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Ultralight axions are theoretically interesting and phenomenologically rich dark sector candidates, but
they are difficult to track across cosmological timescales because of their fast oscillations. We resolve this
problem by developing a novel method to evolve them efficiently and accurately. We first construct an exact
effective fluid which at late times matches the axion but which evolves in a simple way. We then
approximate this evolution with a carefully chosen equation of state and sound speed. With our scheme we
find that we can obtain subpercent accuracy for the linear theory suppression of axion density fluctuations
relative to that of cold dark matter without tracking even a single complete oscillation of the axion field. We
use our technique to test other approximation schemes and to provide a fitting formula for the transfer
function for the matter power spectrum in linear theory in axion models. Implementing our approach in
existing cosmological axion codes is straightforward and will help unleash the potential of high-precision
next-generation experiments.
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I. INTRODUCTION

Axions are hypothetical particles that might reside in the
dark sector of ΛCDM [1] and which can arise in many
different physical scenarios with a wide range of cosmo-
logically interesting masses [2–4]. For many cosmological
purposes axion particles behave simply as a classical scalar
field, with the field’s initial displacement in the potential
and mass determining their cosmological evolution. While
the Hubble rate H is larger than the axion mass m, the field
remains effectively frozen. Once the Hubble rate drops
below the mass the field oscillates on a timescale m−1,
redshifting like cold dark matter (CDM) across Hubble
timescales H−1.
A critical mass is therefore the Hubble rate at matter-

radiation equality Heq ∼ 10−28 eV. Lighter axions than
this behave more like dark energy [5–7] and heavier ones
more like dark matter [8–12]. Between Λ and CDM-like
limits, axions can be responsible for a wide variety of
interesting new cosmological signatures beyond ΛCDM
(see Refs. [13,14] and references therein), for example
acting as early dark energy components [15,16] or sourcing
isocurvature perturbations in the Cosmic Microwave
Background (CMB) [17].
One of the most important signatures of ultralight axions

is that they suppress small-scale gravitational clustering due
to their macroscopic de Broglie wavelengths, which occurs

on the kiloparsec scale for m ∼ 10−22 eV [18], and leads to
a host of observational consequences (see, e.g., Ref. [19]
and references therein). However, it is highly challenging
to track the oscillations of these axions across a Hubble
time today H−1

0 ≃ ð10−33 eVÞ−1 in order to make accurate
theoretical predictions.
This difficulty is usually addressed with an effective fluid

approximation (EFA) that replaces the exact Klein-Gordon
solution for the field by effectively averaging over the axion
oscillations [18,20–22]. This approximation inevitably
induces errors when making predictions for observables
because the axion field is initially effectively frozen and the
approximate equations of state used to evolve the effective
fluid efficiently may then be insufficiently accurate. Similar
difficulties arise if the Klein-Gordon equation is instead
recast as a Schrödinger equation [23–27].
Even for axions in the range 10−27 eV≲m≲ 10−24 eV

where the clustering suppression in linear theory is testable
with CMB measurements (see, e.g., Refs. [28,29]) and the
timescale hierarchy is less extreme, these errors have already
been shown to be significant at the 1 ∼ 2σ level [30] for
upcoming experiments like CMB-S4 [31]. Other similar
averaging approaches such as the one proposed by Ref. [32]
have been shown to suffer the same problems [30].
For heavier axions 10−24 eV≲m≲ 10−19 eV, where the

hierarchy is larger, the error has not yet even been
characterized. On the low-mass end these axions are best
probed by their effect on large-scale structure in existing
[33] and next-generation optical and infrared survey*samuel.passaglia@ipmu.jp
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experiments [34–36]. On the high-mass end they are
subject to subgalactic tests [37,38] and to early-time
structure probes like 21 cm [39–42] and the Lyman-α
forest [43]. In this regime linear theory results are necessary
as initial conditions for nonlinear simulations (see, e.g.,
Refs. [44–46]).
In this work, we develop a method to dramatically reduce

the error made by the EFA in linear theory by both
judiciously choosing how the effective fluid (EF) is con-
structed from the exact field solution, and by improving the
approximate equation of state and sound speed used to
evolve the effective fluid. In Sec. II, we present and validate
our method at both the background (Sec. II A) and
perturbation (Sec. II B) levels. In Sec. III, we implement
our approach to compute the matter power spectrum
transfer function in axion models and to quantify the error
made by a usual fluid approximation. We compare to the
approach taken by axionCAMB in the Appendix. We con-
clude in Sec. IV.

II. METHOD

The axion field ϕ obeys the Klein-Gordon equation,

□ϕðx⃗; tÞ ¼ V 0ðϕðx⃗; tÞÞ ≈m2ϕðx⃗; tÞ; ð1Þ

where the approximation of the axion cosine potential with
a quadratic potential V ≈m2ϕ2=2 applies sufficiently near
the minimum.
Given that this is a wave equation with solutions that

oscillate on the mass timescale t ∼m−1, we wish to find a
computationally tractable way to solve it across cosmo-
logical timescales H−1

0 to a given accuracy. We restrict
ourselves to linear theory, splitting the axion field ϕðx⃗; tÞ
into a background ϕðtÞ and linear perturbations δϕðx⃗; tÞ,
and we develop a procedure for each piece separately.
Schematically, our approach is to decompose the field ϕ

into two auxiliary fields φc;s which factor out the mass
timescale oscillations starting at some switch time in the
oscillatory regime which we mark with a subscript “*” and
which we parametrize by the ratio m=H� > 1.
For the background, we use a specific combination of

these auxiliary field variables to construct an effective fluid
with density ρefax in such a way that at late times it
approaches the true energy density of the axion ρax up
to a small matching error suppressed by ðm=H�Þ−3.
The effective fluid can be evolved exactly, but it has the

advantage that it does not significantly evolve on the mass
timescale. Therefore its evolution from early to late times
can be accurately approximated in a straightforward and
computationally efficient manner with an effective fluid
approximation, yielding quantities such as the effective
fluid approximation density ρefaax which approximates its
exact counterpart ρefax up to a small evolution error which is
also suppressed by ðm=H�Þ−3.

We are therefore able to approximate the late-time axion
fluid by evolving efficiently only our effective fluid
approximations after m=H�. We can control the matching
and evolution errors to any desired accuracy by choosing
the switch epochm=H�. We develop a similar procedure for
the perturbations, where there are additional terms asso-
ciated with Jeans oscillations, and we find that a very
modest switch parameter value m=H� ¼ 10 is already
sufficient to obtain subpercent accuracy for observable
quantities like the axion transfer function out to scales
where the linear power remains appreciable. The parameter
value m=H� ¼ 10 corresponds to solving less than one
oscillation of the axion field exactly, after which the axion
is evolved only in the effective fluid approximation.

A. Background

The equation of motion for the background is

ϕ̈þ 2
_a
a
_ϕþ a2m2ϕ ¼ 0; ð2Þ

with overdots denoting derivatives with respect to the
conformal time η ¼ R dt=a. At early times m=H ≪ 1 the
field is frozen by Hubble drag and behaves like a dark
energy component to the universe’s energy budget. As H
drops belowm, the field is released and oscillates around its
potential minimum, with its energy density redshifting as
cold dark matter once m=H ≫ 1.
When the expansion rate is a power law in time, the

background (2) has an exact solution in terms of Bessel
functions (see, e.g., Ref. [7]). We can employ this solution
in the radiation dominated regime, but in order to also
establish some groundwork for the analysis of perturba-
tions, which do not admit such a solution, we instead
focus on the WKB solution for the background in the
oscillatory regime. The squared frequency of the oscillator
a2m2 − ä=a goes to a2m2 in radiation domination or when
m=H ≫ 1, so the asymptotic solution is a harmonic
oscillator,

ϕ →
C1

m1=2a3=2
cos ½τ þ C2�; ð3Þ

where τ≡mt is a convenient time variable in the oscil-
latory regime and C1 and C2 are constants determined by
the initial conditions.
The oscillating field admits a description in terms of its

energy density and pressure,

ρax ≡ 1

2

�
dϕ
dt

�
2

þ V;

Pax ≡ 1

2

�
dϕ
dt

�
2

− V; ð4Þ

which approach
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a3ρax ∝ 1þO
�
cos ½2τ�

�
m
H

�
−1
;

�
m
H

�
−2
�
;

a3Pax ∝ cos ½2ðτ þ C2Þ� þO
�
cos ½2τ�

�
m
H

�
−1
;

�
m
H

�
−2
�
;

ð5Þ

where the cos½2τ� factors here signify that the neglected
terms oscillate on the 2τ timescale; they are not meant
to imply a specific phase of the oscillations in the
neglected term.
On the cycle average, this representation of the axion

looks like pressureless matter to order Oðm=HÞ−2, so the
usual approach to avoiding the axion’s timescale hier-
archy used in state-of-the-art codes like axionCAMB [47]
is to solve the Klein-Gordon equation exactly until the
oscillations begin, with the default setting in axionCAMB

defining this as m=H ¼ 3, and then compute the axion
energy density and evolve it forward as a pressure-
less fluid.
However, this procedure inevitably chooses an arbitrary

phase in the axion oscillation at the matching point
between the field and the fluid. Equation (5) shows that
these oscillatory modes are large, introducing an error
∝ ðm=HÞ−1 at the matching time. This leads to a matching
error in the axion density that remains today.
Moreover, accurately evolving the axion density requires

knowing the exact form of theOðm=HÞ−2 term in Eq. (5) in
order to give the fluid the appropriate leading-order
correction to the CDM-like equation of state. While at
the background level the appropriate equation of state is
straightforward to derive analytically, at the perturbation
level the situation is more complicated and wewould like to
have an empirical method of calibrating the appropriate
fluid evolution.
In this work, we construct an effective fluid approxi-

mation in such a way as to control both the matching errors
and the evolution errors. To do so, we start from some time
τ� in the oscillatory regime, corresponding to the ratio
m=H� > 1, and write the field ϕ in a form which factors out
subsequent oscillations,

