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The power spectrum of weak lensing fluctuations has a non-Gaussian distribution due to its quadratic
nature. On small scales the central limit theorem acts to Gaussianize this distribution but non-Gaussianity in
the signal due to gravitational collapse is increasing and the functional form of the likelihood is unclear.
Analyses have traditionally assumed a Gaussian likelihood with nonlinearity incorporated into the
covariance matrix; here we provide the theory underpinning this assumption. We calculate, for the first
time, the leading-order correction to the distribution of angular power spectra from non-Gaussianity in the
underlying signal and study the transition to Gaussianity. Our expressions are valid for an arbitrary number
of correlated maps and correct the Wishart distribution in the presence of weak (but otherwise arbitrary)
non-Gaussianity in the signal. Surprisingly, the resulting distribution is not equivalent to an Edgeworth
expansion. The leading-order effect is to broaden the covariance matrix by the usual trispectrum term, with
residual skewness sourced by the trispectrum and the square of the bispectrum. Using log-normal lensing
maps we demonstrate that our likelihood is uniquely able to model both large and mildly nonlinear scales.
We provide easy-to-compute statistics to quantify the size of the non-Gaussian corrections. We show that
the full non-Gaussian likelihood can be accurately modeled as a Gaussian on small, nonlinear scales. On
large angular scales nonlinearity in the lensing signal imparts a negligible correction to the likelihood,
which takes the Wishart form in the full-sky case. Our formalism is equally applicable to any kind of
projected field.
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I. INTRODUCTION

In the coming decade several large astronomy projects
aim to place percent-level constraints on cosmic accel-
eration, testing the Λ cold dark matter (ΛCDM) cosmo-
logical model and its extensions. These include the
European Space Agency’s Euclid mission,1 the Vera
C. Rubin Observatory,2 and the Nancy Grace Roman
Space Telescope.3 These “stage-IV” facilities will each
image roughly a billion galaxies, with redshifts derived
from photometry calibrated against deep spectroscopic
training samples.
Upcoming surveys will use these galaxies to measure the

weak gravitational lensing signal (see Refs. [1,2] for recent
reviews), which directly probes the underlying matter
distribution and provides the opportunity to derive cosmo-
logical constraints from its statistical properties. Current
lensing surveys are now achieving precision on certain
ΛCDM cosmological parameter combinations at the level
of a few percent and providing useful constraints on the

properties of dark energy [3–5]. The influence of weak
lensing in constraining cosmological parameters is likely to
increase with the advent of stage-IV surveys, if systematic
errors can be kept under control.
It is now fairly common practice to combine measure-

ments of the cosmic shear signal with maps of the angular
positions of galaxies, sometimes referred to as “3 × 2 pt”
analysis [6]. The relatively coarse precision of photometric
redshifts means that binning galaxies into broad redshift
bins is reasonably lossless, a technique called “tomogra-
phy” [7–10]. Combining tomographic galaxy clustering
and weak lensing are examples of the use of projectedmaps
of dark matter (or discrete tracers thereof) to constrain
cosmological models.
The baseline parameter constraints from current and

upcoming surveys using projected fields will be derived
from two-point statistics, such as correlation functions or
power spectra, combined with a likelihood function.
Accurate cosmological inference using this approach
requires the likelihood to be specified accurately. The
functional form of the likelihood has traditionally been
assumed to be Gaussian in the measured summary sta-
tistics, the rationale being that the central limit theorem
(CLT) drives the distribution of these statistics toward
Gaussianity. However, it has long been known that the
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distribution of weak lensing or galaxy clustering two-point
statistics is in fact not Gaussian, for several reasons. First,
two-point statistics are nonlinear (quadratic) functions of
the data. If the data are Gaussian distributed, power spectra
and correlation functions are expected to be non-Gaussian
as a result, which can easily be seen by noting that the
variance of the field (the correlation function at zero lag)
cannot be negative. On the full sky the distribution of power
spectra of Gaussian fields can be written down analytically
(e.g., Ref. [11]), but in the presence of a survey mask
(required to mitigate foreground contamination) the naive
estimator (i.e., the pseudo-Cl estimator) has a distribution
that is complicated to compute and must typically be
approximated [12,13].
A second source of non-Gaussianity in the likelihood

arises from the fact that the fields themselves are not
Gaussian due to nonlinear gravitational collapse. This issue
is inextricably tied to the efficacy of the CLT to Gaussianize
the estimator, because both the number of degrees of
freedom being compressed by the estimator (e.g., the
number of galaxy pairs of a given angular separation)
and the strength of the signal nonlinearity increase as the
minimum angular scale is lowered. Non-Gaussianity of the
signal (the assumption of Gaussian noise is typically safe)
is usually incorporated by modifying the covariance matrix
of the two-point statistic with a term derived from the
connected four-point function (trispectrum) of the signal,
while keeping the Gaussian functional form (e.g., [14–16]).
Additionally, non-Gaussianity in the likelihood can also

arise due to the presence of non-Gaussian systematic
residuals or when the covariance has been estimated from
simulations [17] or combined with an analytic model [18].
Recognizing that the approximation of Gaussianity may

contribute bias or imprecision to parameter constraints,
several works have successfully measured non-Gaussianity
in the distribution of two-point statistics from simulations.
Reference [19] was an early work to find evidence for non-
Gaussian moments of power spectrum estimates, but
Refs. [20,21] represent the first attempts to incorporate
non-Gaussianity into the likelihood of a weak lensing
survey. The approach taken in Ref. [20] was to model
the data vector (correlation functions in their case) as the
sum of independent non-Gaussian components, using the
fastICA independent component analysis method to con-
struct the likelihood. Subsequent analytic work by
Refs. [22,23] further established the non-Gaussianity of
the weak lensing correlation functions. Reference [24]
introduced diagnostic statistics to identify non-
Gaussianity in cosmological likelihood functions, and
evidence for non-Gaussianity in a weak lensing likelihood
was found in Ref. [25]. Reference [26] studied non-
Gaussianity in galaxy clustering power spectra, building
on and extending the work of Ref. [20], and found
non-negligible (albeit sub-1σ) biases in parameters. In
the context of weak lensing correlation functions from

stage-IV surveys, Ref. [27] identified significant skewness
and kurtosis in the shear correlation functions and used a
principal component analysis to model the resulting
non-Gaussian likelihood, but found that a Gaussian
approximation was sufficient for ΛCDM parameters and
a Rubin-like survey. This conclusion is supported by the
work of Ref. [28] who used likelihood-free methods to
establish the validity of a Gaussian approximation for
stage-IV surveys and ΛCDM parameters. Recently,
Ref. [29] demonstrated clear non-Gaussianity in the like-
lihood of weak lensing power spectra and presented a
method to model this using normalizing flows.
Reference [30] has also studied the impact of non-
Gaussian likelihoods on parameter constraints, finding a
negligible impact for the Dark Energy Survey data vector.
What these works have established is that, while non-

Gaussianity is clearly present in the weak lensing like-
lihood, the impact of the Gaussian assumption on the
posterior of parameters appears to be very modest, at least
in ΛCDM models. However, there has been relatively little
attempt to distinguish between the non-Gaussianity that
should arise on survey scales due to the finite number of
modes (that makes a Gamma distribution more accurate
than a Gaussian) from the non-Gaussianity that could arise
on small scales due to the CLT being inefficient at
Gaussianizing the summary statistics in the face of increas-
ing nonlinearity in the signal. The use of the power
spectrum as the statistic of choice aids in distinguishing
between these two effects, as well as allowing the modeling
to be simplified due to the diagonal covariance that arises
for Gaussian fields. As well as being unable to distinguish
between various sources of non-Gaussianity, most of the
works modeling non-Gaussian likelihoods have used
numerical techniques or ad hoc approximations to capture
the corrections, often with little physical justification. This
is partly because the full non-Gaussian distribution of the
shear or galaxy clustering signal cannot be written down.
In this work, we incorporate the effects of a non-

Gaussian signal into the likelihood of the angular power
spectrum and study how this impacts various posterior
distributions of interest. To make analytic progress we
assume that the signal non-Gaussianity is sufficiently weak
that it can be treated perturbatively. While this is a
constraining assumption, it will allow us to study in detail
how the various sources of non-Gaussianity interact and
make sense of the results of the numerical studies refer-
enced above. Our approach is more in the spirit of Ref. [31],
who studied similar kinds of effects in the power spectra of
the weakly lensed cosmic microwave background, than the
numerical works that have sought to model the full non-
perturbative likelihood. We argue that an analytic approach
building from the well-understood case of Gaussian fields
and full-sky coverage offers a valuable way of under-
standing the Gaussianity , or otherwise, of the likelihood
function. Having a tractable model that can be quickly
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computed (and sampled from) also allows the effects of
non-Gaussianity to be studied for any cosmological model,
rather than being limited to ΛCDM.
This paper is structured as follows. In Sec. II we present

the main expression used in this work, Eq. (22), and study
its properties. In Sec. III we detail the simulations used to
validate our likelihood and quantify the corrections to the
posterior distributions. We present our conclusions in
Sec. IV. In a series of appendices we present the derivation
of the likelihood function, study the impact of alternative
angular binning choices, and test the impact of the source
redshift.

II. THE LIKELIHOOD OF ANGULAR POWER
SPECTRUM ESTIMATES

Consider a survey that has made noisy maps diðn̂Þ of the
large-scale scale structure across the full sky in p tomo-
graphic redshift bins labeled by the index i. Taking the
spherical harmonic coefficients ailm of these maps and
arranging them into a vector of length p, the angular power
spectra including all cross-bin pairs can be packaged into a
p × p matrix Ĉl given by

νĈl ≡
Xl

m¼−l
alma

†
lm; ð1Þ

where ν≡ 2lþ 1 is the number of angular degrees of
freedom at each l, and the spherical multipoles of the data
consist of signal plus noise as ailm ¼ silm þ nilm. We will
assume the maps are spin-0 (i.e., scalar), although this
could easily be relaxed; in the case of shear data for
example we can define the vector alm to include two entries
per redshift bin corresponding to the shear E and B modes.
Similarly, projected galaxy number counts may be included
in the data vector for a full 3 × 2 pt analysis. The hatted
power spectrum in Eq. (1) denotes a measured, noisy
quantity. We will assume that the maps are purely real, and
hence all multipoles obey

al−m ¼ ð−1Þma�lm: ð2Þ

Our goal is to compute the sampling distribution of these
power spectrum estimates pðfĈlgÞ with braces indicating
the full set of angular multipoles l, given knowledge of the
underlying statistical properties of the noise and the signal.
The sampling distribution considered as a function of these
properties is the likelihood function. The power spectra are
quadratic in the data and so are expected to obey Gaussian
statistics only when the central limit theorem is effective.
The other source of non-Gaussianity is from the signal
itself, which when measured in the late Universe on small
scales has higher-order moments due to nonlinear structure
formation.

