analysis pipeline, and we will use it in a HSC Year
3 analysis. We will carry out a 3 x 2pt (three two-point
correlation functions) analysis [23], combining the HSC
and SDSS joint-probe analysis with the HSC cosmic shear
information.
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APPENDIX A: MAGNIFICATION BIAS EFFECT

In this appendix, we derive the additional contribution
due to magnification bias to the covariance matrix of the
lensing profile AX.

The lensing magnification due to large-scale structure
between us and lens galaxies causes modulations in the
number densities of lens galaxies. As a result, the observed
number density fluctuation field of lens galaxies is given by

8o (1. 210) = 83" (11.210) + 2(mag1 — Di(r1. 110).  (Al)
where 5;,“‘ is the intrinsic number density fluctuation field,
(g 18 the power-law slope of galaxy counts around a given
magnitude cut (see main text), and x(y,0,y;) is the con-
vergence field that is the projected mass density field up to

z; in the direction 6, given by

X
0) = [ AWl oo n0). (a2
with the lensing efficiency function
3
W(z.3) = = H3Qua 'y 1. (A3)
2 4!

The same large-scale structure, characterized by «, also
distorts images of source galaxies used in the galaxy-
galaxy weak lensing measurements, and therefore the
magnification bias adds additional statistical scatter to
the measurements.

Extending the method in Refs. [45,87], we derive the
additional contribution due to magnification bias to the
covariance matrix between the lensing profiles for the lens
samples at z; and zy, i.e., AX(R,;z) and AX(R,;zy):
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In this derivation, we assumed that the lens galaxies are at a
single redshift, z; or zy, for simplicity, and we consider the
case with zy > z; without loss of generality. The auto- and
cross-angular power spectra for the lensing convergence
field and the projected field of lens galaxies in the above
equation are defined as

Co (£321) = L%’” ) Py Cj,zl), (A5)

X 1
Co (£521,21) _%PgmG’ZI)G(ZV —z7). (A6)
Co,(€:21) = / dXWP%G,Q . (A7)
Gl = [l (L)
Cew(C21.20) = dxwf% <§,Z>, (A9)

where ©(x) is the Heaviside step function [@(x) = 1 if
x > 0; otherwise ®(x) = 0] and J,(x) is the second-order
Bessel function averaged within the separation bin, defined
for the nth separation bin (R,,) as

2
— R2

n,max

A Rn.max
J5(kR,) = A RARJ,(kR), (A10)

n.min

Ri,min
with k = Z/y in Eq. (A4). Note that we employed Limber’s
approximation [88] for the above angular power spectra.
We also note that the cross correlation given by
Cy, (€321, 2v) [EQ. (A6)] arises because the convergence
field, which causes the density modulations for the lens
sample at zy (> z;), includes the contribution of the mass
distribution at z;, giving rise to a cross correlation between
the mass distribution and the lens galaxy distribution that
are both at z;. The additional contribution due to the lensing
magnification turns out not to be significant compared to
the total power of the covariance matrix, but we included it
in our cosmology analysis for completeness.

o2

%)+ Conlia)Con E320) | b (A4

UN

APPENDIX B: CONVERGENCE TESTS OF
NESTED SAMPLING

We use MultiNest for sampling in our parameter estima-
tion. There are uncertainties in the parameter estimation
due to the sampling process itself, because the size of the
sampled chain is finite and the sampling itself depends on
the seed of MultiNest. In order to make sure that the uncertainty
due to MuliiNest, AMN, is small compared to the statistical
uncertainty, ¢, we run eight independent chains with
different MultiNest seeds. We confirm that the ratio of the
sampler uncertainty to the statistical error is AY"™ /0§ =

8.3 x 1073; thus, this source of uncertainty is negligible.
We also check that our choice of the MultiNest hyper-
parameters are suitable for sampling the target posterior
distribution by using the public code nestcheck [89]. The
result is shown in Fig. 15, which shows the results of two
independent chains. We can see that both chains are well
converged to the peak of the Sg distribution, there is no
significant difference between these chains in the (log X, Sg)