ϕðτÞ ¼ φcðτÞ cos ½τ − τ�� þ φsðτÞ sin ½τ − τ��; ð6Þ

by using two auxiliary field variables φc;s. This decom-
position is useful because if φc;s evolve only on the Hubble
timescale, then they can be used to compute quantities
which should look like cycle averaged versions of the
axion.
To see how φc;s evolve, we plug the ansatz (6) back into

the equation of motion (2) and obtain an equation of motion
for φc;s,

�
φ00
c þ 2φ0

s þ 3
H
m
½φs þ φ0

c�
�
cos ½τ − τ��

þ
�
φ00
s − 2φ0

c þ 3
H
m
½−φc þ φ0

s�
�
sin ½τ − τ�� ¼ 0; ð7Þ

which we can impose is solved by setting the two
individual terms in the parentheses to zero. Primes 0 here
and throughout denote derivatives with respect to τ. As
long as the initial conditions for φc;s and their derivatives at
τ� are chosen appropriately so that they match ϕðτ�Þ and
ϕ0ðτ�Þ through Eq. (6), then the φc;s which solve this
auxiliary equation of motion are exact representations of
the axion background.
We now use our φc;s variables to define effective fluid

quantities

ρefax ≡ 1

2
m2

�
φ2
c þ φ2

s þ
φ0
c
2

2
þ φ0

s
2

2
− φcφ

0
s þ φsφ

0
c

�
;

Pef
ax ≡ 1

2
m2

�
φ0
c
2

2
þ φ0

s
2

2
− φcφ

0
s þ φsφ

0
c

�
; ð8Þ

which we have constructed using the Klein-Gordon equa-
tion (7) to exactly satisfy the usual form of a fluid
conservation law (e.g., Ref. [48])

_ρefax ¼ −3
_a
a
ðρefax þ Pef

axÞ: ð9Þ

The definitions (8) of the effective fluid are motivated by
the notion of cycle averaging the oscillations in τ and they
can be derived by plugging the ansatz for ϕ (6) into the
energy density and pressure equations (4) and then sending
sin2 and cos2 terms to 1=2 and cross terms to zero.
Regardless of their approximate motivation, however, the
evolution equation (9) they yield for the effective fluid
density ρefax is exact. To evaluate it and close the system
requires knowing the evolution of Pef

ax through φc;s using
the Klein-Gordon equation.
So far we have simply recast the axion system using

different variables with no approximations, but doing so
has two advantages. First, at late times the effective fluid
density is an excellent approximation for the true axion
density. We call a matching error any late-time difference
between the two densities, and we will show this error can
be efficiently controlled. Second, ρefax does not have
significant oscillations as it evolves and therefore its value
at late times can be easily approximated by evolving its
value at early times using an equation of state wefa

ax which
approximates Pef

ax=ρefax. We label such an approximate
effective fluid ρefaax , and we call any difference between
the effective fluid ρefax and the effective fluid approximation
ρefaax an evolution error. Wewill show that the evolution error
is suppressed once wefa

ax is appropriately calibrated. To the
extent that both the matching and evolution errors can be
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made negligible, then we no longer need to solve the Klein-
Gordon equation after τ� and the technique as a whole
becomes extremely efficient and accurate.
We now quantify the matching and evolution errors

in turn.

1. Matching error

We first show in Fig. 1 how a matching error appears in
practice with numerical solutions of the exact equations of
motion. In the Hubble drag regime and for the first few
oscillations, we solve the Klein-Gordon equation (2) for the
axion field ϕ directly. At m=H�, chosen here to be 10, we
switch to solving for the auxiliary field variables φc;s using
the two pieces of Eq. (7). These factor out the ϕ oscillations

(upper panel), and enable us to compute our effective fluid
density ρefax at subsequent times exactly (lower panel). For
clarity, we have scaled the field values and densities with
a3=2 and a3 to compensate their asymptotic behavior and
normalized the result at m=H ¼ 10.
The effective fluid density ρefax is an exact quantity in the

sense that it is constructed from the exact axion field
solution of the equation of motion, but at late times it does
not represent exactly the true axion density ρax, as shown by
the small difference between ρefax and the cycle average of
ρax in the lower panel inset. This difference does not go
away as m=H → ∞. It is the matching error made by our
scheme, which we will show is imprinted at the switch time
and suppressed by Oðm�=HÞ−3. We can therefore make it
arbitrarily small by setting the switch time sufficiently late.
We quantify the matching error by studying an exact

power-series solution to the Klein-Gordon equation. When
the axion is a negligible component of the energy budget
and the background is externally determined as some
aðτÞ ∝ τp, the auxiliary equation of motion (7) admits
solutions of the form

a3=2φcðτÞ ¼ CðτÞ þ ðAðτÞ; BðτÞ Þ
�
cos ½2ðτ − τ�Þ�
sin ½2ðτ − τ�Þ�

�
;

a3=2φsðτÞ ¼ SðτÞ þ ð−BðτÞ; AðτÞ Þ
�
cos ½2ðτ − τ�Þ�
sin ½2ðτ − τ�Þ�

�
;

ð10Þ

where A, B, C, and S here are coefficients which evolve
only on the Hubble timescale, satisfying power series
solutions in ðm=HÞ−n and approaching constants at late
times m=H → ∞. The coefficients A and B represent fast
oscillatory modes of φc;s and hence naively violate our
expectations that φc;s evolve only slowly, but really they
reflect a redundancy in our decomposition (6) due to the
trigonometric identities,

cosðxÞ ¼ cosð2xÞ cosðxÞ þ sinð2xÞ sinðxÞ;
sinðxÞ ¼ sinð2xÞ cosðxÞ − cosð2xÞ sinðxÞ; ð11Þ

which allows a remapping which sets them to zero

Cþ A → C; A → 0;

Sþ B → S; B → 0: ð12Þ

Given a generic matching condition at τ�, however, these
oscillations in the auxiliary variables produce a constant1

FIG. 1. The axion field ϕ (upper panel, blue) is released from
Hubble drag around m ∼H and then oscillates around its
minimum as m=H increases. At some arbitrary m=H� in the
oscillatory phase, we write ϕ in terms of auxiliary fields φc;s (red
and yellow curves) which factor out oscillations. These auxiliary
fields allow us to construct the effective fluid density ρefax (lower
panel, orange), which matches the axion density ρax (blue) at late
times up to a tiny matching error (inset), which our analytic
results show is imprinted at the switch time and is proportional to
ðm=H�Þ−3. The evolution of ρefaxa3 is very small and therefore its
value at late times can be accurately computed from its early time
value using an approximate equation of state. Variables here are
scaled by the field and its density at m=H� and their asymptotic
behavior in them=H → ∞ limit, the axion mass is 10−22 eV, and
its present-day abundance is that of the dark matter. For further
discussion see Sec. II A 1.

1Even though the terms inherited from A and B oscillate with a
constant fractional correction to the field [Eq. (10)] as
m=H → ∞, these oscillations are suppressed by an additional
ðm=HÞ−1 term in the fluid quantities [Eq. (8)] due to the
combination of time derivative terms.
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fractional offset between the effective fluid density (8) and
the true density (4) at late times once they are imprinted
at τ�. This occurs because given the remapping of Eq. (12),
Cþ A and Sþ B should add coherently in the squared time
average for ρax whereas Eq. (8) for ρefax drops the cross
terms. Therefore the late time ρefax will disagree with the late
time ρax due to contributions from AC and BS. This is a
matching error.
We therefore want to make the A and B modes as small

as possible. We do so by choosing an appropriate matching
condition at the switch time τ�. When we switch from the ϕ
variable to the auxiliary φc;s variables, we must provide two
arbitrary additional constraints beyond the two exact
matching conditions for ϕ and ϕ0 to determine the four
initial conditions for φc;s and φ0

c;s. We can choose these
such that A and B are suppressed. Given that we know the
φc;s ∝ a−3=2 evolutionary form of the C and S terms, we
impose initial constraints of the form2

φ00
c;s

φ0
c;s

����
�
¼ −

1

2

hHi
m

�
3 −

m
hHi3

dhHi2
dτ

�����
�
; ð13Þ

which suppresses the oscillatory modes as

A
S
∼
B
C
∼O

�
m
H�

�
−3
: ð14Þ

Initial conditions that yield an even larger suppression of
the oscillatory modes can also be constructed,3 but for our
purposes we will see that Oðm=H�Þ−3 is sufficient.
With this suppression of the fast oscillatory modes of

φc;s, the relationship between our effective fluid variable
and the true fluid variables at late times is

ρefax ¼ ρax ×

�
1þO

�
m
H�

�
−3
�

ðm=H ≫ 1Þ: ð15Þ

This is the expected amplitude of the discrepancy between
the true and effective fluids at late times that we saw in Fig. 1.
There we chose a switch time m=H� ¼ 10 and the discrep-
ancy is roughly ∼10−3. This matching error can then be
reduced by making m=H� larger and the switch time later.