As discussed in Appendix A we cannot proceed by
performing an Edgeworth expansion of the power spectrum
distribution around its zero-order Wishart form, so instead
we develop a new approach and begin by considering the
statistics of the underlying data. Assuming the signal and
noise are independent, the joint distribution of the power
spectra (multiplied by ν) is

pðfνĈlgÞ ¼
Z

dfslmg
Z

dfnlmgpsðfslmgÞpnðfnlmgÞ

×

� Ylmax

l¼lmin

δD

�
νĈl −

X
m

alma
†
lm

��
; ð3Þ

where the probability density pðfνĈlgÞ is defined with a
measure over real and symmetric matrices, which have n≡
pðpþ 1Þ=2 independent elements.Wewill expand theDirac
delta in terms of real and symmetric p-dimensional matrices
Jl as

δD

�
νĈl−

X
m

alma
†
lm

�
¼2

pðp−1Þ
2

Z
dJl
ð2πÞne

iTr½JlðνĈl−
P

m
alma

†
lmÞ�;

ð4Þ

where we integrate over all real symmetric matrices and the
volume element is

dJl ¼ dJ1;1l dJ1;2l …dJ1;pl dJ2;3l …dJp;pl : ð5Þ

Note that the 2
pðp−1Þ

2 factor is needed since the off-diagonal
elements of Jl are double counted in the summation in the
exponential, and hencewe need to redefine each of thepðp −
1Þ=2 off-diagonal terms in the integration with a factor of 2.
We expand the signal distribution in Fourier modes as

pðfslmgÞ ¼
Z

dfklmg
ð2πÞpN ϕsðfklmgÞei

P
lm
k†
lmslm ; ð6Þ

where N ≡Plmax
l¼lmin

2lþ 1 is the total number of modes per
tomographic bin, and ϕs is the characteristic function of the
signal.4 We can, and will, define the “wave numbers” klm to
obey reality conditions as in Eq. (2). The corresponding
characteristic function of the noise is ϕn.
Inserting Eqs. (4) and (6) into Eq. (3), changing

integration variables, and doing an integral over alm
assuming Jl is nonsingular

5 gives

4We will define characteristic functions this way throughout,
but we caution the reader that other authors sometimes define it
with a complex conjugate.

5The set of singular Jl has zero measure and, as the integrand is
finite for this set, the contribution from singular modes is
vanishingly small in the limit.
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pðfνĈlgÞ ¼ 2
λpðp−1Þ

2

Z
dfJlg
ð2πÞnλ e

i
P

l
TrðνJlĈlÞ

Ylmax

l¼lmin

j2iJlj−ν
2

Z
dfklmg
ð2πÞpN2

ϕsðfklmgÞe−
1
2

P
lm
k†
lmð2iJlÞ−1klmϕnðfklmgÞ; ð7Þ

where λ≡ lmax − lmin þ 1.
Now, we define the characteristic function of fνĈlg over its independent elements as

ϕfνĈlgðfJlgÞ ¼
Z

dfνĈlge−i
P

l
TrðνJlĈlÞpðfνĈlgÞ: ð8Þ

This gives, finally,

ϕfνĈlgðfJlgÞ ¼
� Ylmax

l¼lmin

j2iJlj−ν
2

�Z
dfklmg
ð2πÞpN2

ϕsðfklmgÞe−
1
2

P
lm
k†
lmð2iJlÞ−1klmϕnðfklmgÞ; ð9Þ

i.e., a mode coupling integral between the characteristic
functions of the signal, the noise, and a Gaussian in the
wave number of the field klm having covariance 2iJ, where
J is the wave number of the power spectra.

A. The known case of a Gaussian
signal and Gaussian noise

So far, we have not assumed anything about the statistics
of the signal or the noise, only that they are independent. In
the case of Gaussian signal and noise, the characteristic
functions ϕs and ϕn also take a Gaussian form, and the
integrals in Eq. (9) all decouple. Each integration has a
Gaussian form that can be done analytically, with the result
being a product of Wishart characteristic functions

ϕfνĈlgðfJlgÞ ¼
Ylmax

l¼lmin

jIþ 2iJlClj−ν
2; ð10Þ

whereCl is the expected total (signal plus noise) covariance
matrix of the map. The inverse Fourier transform of this can
be computed analytically (see Appendix B) and gives the
well-known distribution of the power spectra as a product
of Wishart distributions (e.g., Ref. [11])

pðfĈlgÞ ¼
Ylmax

l¼lmin

jĈljðν−p−1Þ=2
2
pν
2 Γpðν2ÞjCl=νjν2

e−
ν
2
TrðC−1

l ĈlÞ

≡ Ylmax

l¼lmin

WpðĈl;Cl=ν; νÞ; ð11Þ

where Wp is the p-dimensional Wishart density and Γp is
the multivariate Gamma function.
Each Ĉl estimate thus has a Wishart distribution with

scale matrixCl=ν and degrees of freedom νwith ν > p − 1.

As expected, the mean of each Ĉl is Cl (the estimator is
unbiased), and the variance of a given map power spectrum
is 2C2

l =ν. The latter also follows immediately from squar-
ing the definition (1) and using Wick’s theorem.
When p ¼ 1 this distribution is equivalent to a Gamma

distribution. The Gamma distribution has nonzero skew-
ness, kurtosis, and higher-order cumulants. For example,
the dimensionless skewness is equal to S ¼ 2

ffiffiffiffiffiffiffiffi
2=ν

p
, and

the dimensionless excess kurtosis is κ ¼ 12=ν. It is easy to
see that higher-order cumulants come with successive
factors of ν−1=2; this is how the central limit theorem
manifests itself when ν ≫ 1, since these higher-order
cumulants are all formally zero for a Gaussian field.
From Eq. (1) we see that ν counts the azimuthal modes
contributing to a given wave number, such that the power
spectrum estimator is the average of an increasingly large
number of independent variables as ν increases.
The convergence of any probability distribution to a

Gaussian can be established formally by showing that its
characteristic function tends pointwise to that of a Gaussian
(Lévy’s continuity theorem, e.g., Ref. [32]). Inspection of
Eq. (10) makes clear how this happens, where the con-
vergence to a Gaussian can be established by Taylor
expanding around ν ¼ ∞. One can also establish
Gaussianity from the density directly. In the p ¼ 1 case
one first has to change variables to Ĉl ¼ Clð1þ n

ffiffiffiffiffiffiffiffi
2=ν

p Þ
then take the limit ν → ∞ at fixed n, using Stirling’s
approximation to deal with the Gamma function in the
denominator. Whichever way one chooses to go, the
resulting limiting distribution is a product of Gaussians,
each with mean Cl and variance 2C2

l =ν.
We close this section by noting that in general one has to

be careful about assuming a Gaussian sampling distribution
for power spectrum estimates, as this does not necessarily
guarantee a Gaussian posterior for parameters at the same
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level of accuracy. For example, if one has an informative
and non-Gaussian prior on a parameter, the amount of
constraining data required for the likelihood to dominate
the posterior can be well above that needed to Gaussianize
the likelihood. Second, and more important, posterior
standard errors on parameters can shrink as fast as non-
Gaussian contributions to the likelihood, meaning relative
corrections from non-Gaussianity can remain important for
posteriors even on small angular scales. In general these
effects are most robustly studied with simulations.
Reference [12] provides a thorough discussion of residual
non-Gaussian effects from failure of the central limit
theorem for Gaussian fields in the cosmic microwave
background context, finding that sufficiently broad multi-
pole bins can reduce the error from approximating the
likelihood as Gaussian to acceptable levels. We will return
to this question in the cosmic shear context in Sec. III.

B. Corrections to the tomographic shear power
distribution from a non-Gaussian signal

In the previous section we derived the distribution of
angular power spectrum estimates assuming both signal
and noise were Gaussian. In this section we will consider
the more realistic scenario of a non-Gaussian signal, but
will keep the assumption of Gaussian noise.
In the Gaussian case, the mode coupling integral in

Eq. (9) can be performed analytically due to the Gaussian
form of the signal characteristic function ϕs. The fully
general non-Gaussian characteristic function of the signal
has no analytic expression that can be written down, so to
make progress we must restrict to weak non-Gaussianity, in
the sense that the higher-order cumulants of the signal are
progressively suppressed. This is the Edgeworth expansion
[33–38], and truncating at leading order gives

ϕsðfklmgÞ

¼
�
1− i

1

6
κijklm k

i
l1m1

kjl2m2
kkl3m3

þ 1

24
κijkmlm kil1m1

kjl2m2
kkl3m3

kml4m4

−
1

72
κijklm κ

lmn
l0m0kil1m1

kjl2m2
kkl3m3

kll0
1
m0

1
kml0

2
m0

2
knl0

3
m0

3

�
ϕG
s ðfklmgÞ;

ð12Þ

where all repeated indices are summed over and ϕG
s is the

Gaussian characteristic function. The compact notation lm
denotes l1m1; l2m2; l3m3 when attached to a three-point
cumulant, and l1m1; l2m2; l3m3; l4m4 when attached to a
four-point cumulant. These are defined as

κijklm ≡ hsil1m1
sjl2m2

skl3m3
i; ð13Þ

κijkmlm ≡ hsil1m1
sjl2m2

skl3m3
sml4m4

ic; ð14Þ

where the subscript c denotes the fully connected part.
In Appendix Awe discuss how the signal cumulants are

related to those of the power spectrum estimates them-
selves. The covariance and leading-order dimensionless
skewness of Ĉl in the p ¼ 1 case are given by

hΔĈlΔĈl0 i ¼
2

ν
C2
l δll0 þ Tll0 ; ð15Þ

hΔĈ3
l i

hΔC2
l i3=2

≈
ffiffiffi
8

ν

r
þ

ffiffiffiffiffiffiffi
2ν3

p B̃lll

C3
l

þ 3
ffiffiffiffiffi
2ν

p

2

Tll

C2
l

: ð16Þ

The skewness has a term coming from the Gaussian part of
the signal (

ffiffiffiffiffiffiffiffi
8=ν

p
), plus a term proportional to the squared

bispectrum of the signal B̃lll, defined later in Eq. (21), and a
term proportional to its trispectrum Tll0 . These latter two
quantities are exactly those present in Eq. (12) and are also
the leading-order non-Gaussian corrections to the dimen-
sionless kurtosis of Ĉl. Indeed, as discussed in Appendix A,
all of the dimensionless cumulants of Ĉl have leading-order
corrections from the trispectrum and squared bispectrum.
Since these two quantities are of the same perturbative
order this means that the cumulants of Ĉl do not get
progressively smaller as their order increases, and an
Edgeworth expansion of the distribution of Ĉl around a
Wishart will not work. This justifies our approach of
expanding the underlying signal as an Edgeworth expan-
sion and then propagating to get the distribution of the
power spectrum.
Substituting Eq. (12) into Eq. (9), we immediately see

that the leading-order bispectrum term vanishes due to this
term carrying an odd power of klm. The leading-order
contribution to the distribution is therefore from terms of
order the trispectrum or bispectrum squared, whose com-
putation formally requires going to third order in pertur-
bation theory. We will therefore truncate the expansion in
Eq. (12) at the order shown. Since the probability density is
linear in the characteristic function, we can simply add the
trispectrum correction to that coming from bispectrum
squared. We present the derivation of the characteristic
function and the probability density of the power spectrum
in Appendix B, with the final result given in Eqs. (B35) and
(B56). We will simply quote the results here.

