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1Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa,
Campo Grande, Edificio C8, P-1749-016, Lisboa, Portugal

2Departamento de Física, Faculdade de Ciências da Universidade de Lisboa,
Campo Grande, Edificio C8, P-1749-016, Lisboa, Portugal

3ECEO, Universidade Lusófona de Humanidades e Tecnologias,
Campo Grande, 376, 1749-024, Lisboa, Portugal

(Received 5 April 2022; accepted 8 June 2022; published 27 June 2022)

Forecast constraints for a symmetric teleparallel gravity model with a ΛCDM background are made
using forthcoming ground and space based gravitational waves observatories. A Bayesian analysis
resorting to generated mock catalogs shows that LIGO-Virgo is not expected to be able to distinguish this
model from ΛCDM, while both LISA and the ETwill, with the EToutperforming LISA. We also show that
low redshift events are favored in order to improve the quality of the constrains.
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I. INTRODUCTION

In [1] we were introduced to GW170817, the first
observation of a standard siren event, a compact binary
system whose merger emitted both gravitational waves
(GWs) and electromagnetic (EM) radiation. In [2] it was
also reported a possible EM counterpart to the event
GW190521, introduced in [3]. These observations allow
us to both see and “hear” extreme gravitational phenomena,
providing us an unprecedented way to test our cosmologi-
cal models, as standard sirens do not require a cosmic
distance ladder to obtain their distances.
Although general relativity (GR) has been the most

successful theory of gravity so far, it is possible that
deviations from GR could explain some of the open
problems in cosmology [4,5]. In this standard interpretation
of gravity, one sees gravity as a consequence of the
curvature of spacetime. However, this is not the only
way, as one can describe gravity as a consequence of a
spacetime endowed also by torsion or by nonmetricity. One
can even manipulate these three geometrical objects such
that we can build completely equivalent theories, and
hence, three different interpretations, popularized as the
geometrical trinity of gravity [6].
The advanced laser interferometer gravitational-wave

observatory (LIGO) [7] is a set of two ground based gra-
vitational wave observatories. Together with the advanced
Virgo [8], they provide the most comprehensive catalog of
gravitational wave events to date.

By placing three satellites in solar orbit, the laser
interferometer space antenna (LISA) aims to be the first
GWobservatory in space. According to [9], it is expected to
detect GWs coming from massive black hole binaries
(MBHBs) with redshifts up to z ≈ 10, which should pro-
vide us with significant cosmological insight. According to
the latest proposal, presented in [10], the observatory is
aimed to be launched as early as 2030, with a proposed
lifetime of 4 years, and a possible extension to 10 years.
The Einstein telescope (ET) is a third generation under-

ground gravitation wave observatory, with a successful
proposal, which, according to [11], is aimed to have its first
light in 2035. Its focus is to probe for new physics in high
energy events, namely, the merger of binary neutron stars
(BNSs). With a significant increase in resolution, it is
expected to be able to provide a glimpse of the internal
structure of these massively dense stars. Although these
events are expected to be detected at lower redshifts, they
can still provide valuable cosmological insight.
In this paper, we will follow and describe the procedure

used to generate forecast catalogs of standard sirens events
for LIGO-Virgo [12], LISA [13,14], and the ET [15].Wewill
then use these mock catalogs to constrain a specific model of
symmetric teleparallel gravity (STG) [16], that features a
ΛCDMbackgroundwith only one additional free parameter,
where the differences arise at the perturbative level.Wemake
use of Markov chain Monte Carlo (MCMC) methods to
sample the parameter space and see whether these three
observatories are expected to distinguish this model from
ΛCDM in the upcoming future. An online repository
complementary to this analysis is publicly available at [17].
This work is organized as follows: first we will introduce

the STG model we have considered throughout this
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analysis in Sec. II. In Sec. III we will present all of the
datasets used, as well as the procedure employed to
generate the standard sirens. Later, in Sec. IV, we will
outline the catalog selection process as well as the sampling
method, Sec. V will show and discuss the results obtained,
and finally, in Sec. VI, we will provide a general overview
of the work.