We confirm numerically in Fig. 2 the analytically derived
ðm=H�Þ−3 scaling of our matching error (15). Since the
matching error must vanish as the switch timem=H� → ∞,
we can estimate it by checking how ρefax evaluated at a fixed
late time depends on the switch time m=H�. This is the
upper panel, where we show the effective fluid density ρefax
evaluated at a time corresponding to m=H ¼ 103 as a
function of the switch epoch m=H�. As m=H� is taken
deeper in the oscillatory regime, ρefax converges to a value
which we estimate with the horizontal line—the exact value
is not important. The distance from this line for a given
m=H� is then the matching error which we show in the
lower panel fractionally. Phrased in terms of Figs. 1 and 2
shows how the orange line in the inset changes as a function
of the switch epoch m=H�.
Very modest switch epochs m=H� ∼ 10 result in a

matching error of less than 0.1%. The matching error then
improves at first as the ðm=H�Þ−3 power law we derived in
Eq. (15). As m=H� increases, the modulation of the error
amplitude between positive and negative oscillation
extrema indicates a drifting mean and eventually the error

FIG. 2. The effective fluid density ρefax evaluated at a fixed time,
here chosen to be m=H ¼ 103, converges as the switch time
parametrized by m=H� becomes larger (upper panel). Relative to
the estimated asymptotic value (inset horizontal, dashed line), this
matching error is already smaller than 0.1% for an early switch
m=H� ¼ 10, with the error subsequently decreasing as ðm=H�Þ−3
as predicted by our analytics for a tracer field (lower panel). At
the level where the backreaction of the axion on Hubble becomes
important, the improvement slows to ðm=H�Þ−3=2. For further
discussion see Sec. II A 1.

2hHi here denotes the Hubble rate averaged over axion
oscillation cycles, a distinction only relevant when the axion is
energetically relevant at τ�, which is beyond the limits of our
analytic analysis.

3At next order, imposing

φ00
c;sj� ¼

�
−
1

2

hHi
m

�
3 −

m
hHi3

dhHi2
dτ

��

×

�
φ0
c;s þ

�
φ0
c;s þ

3hHi
2m

φc;s

������
�

yields a suppression of order Oðm=H�Þ−4.
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is dominated by the secular drift rather than an oscillatory
error. In this regime the accuracy is already excellent but the
error decreases at a slower rate ∝ ðm=H�Þ−3=2. We have
confirmed numerically that this change in convergence rate
is due to the backreaction of the axion on its own evolution
through the Hubble rate, an effect which we did not include
when deriving our analytic scalings.
This slower scaling with m=H� begins when the match-

ing error is already extremely small. For a fixed present-day
abundance, axions which are lighter than the 10−22 eV
axion shown here will be more energetically important at a
given m=H and this convergence slowdown would there-
fore become important earlier. However, CMB constraints
for masses where m=H ∼ 1 at matter-radiation equality are
already powerful enough that such axions are limited to just
a small component of the dark matter [47]. Consequently
their effect on the Hubble rate and therefore this slowdown
in our accuracy improvement is suppressed. Similarly small
scale structure constraints such as the Lyman-α forest also
limit the fraction of dark matter for more intermediate-mass
axions [43].
We have now constructed an effective fluid which at late

times matches the true fluid to a very good accuracy. So far
we have been evolving this effective fluid exactly. We now
approximate its evolution and study the resulting evolu-
tion error.

2. Evolution error

Evolving ρefax exactly requires knowing Pef
ax exactly

through the auxiliary variables φc;s. These are not easier
to evolve than the usual axion field ϕ due to the small 2τ
oscillations from the matching error. We therefore want to
approximate the effective fluid conservation law (9) by
replacing the exact Pef

ax=ρefax with an approximate equation
of statewefa

ax at the switch epoch defined by the desiredm=H�.
The simplest equation of state to use would be the

pressureless value wCDM ¼ 0. This is the fluid evolution
used in axionCAMB, and from the leading order WKB
solution for the field, Eq. (5), we expect wCDM to make
an instantaneous error of order ðm=HÞ−2 which will then be
integrated from the switch epoch ðm=H�Þ to today. Since
this is larger than our matching error Oðm=H�Þ−3, we wish
to find a better equation of state.
One choice often used in the literature is an interpolating

form [15]:

winterp ¼
1

1þ ðac=aÞ3
− 1; ð16Þ

which approaches wCDM at late times while acting as a dark
energy-like wDE ¼ −1 component in the drag regime. ac is
the scale factor when H ¼ m. This form is used, for
example, in the analysis of Ref. [15] implemented in the
code axiCLASS.

In the late time ac=a ≪ 1 regime the interpolating
equation of state approaches 0 from below as
−ðm=HÞ−3=2 in radiation domination. However it was
not constructed to have the correct approach to 0, and in
fact this approach has not only the wrong exponent but also
the wrong sign. It thus makes a very large evolution error
and for our purposes is worse than wCDM.
Instead, to find a good choice for the equation of state we

can choose to calibratewefa
ax using the exactly computedPef

ax.
Due to the m=H� dependent matching error between the

effective fluid and the true axion, the exact Pef
ax depends on

m=H�. Since we minimized the matching error, however,
this effect is insignificant and we can find a sufficiently
good approximation for Pef

ax=ρefax without attempting to fit
the m=H� dependence. In effect we seek to minimize the
evolution error in the absence of matching error since the
true equation of state for the effective axion fluid should not
depend on the matching error.
We therefore plot Pef

ax=ρefax as a function of m=H while
minimizing the matching errors by constructing the effec-
tive fluid at m=H� ¼ m=H, i.e., by constructing the
effective fluid at the time at which we wish to know the
equation of state. We show this quantity in Fig. 3, along
with our choice of approximation

wefa
ax ¼ 3

2

�
m
H

�
−2
: ð17Þ

These show excellent agreement already at m=H ¼ 10.
The deviation at very late times is due to the eventual

FIG. 3. The exact equation of state of the effective fluid Pef
ax=ρefax

(solid) with an ðm=HÞ−2 scaling factored out. We choose to
approximate it with wefa

ax ¼ 3=2ðm=HÞ−2, which is the asymptotic
behavior of Pef

ax=ρefax in radiation domination as can also be shown
analytically. Other choices such as the pressureless equation of
state wCDM ¼ 0 and especially the interpolating equation of state
winterp (16) are suboptimal. The difference at late times between
wefa
ax and Pef

ax=ρefax is due to the transition to matter domination, but
is insignificant due to the ðm=HÞ−2 suppression. The effective
fluid here is constructed at the time m=H� ¼ m=H for each point
on the solid curve. For further discussion, see Sec. II A 2.
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transition to matter domination, but for dark-matter like
axions this occurs far in the oscillatory regime where the
equation of state is suppressed by ðm=HÞ−2.
In fact, the result that the axion equation of state is

asymptotically ð3=2Þðm=HÞ−2 in radiation domination can
be shown directly from a second-order WKB solution for ϕ
(e.g., Ref. [49]) or from the exact Bessel function solution.
Our approach of directly fitting Pef

ax=ρefax has the advantage
that it does not require an analytic solution for the system.
This will be useful when we turn our attention to the
perturbations, where exact solutions are not available.
Since we now know the appropriate wefa

ax needed to evolve
the EFA, our strategy is now to choosem=H� large enough to
reduce the matching error Oðm=H�Þ−3 to a desired level,
compute φc;s and the effective fluid density ρefax at that time,
and then evolve it forward using the effective fluid con-
servation equation (9)with our approximate equation of state
wefa
ax . This defines ρefaax . For a given switch epoch m=H�, our

procedure therefore requires no additional computation time
relative to the usual switching procedure used by axionCAMB

which constructs an effective fluid from the instantaneous
axion density atm=H�. For a given accuracy, our procedure
enables a massive improvement in computation time by
enabling much earlier switches.
We show in Fig. 4 the full end-to-end accuracy of our

scheme at the background level by computing the axion
density today for a fixed initial field displacement as a
function of the switch epoch m=H�. In the left panel, we
compare our scheme (red)—our specially constructed
effective fluid and our appropriately chosen equation of
state—to the usual switching procedure and equation of

state wCDM ¼ 0 used by axionCAMB (blue). The latter
approach induces large oscillations in the axion density
today depending on the phase of the axion evolution picked
out at m=H�, leading to a large matching error which
converges only as ðm=H�Þ−1. On the other hand, our
construction of the effective fluid eliminates the matching
and evolution errors and allows even very early switch
times m=H� ¼ 10 to reach better than 0.1% accuracy. This
m=H� ¼ 10 choice, marked with a star, is our reference
solution scheme.
The right panel of Fig. 4 shows how our accuracy depends

on the equation of state we choose, highlighting the impor-
tance of choosing the correct approximate equation of state to
eliminate the evolution error. While our choice wefa

ax ¼
ð3=2Þðm=HÞ−2 (17) performs so well that the dominant
error of our scheme is the matching error from Fig. 2, the
choices wCDM and winterp yield much larger errors.
Our scheme for the background reaches accuracy better

than 0.1% in the final axion density with a switch to the
EFA at m=H� ¼ 10—before the axion field has even
completed a full oscillation. We did this by constructing
the effective fluid in such a way as to minimize the
matching error between the exact effective fluid and the
true axion at late times, and by evolving the effective fluid
approximately using a better axion equation of the state
than the ones commonly used in the literature. We now
develop a similar scheme for the axion perturbations.