1. Non-Gaussian power distribution from a signal with
nonzero trispectrum

In the p ¼ 1 case the distribution of Ĉl corrected by a
signal trispectrum given in Eq. (B35) reduces to
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pðfĈlgÞ ¼
� Ylmax

l¼lmin

Γ½Ĉl; ν=2; ν=ð2ClÞ�
��

1þ 1

8

X
l1;l2

ν1ν2
Tl1l2

Cl1Cl2

�
ΔĈl1ΔĈl2

Cl1Cl2

−
2

ν1 þ 2
δl1l2

Ĉ2
l1

C2
l1

��
; ð17Þ

whereTll0 is them-averaged version of the signal trispectrum
that contributes to the power spectrum covariance, see
Eq. (15). One can verify that the distribution (17) is correctly
normalized, has ameangivenby hĈli ¼ Cl (unchanged from
the Gamma case), and a covariance matrix given by
hΔĈl1ΔĈl2i ¼ 2δl1l2C

2
l1
=ν1 þ Tl1l2 , as expected.

Despite possessing the correct normalization, mean, and
covariance, Eq. (17) is not a valid probability density since it
is not everywhere positive. This arises for sufficiently large
Ĉl. This is an ubiquitous feature of densities based on the
Edgeworth expansion and can be remedied by writing the
correction as an exponential, i.e., 1þ x ≈ ex. This is valid
since the correction is assumed to perturbatively small.
The first correcting term in Eq. (17), proportional to

ΔĈl1ΔĈl2 , can be written in a suggestive way. It is the
leading-order term in the expansion of

−
1

2

X
l1;l2

ΔĈl1

�
2C2

l1

ν1
δl1l2 þ Tl1l2

�−1

ΔĈl2 ; ð18Þ

where the notation ðAl1l2Þ−1 refers to the l1, l2 element of the
inverse of the matrix with elements Al1l2 , as should be clear
from context. Equation (18) is a χ2-like functional having the
inverse of the total covariancematrix.Once theGaussian part
of this expansion is “available” from the zero-order Gamma
term when the ν → ∞ limit is taken, we will be left a
Gaussian possessing the correct inverse covariance matrix in
its exponent. Similarly, the second term in Eq. (17) is the
leading-order correction to the determinant prefactor of a
Gaussian due to the non-Gaussian covariance Tl1l2 . Thus, in
the ν → ∞ limit, our distribution is the leading-order
correction to a Gaussian due to Tl1l2 . This can also be seen
directly from the characteristic function, Eq. (B25).
Considered as a function of the model power spectrum

Cl and the trispectrum Tl1l2 , Eq. (17) gives the likelihood
function for fixed data Ĉl. In the next section we will
compute the correction to the likelihood numerically, but
there are a few analytic results we can derive from this
likelihood. Most significantly, we can compute its expected
curvature around a fiducial power spectrum Cf;l and non-
Gaussian covariance Tf;l1l2 , i.e., the Fisher matrix.
Assuming a model with parameters θα, this is given by

Fαβ ¼
1

2

Xlmax

l¼lmin

ν
1

C2
f;l

∂Cl

∂θα

∂Cl

∂θβ

−
1

4

Xlmax

l1;l2¼lmin

ν1ν2
Tf;l1l2

C2
f;l1

C2
f;l2

∂Cl1

∂θα

∂Cl2

∂θβ

≈
Xlmax

l1;l2¼lmin

∂Cl1

∂θα

�
2C2

f;l1

ν
δl1l2 þ Tf;l1l2

�−1
∂Cl2

∂θβ
; ð19Þ

where the derivatives are evaluated at the fiducial model.
Equation (19) is the usual expression for the power
spectrum Fisher matrix but with the proper non-
Gaussian covariance matrix. This matches the expression
for the Fisher matrix derived from a Gaussian likelihood
with the covariance fixed to a fiducial model and including
the non-Gaussian term and tells us that to recover the full-
sky Fisher matrix from a likelihood approximated by its
Gaussian limit we have to fix the Gaussian covariance to a
fiducial model. This is the main result of Ref. [39], and here
we recover it in the presence of signal non-Gaussianity. It is
interesting to note that in principle one can allow the non-
Gaussian part of the covariance matrix Tl1l2 to depend on
parameters in a Gaussian likelihood even when fixing the
Gaussian part, as required to keep the approximation
consistent. In our perturbative framework the additional
information contributed by Tl1l2ðθÞ is higher order, but
whether this is consistent with the likelihood approxima-
tion for general Tl1l2 is still an open question and covered
by neither our analysis nor that of Ref. [39].
We note finally that we do not recover the field-level

Fisher matrix from our power spectrum Fisher matrix,
which now contains new terms due to non-Gaussianity.
This is an expression of the fact that the power spectrum
does not now contain all the information.

2. Non-Gaussian power distribution from a signal with
nonzero bispectrum

We have argued that a consistent expansion of distribu-
tion of the power spectrum requires including terms of
order the signal bispectrum squared. In the p ¼ 1 case, the
correction given in Eq. (B56) reduces to

pðfĈlgÞ ¼
� Ylmax

l¼lmin

Γ½Ĉl; ν=2; ν=ð2ClÞ�
�

×

�
1þ 1

12

X
l1;l2;l3

ν1ν2ν3
B̃l1l2l3

C2
l1
C2
l2
C2
l3

�
ΔĈl1ΔĈl2ΔĈl3 − ½3� 2δl1l2

ðν1 þ 2Þ Ĉ
2
l1ΔĈl3 þ

16δl1l2δl2l3
ðν1 þ 4Þðν1 þ 2Þ Ĉ

3
l1

��
; ð20Þ
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where B̃ is proportional to the square of the reduced
bispectrum bl1l2l3 of the signal and is given by

B̃l1l2l3 ¼
1

4π

�
l1 l2 l3
0 0 0

�
2

b2l1l2l3 ; ð21Þ

with the quantity in parentheses a Wigner 3j symbol. The
notation [n] in Eq. (20) refers to the n terms that follow
from symmetry considerations. It is straightforward to
verify that the correction leaves the normalization, mean,
and covariance matrix unchanged, but corrects the three-
point function by a term equal to 4B̃l;l0;l00 , as expected
from Eq. (A2).

One can verify that the Fisher matrix is unaffected by the
squared-bispectrum correction at leading order. In other
words, the effect of B̃l1l2l3 is to modify the skewness of the
likelihood, while leaving its mean and variance approx-
imately unaffected.
As claimed in Appendix A 1, the correction to the

density is OðB̃=C3
l Þ, the same order as the trispectrum

correction. This justifies our decision to include terms of
order the bispectrum squared.
In summary, the leading-order correction to the distri-

bution of power spectrum estimates from signal non-
Gaussianity is

pðfĈlgjfCl; Tl;l0 ; B̃l;l0;l00 gÞ ¼
� Ylmax

l¼lmin

Γ½Ĉl; ν=2; ν=ð2ClÞ�
��

1þ 1

8

X
l1;l2

ν1ν2
Tl1l2

Cl1Cl2

�
ΔĈl1ΔĈl2

Cl1Cl2

−
2

ν1 þ 2
δl1l2

Ĉ2
l1

C2
l1

�

þ 1

12

X
l1;l2;l3

ν1ν2ν3
B̃l1l2l3

C2
l1
C2
l2
C2
l3

�
ΔĈl1ΔĈl2ΔĈl3 − ½3� 2δl1l2

ðν1 þ 2Þ Ĉ
2
l1ΔĈl3 þ

16δl1l2δl2l3
ðν1 þ 4Þðν1 þ 2Þ Ĉ

3
l1

��
:

ð22Þ

Equation (22) is the first major result of this work. It is
the leading-order likelihood function for the power spec-
trum that incorporates a non-Gaussian signal. Unlike the
commonly assumed Gaussian approximation, this distri-
bution applies equally well to the largest angular scales.
This distribution has the correct normalization, mean,
covariance, and three-point function. In Appendix B we
provide the analogous expression in the case of multiple
redshift bins, in which case the distribution is a perturbation
around a Wishart distribution for positive-definite matrices.
A practical application of the distribution may require
ensuring positivity by taking the logarithm, but in practice
we have not found this to be necessary. In Sec. III we
present numerical results for the transition of the power
spectrum distribution from Wishart to post-Wishart [our
Eq. (22)] and finally to Gaussian as the number of degrees
of freedom increases.
We close this section by noting that, while we have

restricted ourselves to spin-0 fields (such as lensing
convergence or projected galaxy number counts) for
simplicity, our formalism may be easily generalized to
the spin-2 case (i.e., weak lensing shear), as mentioned at
the beginning of Sec. II. Since we work in harmonic space
on the full sky, one can simply work with the E and B
multipoles derived in the usual way from the shear field.
This augments the data vector to have length 2 × Nz, but all
the matrix expressions presented here can be used after
making this modification. Redshift bin indices must now be

interpreted as also running over E and B indices, and the
appropriate cross-bispectra and trispectra must be used
(many of which will be zero due to parity invariance).
On the cut sky our expression must be modified to

account for the mask, which we have not attempted to
include. This induces additional mode mixing (as well as
the usual E=B ambiguity), which could possibly be
included using the techniques of either Ref. [12] or
Ref. [13]. We defer this to a future work.