30

20

posterior
mass

1o

—15

=35 =30 -25 =20

log X

FIG. 15. The result of nestcheck [89]. Two independent chains
with different seeds indicated with different colors are used. The
upper right panel shows the posterior mass as a function of
logarithmic prior volume corresponding to the iteration number
of MultiNest, where the prior volume, log X, decreases as the
iteration number increases. The contour shows the uncertainty of
the posterior mass of the chain estimated from the bootstrap from
each chain. The lower left panel shows the posterior distribution
of the Sy value, with the uncertainty contour estimated from
bootstrap resamples of the chain. The lower right panel shows the
2D distribution of log X and Sg.
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plane, and the uncertainty of the marginalized posterior dist-
ribution of Sg estimated from bootstrap resamples of either
chain is not large. Thus, we conclude that the chains have fully
converged with our choice of MultiNest hyperparameters.

APPENDIX C: POSTERIOR DISTRIBUTIONS
IN A FULL PARAMETER SPACE

Figure 16 shows the 1D and 2D posterior distri-
butions in a full parameter space in our baseline
analysis, including the derived parameters ., oy,
and Sg.

S = 0.94 +0.09

APPENDIX D: SUPPLEMENTARY INFORMATION
FOR THE RESULTS OF DIFFERENT
ANALYSIS SETUPS

In this appendix, we show supplemental systematic tests
to explore some of the systematics we found in Sec. VI A.

1. Flat peak in P(Q,,) of baseline analysis

For our baseline results shown in Fig. 4, the 1D
marginalized posterior of €, exhibits a flat-shaped peak.
We find that this is caused by cosmic variance between the
three lens samples. If we ignore the correlation between the
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FIG. 16. 1D and 2D posterior distributions over the full parameter space for the baseline analysis shown in Fig. 4.

123537-19



SUNAO SUGIYAMA et al.

PHYS. REV. D 105, 123537 (2022)

04—
I —— CMASS1 alone
—— w/o CMASS1 ]
0.13F — Pomasst alonePw/o cMasST |
3 0.12} ]
0.11p 7
Job— ]
0 00.2 0.4 0.6
QHI
FIG. 17. Marginalized posterior distributions (20% and 40%

credible regions) of the “CMASSI alone” analysis (blue) and
“w/o CMASS1” analysis (green) in the (Q,,, @) plane. The red
contour is the product of the two marginalized posteriors, which
shows two peaks in Q.

samples, the posterior for the combined samples is equiv-
alent to the product of the posteriors from each sample
alone. This is illustrated in Fig. 17, which shows the
posterior (20% and 40% credible regions) in the Q -,
subspace for the CMASS1-alone analysis and the analysis
without the CMASSI1 sample. The contours of the two do
not overlap. The joint posterior has peaks at low and high
values of Q,,, which explains why we find a flat-shaped
peak when we marginalize over @..

2. Test for systematic effects in Ephor AB

As shown in Fig. 7, when we use the Ephor AB photo-z
catalog we find significantly larger values of o3 and Sg than
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FIG. 18. Difference between the galaxy-galaxy weak lensing

signals of the CMASS2 sample using different photo-z catalogs.
Because the number of source-lens pairs in the Ephor AB catalog
is ~35% smaller than that of the fiducial (MLZ) catalog, the
signal in Ephor AB is noisy, and happens to be a several-sigma
deviation from that in the fiducial catalog.
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FIG. 19. Comparison of cosmological parameter constraints
from the signal measured in the Ephor AB catalog to that of the
fiducial catalog. When the noisy CMASS2 sample in the Ephor
AB catalog is removed from the data vector, the constraints on og
and Sy are consistent with the fiducial result.

in our baseline analysis. We find that the number of source-
lens pairs for the CMASS?2 sample in the Ephor AB catalog
is ~35% smaller than that in the fiducial photo-z catalog
(MLZ), and the lensing signal measured in Ephor AB
catalog has larger statistical errors. In particular, Fig. 18
shows that the galaxy-galaxy lensing signal for the
CMASS?2 sample, measured from the Ephor AB catalog,
displays larger amplitudes at R > 12[h~! Mpc| than the
other catalogs, which explains why we find larger values of
og and Sg. For a further check, we confirm that the
constraints on og and Sg for the Ephor AB catalog become
consistent with the results of our baseline analysis if we do
not use the lensing signal of the CMASS?2 sample in the
parameter inference, as shown in Fig. 19.