B. Perturbations

The analysis of axion perturbations is more complicated
than the background because they are continuously sourced

FIG. 4. Left: our effective fluid approximation (red) dramatically decreases the error in the axion density today ρaxjtoday as compared to
the usual effective fluid approximation (blue) often constructed in the literature by matching the instantaneous energy density of the
axion at the switch epoch m=H�. The star denotes our reference solution scheme in which we switch from solving the Klein-Gordon
equation to the EFA at m=H� ¼ 10 and therefore achieve subpercent accuracy at the level of the background. Our approach also shows
an accelerated convergence rate relative to the usual EFA. Right: the convergence rate of our approach depends on the approximate
equation of state we use to evolve the effective fluid, and although wCDM ¼ 0 (orange) performs better than an interpolating winterp (16)
(blue) for switches in the oscillatory regime, our choice wefa

ax (17) (red) is so good that the matching error from Fig. 2 dominates over
this evolution error. The accuracy in this figure is measured relative to a very late switch time m=H� ¼ 104. For further discussion see
Sec. II A 2.
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by metric perturbations, and because the density perturba-
tions have a Jeans scale below which axion density
fluctuations oscillate rather than grow. These two effects
are evident from the perturbed Klein-Gordon equation in
synchronous gauge (e.g., Ref. [50])

δ̈ϕþ 2
_a
a

_δϕþ ðk2 þ a2m2Þδϕ ¼ −
_hL
2

_ϕ; ð18Þ

which looks like the background equation (2) but for the
new k2 term and the sourcing by the time derivative of hL,
the trace of the spatial metric perturbation.
We first examine the unsourced homogeneous left-hand

side of Eq. (18) in radiation domination. The frequency
k2 þ a2m2 − ä=a now implies oscillations for sufficiently
large k even after averaging over the mass induced
oscillations. These correspond to acoustic or Jeans oscil-
lations in the effective fluid.
We can better understand the two oscillation scales by

formally extracting the mt ¼ τ term from the argument of
the cosine when we write the WKB solution, obtaining the
leading order solution in the form

δϕ ∝ cos

�
τ þ k

Z
csϕdηþ α

�
; ð19Þ

where α here is a phase and the sound speed for field
fluctuations is

csϕ ¼
�

k
am

�
−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

k
am

�
2

s
− 1

!
: ð20Þ

Now if we expand out the cosine into cosðτÞ and sinðτÞ
we can see that even after averaging over the τ scale there
remain field oscillations which are then imprinted into the
axion density perturbations.
The sound speed for field fluctuations approaches

csϕ ¼ 1 at early times k=am ≫ 1 and csϕ ¼ k=2am at
late times k=am ≪ 1. Since η ∝ a during radiation domi-
nation and ∝ a1=2 during matter domination, we can see
that for m ≫ Heq the net effect of the sound speed at late
times is captured by the contributions around matter
radiation equality aeq,

k
Z

η0

0

csϕdη ∝
k2

a2eqmHeq
: ð21Þ

It is therefore useful to define the maximal Jeans scale as

kJ ≡ 31=4aeq
ffiffiffiffiffiffiffiffiffiffiffi
mHeq

p
; ð22Þ

where the numerical factor corresponds to the choice in
the literature and is based on its impact on the effective
fluid [18].

This impact can be clearly seen by evaluating the
density, pressure and divergence of momentum density
perturbations,

δρax ¼ a−2 _ϕ _δϕþm2ϕδϕ;

δPax ¼ a−2 _ϕ _δϕ−m2ϕδϕ;

ðρax þ PaxÞθax ¼ a−2k2 _ϕδϕ; ð23Þ

using the WKB solution (19) and then averaging over the
mass oscillations to find

hδPaxi
hδρaxi

≃ c2sϕ; ð24Þ

where the field sound speed plays the role of a sound speed
for the fluid and the approximation is leading order in
ðm=HÞ−1. Under the Jeans scale, pressure fluctuations
therefore support the axion density perturbations against
gravitational collapse. Given that this suppression of axion
density perturbation growth relative to CDM is the main
effect of the axion mass, we seek to quantify the suppres-
sion out to k ∼ kJ using efficient but accurate techniques
similar to those we introduced for the background.
We follow the same procedure as for the background. We

start at some m=H� by splitting the axion perturbation δϕ
into two pieces δφc;s as

δϕðτÞ ¼ δφcðτÞ cos ½τ − τ�� þ δφsðτÞ sin ½τ − τ��: ð25Þ

The equations of motion for δφc;s follow from plugging
the background ansatz (6) and the perturbation ansatz (25)
into the perturbed Klein-Gordon equation (18) and again
imposing that the cosine and sine pieces are solved
separately, yielding respectively

δφ00
cþ2δφ0

sþ3
H
m
ðδφ0

cþδφsÞþ
k2

a2m2
δφc¼−

h0L
2
ðφ0

cþφsÞ;
ð26Þ

and

δφ00
s −2δφ0

cþ3
H
m
ð−δφcþδφ0

sÞþ
k2

a2m2
δφs¼−

h0L
2
ðφ0

s−φcÞ:
ð27Þ

The first line of each of these equations looks like the
background φc;s equations (7). The second line contains the
new k=am dependent term and themetric source.We see that
the metric source in the equation of motion is multiplied by
coefficients ðφ0

c þ φsÞ and ðφ0
s − φcÞ. While these back-

ground quantities evolve as a−3=2 in the absence of back-
groundmatching error, they also transfer their fast oscillatory
matching error (10) to the perturbations.

SAMUEL PASSAGLIA and WAYNE HU PHYS. REV. D 105, 123529 (2022)

123529-8



We then construct from δφc;s the effective fluid versions
of the quantities in Eq. (23),

δρefax ¼
1

2
m2½φsδφ

0
c − φcδφ

0
s þ δφ0

cφ
0
c þ δφ0

sφ
0
s

þ δφsð2φs þ φ0
cÞ þ δφcð2φc − φ0

sÞ�;
δPef

ax ¼ δρefax −m2½δφsφs þ δφcφc�;

ðρefax þ Pef
axÞθefax ¼

k2m
2a

½δφcðφs þ φ0
cÞ þ δφsð−φc þ φ0

sÞ�;
ð28Þ

in such a way that they satisfy the conservation equations
for the effective fluid in synchronous gauge [50]

dδρefax
dη

þ 3
_a
a
ðδρefax þ δPef

axÞ

¼ −ðρefax þ Pef
axÞ
�
θefax þ

1

2
_hL

�
;

�
d
dη

þ 4
_a
a

�
ðρefax þ Pef

axÞ
θefax
k2

¼ δPef
ax: ð29Þ

Just like the method for the background, the effective
fluid simply recasts the axion perturbations in different
variables with no approximations. We again call a matching
error the difference between δρax and δρefax at late times
when m=H ≫ 1. Likewise since Eq. (29) are the equations
of motion for an effective fluid but require a closure
condition to define δPef

ax, we seek to approximate it by
calibrating the equation of state for the perturbations, i.e.,
the sound speed, so that we no longer need to solve for the
auxiliary variables after the switch. Specifically, the con-
servation equations are equivalent in the generalized dark
matter language to effective fluid equations of motion [48]

_δefaax ¼ −ð1þ wefa
ax Þ
�
θefaax þ

_hL
2

�
− 3ðc2s − wefa

ax Þ
_a
a
δefaax

− 9ð1þ wefa
ax Þðc2s − c2aÞ

�
_a
a

�
2 θefaax

k2
;

_θefaax ¼ −ð1 − 3c2sÞ
_a
a
θefaax þ c2sk2

1þ wax
δefaax ; ð30Þ

where δefaax ≡ δρefaax =ρefaax , the adiabatic sound speed ca is
determined by wefa

ax ¼ Pefa
ax =ρefaax as

c2a ≡
_Pefa
ax

_ρefaax
¼ wefa

ax −
_wefa
ax

3ð1þ wefa
ax Þ _a

a

; ð31Þ

and c2s is the sound speed of the effective fluid in its rest
frame,

c2s ≡ δPefa
ax

δρefaax

����
rest

; ð32Þ

where the rest frame can be accessed through the gauge
transformation

η → ηþ θefaax =k2; ð33Þ

yielding

δρefaax jrest ¼ δρefaax þ 3
_a
a
ðρefaax þ Pefa

ax Þ
θefaax

k2

����
sync

;

δPefa
ax jrest ¼ δPefa

ax þ 3
_a
a
c2aðρefaax þ Pefa

ax Þ
θefaax

k2

����
sync

: ð34Þ

For notational simplicity, we have dropped the “efa”
marker on c2s here and restore it below where confusion
might arise. Just as in the background case, we call the error
induced by employing the effective fluid approximation to
close the system with wefa

ax and c2s an evolution error. Again
we analyze the matching and evolution errors in turn.