C. The transition to Gaussianity

A key goal of this paper is to understand and quantify
how efficiently the central limit theorem Gaussianizes the
distribution of Ĉl in the presence of signal non-Gaussianity.
One could well imagine a situation for example where the
strength of non-Gaussianity is increasing with lmax faster
than the CLT is able to Gaussianize, in which the Gaussian
limit may never be achieved. In this section we use our new
distribution to study how the CLT operates in detail. We
specialize to the single redshift bin case, p ¼ 1.
Convergence of a probability density to a limiting

distribution can be established by studying the pointwise
convergence of its characteristic function. We have already
computed this, and we will additionally change variables

from Ĉl to the “standardized” variable Ẑl ≡ ΔĈl=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2C2

l =ν
q

.

The characteristic function of the set of Ẑl variables is
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ϕfẐlgðfJlgÞ ¼
" Ylmax

l¼lmin

eiJl
ffiffiffiffiffi
ν=2

p
ð1þ iJl

ffiffiffiffiffiffiffiffi
2=ν

p
Þ−ν=2

#"
1 −

1

2

X
l1;l2

εl1l2Jl1Jl2
ð1þ iJl1

ffiffiffiffiffiffiffiffiffi
2=ν1

p Þð1þ iJl2
ffiffiffiffiffiffiffiffiffi
2=ν2

p Þ

þ i
6

X
l1;l2;l3

ε̃l1l2l3Jl1Jl2Jl3
ð1þ iJl1

ffiffiffiffiffiffiffiffiffi
2=ν1

p Þð1þ iJl2
ffiffiffiffiffiffiffiffiffi
2=ν2

p Þð1þ iJl3
ffiffiffiffiffiffiffiffiffi
2=ν3

p Þ

#
; ð23Þ

where we have defined the quantities

εl1l2 ≡
Tl1l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C2
l1
=ν1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C2

l2
=ν2

q ; ð24Þ

ε̃l1l2l3 ≡
4B̃l1l2l3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C2
l1
=ν1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C2

l2
=ν2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C2

l3
=ν3

q : ð25Þ

The quantity εl1l2 has the simple interpretation that it is the
relative correction to the power spectrum covariance matrix
from non-Gaussianity. Its diagonal elements can also be
interpreted as the correction to the “effective degrees of
freedom” through νeff ¼ ν=ð1þ εllÞ such that the variance
of the power spectrum is 2C2

l =νeff , although simply making
this correction in the likelihood is not sufficient as it does
not capture, among other things, mode coupling.
Consider now taking every ν ≫ 1, i.e., consider the limit

lmin ≫ 1. The zero-order prefactor in Eq. (23) converges to
a Gaussian, with the “linear” part of the exponent getting
canceled by the complex exponential already present.
Likewise, all the denominators in the non-Gaussian cor-
rection terms tend to unity at the same rate, leaving a
quadratic correction from the trispectrum and a cubic
correction from the bispectrum. In this limit, the correction
is of the Edgeworth form. At the order to which we work,
we may just as well replace the quadratic term by a
Gaussian using e−λ

2 ≈ 1 − λ2, in which case the trispectrum
term is absorbed into the covariance matrix of the Gaussian
prefactor. This leaves the correction in the lmin ≫ 1 limit as

ϕfẐlgðfJlgÞ ≈ exp

�
−
1

2

X
l1l2

Jl1ðδl1l2 þ εl1l2ÞJl2
�

×

�
1þ i

6

X
l1;l2;l3

ε̃l1l2l3Jl1Jl2Jl3

�
: ð26Þ

For this to be valid, we clearly need
P

l1l2 Jl1Jl2εl1l2 ≪ 1. A
necessary condition for this is that every element of ε is
“small” in a sense that depends on the quantity of interest.
For example, if one was only interested in the marginal
distribution of a single Ĉl, it would be sufficient to demand
that only a single εll ≪ 1.

The dominant effect of the trispectrum in this limit is
clearly a change to the covariance matrix. Residual “post-
Gaussian” effects come from the squared bispectrum
through the quantity ε̃l1l2l3 affecting the three-point function
of the power spectrum. These are negligible when ε̃l1l2l3 ≪1

at all multipoles.
One guaranteed way to make both ε and ε̃ small is to

increase Cl at fixed Tl1l2 or fixed B̃l1l2l3 . This may be
achieved by simply increasing the (assumed Gaussian)
noise power, since Cl here is the total power spectrum. This
is equivalent to saying that the noise “Gaussianizes” the
distribution. One must be careful however to check this
Gaussianization also operates on not just the likelihood but
the posterior, as we will do shortly.
The quantity εl1l2 is known to be significant on nonlinear

scales and is routinely measured in simulations (usually in a
binned form, see Fig. 1 for a related quantity). In contrast,
the size of ε̃l1l2l3 is less obvious. We can make an order-of-
magnitude estimate of its size using the asymptotic limit of
the Wigner 3j symbol [40,41]

lim
ν1;ν2;ν3→∞

�
l1 l2 l3
0 0 0

�
2

¼ 1

2πAðL1; L2; L3Þ
; ð27Þ

where L≡ lþ 1=2 and AðL1; L2; L3Þ is the area of the
triangle having side lengths L1, L2, L3. The squared 3j

FIG. 1. Ratio of the diagonal elements of the Cl covariance
matrix to that of Gaussian fields for our log-normal mocks
(orange) and the ray-traced N-body simulations of Ref. [43]
(blue). We have binned the power spectra with Δ log10 l ¼ 0.1.
Reference [43] speculates that the excess variance at large angular
scales in the N-body mocks is due to the finite thickness of their
lensing shells.
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symbol thus decays as 1=ν2 for large ν ¼ minðν1; ν2; ν3Þ.
A necessary condition for negligible non-Gaussianity is
therefore

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν1ν2ν3=2

p
4π2AðL1; L2; L3Þ

�1=2 jbl1l2l3 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2Cl3

p ≪ 1 ð28Þ

when lmin ≫ 1. The prefactor on the left-hand side of
Eq. (28) is a weak function of ν, and is typically ∼10−2 for
the relevant scales and for most triangle configurations. The
reduced bispectrum for weak lensing has been measured for
a few triangle configurations from N-body simulations in
Ref. [42], who find that it decays with l for most
configurations, with the slowest decay being a roughly l−1

dropoff in their “squeezed” configuration. This suggests that,
for the lensing convergence, the bispectrum-squared term
should become rapidly negligible with l. At l≳ 2000 where
shape noise starts to dominate the power spectrum [42] finds
that the reducedbispectrum for an equilateral configuration is
∼10−17, and therefore the left-hand side of Eq. (28) is∼10−5.
At l ¼ 100 we have Cl ∼ 10−9 and blll ∼ 10−17, so the left-
hand side of Eq. (28) is again ∼10−5. For a squeezed shape
with l1 ¼ 50, l2 ¼ l3 ¼ 2000 Ref. [42] finds b ∼ 10−16. We
find that Cl1 ∼ 10−8, and the left-hand side of Eq. (28) is
∼10−4, i.e., slightly more significant. A typical element of
ε̃l1l2l3 is therefore around 10−9.
In practice the quantity that should be small is the sum of

ε across the scales most relevant to the quantity of interest.
The order-of-magnitude analysis above suggests that for a
small subset of the Cl the correction from non-Gaussianity
is negligible, but if the number of relevant scales is large (as
might be the case for massive data compression in order to
infer cosmological parameters) then the conditions on ε are
more strict. Assuming an approximately constant ε̃l1l2l3 ,
using all available scales up to lmax would require ε̃l1l2l3 ≪
l−3max for example. For ε̃l1l2l3 ∼ 10−9 corrections become
large around lmax ≈ 1000. This is within the range of scale
usable angular scales for stage-IV lensing surveys, which

motivates the more quantitative study with simulations in
Sec. III.

1. Non-Gaussian effects on posterior distributions

The sampling distribution of Ĉl itself is usually not of
interest. What matters more is the posterior distribution on
the Cl or on model parameters that generate the Cl. In this
section we study analytically how non-Gaussianity affects
the posterior, using our corrected likelihood Eq. (22).
First we study the joint posterior distribution of the set of

theoryCl. This is simply given by pðfClgjfĈlgÞ ∝ pðfĈlgj
fClgÞπðfClgÞ, where πðfClgÞ is the prior. Natural priors for
the Cl are the uniform prior, which isolates the dependence
on the likelihood, and the Jeffreys prior, which is uninform-
ative. For a Gaussian likelihood the two coincide, but this is
not the case for either theGamma likelihood nor our Eq. (22).
The Jeffreys prior is given by the square root of the

determinant of the Fisher matrix. We have computed this
for our likelihood, and at leading order we have

πðfClgÞ ∝
� Ylmax

l¼lmin

C−1
l

��
1 −

1

4

X
l

ν
Tll

C2
l

�
: ð29Þ

The zero-order posterior for each Cl is thus an inverse-
Gamma distribution, denoted by Γ−1 given by

pΓ−1ðCljĈlÞ ¼
ðνĈl=2Þν=2
Γðν=2Þ C−ν=2−1

l exp

�
−
νĈl

2Cl

�
: ð30Þ

Weak signal non-Gaussianity perturbs away from this zero-
order distribution.
In what follows we will only include trispectrum terms,

which we have found to be the dominant source of non-
Gaussianity in the power spectrum distribution. Substituting
in the Jeffreys prior and normalizing, the correction to the
inverse-Gamma posterior is

pðfClgjfĈlgÞ ¼
� Ylmax

l¼lmin

Γ−1ðCl; ν=2; νCl=2Þ
�

×

�
1þ 1

4

X
l1l2

ε̂l1l2

�
Ĉl1Ĉl2

Cl1Cl2

�
ΔĈl1ΔĈl2

Cl1Cl2

−
2δl1l2
ν1 þ 2

Ĉ2
l1

C2
l1

−
2α̃δl1l2
ν1

�
þ δl1l2 ½2α̃ðν1 þ 2Þ − 4� − 4

ν1ν2

��
ð31Þ

where ε̂ is defined as in Eq. (24) but with Ĉl in place of Cl,
and α̃ is a bookkeeping parameter that keeps track of the
influence of the correction to the Jeffreys prior; α̃ ¼ 1
represents the first-order-corrected Jeffreys prior, and
α̃ ¼ 0 uses only the zero-order Jeffreys prior.