II. COSMOLOGICAL MODEL

We will consider a STG model, where gravity is
described by a nonmetric, flat and torsion free spacetime,
characterized by the action [18]

S ¼
Z ffiffiffiffiffiffi

−g
p �

−
1

16πG
FðQÞ þ Lm

�
d4x; ð1Þ

where FðQÞ is a generic function of the nonmetricity scalar,
Q, to be defined in equation (2), and Lm is the Lagrangian
for the energy contents in the Universe.
It is useful to remind ourselves that, if we set FðQÞ ¼ Q,

we have what is known as the symmetric teleparallel
equivalent of general relativity (STEGR), an equivalent
theory to GR that is based solely on nonmetricity.
The nonmetricity scalar is given by [16]

Q ¼ −QαμνPαμν; ð2Þ

where Qαμν is the nonmetricity tensor given by

Qαμν ≡∇αgμν: ð3Þ

and Pα
μν is the nonmetricity conjugate, which can be

computed using the relation

Pα
μν ¼ −

1

2
Lα

μν þ
1

4
ðQα − Q̃αÞ − 1

4
δαðμQνÞ; ð4Þ

where Lα
μν is known as the disformation tensor, which

takes the form

Lα
μν ¼

1

2
Qα

μν −QðμνÞα; ð5Þ

being Qα and Q̃α two independent traces of the non-
metricity, defined as

Qα ≡ gμνQαμν; Q̃α ≡ gμνQμαν: ð6Þ

We restrict our analysis to a flat, homogeneous and
isotropic universe, described by the FLRW metric

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð7Þ

where t represents the cosmic time and aðtÞ is the scale
factor.

Under the previous assumption, the nonmetricity scalar
becomes

Q ¼ 6H2; ð8Þ

where H ¼ _a=a is the Hubble function.
Throughout this analysis we consider a Universe per-

meated by a perfect fluid composed by matter, with density
ρm, and a cosmological constant Λ.
The Friedmann equations under these assumptions are

2FQH2 −
1

6
F ¼ 8πG

3
ρm þ Λ

3
; ð9Þ

ð12FQQH2 þ FQÞ _H ¼ −4πGρm: ð10Þ

where the index Q denotes a partial derivative with respect
to Q.
As shown in [16], the most general function FðQÞ which

replicates a ΛCDM cosmological background is given by

FðQÞ ¼ QþM
ffiffiffiffi
Q

p
þ C; ð11Þ

where M and C are constants.
The previous equation can be inserted back into Eq. (9),

revealing that the Hubble function becomes

H2 ¼ 8πG
3

ρm þ Λ
3
þ C

6
: ð12Þ

Notice that C behaves the same as a cosmological
constant. As such, without any loss of generality, we set
C ¼ 0. The Hubble function now reads

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ 1 −Ωm

q
; ð13Þ

where Ωm is the relative abundance for matter, ΩΛ ¼ 1 −
Ωm the relative abundance for the cosmological constant
and H0 ¼ 100h km s−1Mpc−1 is the Hubble constant.
Although the Hubble function is the same as if we were

using ΛCDM, the additional free parameter induces a
modification in the friction term in the equation of
propagation of gravitational waves such that the gravita-
tional waves luminosity distance becomes [16,19]

dGWðzÞ ¼ exp
�
1

2

Z
z

0

d
d ln a

ðlnFQÞ
dz0

1þ z0

�
dLðzÞ; ð14Þ

where dLðzÞ is the electromagnetic luminosity distance
given by

dLðzÞ ¼ ð1þ zÞc
Z

z

0

1

Hðz0Þ dz
0: ð15Þ

Equation (14) integrates to the usual result for modified
gravity theories
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dGWðzÞ
dLðzÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
FQð0Þ
FQðzÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GeffðzÞ
Geffð0Þ

s
; ð16Þ

where in the second equality we used

Geff=G ¼ 1=FQ: ð17Þ

From equations (11) and (17) we can obtain the specific
form of the effective gravitational constant for this model,
which reads