1. Matching error

In the absence of the Jeans oscillations and the metric
sourcing described above, the perturbation equations
take the same form as the background equations. We
therefore choose the same matching conditions (13) as
the background

δφ00
c;s

δφ0
c;s

����
�
¼ −

1

2

hHi
m

�
3 −

m
hHi3

dhHi2
dτ

�����
�
; ð35Þ

and quantify the additional error induced by the new
effects.
Let us first understand the additional effect of Jeans

oscillations on the matching error in the absence of metric
sourcing. In this case the WKB solution (19) holds and
we can take a background solution with no matching error
A ¼ B ¼ 0 to assess the additional matching error pro-
duced by Eq. (35). As with the background these take a
form dictated by the trigonometric identities (11) and we
can solve for their amplitudes δA, δB given the matching
conditions (35). From these we infer an additional match-
ing error from the Jeans oscillations that does not diminish
with time and scales with the matching epoch as

ðδρefax − δρaxÞ
δρax

⊃
3

16

�
m
H

�
−1
�

k
am

�
2
����
�
× phase; ð36Þ

for k=amj� ≲ 1. Here “phase” designates an Oð1Þ coef-
ficient that depends on the phase of the oscillations in the
background and perturbations at m=H�.
We confirm this analytic result for the Jeans-induced

additional matching error in Fig. 5 by solving the system
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numerically with metric sourcing turned off by hand. We
quantify the matching error in the same way we did for the
background. Since it must vanish for a very late switch
m=H� ≫ 1, we can compute it by comparing δρefax from an
early switch, here m=H� ¼ 10, to a much later switch. We
change ðk=amÞj� by changing k. By keeping m=H� fixed,
we can subtract off the non-k dependent piece of the
matching error and we find that the k-dependent error
agrees well with the analytic result (36).
Notice that for m=H� ¼ 10 this error remains Oð10−3Þ

even for scales that have already undergone a couple of
Jeans oscillations and hence are at most comparable to the
Oðm=H�Þ3 errors we induce in their absence. Poles in the
error are due only to zero crossings of the density
perturbations (top panel) and do not reflect an increase
in the absolute error of our scheme. We shall see that on
these scales the final transfer function has already been so

suppressed relative to CDM that higher accuracy is not
required in practice.
Next let us consider the effect of metric sourcing on the

perturbations assuming that the Jeans corrections are small
k=am ≪ 1. The metric perturbations satisfy the Einstein
momentum and Poisson equations in synchronous gauge,

_ηT ¼ 1

2
a2ðρþ PÞ v

k
;

−k2ηT þ 1

2

_a
a
_hL ¼ 1

2
a2δρ; ð37Þ

where ηT is the curvature perturbation. hL and ηT are
initialized in the superhorizon radiation-dominated regime
and are determined by radiation perturbations which take
their usual form (see, e.g., Refs. [51,52]). In this work, we
include massless neutrinos in the radiation component as a
perfect fluid, neglecting their anisotropic stress and so
during radiation domination

_hL ∝
�
a ðsuperhorizonÞ;
a−1 ðsubhorizonÞ: ð38Þ

When combined with the scaling of field fluctuations in the
background ϕ ∝ a−3=2, these sources then continuously
generate field perturbations through Eq. (18) that scale as

δϕ ∝
�
a1=2 ðsuperhorizonÞ;
a−3=2 lnðτÞ ðsubhorizonÞ; ð39Þ

where the lnðτÞ term corresponds to the familiar logarith-
mic growth of matter density fluctuations during radiation
domination.
This metric sourcing has two types of effects on the

matching error. First it alters the optimal matching coef-
ficient so that Eq. (35) no longer produces the full
ðm=H�Þ−3 suppression of errors as it does in the back-
ground. However, the metric sourcing continues after the
matching and so to the extent that it dominates the final
field perturbation, the perturbation matching error itself
goes away. In the superhorizon limit for matching, the
strong growth of the field fluctuation implies a substantial
mitigation of perturbation matching errors whereas in the
subhorizon limit this mitigation is only logarithmic. This
mitigation also applies to the matching error from the Jeans
term, Eq. (36). In radiation domination we have

k
aH

����
�
∼

k
kJ

�
m
H�

�
1=2

; ð40Þ

such that for the highest k ∼ kJ modes that we are interested
in and for m=H� ∼ 10, the switch occurs just under the
horizon and the mitigation for these modes is between
power law and logarithmic. For much smaller k ≪ kJ

FIG. 5. Without metric sourcing, the effective fluid density
perturbation δρefax (top panel, orange) makes a small k=amj�-
dependent matching error (bottom panel, red) relative to the true
axion density δρax (top panel, blue dashed) at late times. We fix
here the switch epoch m=H� ¼ 10 so that the k-independent
m=H� contribution to the error can be subtracted out. Each point
thus represents the error for a different k mode. Using the
WKB approximation we find in Eq. (36) that this error goes
as 3=16 × ðm=HÞ−1 × ðk=ðamÞÞ2j� times a phase factor (bottom
panel, green dashed), which is confirmed by the numeric solution
(neglecting metric sourcing). Poles in the error are due simply to
zero crossings of the density perturbation as seen in the top panel.
Metric sourcing further reduces this error in practice. For further
discussion see Sec. II B 1.
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modes the power law mitigation makes the perturbation
matching error entirely irrelevant.
Second, even if these perturbation matching errors from

Eq. (35) go away due to sourcing, any background matching
error will regenerate an error through the h0Lφs;c terms in the
perturbation equations of motion [Eqs. (26) and (27)],
leaving an unavoidable Oðm=H�Þ−3 fractional error in ρefax
at the end.
In Fig. 6, we estimate the full matching error for the

largest wave number of interest k ¼ kJ, and hence the
largest matching error, numerically. This mode has k=am ∼
0.5 at m=H� ¼ 10. We estimate the matching error using
the same procedure we used for the background in Fig. 2:
we track convergence of the effective fluid δρef evaluated at
a fixed timem=H ¼ 103 as the switch epochm=H� is taken
later and later.
The perturbation matching error for m=H� ¼ 10 is

slightly larger than ∼0.1%, which is marginally larger than
the background error. Our error improves as m=H� and
k=amj� become insignificant, though significantly more
slowly than ðm=H�Þ−3 mainly due to the Jeans scale
Oðk=amj�Þ effects described above.
The overdensity δefax and the velocity perturbation θefax

involve dividing these perturbed effective fluid quantities
by the background effective fluid quantities ρefax and
ρefax þ Pef

ax. Since our scheme is more accurate for the
background than for the perturbations, the matching errors
we have studied here are the dominant matching errors in
δefax and θefax. However, in the k → 0 limit the matching errors
for the perturbations and the background become identical
and the errors are in phase, such that the errors cancel in δefax

and θefax which become more accurate than their separate
components.

2. Evolution error

Just as in the case of the background, we want to
approximate the effective fluid conservation law (30) by
replacing δPef

ax=δρefaxjrest (32) with an approximate equation
of state c2s;efa.
At late times the sound speed goes to zero, but it should

have corrections for finite k=am and ðm=HÞ−1. The leading
order k=am type corrections are encapsulated by the field
sound speed c2sϕ (20). In the absence of metric sourcing
and the k=am type oscillations, the leading order ðm=HÞ−1
type corrections would be the same as the background
wax ∼ 3=2ðm=HÞ−2. However we find a deviation from this
behavior.
In the left panel of Fig. 7, we plot the exact δPef

ax=δρefax for
a very large-scale mode k ≪ kJ. For such a mode, k=am
type effects are negligible at late times m=H ≳ 1 and so the
field sound speed csϕ goes to zero, but ðm=HÞ−1 effects can
still be significant. We can solve our auxiliary Klein-
Gordon equations (26) and (27) for our δφc;s auxiliary
variables, compute δρef and δPef in synchronous gauge,
and then use the gauge transformations [Eq. (34)] to access
their values in the effective fluid rest frame, from which we
can compute the sound speed. Just as in the case of the
background we do not attempt to fit the m=H� dependent
piece of the sound speed and therefore we minimize it by
setting m=H� ¼ m=H for each time in the figure.
By doing so we can see directly that the effective sound

speed is not zero as k=am → 0 but instead exhibits a
Oðm=HÞ−2 type correction as we expected. However the
coefficient of this ðm=HÞ−2 term is ∼5=4 rather than ∼3=2
as might have been naively guessed from the study of the
background. This shows a key benefit of our effective fluid
approach—it enables us to self-calibrate the effective fluid
approximation more effectively than we might have been
able to with analytics alone.
We therefore choose the EFA sound speed

c2s;efa ¼ c2sϕ þ
5

4

H2

m2
; ð41Þ

which encompasses the leading order k=am and ðm=HÞ−1
corrections to the asymptotic limit c2s → 0.
In the right panel of Fig. 7, we show that our EFA sound

speed is a good approximation for the sound speed of the
effective fluid for a large k mode k ¼ kJ. While the
asymptotic behavior is set by the ðk=amÞ2 behavior of
the field sound speed c2sϕ, at m=H ¼ 10 both pieces of our
EFA sound speed are important to successfully approxi-
mate cs. While there is a small difference between the
effective fluid sound speed and our approximation c2s;efa at
m=H ¼ 10, the sound speed is relatively small at this stage