Corrections to the posterior moments from Tl1l2 can now
be computed easily using the properties of the inverse-
Gamma distribution. For example, the mean of a single CL
after marginalizing over all other Cl receives a fractional
correction of order Oðε̂=νÞ, i.e., suppressed at large ν.
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The leading-order fractional correction to the marginal
variance of a single CL is ε̂LL, as expected, and is entirely
captured by a Gaussian having the full non-Gaussian
covariance matrix. The leading-order post-Gaussian cor-
rection from signal non-Gaussianity is Oðε̂=νÞ. Note the
variance under a Gaussian approximation also differs from
that of the inverse-Gamma by a fractional amount Oð1=νÞ
when ν is finite. Our formalism is valid at all orders in 1=ν,
but does assume small ε. Corrections to the mean and
variance not captured by a Gaussian with non-Gaussian
covariance matrix are thus Oðε̂=νÞ. It turns out that these
are also the corrections to the conditional mean and
variance when all but one Cl are fixed to their measured
values, with the mean correction further suppressed
if α̃ ¼ 1.
To study the Gaussian limit in the Cl posterior, we write

Cl ¼ Ĉlð1þ n
ffiffiffiffiffiffiffiffi
2=ν

p Þ and take the ν → ∞ limit. The
leading-order term, quadratic in n, is precisely that speci-
fied by a Gaussian with non-Gaussian covariance. Leading-
order post-Gaussian terms at fixed n are Oðε= ffiffiffi

ν
p Þ, i.e.,

larger than the correction to the mean and variance. This
correction is a cubic polynomial in n, suggesting that it
corresponds to a change in the skewness of the posterior Cl,
not captured by a Gaussian. It turns out that this correction
can be accounted for by a slight modification to the
Gaussian where we replace Tl1l2 in the covariance matrix
with Tl1l2ðĈ2

l1=C
2
l1
ÞðĈ2

l2=C
2
l2
Þ, but in practice this post-

Gaussian term is small and the correction does not lead
to noticeable improvement. Note that we have neglected the
bispectrum-squared term in this derivation, which will also
modify the Cl skewness.
We can also study the distribution of an amplitude

parameter by setting Cl ¼ AC0;l for some fiducial power
spectrum C0;l (we neglect noise here for simplicity). We
find a fractional correction to the mean of order
Oðhεi=P νÞ, where we define the l-averaged quantity

hεi≡
P

l1l2

ffiffiffiffiffiffiffiffiffi
ν1ν2

p
εl1l2P

lν

¼
P

l1l2ν1ν2
Tl1l2

2Cl1
Cl2P

lν
; ð32Þ

with ε evaluated at the fiducial model. hεi has the simple
interpretation that it is the leading-order fractional correc-
tion to the posterior parameter variance from the non-
Gaussian covariance term. Similarly, the leading-order
post-Gaussian fractional correction to the variance of A
isOðhεi=P νÞ. Corrections to the dimensionless skew of A
are Oðhεi= ffiffiffiffiffiffiffiffiffiP

ν
p Þ, as are corrections to the pointwise

posterior distribution of A.
To summarize this section, the biggest effect of a signal

trispectrum is to correct the posterior variance of param-
eters through the non-Gaussian covariance term. This is

typically of order hεi, where the average runs over the
scales of interest. We require this correction to be small in
order for our perturbative series to converge, i.e., the
validity of our distributions require hεi ≪ 1. A good rule
of thumb is that we require the correction to the Fisher
information from signal non-Gaussianity to be much less
than unity. The broadening of parameter errors is mostly
accounted for by a Gaussian likelihood with non-Gaussian
covariance—the genuinely new terms we have computed
here are post-Gaussian and give a skewness and fractional
pointwise correction to the probability density which are
both of order hεi= ffiffiffiffiffiffiffiffiffiP

ν
p

at large ν, which by Eq. (A8) is
also the leading correction to the dimensionless skewness
of the measured power spectrum. At large ν this is strongly
suppressed due to the central limit theorem if hεi does not
grow faster than

ffiffiffiffiffiffiffiffiffiP
ν

p
. In Sec. III we quantify this with

simulations. Corrections due to the squared bispectrum also
affect this skewness. Corrections to the posterior mean and
variance are smaller, of order hεi=P ν at large ν, which is
of order the correction to the dimensionless kurtosis of the
measured power spectrum.

D. Band powers

It is usually advantageous to bin the power spectrum in
angular scale in order to reduce dimensionality of the
required covariance matrix, account for mode mixing due
to the survey mask, or to speed up likelihood calculations.
Binning has a strong effect on the apparent impact of non-
Gaussianity in the covariance matrix, since the Gaussian
term will be suppressed due to the increasing mode count
while the non-Gaussian term will stay roughly constant.
Our binning scheme is defined by

Ĉb ¼
P

l∈bWlĈlP
l∈bWl

; ð33Þ

for a window function Wl, where b labels the bin. For
narrow bins, an optimal binning scheme would weight with
the inverse covariance of Ĉl. To avoid dependence on the
model we weight by the mode count and takeWl ¼ 2lþ 1.
We explore different binning choices in Appendix C.
Assuming Cl is roughly constant over the extent of the

bin, the zero-order characteristic function of the Ĉb is

ϕfνbĈbgðfJbgÞ ¼
Y
b

Y
l∈b

ð1þ 2iJbClÞ−ν=2

≈
Y
b

ð1þ 2iJbCbÞ−νb=2; ð34Þ

where νb ≡P
l∈b ν. In other words, the zero-order distri-

bution of the binned power spectra is approximately a
Gamma distribution. In practice we can eliminate the need
to approximate a constant Cl over the bin by working with
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Ĉl=Cl, but for sufficiently narrow bins the above approxi-
mation is accurate.
In the presence of signal non-Gaussianity, we can make a

similar approximation that Cl is flat across each bin and
simply replace l1;2;3 with b1;2;3 and ν1;2;3 with νb1;b2;b3
everywhere in the likelihood. Quantities such as Tl1l2 and
B̃l1l2l3 can be replaced with their binned versions.
Since the number of modes in a bin scales with its width

Δlb, the fractional correction to the covariance scales as
εbb ∝ Δlb. The number of terms in the sum over εb1b2 in the
denominator of hεi scales between 1=Δl2b for nonsparse
εb1b2 and 1=Δlb for diagonal εb1b2 . Therefore, corrections
from the signal trispectrum scale somewhere between hεi ∝
Δlb for diagonal ε and hεi ≈ constant for nonsparse ε. In
practice the ε is not diagonal, and so we can expect our
likelihood corrections to be only mildly sensitive to the
choice of binning, with the generic feature that the
corrections are larger for broader bins. We confirm this
in Appendix C.

III. QUANTIFYING CORRECTIONS
FROM NON-GAUSSIANITY

In the previous section we derived the leading-order
correction to the probability density of power spectrum
measurements in the presence of signal non-Gaussianity.
Considered as a function of the unknown true power
spectrum Cl, the signal trispectrum Tll0 , and the squared-
bispectrum B̃ll0l00 , this distribution gives the likelihood
function. It is the impact of non-Gaussianity on the like-
lihood (or posterior) that is of most interest to us here.
We have seen that the Fisher information contributed by

the parameter dependence of Tll0 and B̃ll0l00 is formally of
higher order in the (assumed weak) non-Gaussianity, so in
this section we will fix these to a fiducial model. Our
approach is to use approximate simulations to compute
these quantities in a fiducial cosmology, but we could just
as well compute them using the halo model or fitting
functions. Once we have computed these non-Gaussian
signal cumulants, we can use Eq. (22) to compute the
correction to the likelihood of the Cl or any parameters on
which Cl depends.

A. Simulations

To compute Tll0 and B̃ll0l00 we create a large suite of log-
normal lensing convergence maps using the FLASK soft-
ware package [44]. Log-normal fields are known to give a
reasonable approximation for the covariance of lensing
two-point functions [45,46], although their ability to
predict configurations of the bispectrum is less well
explored [47]. We will cross-validate our results with a
small sample of lensing maps from ray-traced N-body
simulations.
We generated 105 log-normal convergence maps with a

fixed power spectrum generated with CAMB [48,49]. Our

fiducial galaxy sample is modeled with a Euclid-like
lensing sample in mind. We assume a single broad redshift
distribution for lensing sources, peaked around z ≈ 0.9,
having the same functional form as Ref. [50], with
cosmological parameters set to the best-fit values of
Ref. [51]. The alternative choice of a narrow source redshift
bin peaked at zs ¼ 0.325, corresponding to the lowest
redshift bin of a Euclid-like survey with ten tomographic
bins, is explored in Appendix D. We compute the power
spectrum to lmax ¼ 6143, applying nonlinear and baryon
feedback corrections according to the default specifications
of Ref. [52]. For simplicity we do not include intrinsic
alignments in the model; this will not affect our results. The
“shift parameter” corresponding to the (negative) minimum
value of the convergence fed to FLASK is set to 0.01214,
which was chosen by hand to get a good match to N-body
simulations, and is comparable to thevalue found inRef. [30]
by fitting the one-point kurtosis of the convergence.
Convergence fields are rendered on a HEALPix6 [53] grid
withNside ¼ 2048. In our actual likelihood computations we
only use scales down to lmax ¼ 1000, which is sufficiently
small to ensure the input power spectrum is recovered with
negligible bias,7 but sufficiently large to cover a realistic
range of scales for lensing surveys. We apply the HEALPix
pixel window function to the map to mimic the effect of
coarse binning of a higher resolution galaxy catalog.
To check that the log-normal fields are producing

sensible results for the signal cumulants, we compare the
convergence statistics with those from a suite of ray-traced
N-body simulations from Ref. [43]. These simulations
assume a thin source redshift plane at zs ¼ 1.0334, but
the resulting lensing power spectrum only differs from a
fiducial Cl by a few percent across most scales.
In Figs. 1 and 2 we compare the covariance matrix of the

measured Ĉl from the log-normal mocks with those of the
N-body mocks. Since the latter contains much fewer
realizations (∼100) the recovered statistics are much
noisier, but a meaningful comparison is still possible.
Figure 1 shows the ratio of the diagonal elements of the
covariance matrix compared with a Gaussian prediction
based on the input power spectrum (we have binned the Ĉl
to emphasize the differences). The agreement between the
two is reasonable, with the N-body mocks having excess
variance on large scales, as discussed in Ref. [43]. The log-
normal mocks overestimate the variance on small scales,
but since we are only seeking approximations to the
trispectrum here the difference is sufficiently small. The
non-Gaussian contribution to the covariance dramatically
kicks up when l > 200, due to the signal trispectrum. Note

6https://healpix.sourceforge.io.
7The exponentiation of the Gaussian field needed to produce a

log-normal field transfers power to subgrid scales where it cannot
be recovered from the discrete HEALPix grid. This causes a
negative bias in the power spectrum on all scales that increases in
severity as the Nyquist frequency lNy ≈ 3Nside − 1 is approached.
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that our log-normalmaps are on the full sky and are produced
bya local nonlinear transformof the linear field, and sodonot
capture the supersample covariance, but the agreement with
the N-body mocks is nonetheless acceptable.
In Fig. 2 we plot slices through the correlation matrix.