GeffðzÞ ¼
G

1þM=2
ffiffiffi
6

p
HðzÞ : ð18Þ

Using equations (18) and (16), the measured luminosity
distance of a GW for this model is

dGWðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffi
6

p þM

2
ffiffiffi
6

p þM=EðzÞ

s
dLðzÞ; ð19Þ

where M has been redefined to be in units of 1=H0

and EðzÞ≡HðzÞ=H0.
By looking at the GW luminosity distance present in

Eq. (19), one can see that there is a singularity at
M ¼ −2

ffiffiffi
6

p
EðzÞ. To ensure that the value for the luminos-

ity distance for GWs is strictly physical (i.e., a real positive
number for all redshifts), we must require thatM must have
a lower bound at M ¼ −2

ffiffiffi
6

p
.

This cosmological model has also been addressed in
[20], where it has been shown to alleviate the σ8 tension and
in [21], where further analysis using scalar angular power
spectra, matter power and GWs propagation was carried
out. Similar models were also briefly studied in [18]. A
more general model of the form FðQÞ ¼ Qþ αQn was
studied in [22], and a model of similar form was con-
strained using observational data in [23,24]. An FðQÞ
model which does not feature dark energy is shown to be
statistically similar to ΛCDM when confronted against
observational data in [25]. A study of an FðQÞ model with
an identical background evolution of the DGP models was
developed in [26]. Observational constraints on various
different polynomial parametrizations of FðQÞ gravity as
an explicit function of the redshift were studied in [27,28].
An analysis of the linear perturbations for FðQÞ gravity
using a designer approach was developed in [29].

III. DATASETS

In order to constrain the three parameters for our model,
ðh;Ωm;MÞ, we will be using data from real type Ia
Supernova (SNIa), as well as standard siren mock catalogs
generated for a ΛCDM universe (i.e., M ¼ 0).

A. Type Ia supernova

When one looks at the correction introduced by our
model in the luminosity distance of gravitational waves, as
shown in Eq. (19), one can see that there is a factor of
M=EðzÞ, where EðzÞ implicitly depends on Ωm. This
causes a degeneracy between M and Ωm, which prevents
us from constraining both quantities using exclusively
standard sirens. As such, we decided to fix the value of
Ωm using type Ia supernova (SNIa).
The dataset of SNIa considered is the Pantheon sample,

which was developed in [30], and is available in a public
repository at [31]. For performance reasons, the binned
sample was used.
Following [32] we performed a marginalization on H0

and the absolute magnitude, such that the likelihood for the
SNIa reads

L ¼ exp

�
−
1

2

�
A −

B2

C

��
; ð20Þ

where A, B and C are given by

A≡Xn
i¼1

Δ2ðziÞ
σ2ðziÞ

; ð21Þ

B≡Xn
i¼1

ΔðziÞ
σ2ðziÞ

; ð22Þ

C≡Xn
i¼1

1

σ2ðziÞ
; ð23Þ

being σðzÞ the error for a SNIa measurement at redshift zi
and

ΔðziÞ≡mðobsÞðziÞ − 5 log

�
H0

c
dLðziÞ

�
; ð24Þ

the difference between the observed magnitude mðobsÞ and
the H0 independent luminosity distance.

B. Standard sirens

The single confirmed standard siren event detected so
far, GW170817 [1], and the possible detection of an EM
counterpart to GW109521 [2,3], are unable to distinguish
between this model and ΛCDM. As such, we create
standard sirens mock catalogs, which we use to forecast
our model.
Here, we outline the procedure employed to generate

such catalogs:
(1) Consider the theoretical distribution of standard

sirens events, as a function of redshift, for a given
observatory;
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(2) Obtain a redshift z� by sampling the previous
distribution;

(3) Generate the corresponding luminosity distance
dLðz�Þ using ΛCDM, with values Ωm ¼ 0.284,
the most likely value given by the SNIa, and h ¼ 0.7

(4) Consider the error σtot, as a function of redshift, for a
given observatory;