FIG. 6. With metric sourcing, δρefax for k ¼ kJ evaluated at a
fixed time m=H ¼ 103 is already ∼0.1% converged as a function
of the switch epoch even for early switch epochsm=H� ∼ 10. The
convergence rate is slower than the simple Oðm=H�Þ−3 estimate
we derived analytically in the k → 0,H ≪ H�, ρax → 0 limit. For
further discussion see Sec. II B 1.
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(∼0.05) which suppresses the effect of this small error on
the density perturbations.
The pole in the right-hand panel of Fig. 7 corresponds to

a zero crossing in the effective fluid density perturbation
δρefax in synchronous gauge (see the yellow line in Fig. 8).
The gauge transformation to reach the effective fluid rest
frame is highly oscillatory and therefore the density in that
gauge δρefaxjrest (34) also has a nearby zero. The synchronous
gauge pressure perturbation δPef

ax oscillates and therefore
the sound speed in synchronous gauge δPef

ax=δρefax has a
pole. In the rest frame, however, δPef

axjrest does not oscillate
and instead has a single zero crossing at nearly, but not
exactly, the same time as δρefaxjrest. This indicates that
δPef

axjrest has a very small component which is not propor-
tional to δρefaxjrest and therefore cannot be exactly modeled
by a sound speed [see Eq. (32)]. This transient component
scales as ðH=mÞðk=amÞ2 and is small enough that it does
not significantly impact the evolution of the perturbations
of interest.
With the EFA sound speed now appropriately defined,

we finally have a complete effective fluid approximation
for the axion. We summarize it in Fig. 8 for a range of
relevant k. This figure is the perturbation parallel to the
bottom panel of the background Fig. 1. After solving for the
usual Klein-Gordon equation for the axion field perturba-
tion in the Hubble drag m≲H regime, we switch to the
EFA at m=H� ¼ 10.
Before the switch, we compute and show the true axion

density perturbation δax. After the switch, we compute and
show the effective fluid approximation for the density
perturbation δefaax . These are discontinuous at the switch time

because the effective fluid approximation is constructed to
match the true axion at late times, rather than at the
matching point.
After evolving to late times in the EFA, the large-scale

mode k → 0 shows no suppression of the axion

FIG. 7. Left: the effective fluid sound speed δPef
ax=δρefax in the k → 0 limit, multiplied by ðm=HÞ2. The result in the rest frame (red)

extracts the amplitude of the leading order ðm=HÞ2 term in the fluid sound speed, which we use to improve the field-derived csϕ when
we construct the effective fluid approximation c2s;efa. Right: the effective fluid sound speed δPef

ax=δρefax for k ¼ kJ, multiplied by the
leading order scaling ðk=amÞ−2. Our effective fluid approximation c2s;efa is a good approximation for δPef

ax=δρefax in the rest frame. In both
figures, the effective fluid is constructed at the time m=H� ¼ m=H for each point on the solid curves. For further discussion see
Sec. II B 2.

FIG. 8. Our reference solution scheme for the axionperturbations.
At early timesm=H < m=H� ¼ 10, we solve the exact (solid lines)
Klein-Gordon equations of motion for the axion field. We then
switch to the EFA (dashed lines), with our auxiliary variables
providing matching conditions at the switch. These matching
conditions allow the EFA to effectively act as a cycle-averaged
axion and thus match the true axion at late times. Evolution in the
EFA is performed with our optimized equation of state and sound
speed.At late times, axionperturbations are unsuppressed relative to
CDMon large scales (purple) but suppressedwhen k ∼ kJ (yellow).
The scale k1=2 (red) is defined by δax=δCDMðk1=2Þ≡ 1=2 at late
times. Complete axion transfer functions are shown in Fig. 11, and
for further discussion see Sec. II B 2.
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perturbations δax relative to the CDM overdensity δCDM.
For the Jeans scale k ¼ kJ, on the other hand, the
suppression is significant.
We define the mode k1=2 where the axion density

perturbation today relative to CDM reaches one half, since
this mode represents a point where the suppression is
substantial, but the linear theory power remains appreciable
and therefore represents a convenient location to bench-
mark accuracy. This is a slightly larger scale than the Jeans
scale, with k1=2 ≃ 0.54kJ for a 10−22 eV axion.
We test the full accuracy of our scheme at k1=2 in Fig. 9,

including the matching errors from Sec. II B 1 and the
evolution errors induced by replacing c2s with c2s;efa. We
evaluate δefaax at late times (k=am ¼ 10−4) and check its
dependence on the switch timem=H�. We see that with our
choice of EFA sound speed we already reach a subpercent
accuracy at m=H� ¼ 10 for k1=2.
If we had used only the field sound speed csϕ (20) to

approximate the effective fluid sound speed, we would
have made a much larger evolution error of several percent.
An alternative sound speed often used in the literature is
derived in Hwang and Noh (2009) [53],

c2s;HN ≃
k2

4a2m2 þ k2
; ð42Þ

which though it has the same limits as our field sound speed
csϕ differs at order k=am. It also does not include the

Oðm=HÞ−2 correction of our c2s;efa, and therefore as shown
in Fig. 9 its error properties are similar to those of csϕ,
leading to a much larger evolution error than our c2s;efa.
We show in Fig. 10 that the choice of switch epoch

m=H� ¼ 10 yields sufficient accuracy throughout the
range of scales k and axion masses m in which we are
interested by comparing the axion density perturbation δax
computed with a late switchm=H� ¼ 1000 to our reference
m=H� ¼ 10 scheme. To show different mass axions with
on the same axes, we scale the horizontal axis by the mass-
dependent k1=2.
The accuracy of our choice m=H� ¼ 10, shown in the

bottom panel, is well behaved as a function of k at a fixed
mass. The pole here corresponds to the node in the density
perturbation, as shown in the top panel—the absolute error
remains small throughout. As a function of mass at fixed
k=k1=2, we see that our accuracy increases for heavier
axions and decreases for lighter axions. This reflects that all
our scalings are tuned to work best when the switches occur

FIG. 9. For a mode k1=2 where the matter power spectrum
yields half its CDM value, we show our technique’s total error as
a function of our switch time parameterm=H� for various choices
of the EFA equation of state c2s , computed by comparing to a late
switch time m=H� ¼ 2 × 103. Using the field sound speed csϕ
(20) or the sound speed cs;HN (42) of Hwang and Noh (2009)
[53], our approach makes a few percent error for a switch time
m=H� ¼ 10. Our EFA sound speed (41) resolves the bulk of this
error and enables us to achieve a subpercent error with a switch
time of m=H� ¼ 10, marked by a star. For further discussion see
Sec. II B 2.

FIG. 10. Our effective fluid procedure accurately tracks the
decline of the axion power spectrum relative to CDM as a
function of scale k for all relevant masses (top panel), with our
referencem=H� ¼ 10 scheme (solid lines) visually indistinguish-
able from a more accurate result which uses a very late switch
time m=H� ¼ 1000 (dashed lines). The fractional difference in
the bottom panel represents the accuracy of our reference scheme,
with the pole here simply due to the node in the transfer function.
The horizontal axis is scaled by k1=2, the mass-dependent scale
defined by δax=δCDMðk1=2Þ≡ 1=2. For further discussion see
Sec. II B 2.
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deep in radiation domination. Nonetheless for the half-
amplitude mode k1=2 our parameter choice m=H� ¼ 10

yields subpercent accuracy for all masses shown.

III. RESULTS

We now use our solution scheme to compute the axion
transfer function relative to CDM of the same density
today,

TrelðkÞ≡ δρaxðk; a ¼ 1Þ
δρCDMðk; a ¼ 1Þ ; ð43Þ

for scales and axion masses of observational interest. We
set m=H� ¼ 10 which is both computationally fast and
reaches subpercent accuracy at the half-amplitude scale
k1=2 as we detailed in Sec. II. In practice, we cease the
computation when radiation is 0.1% of the energy density
of matter rather than at a ¼ 1, since for all k of interest
k=am is then sufficiently close to zero that Trel no longer
evolves.
We compare our approach to a naive fluid approximation

which solves the fluid equations (9) and (30) at all times
while approximating the equation of state and sound speed
with the interpolating form winterp (16) and the field
csϕ (20). This procedure is similar to the one used by
Ref. [15] and implemented in axiCLASS with the sound
speed cs;HN (42). We allow the naive fluid approach to use
the true ac when evaluating winterp rather than implement an
iterative approximation for it.