The agreement of the log-normal mocks with the N-body
mocks is not perfect, but acceptable. Above l ≈ 200 mode
coupling in the N-body mocks kicks up dramatically, much
in the same way as in the diagonal elements. The log-
normal mocks do not capture this well, instead predicting a
smooth increase, but the agreement is within an order of
magnitude and acceptable.
To measure the bispectrum from the simulations we use

the estimator

b̂l1l2l3 ¼
1

Nl1l2l3

Xl1
m1¼−l1

Xl2
m2¼−l2

Xl3
m3¼−l3

×

�
l1 l2 l3
m1 m2 m3

�
al1m1

al2m2
al3m3

; ð35Þ

where

Nl1l2l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν1ν2ν3
4π

r �
l1 l2 l3
0 0 0

�
; ð36Þ

which is optimal for Gaussian fields. We use the PYTHON

package SPHERICAL
8 to precompute the Wigner 3j symbols

to allow for rapid summation over the azimuthal wave
numbers in Eq. (35), but the implementation is slow for
l > 100 so we limit our bispectrum measurements to this
maximum multipole.
In Fig. 3 we show the reduced bispectrum measured

from our log-normal convergence maps and from the N-
body mocks of Ref. [43]. The agreement is reasonable,
although the noise in the N-body measurement is large.
Note that the strength of log-normality was chosen to give a
good match to the non-Gaussian part of the power spectrum
covariance, so the agreement in the bispectrum is not
guaranteed by construction. We also find qualitative agree-
ment with the measurements of Ref. [42].
To mitigate the impact of noise in our likelihood we fit

the non-Gaussian signal polyspectra with smooth multi-
variate fifth-order polynomials. To make these low-order
polynomials good fits we first bin the polyspectra, as
described in Sec. II D, in equally spaced bins in log l. We
separately fit a univariate polynomial to the ratio of the
diagonal elements of the covariance to the Gaussian
prediction and a bivariate polynomial to the correlation
matrix (excluding the diagonal elements). We fit a trivariate
polynomial to the reduced bispectrum before squaring and
forming the quantity B̃l1l2l3. We take care to include only the
nonzero elements of the bispectrum in the fit.

FIG. 2. Slices through the correlation matrix for a few multipole
bins containing the l values indicated above each panel. The
diagonal elements (unity) has been omitted for clarity and are
indicated by the red dashed vertical lines.

FIG. 3. Bispectra of our log-normal mocks (orange) and the N-
body mocks of Ref. [43] (blue). We show an equilateral
configuration (top left), a squeezed configuration with long
wavelength mode lL ¼ 2 (top right), a folded configuration with
l ¼ 2l0 ¼ 2l00 (bottom left), and an isosceles configuration with
common side length lcommon ¼ 50 (bottom right). The bispectra
have not been binned in multipole.

8https://pypi.org/project/spherical/.
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With Tll0 and B̃ll0l00 in hand we can now compute the size
of the correction to weak lensing likelihoods and posteriors
from signal non-Gaussianity, using Eq. (22).

B. Results

The zero-order likelihood function for fixed Ĉl is
proportional to an inverse-Gamma distribution. In Fig. 4
we show the fractional correction away from this due to
signal non-Gaussianity, using Ĉl that have been binned in
multipole with Δ log l ¼ 0.1.9 In this figure we assume a
fixed measured Ĉl and show the correction to the likelihood
when the model Cl are uniformly scaled relative to Ĉl, i.e.,
we take Cl ¼ AĈl for an amplitude parameter A. The width
of the likelihood function is typically σ ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
ν=2

p
, the

zero-order Gamma (or Wishart when p ≠ 1) uncertainty, so
we normalize the horizontal scale in Fig. 4 by this quantity.
The best-fit value of A is close to unity, so the actual values
plotted on the horizontal axis reflect the lmax ¼ 100 that we
have assumed for this plot. We plot the contributions from
the trispectrum and the squared-bispectrum separately. We
have verified that the “binned” version of our model for the
sampling distribution provides a close match to the histo-
gram of measured power spectra from the log-normal
mocks across the range of scales contributing to the all

the figures in the section, although we note that the mean
and covariance are both matched by construction.
Figure 4 shows that the contribution from the squared-

bispectrum B̃ll0l00 is subdominant to that of the trispectrum
in the vicinity of a few σ around the best-fit model, which is
the range of interest. As expected due to the high mode
count contributing to information on A the zero-order
distribution is close to Gaussian, as demonstrated by the
red curve—note that uniform contributions to the fractional
difference will get normalized away when we compute
posteriors, as shown shortly. In blue we show the fractional
correction of a Gaussian having the correct covariance
matrix including the trispectrum contribution. In agreement
with the discussion in Sec. II C, this provides an accurate
approximation to our distribution, with the main effect
being a quadratic correction corresponding to the broad-
ening of parameter error bars.
In practice we are not so much interested in the like-

lihood as the posterior. The easiest posterior to compute
from our likelihood is the conditional posterior of a single
Cl assuming all others are fixed to their measured values.
This is shown in Fig. 5 for lmax ¼ 100 and again using
binned power spectra withΔ log l ¼ 0.1, which is the same
binning choice used to fit the polyspectra from the
simulations.10 The bin barycenters are shown above each
panel in Fig. 5. On large angular scales (top left panel), non-
Gaussianity in the signal is weak and our distribution
matches the Gamma distribution very closely (black and
yellow curves are indistinguishable). A Gaussian approxi-
mation, in contrast, is poor on these scales. As the angular
scale of the multipole bin is decreased, the Gaussian and
Gamma approximations match ever more closely, with very
little difference between any of the distributions at l ≈ 30.
As the angular scale decreases further, the effects of signal
non-Gaussianity start to become important and broaden the
distribution through the trispectrum contribution to the
covariance matrix. Thus, our distribution starts to deviate
from the Gamma and Gaussian-with-Gaussian-covariance
distributions (themselves now indistinguishable) visibly at
l ≈ 100. Most of this deviation is captured by a Gaussian
with a non-Gaussian covariance (blue curve), with the
residual post-Gaussian effect being a small amount of
skewness in the distribution. In contrast to the Gamma and
Gaussian approximations, our distribution is the only
model that correctly matches the large-scale and weakly
nonlinear-scale limits of the true Cl distribution. Similar
statements can be made of the marginal distribution of the
Cl, whose leading-order properties were discussed in
Sec. II C 1.
It is interesting to note from Fig. 5 that the regime where

Gamma and Gaussian differ (l≲ 30 in this case) is distinct

FIG. 4. Fractional correction to the Gamma likelihood from a
non-Gaussian signal. We assume a fixed measurement of the
power spectrum Ĉl and look at the correction to the likelihood as
function of the model Cl. Additionally all values of the model Cl

have been scaled relative to Ĉl by an amplitude parameter,
Cl ¼ AĈl. The corrections are shown as a function of A scaled by
its Gamma 1σ uncertainty σ, i.e., its signal-to-noise ratio. The
non-Gaussian covariance (trispectrum) term (black solid) and
squared-bispectrum terms (dot-dashed green) are shown sepa-
rately, along with the fractional difference of a Gaussian with
covariance containing only a Gaussian part (red) or additionally
the non-Gaussian part (blue).

9The sensitivity to binning choices is mild and is discussed in
Sec. II D and Appendix C.

10Note that the binning implementation can differ between that
used in the likelihood and that used to fit the polyspectra, but we
found using different choices gave negligible effect on the results.
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from the regime where signal non-Gaussianity starts to
become important (l≳ 100). That these regimes are well
separated has traditionally been the motivation for consid-
ering large-scale likelihood non-Gaussianity from the finite
number of modes as a separate effect to the small-scale
modification of the covariance from signal non-
Gaussianity. The distinction is of course redshift depen-
dent; as the redshift of a source bin is lowered, the angular
scale at which signal non-Gaussianity becomes important
will increase. We therefore expect that our new likelihood
expression will be of unique value when these two sources
of likelihood non-Gaussianity must be treated simultane-
ously, i.e., for low-redshift sources. The precise impact
will additionally depend on the parameters of interest.

We explore a realistic low-zs scenario in Appendix D,
finding that skewness corrections to the posterior can
become sizable (although still <10%) for lmax ¼ 1000,
but are subpercent once shape noise is included.
It is also straightforward to compute the posterior of an

amplitude parameter scaling the signal power spectrum (we
again neglect noise for simplicity) as Cl ¼ AĈl, shown in
Fig. 6. Most of the constraining power on the amplitude
comes from small scales, and hence the Gamma and
Gaussian-with-Gaussian covariance (yellow and red curves
respectively) overlap closely. Our distribution (black curve)
correctly captures the significant increase in parameter
variance from the trispectrum. As we have seen in Fig. 5, a
Gaussian with appropriately modified covariance (blue

FIG. 5. Posteriors of individual power spectrum band powers, assuming all others are fixed to their measured values, labeled by their
weighted central values above each panel. A Jeffreys prior has been assumed for all distributions, and we use scales up to lmax ¼ 100.
Our model (black) is indistinguishable from the Gamma likelihood (yellow) in the upper panels. We also show a Gaussian with Gaussian
covariance (red, G cov) and non-Gaussian covariance (blue, NG cov). Differences between these are indistinguishable in the upper
panels, and the red curve is very close to the yellow curve in the lower panels. Corrections are shown as a function of the model band
power scaled by its Gamma 1σ uncertainty σðCbÞ, i.e., its signal-to-noise ratio. Our model transitions from Gamma at large angular
scales to a Gaussian with non-Gaussian covariance at small angular scales. Below each panel we show the fractional differences with
respect to the Gamma likelihood scenario.
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curve) captures most of the effect of signal non-
Gaussianity, with our distribution imparting a small
residual skewness into the posterior.
Since our formalism is based on a perturbative series

expansion of the signal distribution, it is important to check
that we areworking in a regimewhere higher-order terms can
be safely neglected. In Sec. II C 1 we showed that the
leading-order correction to the posterior from signal non-
Gaussianity is hεi, defined in Eq. (32). This quantity is the
trispectrum contribution to the Ĉl covariance matrix divided
by the Gaussian contribution εl1l2 , averaged over the scales
contributing to the parameter of interest with a ν-dependent
weight. It has a simple interpretation that it is equal to the
perturbation to the Fisher information from signal non-
Gaussianity. We require hεi ≪ 1 for our perturbative series
to be valid, with the leading-order post-Gaussian (i.e.,
beyond that predicted by a Gaussian functional form)
skewness of order hεi= ffiffiffiffiffiffiffiffiffiP

ν
p

. We have found bispectrum-
squared terms to be subdominant, but they are potentially
non-negligible when l≳ 1000 by the arguments of Sec. II C.
In Fig. 7 we show a few convergence statistics that can be

derived from εl1l2 . The left panel shows quantities relevant
to the posterior of a single Cl, in which case hεi is
equivalent to εll, the diagonal elements of the matrix
εl1l2 . We also show the largest eigenvalue (i.e., the spectral
radius) of this matrix. A spectral radius much less than
unity is sufficient to ensure a valid perturbative expansion
of the inverse covariance matrix around its Gaussian term,
and must hold if our expression is to give a valid
approximation to the pairwise distributions of Cl with
different l.
As the blue curves in Fig. 7 show, the fractional

correction from signal non-Gaussianity is much less than
unity out to l ≈ 100, which justifies our use of this
maximum scale in the posteriors computed in this section

FIG. 6. Posterior of an amplitude parameter A linearly scaling
the model power spectrum, as a function of A scaled by its
Gamma 1σ uncertainty. A Jeffreys prior has been assumed, and
we have included scales up to lmax ¼ 100. From top to bottom in
the center of the figure we plot the Gamma likelihood (yellow), a
Gaussian likelihood with Gaussian covariance matrix (yellow,
overlapping with red), a Gaussian likelihood with non-Gaussian
covariance matrix (blue), and our model (black).