(5) Compute the corresponding error for the obtained
redshift σtotðz�Þ, and consider it to be the 1σ region
for the luminosity distance;

(6) Sample from a Gaussian distribution with mean in
dLðz�Þ the standard deviation equal to σtotðz�Þ, and
consider the new value to be the observed value of

the luminosity distance, for that redshift dðobsÞL ðz�Þ.
The last step is used to ensure that we obtain a more

realistic catalog, such that the mock value does not fall on
top of the fiducial value.
For the previously generated standard sirens, we have

decided to work with a Gaussian likelihood, which takes
the form

L ¼
YN
i¼1

1ffiffiffiffiffiffi
2π

p
σtotðziÞ

exp

�
−
1

2

�
dðobsÞGW ðziÞ − dGWðziÞ

σtotðziÞ
�2�

;

ð25Þ

where dðobsÞGW ðzÞ is the observed luminosity distance, which
we generate with the procedure outlined before, dGWðzÞ is
the theoretical gravitational wave luminosity distance given
by Eq. (19), and N is the number of standard siren events.
We will now analyze each of the observatories we have

considered throughout this analysis as sources of standard
siren events.

1. LIGO-Virgo forecasts

The theoretical distribution of standard siren events
detected by LIGO-Virgo is obtained by taking the distance
distribution found in [12]. We sample it to obtain a value for
the luminosity distance and assuming ΛCDM we compute
the corresponding redshift. We then follow the steps 4, 5 and
6 of the procedure outlined before to obtain a mock catalog.
Following what was developed in [9], we consider that

each catalog is composed of N ¼ 50 events and that the
error as a function of redshift is given by

σ2LIGO−Virgo ¼ σ2dL þ
�
d
dz

ðdLÞσspect
�

2

; ð26Þ

with

σdL ¼ 5.63 × 10−4

Mpc
d2LðzÞ ð27Þ

being the component which provides a direct contribution
to the luminosity distance error, where dLðzÞ is in units of
Mpc, and

σspect ¼ 0.005ð1þ zÞ; ð28Þ

is the error contribution for the redshift, due to spectro-
scopic measurements.

2. LISA

In [13] the authors presented the redshift distribution of
standard siren events visible to LISA for three distinct
populations of MBHBs: No Delay, Delay and Pop III, and
for three different mission specifications. We have chosen
to work with the redshift distribution for the mission
specification L6A2M5N2, which is the closest to the
proposed mission specification [10].
As it was done in [33], we have modified the redshift

distribution to include no events at z < 0.1. The normalized
redshift probability distribution function for the three
MBHB populations are presented in Fig. 1.
For the sake of convenience, we have fitted each of the

histograms with a beta distribution, which takes the form

fðzÞ ¼ γ

�
z
9

�
α−1

�
1 −

z
9

�
β−1

; ð29Þ

where the best fit values for each population are present in
Table I.
From [33], the estimated error as a function of redshift

for LISA is given by

σ2LISA ¼ σ2delens þ σ2v þ σ2inst þ
�
d
dz

ðdLÞσphoto
�

2

; ð30Þ

where the total lensing contribution is given by

FIG. 1. Normalized redshift distribution for LISA MBHB
events, with visible EM counterpart, for the L6A2M5N2 mission
specification, for populations Pop III, Delay and No Delay, fitted
with Eq. (29) with the best fit values present in Table I.
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σdelens ¼ Fdelensσlens; ð31Þ

where

σlens ¼ 0.066

�
1 − ð1þ zÞ−0.25

0.25

�
1.8

dLðzÞ ð32Þ

is the analytically estimated weak lensing contribution and

Fdelens ¼ 1 −
0.3
π=2

arctan ðz=0.073Þ ð33Þ

the delensing factor, which includes the possibility of
estimating the lensing magnification distribution and par-
tially correct the weak lensing contribution.
Further contributions include the error coming from the