Our approach is no more computationally expensive than
the naive calculation because with our switch to the EFA at
m=H� ¼ 10 we bypass the computationally troublesome
axion oscillations (see Fig. 1). Nonetheless our scheme is
significantly more accurate. In the Appendix, we show that
the solution scheme used by axionCAMB yields similar
results to the naive fluid approximation we focus on here.
We show Trel in Fig. 11 for a range of relevant axion

masses. Our approach and the naive fluid approximation
agree qualitatively that axions suppress small-scale cluster-
ing relative to CDM. In detail, however, the naive fluid
approximation slightly but systematically underestimates
the suppression scale of the power spectrum.
In Fig. 12, we quantify the error in Trel made by the naive

fluid approximation at the half-amplitude point k1=2, as a
function of axionmass. The naive fluid approximationmakes
a ∼4% error for a 10−21 eV axion and becomes less accurate
at lower masses. At 10−24 eV it makes a nearly 10% error.
While the error made by the naive fluid approximation is

significant, it may appear to be smaller than the order unity
errors we might have have expected based on extrapolating
the scalings we showed in Figs. 4 and 9 backwards to a
switch epoch m=H ≪ 1.
In fact, for a fixed axion field displacement the naive fluid

approximation at the level of the background does make an
order unity error in the axion density today, as we would
expect from Fig. 4. However, since we have normalized the
density today to that of dark matter and allowed the initial
axion field displacement to float, this error is factored out
of our results here. Nonetheless if one wishes to relate

FIG. 11. The axion transfer function relative to CDM, Eq. (43). The method developed in this work (red) with switch parameter
m=H� ¼ 10 yields subpercent accuracy for the half-amplitude mode k1=2 where Trelðk1=2Þ ¼ 1=2 (see Sec. II for a detailed error
characterization). The naive fluid approach (blue) has no significant computational advantage over our approach but underestimates the
power spectrum cutoff induced by the axion by as much as several percent, an error which we quantify in Figs. 12 and 14. For further
discussion see Sec. III.
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the axion initial conditions to the final density, the naive fluid
approximation makes an order unity error.
Likewise at the level of the perturbations, our analysis of

evolution errors from the sound speed and matching errors
in the presence of Jeans oscillations might seem to imply an
even larger discrepancy for both the naive fluid approxi-
mation and axionCAMB (see the Appendix), which switches
at m=H� ¼ 3, but these are mitigated by metric sourcing as
discussed in Sec. II B 1.
For convenient comparison to our results and to enable

their use in initializing nonlinear simulations, we construct
a fitting function to our EFA results which describes the
suppression of the axion transfer function relative to CDM
before the first node of the transfer function, described by
the empirical form4

TrelðkÞ ≃
sinðxnÞ

xnð1þ Bx6−nÞ ; ð44Þ

where

x≡ A
k
kJ

; kJ ¼ 9m1=2
22 ; ð45Þ

with m22 ≡m=10−22 eV. The power law index n ¼ 5=2 is
mass independent, while A and B run with the mass as

A ¼ 2.22m1=25−1=1000 lnðm22Þ
22 ;

B ¼ 0.16m−1=20
22 : ð46Þ

In Fig. 13, we show how this fitting function reproduces
our EFA results for axions of mass m ¼ 10−21 eV. The
fitting function is designed to be accurate at the 10−2 level
relative to CDM and hence fractionally accurate at the
percent level only up to approximately the half-amplitude
point k1=2, with larger fractional errors once the axions are
Jeans suppressed. In terms of mass, the fitting functions
were constructed using the transfer function for axions of
mass 10−24 eV ≤ m ≤ 10−21 eV.
We do not seek a higher level of accuracy in fitting Trel

since the omission of baryons and neutrinos already makes
an error at this level at k1=2, which we have verified using a
full Einstein-Boltzmann code by varying them in the naive
fluid approximation. The even larger effect of the two on
the axion transfer function itself can be restored by

FIG. 12. The fractional error in the relative axion/CDM transfer
function Trel made by the naive fluid approximation at the half
amplitude point k1=2. The naive fluid approximation makes a
systematic error of several percent which increases at low mass.
For further discussion see Sec. III.

FIG. 13. A comparison of our fitting function to our EFA for a
10−21 eV axion. The fitting function is designed to be fractionally
accurate at better than the percent level up to roughly the half
amplitude scale k1=2 for axion masses between 10−24 and
10−21 eV. Larger fractional errors are made on smaller scales
and especially after the first node induced by the Jeans sup-
pression. For further discussion see Sec. III.

FIG. 14. For m ¼ 10−22 eV, the naive fluid approximation’s
error at the half-amplitude point k1=2 is comparable to a 3% shift
in the axion mass. For further discussion see Sec. III.

4This improves on the form given in Ref. [18], where in
particular the asymptotic suppression was given as k−8 instead of
k−6 due to fitting the differences in form in the intermediate region.
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multiplying Trel with the full CDM transfer function. The
remaining relative error reflects only the simplicity of our
code rather than any limitation in our axion solution
scheme developed in Sec. II, and can easily be rectified
by implementing our scheme in a more complete code such
as CAMB or CLASS.
Because the error made by the naive fluid approximation

at k≲ k1=2 causes a shift in the suppression scale of the
power spectrum, the error can be interpreted as a shift in
effective axionmass. In Fig. 14, we show that the error in the
naive fluid approximation is comparable to a 3% shift in the
axion mass. Thus for accurate percent level cosmological
constraints the naive fluid approximation is not suitable and
the approach presented in this work should be preferred to it.

IV. CONCLUSION

As next-generation cosmological experiments provide
precision tests of the ultralight axion dark matter hypothesis
and the more general string axiverse idea that ultralight
axions should be plentiful, the accuracy of theoretical
predictions in these models must increase in parallel.
These scalar fields induce a new evolution timescale

beyond the Hubble rate in the cosmological system
associated with their mass. This timescale hierarchy can
be challenging to solve, and existing approximation
schemes for solutions induce errors which are poorly
understood and can be large relative to the precision of
cosmological data.
In this work we have developed a solution procedure for

ultralight axions which enables a dramatic reduction in the
computation time required to obtain their cosmological
observables, as well as an improved theoretical understand-
ing of magnitude and sources of the remaining error. We can
achieve subpercent accuracy in observables without having
to track even a single full oscillation of the axion field.We can
achieve even higher accuracy, at the expense of an increased
computation time, by increasing our switch-time parameter
m=H� later and later into the oscillatory regime.
Our scheme involves matching the axion field to an

effective fluid so that they agree at the late times at which
observations aremade rather than the early times atwhich the
matching is performed.We then approximate the evolutionof
the effective fluid rather than solving it exactly using an
internally calibrated equation of state and sound speed. It is
these two improvements over the existing approaches which
enable our massive improvement in accuracy.
Using our new approach, we were able to quantify the

accuracy of existing techniques used in the literature such
as the naive approximation which uses fluid equations at all
times or the more advanced approach used by axionCAMB.
We showed that these induce errors of several percent or
more in density fluctuations relative to an equivalent CDM
system today on scales where they are still relatively large,
resembling a small mis-scaling of the transfer function
with max.

Reference [30] already showed that these errors will be
significant for CMB-S4 constraints on axions in the mass
range 10−27 eV≲max ≲ 10−24 eV, an issue which can be
directly resolved by our approach once it is implemented in a
completeBoltzmannsolver. Forheavier axions, observational
tests are in the nonlinear regime and our results provide the
linear theory power spectrum before it is processed by
nonlinear physics. Since some nonlinear effects can be highly
sensitive to the axionmass (see, e.g., Ref. [54]), rectifying the
mis-scaling of the linear theory transfer function with mass
using our approach may then be important for self-consistent
analysis of nonlinear observations.
Existing approaches can also lead to order unity errors in

relating initial axion parameters to final parameters today,
and therefore our results can be of use to studies which
require proper understanding of, e.g., the axion misalign-
ment angle.
We provided fitting functions for our results, and our

procedure is also simple to implement. Relative to the
typical approach used in codes like axionCAMB, our scheme
involves just changing the initial conditions used to match
to a fluid approximation using Eqs. (6), (8), and (13) for the
background and Eqs. (25), (28), and (35) for the perturba-
tions, and improving the equation of state using (17) and
the sound speed using (41). Doing so in public codes will
help unleash the full constraining power of precision
cosmology on these fascinating dark sector candidates.
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APPENDIX: axionCAMB

In the main text, we compared our EFA to a naive
approach which solves the fluid equations at all times with
rough approximations for the equation of state and sound
speed. In this Appendix we show that the approach
implemented in the axionCAMB code yields similar results
to the naive fluid approach.

axionCAMB [47] is a version of the CAMB [55] Boltzmann
solver which has been modified to include axions. We do
not show direct comparisons with axionCAMB since our
code does not include the cosmological effects of baryons
and neutrinos on the matter power spectrum. Instead,
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we reproduce the axion solution scheme that axionCAMB

uses and implement it in our own more simplistic code.
At the background level, axionCAMB solves exact equa-

tions until the onset of axion oscillations at a time aosc
defined by

m=Hjaosc ≡ 3: ðA1Þ

After that time, the axion density is evolved in an EFA
with wax ¼ 0.
For the perturbations, at early times a < aosc the fluid

equation is solved with c2s ¼ 1 and the exact c2a. Once
a > aosc, c2s takes the Hwang and Noh EFA form (42),
while c2a is set to zero.
We implement this axionCAMB-like approach in our code

and in Fig. 15 show that it yields results which are very
similar to the naive fluid approximation results presented in
the main text. In particular it shows the same several-
percent level error at k1=2.

[1] D. J. E. Marsh, Phys. Rep. 643, 1 (2016).
[2] R. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440

(1977).
[3] P. Svrcek and E. Witten, J. High Energy Phys. 06 (2006)

051.
[4] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530
(2010).

[5] J. A. Frieman, C. T. Hill, A. Stebbins, and I. Waga, Phys.
Rev. Lett. 75, 2077 (1995).

[6] K. Choi, Phys. Rev. D 62, 043509 (2000).
[7] D. J. Marsh and P. G. Ferreira, Phys. Rev. D 82, 103528

(2010).
[8] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B,

127 (1983).
[9] M. S. Turner, Phys. Rev. D 28, 1243 (1983).

[10] R. H. Brandenberger, Phys. Rev. D 32, 501 (1985).
[11] M. Khlopov, B. Malomed, and I. Zeldovich, Mon. Not. R.