FIG. 7. Leading-order fractional corrections to the posterior from
a non-Gaussian signal as a function of angular wave number, valid
in the l ≫ 1 limit. Top: corrections to the Gamma posterior
(conditional or marginal) of the model Cl. Shown are the spectral
radius (i.e., largest eigenvalue) of the εll0 matrix defined in Eqs. (24)
and (32) (solid blue) and its diagonal elements (dashed blue). These
quantities (blue top set of curves) are required to be small for higher-
order non-Gaussian terms to be negligible. Leading-order correc-
tions to the Gamma posterior not captured by a Gaussian functional
form (post-Gaussian effects) are represented by the orange curves
(middle set), and subdominant corrections to themean and variance
by the green curves (lower set). These are suppressed by factors of
ν−1=2 and ν−1 respectively. Bottom: equivalent corrections to the
posterior of an amplitude parameter, now showing the cumulative
statistic hεi (see text) up to lmax (blue, top curve) and leading post-
Gaussian corrections (orange and green). The interpretation of these
curves is the same as in the top panel, i.e., they represent the total
correction to the Gamma posterior from a non-Gaussian signal
(blue), the corrections not accounted for by a Gaussian at leading
order in ν−1=2 (orange), and next-to-leading order (green).
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and explains why the correction appears so small in Fig. 5.
The leading-order corrections not captured by a Gaussian
functional form are given by the orange curves and are
never more than 10−2 even out to l ≈ 1000, i.e., subpercent
across all scales of interest for upcoming lensing surveys,
an important result. Beyond l ≈ 100 our perturbative series
breaks down, but the quantity hεi= ffiffiffiffiffiffiffiffiffiP

ν
p

is still indicative
of the relevance of residual non-Gaussianity in the like-
lihood, so it is reasonable to draw useful conclusions from
Fig. 7 even beyond the regime where our likelihood
expression is formally valid. We note that hεi= ffiffiffiffiffiffiffiffiffiP

ν
p

is
the leading-order correction to the dimensionless skewness
of the measured power spectrum from signal non-
Gaussianity, valid at all (sufficiently large) l, so it is
reasonable to expect that this quantity also quantifies
non-Gaussian corrections to the likelihood function.
Corrections to the posterior mean and variance not captured
by a Gaussian are even more subdominant, suppressed by
another factor of

ffiffiffi
ν

p
.

The right-hand panel of Fig. 7 shows hεi for an
amplitude parameter scaling the model power spectrum.
The corrections are comparable in size with those of the
individual Cl, with lmax ¼ 100 just about in the regime
where our expression is valid. Non-Gaussian effects are still
subpercent even out to lmax ¼ 1000. In Appendix C we
study the (mild) impact of choosing a different binning
scheme for the power spectrum band powers, shown
in Fig. 9.
Taken together, Figs. 5 and 7 give the following picture

for how the likelihood changes with angular multipole. On
the largest scales a Gamma distribution is accurate as the
signal is close to Gaussian. By l ≈ 30 the Gamma distri-
bution has Gaussianized, with corrections being percent
level or small in the central 2σ region (albeit larger in the
tails). As l ≈ 100 is approached the non-Gaussianity in the
signal starts to become important, and a Gaussian with
appropriately broadened covariance is a good approxima-
tion. Corrections to the Gamma distribution not captured by
the Gaussian approximation are subpercent across all
angular scales, but can be accounted for by using our
expression Eq. (22) on large scales and smoothly matching
it to a Gaussian around l≲ 100.
One question we wish to answer in this work is whether

the strength of signal non-Gaussianity grows faster than the
CLT is able to Gaussianize the power spectrum distribution.
From Fig. 7 it appears that the struggle between these two
competing effects is delicately balanced, with a very slow
growth in the post-Gaussian correction from signal non-
Gaussianity (orange curve) visible as lmax increases. One
might wonder whether this correction becomes non-neg-
ligible at very high lmax. At some point as lmax is increased
the effect of the noise will become important, which
suppresses ε by boosting Cl while not adding any non-
Gaussianity (we assume the noise is Gaussian here). In
Fig. 8 we show the size of post-Gaussian effects (i.e.,

corrections to the Gamma distribution not captured by a
Gaussian likelihood) on the posterior with shape noise
given by σ2γ ¼ σ2e=n, i.e., the model power spectrum is
Cl ¼ AS0;l þ Nl. We assume a per-component ellipticity
rms of σe ¼ 0.21 and set the source number density to
n̄ ¼ 3 arc min−2, as might be expected in a single tomo-
graphic bin in a Euclid-like survey with ten redshift bins
[50]. The Gaussianizing effects of noise start to become
important at l≳ 100 and ensure that post-Gaussian effects
in the likelihood are never more than subpercent. For n̄ ¼
30 arc min−2 this turnover happens around lmax ≈ 1000,
suggesting that post-Gaussian effects are safely negligible
on small scales for stage-IV surveys.

FIG. 8. Same as Fig. 7 but with shape noise corresponding to
n̄ ¼ 3 sq: arc min−1.
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As discussed above, it will likely be the case that post-
Gaussian effects are most relevant when the largest angular
scales in the survey are mildly nonlinear, i.e., for low-
redshift tomographic bins. These carry little statistical
weight in a Euclid-like survey where most of the sources
are around z ≈ 1, but could be relevant in other surveys. In
Appendix D we explore the corrections for the lowest
source redshift bin of a ten-bin lensing survey having
intrinsic source redshifts comparable to that of a Euclid-like
survey, showing that corrections are subpercent once the
effects of shape noise are included. This is partly because
the amplitude of the shear power spectrum is suppressed for
nearby sources due to the lensing geometry, so it may be
that effects are larger for projected galaxy clustering. The
quantity hεi= ffiffiffiffiffiffiffiffiffiP

ν
p

or, alternatively, the dimensionless
skewness of the measured power spectrum, provides an
easy-to-compute diagnostic of whether one needs to worry
about non-Gaussianity in the likelihood when low-redshift
bins are important. If the effects are large, one will also
need to account for effects of the mask in a full pseudo-Cl
analysis to build an accurate likelihood model, as in
Refs. [12,13,54,55], or resort to map-level or likelihood-
free methods.

IV. CONCLUSIONS

We have computed, for the first time, the leading-order
correction to the distribution of angular power spectrum
estimates of a projected field from non-Gaussianity in the
underlying signal. Our expressions are given in Eq. (22) in
the case of a single map and by the sum of Eqs. (B35) and
(B56) in the case of multiple correlated maps. These
expressions correct the Wishart distribution for the matrix
of power spectra and consist of a term proportional to the
signal trispectrum and a term proportional to the square of
its bispectrum. The expression can easily be generalized to
include non-Gaussian noise.
Our expressions are correctly normalized and have the

correct mean, covariance, and three-point function. We
have shown that, in the limit of a large number of degrees of
freedom and sufficiently well-behaved non-Gaussianity,
the main effect of signal non-Gaussianity is to correct the
covariance matrix of the power spectra by the standard
trispectrum term. The residual post-Gaussian effect of non-
Gaussianity is to impart some skewness to the likelihood,
on top of that present due to the residual effects of finite
degrees of freedom. On small scales, the size of the
correction to the posterior of a parameter is given approx-
imately by the fractional correction to the Fisher informa-
tion from the trispectrum, scaled by the inverse square root
of the total degrees of freedom that contribute. For a given
Cl and l ≫ 1 the relevant quantity is Δl ≡

ffiffiffiffiffiffiffi
l=2

p
Tll=C2

l ,
where Tll is the trispectrum contribution to the variance.
When Δl ≪ 1, corrections to the likelihood of the Cl that

are not captured by a Gaussian with appropriately modified
covariance are suppressed.
We have provided diagnostic statistics, given in Eqs. (24)

and (32), that quantify corrections to likelihoods and
posteriors. These can be computed straightforwardly from
a model for the non-Gaussian part of the covariance matrix.
Such a model is already a requirement when using a
likelihood for two-point statistics, so these statistics should
be easy to compute for a given observational setup.
We quantified corrections to the likelihood function

using mock non-Gaussian weak lensing maps created
assuming log-normal statistics, with input power spectra
and noise levels representative of an upcoming stage-IV
survey. The bispectrum-squared term is subdominant to the
correction from the trispectrum at least to l ≈ 100, but we
do not rule out stronger effects on small angular scales.
Corrections to the likelihood not captured by a Gaussian are
strongly suppressed on small scales in all our tests, which
provides evidence that a Gaussian likelihood is sufficient
on small scales even in the presence of realistic signal non-
Gaussianity.
On large angular scales our likelihood correctly tends to

a Gamma/Wishart distribution. We have found that the
angular scales where the Gamma transitions to a Gaussian
are sufficiently well separated from those where the
trispectrum becomes important that it is sufficient to
approximate the functional form of the likelihood as
Gaussian when incorporating signal non-Gaussianity.
This is the approach that has been taken traditionally,
albeit without rigorous justification. This property remains
true for the lowest redshift bin of a ten-bin Euclid-like
lensing survey, but may break down for galaxy clustering
power spectra at low redshifts. The likelihood function we
have derived is unique among commonly used likelihoods
in that it has the correct behavior on both large and small
angular scales, being nonperturbative in the degrees of
freedom.
Our model relies on the signal non-Gaussianity being