peculiar velocity of the sources

σv ¼
�
1þ cð1þ zÞ2

HðzÞdLðzÞ
�
500 km=s

c
dLðzÞ; ð34Þ

the LISA instrumental error

σinst ¼ 0.05

�
d2LðzÞ

36.6 Gpc

�
; ð35Þ

and finally the redshift error associated with photometric
measurements

σphoto ¼ 0.03ð1þ zÞ; if z > 2: ð36Þ

We neglect the spectroscopic redshift error for redshifts
below z ¼ 2.
As for the population, according to [33], the major

difference is expected to come from the number of events
detected. As such, we have decided to work with the No
Delay population, as it seems to provide a middle ground
between the other two.
The most conservative estimate for the number of events

using the current hardware specification, out of all the
MBHB populations, according to [14], points towards
N ¼ 15 standard siren events detected by LISA, for the
proposed mission lifetime of 4 years.

3. ET

Following the procedure employed on [15], we expected
that the ET will observe N ¼ 103 BNS standard sirens
events, over a three year period. The redshift probability
distribution function distribution for the BNS is given by

fðzÞ ¼ 4πN rðzÞd2LðzÞ
HðzÞð1þ zÞ3 ; ð37Þ

whereN is a normalization constant, set to be such that the
following integral holds:

N ¼
Z

zmax

zmin

fðzÞdz; ð38Þ

where it is estimated that zmin ¼ 0.07 is the minimum
redshift at which we expect to observe standard siren
events, and zmax ¼ 2 the maximum redshift at which the ET
can have meaningful observations.
The function rðzÞ is the coalescence rate at redshift z,

which is given by

rðzÞ ¼
8<
:

1þ 2z if z ≤ 1

ð15 − 3zÞ=4 if 1 < z < 5

0 otherwise:

ð39Þ

The estimated error as a function of redshift for this
observatory is given by

σ2ET ¼ ðσ2inst þ σ2lensÞd2LðzÞ; ð40Þ

where

σ2inst ≈ 0.1449z − 0.0118z2 þ 0.0012z3 ð41Þ

is the ET instrumental error and

σ2lens ≈ 0.0012z3 ð42Þ

is the estimated lensing contribution. We neglect the error
from the spectroscopic redshift measurements.

IV. METHODOLOGY

A. Sampling

The results shown here were obtained using PyStan [34], a
PYTHON interface to Stan [35], a statistical programming
language which implements the No-U-turn sampler, a
variant of the Hamiltonian Monte Carlo. The output was
then analyzed using GetDist [36].
For each run we executed 5 independent chains, each

with 2500 samples on the posterior distribution and 500
warm-up steps, where the initial values were sampled from
a Gaussian distribution with mean around the fiducial

TABLE I. Best fit values for the redshift distribution for the
Pop III, Delay and No Delay MBHB populations, considering
Eq. (29), and present in Fig. 1.

α β γ

Pop III 2.64 6.03 11.95
Delay 2.42 3.84 3.37
No Delay 2.14 4.7 3.61
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values, and a standard deviation of approximately 10% of
the corresponding mean for each parameter.
We restricted the values which the parameters could take

such that the value of M was set to be larger than −2
ffiffiffi
6

p
,

Ωm to be between 0 and 1, and h to have a lower bound in 0.
We then added weakly informative priors, such that

h ∼ normalð0.7; 10Þ, Ωm ∼ normalð0.284; 10Þ and M ∼
normalð0; 5Þ.
The Stan model files, the output of the MCMC as well as

the corresponding analysis is available in [17].

B. Catalog selection

To provide statistical confidence that the catalogs used
throughout this analysis represent a wide range of out-
comes, we generated several catalogs and studied three

possible cases: the best, the median and the worst. All of the
generated datasets are available in [17].
The criteria used to categorize each catalog was based on

how small the 1σ region for the parameterM was. We could
also have chosen to work with Δh, but this would yield
similar results since we found that Δh ∝ ΔM.
For LISA we generated 15 different catalogs, of which

the best, median and worst can be seen in Fig. 2.
For the ETwe generated 5 different catalogs, all of which

showed similar results. This is something we already
expected due to the large number of events per catalog.
As such, in this paper, we will only show the results for the
one presented in Fig. 3.
For LIGO-Virgo we generated 15 different catalogs, of

which none of them could provide proper constrains. As
such, we decided to categorize each LIGO-Virgo catalog
based on how well it would complement the worst LISA
catalog. The best, median and worst LIGO-Virgo catalogs,
categorized using this modified criteria, are shown
in Fig. 4.