Astron. Soc. 215, 575 (1985).
[12] B. Ratra and P. Peebles, Phys. Rev. D 37, 3406 (1988).
[13] D. Grin, M. A. Amin, V. Gluscevic, R. Hložek, D. J. Marsh,

V. Poulin, C. Prescod-Weinstein, and T. L. Smith, arXiv:
1904.09003.

[14] E. G. M. Ferreira, Astron. Astrophys. Rev. 29, 7 (2021).
[15] V. Poulin, T. L. Smith, D. Grin, T. Karwal, and M.

Kamionkowski, Phys. Rev. D 98, 083525 (2018).
[16] M.-X. Lin, G. Benevento, W. Hu, and M. Raveri, Phys. Rev.

D 100, 063542 (2019).
[17] P. Fox, A. Pierce, and S. D. Thomas, arXiv:hep-th/0409059.
[18] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85,

1158 (2000).
[19] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev.

D 95, 043541 (2017).

[20] B. Ratra, Phys. Rev. D 44, 352 (1991).
[21] R. Hložek, D. J. E. Marsh, D. Grin, R. Allison, J. Dunkley,

and E. Calabrese, Phys. Rev. D 95, 123511 (2017).
[22] G. S. Farren, D. Grin, A. H. Jaffe, R. Hložek, and D. J. E.

Marsh, Phys. Rev. D 105, 063513 (2022).
[23] Y.-H. Hsu and T. Chiueh, Phys. Rev. D 103, 103516

(2021).
[24] U.-H. Zhang and T. Chiueh, Phys. Rev. D 96, 023507

(2017).
[25] U.-H. Zhang and T. Chiueh, Phys. Rev. D 96, 063522

(2017).
[26] B. Salehian, M. H. Namjoo, and D. I. Kaiser, J. High Energy

Phys. 07 (2020) 059.
[27] M. H. Namjoo, A. H. Guth, and D. I. Kaiser, Phys. Rev. D

98, 016011 (2018).
[28] L. Amendola and R. Barbieri, Phys. Lett. B 642, 192 (2006).
[29] R. Hložek, D. J. E. Marsh, and D. Grin, Mon. Not. R.

Astron. Soc. 476, 3063 (2018).
[30] J. Cookmeyer, D. Grin, and T. L. Smith, Phys. Rev. D 101,

023501 (2020).
[31] K. Abazajian et al., arXiv:1907.04473.
[32] L. A. Ureña López and A. X. Gonzalez-Morales, J. Cosmol.

Astropart. Phys. 07 (2016) 048.
[33] M. Dentler, D. J. E. Marsh, R. Hložek, A. Laguë, K. K.

Rogers, and D. Grin, arXiv:2111.01199.
[34] A. Aghamousa et al. (DESI Collaboration), arXiv:1611

.00036.
[35] L. Amendola et al., Living Rev. Relativity 21, 2 (2018).
[36] O. Dor et al. (WFIRST Collaboration), arXiv:1804.03628.
[37] S.-R. Chen, H.-Y. Schive, and T. Chiueh, Mon. Not. R.

Astron. Soc. 468, 1338 (2017).
[38] K. Hayashi, E. G. M. Ferreira, and H. Y. J. Chan, Astrophys.

J. Lett. 912, L3 (2021).

FIG. 15. The approach used by axionCAMB yields similar
results to the naive fluid approximation which we compared to
our approach in the main text. Both are discrepant with the more
accurate calculation developed in this work. We show here a
10−22 eV axion with the abundance of dark matter. For further
discussion see the Appendix.

ACCURATE EFFECTIVE FLUID APPROXIMATION FOR … PHYS. REV. D 105, 123529 (2022)

123529-17

https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevLett.75.2077
https://doi.org/10.1103/PhysRevLett.75.2077
https://doi.org/10.1103/PhysRevD.62.043509
https://doi.org/10.1103/PhysRevD.82.103528
https://doi.org/10.1103/PhysRevD.82.103528
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.32.501
https://doi.org/10.1093/mnras/215.4.575
https://doi.org/10.1093/mnras/215.4.575
https://doi.org/10.1103/PhysRevD.37.3406
https://arXiv.org/abs/1904.09003
https://arXiv.org/abs/1904.09003
https://doi.org/10.1007/s00159-021-00135-6
https://doi.org/10.1103/PhysRevD.98.083525
https://doi.org/10.1103/PhysRevD.100.063542
https://doi.org/10.1103/PhysRevD.100.063542
https://arXiv.org/abs/hep-th/0409059
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.44.352
https://doi.org/10.1103/PhysRevD.95.123511
https://doi.org/10.1103/PhysRevD.105.063513
https://doi.org/10.1103/PhysRevD.103.103516
https://doi.org/10.1103/PhysRevD.103.103516
https://doi.org/10.1103/PhysRevD.96.023507
https://doi.org/10.1103/PhysRevD.96.023507
https://doi.org/10.1103/PhysRevD.96.063522
https://doi.org/10.1103/PhysRevD.96.063522
https://doi.org/10.1007/JHEP07(2020)059
https://doi.org/10.1007/JHEP07(2020)059
https://doi.org/10.1103/PhysRevD.98.016011
https://doi.org/10.1103/PhysRevD.98.016011
https://doi.org/10.1016/j.physletb.2006.08.069
https://doi.org/10.1093/mnras/sty271
https://doi.org/10.1093/mnras/sty271
https://doi.org/10.1103/PhysRevD.101.023501
https://doi.org/10.1103/PhysRevD.101.023501
https://arXiv.org/abs/1907.04473
https://doi.org/10.1088/1475-7516/2016/07/048
https://doi.org/10.1088/1475-7516/2016/07/048
https://arXiv.org/abs/2111.01199
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1611.00036
https://doi.org/10.1007/s41114-017-0010-3
https://arXiv.org/abs/1804.03628
https://doi.org/10.1093/mnras/stx449
https://doi.org/10.1093/mnras/stx449
https://doi.org/10.3847/2041-8213/abf501
https://doi.org/10.3847/2041-8213/abf501


[39] B. Bozek, D. J. E. Marsh, J. Silk, and R. F. G. Wyse, Mon.
Not. R. Astron. Soc. 450, 209 (2015).

[40] A. Lidz and L. Hui, Phys. Rev. D 98, 023011 (2018).
[41] D. Jones, S. Palatnick, R. Chen, A. Beane, and A. Lidz,

Astrophys. J. 913, 7 (2021).
[42] D. Sarkar, J. Flitter, and E. D. Kovetz, Phys. Rev. D 105,

103529 (2022).
[43] V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, and G. D.

Becker, Phys. Rev. Lett. 119, 031302 (2017).
[44] H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T.

Chiueh, T. Broadhurst, and W. Y. P. Hwang, Phys. Rev.
Lett. 113, 261302 (2014).

[45] J. Veltmaat, J. C. Niemeyer, and B. Schwabe, Phys. Rev. D
98, 043509 (2018).

[46] P. Mocz, M. Vogelsberger, V. H. Robles, J. Zavala, M.
Boylan-Kolchin, A. Fialkov, and L. Hernquist, Mon. Not. R.
Astron. Soc. 471, 4559 (2017).

[47] R. Hložek, D. Grin, D. J. E. Marsh, and P. G. Ferreira, Phys.
Rev. D 91, 103512 (2015).

[48] W. Hu, Astrophys. J. 506, 485 (1998).
[49] C. Bender and S. Orszag, Advanced Mathematical Methods

for Scientists and Engineers: Asymptotic Methods and
Perturbation Theory (Springer, New York, 1999), Vol. 1.

[50] W. Hu, Astroparticle physics and cosmology, Proceedings
of the Summer School, Trieste, Italy, 2002 [ICTP Lect.
Notes Ser. 14, 145 (2003)].

[51] C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7
(1995).

[52] M.-X. Lin, M. Raveri, and W. Hu, Phys. Rev. D 99, 043514
(2019).

[53] J.-c. Hwang and H. Noh, Phys. Lett. B 680, 1 (2009).
[54] N. Dalal and A. Kravtsov, arXiv:2203.05750.
[55] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,

473 (2000).

SAMUEL PASSAGLIA and WAYNE HU PHYS. REV. D 105, 123529 (2022)

123529-18

https://doi.org/10.1093/mnras/stv624
https://doi.org/10.1093/mnras/stv624
https://doi.org/10.1103/PhysRevD.98.023011
https://doi.org/10.3847/1538-4357/abf0a9
https://doi.org/10.1103/PhysRevD.105.103529
https://doi.org/10.1103/PhysRevD.105.103529
https://doi.org/10.1103/PhysRevLett.119.031302
https://doi.org/10.1103/PhysRevLett.113.261302
https://doi.org/10.1103/PhysRevLett.113.261302
https://doi.org/10.1103/PhysRevD.98.043509
https://doi.org/10.1103/PhysRevD.98.043509
https://doi.org/10.1093/mnras/stx1887
https://doi.org/10.1093/mnras/stx1887
https://doi.org/10.1103/PhysRevD.91.103512
https://doi.org/10.1103/PhysRevD.91.103512
https://doi.org/10.1086/306274
https://doi.org/10.1086/176550
https://doi.org/10.1086/176550
https://doi.org/10.1103/PhysRevD.99.043514
https://doi.org/10.1103/PhysRevD.99.043514
https://doi.org/10.1016/j.physletb.2009.08.031
https://arXiv.org/abs/2203.05750
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179