APPENDIX E: COSMOLOGY AND PHOTO-z
CORRECTION ON THE GALAXY-GALAXY
LENSING OBSERVABLE, AX

The estimator of the galaxy-galaxy lensing signal is
defined as (see Ref. [27] for details)

(AY) = S iwisrus (et ) ! |

E[SWIS

where [ and s runs over all of the lens-source pairs, and

(E1)

(55 = / 0Py (D)Ea(a ) (E2)
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is the critical surface density averaged by the photo-z
distribution of the sth source. The lens-source pair weight is

wis = wws[(Z5) )%, (E3)
where w; (w,) is the lens (source) weight (see Ref. [27] for
details). The critical surface density depends on the
cosmology C, and the photo-z distribution Py(z) depends
on the photo-z nuisance parameter Az, In our measure-
ment, we adopt a flat ACDM with Q, = 0.279 and Az, =
0 as for the reference cosmology. In the parameter
estimation, we compute the model signal at a different
cosmology C’ and a different Azy, # 0, so we need to
account for the cosmology and photo-z dependence of the
estimator in Eq. (E1) by correcting the model signal. In the
following subsections, we separately describe how we
apply cosmology and photo-z corrections.

1. Cosmology correction

We compute the model signal AX in a given cosmology,
denoted as C’, which is different from the reference
cosmology, denoted as C, assumed in the measurements
(see the above). In this case, the model signal is written as
AT =y [(Z51)5]7", and hence the signal measured in

Is
cosmology C is given as

e _ Wi AT (EDE (D E

<AZ> B lewls (E4)
~ lewlx <2§:ll>s%;£fzc_rl>£]_l <AZ>C’ (ES)
=/.(C|C)(A%)", (E6)

where we assumed that the lens redshift bin is thin enough
to replace A with (AX)® in the second line. We also
note that the radial separation R depends on the cosmology,
and hence the model signal needs to be evaluated at
RE =[S /xSIRC, where x¢ is the comoving distance at
the representative bin redshift under cosmology C (see also
Ref. [90]). To summarize, the cosmology dependence on

the measurement can be taken into account by correcting
the model signal as

(AD)T(RY) — fo(CICNAD)® (kS A SIRT).  (ET)

2. Photo-z correction
If the true source galaxies are distributed further away by
—Azy, than the assumed photo-z distribution [Pg(z) in
Eq. (E1)], the true redshift distribution of source galaxies is
replaced by

Py(z) = Py(z+ Azyp), (E8)

and the galaxy-galaxy
Ath

yt,ls [<Za‘l >[s

lensing signal is AX; =

7!, where

(551 = / A2Py(z + Mg [Ea (a7 (E9)

Then, the signal measured with the photo-z distribution
Py(z) is given as

_1\A _ _
_ lewls Azl<2cr1>1x1ph [(Zcrl>ls] !

<AZ> Azp Zl m (ElO)
—1\Azpn — —
~ lewls <Z<§:>IISWZ[<ZNI>ZS] ] <AZ>Ath:0
_(azyco
=y (E11)

While we have described the correction factors for cosmol-
ogy and photo-z dependence on the model signal, these
corrections can be compacted into one correction factor by
accounting for Az, and the cosmology dependence of
(£31), at the same time.

Note that the correction factor in Eq. (E11) is adopted for
the model signal, where we multiply the model signal with
Azy, = 0 by the inverse of the multiplicative correction
factor fn(Azp,) in the measured signal [Eq. (8)].
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