V. RESULTS AND DISCUSSION

Using the sampling method described in Sec. IVA and
the catalogs presented in Sec. IV B, we will now address
the forecasts for our cosmological model.
Starting with the forecasts set by LISA, presented in

Fig. 5, we can see that the best and median catalog show
similar results, which contrasts with the worst catalog, that
provides significantly worse results when compared to the
other two.
To understand this difference, we refer back to Fig. 2,

where the considered LISA catalogs are displayed. By
comparing the catalogs with the corresponding forecasts
we see a pattern: the best LISA catalog is the one which
features more low redshift events, 0≲ z≲ 6, the median

FIG. 2. Luminosity distance, in Gpc, as a function of redshift
for the worst, median and best LISA catalogs. The ΛCDM
luminosity distance is plotted as a solid gray line.

FIG. 3. Luminosity distance, in Gpc, as a function of redshift
for the ET catalog. The ΛCDM luminosity distance is plotted as a
solid gray line.

FIG. 4. Luminosity distance, in Gpc, as a function of redshift
for the worst, median and best LIGO-Virgo catalogs. The ΛCDM
luminosity distance is plotted as a solid gray line.
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catalog has events with slightly larger redshifts, 0.5≲
z≲ 7, while the worst catalog favors higher redshift events,
1≲ z≲ 7. As such, we inferred that to better constrain this
model, LISAwill give best results when featuring plenty of
low redshift events.
Considering that, out of the 15 generated LISA catalogs,

only 2 provided similar error bars to the ones obtained in
the worst LISA catalog, we expect the chances of obtaining
a bad LISA catalog to be low.
The forecasts set by ET are presented in Fig. 6. When we

compare the ET results against those of LISA, we can see
that the ET is able to provide a 1σ region approximately
65% smaller than that of LISA alone. This goes in hand
with our previous statement, that LISA should seek low
redshift events. The range at which the ET is expected to
operate, z ∈ ½0.07; 2�, as shown in the catalog in Fig. 3, is
far lower than the redshift limits for LISA. Granted, the ET
also provides a significant larger number of events when
compared to LISA.
These results show that, even though the luminosity

distance for our model deviates from ΛCDM as the redshift
increases, the error bars increase faster, in such a way that
high redshift events are less useful to constrain this model.
On the other hand, we note that very low redshift events are
more sensitive to the peculiar velocities and consequently
increase the error on the parameters. In addition, the
luminosity distance in our model is practically indistin-
guishable from ΛCDM at low redshifts. It is possible to

show that there is indeed a sweet spot around z ∼ 0.6 for
LISA and z ∼ 1 for the ET.
LIGO-Virgo alone, as stated before, is not able to set any

constrains on our parameters. To understand why, we refer
to Fig. 7, where we can see a comparison between the ET,
LISA and LIGO-Virgo in the latter redshift observation
band, z ∈ ½0; 0.2�, showing that LIGO-Virgo has signifi-
cantly larger error bars.

FIG. 5. The 1σ and 2σ contours for the likelihood in the
ðh;Ωm;MÞ plane for the model given by Eq. (11), with con-
tribution from the worst, median and best LISA catalogs, with
SNIa. Dotted lines represent the fiducial values ðh;Ωm;MÞ ¼
ð0.7; 0.284; 0Þ.

FIG. 6. The 1σ and 2σ contours for the likelihood in the
ðh;Ωm;MÞ plane for the model given by Eq. (11), with
contribution from the ET, with SNIa. Dotted lines represent
the fiducial values ðh;Ωm;MÞ ¼ ð0.7; 0.284; 0Þ.

FIG. 7. Luminosity distance, in Gpc, as a function of redshift
for the best LISA catalog, the best LIGO-Virgo catalog and the
ET catalog. The ΛCDM luminosity distance is plotted as a solid
gray line.
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We categorized each LIGO-Virgo catalog based on how
well it complements the worst LISA catalog because the
best and the median LISA catalogs do not show significant
improvements when used in conjunction with any of the
LIGO-Virgo catalogs. The resulting constrains for LIGO-
Virgo are presented in Fig. 8.
These results reveal that even if future data resembles a

worst LISA catalog, LIGO-Virgo is expected to signifi-
cantly increase the quality of the constraints.
When we add each of the LISA and LIGO-Virgo

catalogs to the single ET catalog, where the corner plot
is not shown here for brevity, only in the case of the best
LISA catalog there are visible improvements. This is
expected, given the large number of events measured by
the ET when compared to LISA and LIGO-Virgo, and that

LIGO-Virgo features much larger error bars for the same
redshift region.
A quantitative summary of the more relevant results we

have obtained in our analysis can be seen in Table II, where
we show the 1σ region for M, as well as the relative size of
the 1σ region for M when compared to the base case, the
best LISA catalog together with the ET.

VI. CONCLUSIONS

We considered a model of symmetric teleparallel gravity
that mimics a ΛCDM background, with one additional free
parameter, M. Departures from ΛCDM only arise at the
perturbative level.
We have described the procedure used to generate

standard sirens mock catalogs for LISA, the ET and
LIGO-Virgo.
For LISA, we studied three representative catalogs: the

best, median and the worst, each one consisting of 15
standard sirens events. We obtained the best LISA catalog
when most of the events are present at low redshifts, while
the worst catalog is composed mostly of high redshift
events. According to our analysis, the worst LISA catalog is
unlikely to be observed.
For the ET we observed that all catalogs provide similar

constrains and as such only one was considered. This is due
to each featuring 1000 standard sirens events, a number
large enough to represent the underlying probability dis-
tribution function.
Finally for LIGO-Virgo, our analysis showed that even

with a set of 50 standard sirens, these are not enough to
provide meaningful constrains. Instead, we categorized
each LIGO-Virgo catalog based on how well it would
complement the worst LISA catalog. We then studied
three representative scenarios: the best, median and worst
LIGO-Virgo catalogs. We showed that one can rely on
future events obtained by LIGO-Virgo to improve the
quality of the constrains set by the worst LISA catalog.
By contrast, for the best or the median LISA catalogs,
none of the LIGO-Virgo catalogs made significant
improvements.
We can improve the constrains set by the ET using the

best LISA catalog, whereas the median and the worst LISA
catalog made no significant improvements. Likewise, none
of the LIGO-Virgo catalogs made any improvements
whatsoever to the constrains set by the ET alone.
Even though our model diverges from ΛCDM as the

redshift increases, the error bars for all observatories
increase faster, making high redshift observations less
useful to provide constrains.
We quantified the 1σ region for M, the various

scenarios which are consistent with previous estimates
using a simple parametrization in FðQÞ. We note that we
fixed Ωm using supernovae and we could further con-
strain the cosmology by adding other observables such
as CMB.

FIG. 8. The 1σ and 2σ contours for the likelihood in the
ðh;Ωm;MÞ plane for the model given by Eq. (11), with
contribution from the worst LISA catalog, SNIa and the worst,
median and best LIGO-Virgo catalog. Dotted lines represent the
fiducial values ðh;Ωm;MÞ ¼ ð0.7; 0.284; 0Þ.

TABLE II. Summary of the 1σ region for M, for the relevant
datasets, as well as its relative size using the best LISA catalog
with the ET as the base case.

Catalog ΔM Relative size

LISA ðbestÞ þ ET 0.19 1
ET 0.24 1.26
LISA (best) 0.37 1.94
LISA ðworstÞ þ LIGO-Virgo ðbestÞ 0.44 2.31
LISA (median) 0.50 2.63
LISA (worst) 1.65 8.68
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