weak in a certain, well-defined, sense. We have taken care
to identify the regime where this approximation is valid, but
have argued that requiring Δl ≪ 1 is a good diagnostic for
the post-Gaussian effects even beyond the limiting scale
where our expansion is valid. Use of our likelihood in a
practical situation will require ensuring that ð2lþ1ÞΔl≪1
or, more generally, that the corrections from signal non-
Gaussianity are small in the likelihood or posterior of
interest. This can also be checked by ensuring that non-
Gaussianity in the sampling distribution of the relevant
combinations of the measured power spectrum is small,
which can be checked with simulations (which are in any
case necessary to validate or produce covariance matrix
estimates).
We have elucidated how the central limit theorem

competes with signal non-Gaussianity in suppressing
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non-Gaussian corrections to the likelihood. The balance is
surprisingly delicate, but our conclusion is that our
Universe is not non-Gaussian enough on the relevant scales
that post-Gaussian terms in the likelihood are necessary in
the high-l regime—the central limit theorem wins. This
conclusion is strengthened once Gaussian noise (e.g., from
galaxy intrinsic shapes or shot noise) is present in the data.
This essentially explains why previous works such as
Refs. [27,28] have found a Gaussian likelihood to be
sufficient for ΛCDM parameter inference in the presence
of realistic signal non-Gaussianity. Our findings are also
consistent with the results of Ref. [29], who found that by
far the dominant source of non-Gaussianity in the power
spectrum likelihood comes from large angular scales where
signal non-Gaussianity is negligible. Our formalism has
allowed us to cleanly separate the effects of non-
Gaussianity in the signal with that from the quadratic
nature of the power spectrum estimator, improving upon
previous numerical works that have been unable to dis-
tinguish between these distinct effects.
An important limitation of our likelihood is that it is only

valid for full-sky power spectrum estimates. For the
standard pseudo-Cl estimator even the zero-order
Gaussian-field likelihood is difficult to compute [13],
and accounting for the mode coupling entailed by a survey
mask in the non-Gaussian case seems intractable at first
sight. The main effect of the mask is to reduce the number
of degrees of freedom, increasing parameter variances. As
the size of the survey is reduced, we can expect that at some
point the largest observable scale is nonlinear, in which
case a suitably modified version of our likelihood might be
a good place from which to build an approximation. The
effects of non-Gaussianity from the signal in the case of
small surveys may be behind the fairly large posterior
corrections found in Ref. [20]. In the case that the full-sky
power spectra are estimated from the data directly (as in
quadratic maximum likelihood approaches) our distribution
is likely to be more accurate and bears some resemblance to
the approximations developed in Ref. [56]. For small
survey cuts the mode coupling induced by the mask
may only be relevant in the regime where the signal is
linear, in which case an fsky correction to the number of
degrees of freedom may be sufficient to incorporate the
survey mask into our likelihood. However, it may be the
case that a map-level likelihood such as that used in cosmic
microwave background analyses [57], a likelihood-free
approach [58], or suitable data transformations [59] may
be the way forward for modeling these effects in the
distribution of projected fields.
While this work has studied the power spectrum like-

lihood, most weak lensing surveys up to date have used the
shear correlation functions to derive their cosmological
constraints. An analytic expression for the correlation
function likelihood is difficult to write down even in the
case of linear shear fields, but may be inferred numerically

by sampling power spectra and subsequently transforming
to real space. We defer an analytic study of this to a future
work, but note that the results of the numerical studies in
Refs. [27,28] suggest that non-Gaussian corrections are
likely negligible for ΛCDM models.
This work represents the first rigorous analytic study of

the use of a Gaussian approximation for likelihood function
of the power spectrum of non-Gaussian fields. While
residual non-Gaussian effects appear small on small angu-
lar scales, we recommend that this be checked on a survey-
by-survey basis using the diagnostic statistics defined in
Eqs. (24) and (32). With the huge increase in statistical
constraining power offered by near-future wide imaging
surveys, it will be increasingly important to ensure that no
biases arise from an incorrect statistical description of the
data. Since we have found no evidence that signal non-
Gaussianity imparts significant non-Gaussianity into the
likelihood beyond that coming from the finite degrees of
freedom, our recommendation for upcoming stage-IV
lensing surveys is to model the power spectrum likelihood
as Gaussian (with the correct nonlinear covariance matrix)
on small scales l≳ 30. On large scales in the case that mode
coupling from the mask is irrelevant the Gamma (or
Wishart in the case of multiple maps) distribution should
be used, and when mode coupling is relevant one should
resort to map-level, likelihood-free, or existing likelihood
approximations. The likelihood we have derived in this
work may be used as a bridge between these two regimes.
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APPENDIX A: POWER SPECTRUM CUMULANTS
AND THE EDGEWORTH EXPANSION

When considering how non-Gaussianity in a signal
affects the distribution of the power spectrum, it is useful
to start by studying the first few cumulants. In this section
we will keep the assumption of Gaussian noise and
specialize to a single redshift bin (p ¼ 1) for simplicity.
First, let us compute the covariance of the power

spectrum estimates. Non-Gaussianity contributes via the
trispectrum of the signal as

hΔĈlΔĈl0 i ¼
2

ν
C2
l δll0 þ Tll0 ; ðA1Þ
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where Tll0 is an m-averaged version of the signal trispec-
trum; explicit forms for this are given in Ref. [61]. We
remind the reader here that Cl is the sum of signal and noise
power. The trispectrum term Tll0 is in general difficult to
compute, with current strategies in weak lensing focused
around halo models [62,63] or N-body simulations [64,65].
Now consider the three-point function of Ĉl. This

consists of terms having six alm factors. We can compute
this from the definition Eq. (1), using Wick’s theorem to
pick out the various contributions. This gives

hΔĈl1ΔĈl2ΔĈl3i ¼ 8
δl1l2δl2l3

ν21
C3
l1
þ 4B̃l1l2l3 þ 2S̃l1l2l3

þ 4½3� δl1l2
ν1

Cl1Tl1l3 þ Pl1l2l3 ; ðA2Þ

where the notation [3] denotes the three terms resulting
from symmetrization over wave numbers in terms to the
right, Pl1l2l3 is an m-averaged connected signal six-point
function (“pentaspectrum”), and the bispectrum-squared
quantities B̃ and S̃ are defined as

B̃l1l2l3 ≡
1

ν1ν2ν3

X
m1;m2;m3

hsl1m1
sl2m2

sl3m3
ihs�l1m1

s�l2m2
s�l3m3

i;

ðA3Þ

S̃l1l2l3 ≡
1

ν1ν2ν3

X
m1;m2;m3

hsl1m1
s�l1m1

sl2m2
ihs�l2m2

sl3m3
s�l3m3

i

þ sym: ðA4Þ

By statistical isotropy the signal bispectra must be invariant
under rotations, which constrains the terms in angle
brackets in Eqs. (A3) and (A4) to be proportional to 3j
symbols that carry all the m dependence [66]. We will
further impose that the signal statistics are invariant under a
parity inversion, which introduces a second 3j symbol
imposing that all the wave numbers sum to an even integer.
Explicitly we have

hal1m1
al2m2

al3m3
i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν1ν2ν3
4π

r �
l1 l1 l3
0 0 0

��
l1 l1 l3
m1 m2 m3

�
bl1l2l3 ;

ðA5Þ

where bl1l2l3 is the reduced bispectrum. Substituting this
expression into Eqs. (A3) and (A4), we see that S̃ is
proportional to terms like

X
m1

ð−1Þm1

�
l1 l1 l3
m1 −m1 m3

�
¼ δl30δm30

ð−1Þl1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1 þ 1

p
;

ðA6Þ

where the identity follows from the orthogonality of the 3j
symbols. Since the signal l ¼ 0 mode is unobservable, the
overall contribution from terms of this form is zero, and
hence S̃ ¼ 0. For B̃ we have

B̃l1l2l3 ¼
1

4π

�
l1 l2 l3
0 0 0

�
2

b2l1l2l3 : ðA7Þ

As mentioned above, the 3j symbol imposes that l1þl2þl3
is an even integer, as well as the triangle conditions
jl1 − l2j ≤ l3 ≤ l1 þ l2.
The three-point function of power spectrum estimates

thus receives contributions from squared bispectra, prod-
ucts of trispectra and power spectra, and the connected six-
point function. Similarly, the connected four-point function
will receive contributions from squared trispectra, squared
bispectra multiplied by power spectra, bispectra multiplied
by the connected five-point function, pentaspectra multi-
plied by power spectra, and the connected eight-point
function.
We want to keep our model for non-Gaussianity as

general as possible, so in principle we would like to keep
track of the whole cumulant hierarchy of the power
spectrum estimates. This is clearly going to be computa-
tionally unfeasible however, so we will hereafter assume
that the signal non-Gaussianity is weak.

1. Weak non-Gaussianity

We will assume that non-Gaussianity in the signal is
weak in the sense that each term in its cumulant hierarchy is
successively smaller than the last. Introducing the order-
counting parameter λ, we will assume that Cl ∼OðλÞ,
bl1l2l3 ∼Oðλ2Þ, Tl1l2 ∼Oðλ3Þ, etc., with λ ≪ 1. This is
justified on sufficiently large scales where nonlinearity
in the underlying field is weak, and perturbation theory is
accurate. We will precisely define the regime in which this
perturbative approach is valid later on.
In this scenario, bispectrum-squared terms like B̃l1l2l3 are

the same perturbative order as power-trispectrum cross
terms likeCl1Tl1l3 , which can also be seen by expanding the
fields to second order in the linear signal; the leading-order
(tree-level) bispectrum features two factors of the linear
power spectrum [67], meaning the squared-bispectrum con-
tains four such factors. The trispectrum contains three power
spectra at leading order, and henceCl1Tl1l3 also contains four
factors of the linear power spectrum.The connected six-point
function is suppressed as Pl1l2l3 ∼Oðλ5Þ. We will retain
leading-order “non-Gamma” terms throughout. The three-
point function of Ĉl is thus Eq. (A2) with S̃ ¼ 0 and the final
Pl1l2l3 term dropped.
The dimensionless one-point skewness of Ĉl can be

derived from Eq. (A2) as
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hΔĈ3
l i

hΔC2
l i3=2

¼ 8C3
l =ν

2 þ 4B̃lll þ 12ClTll=ν

ð2C2
l =νþ TllÞ3=2

¼
ffiffiffi
8

ν

r
þ

ffiffiffiffiffiffiffi
2ν3

p B̃lll

C3
l

þ 3
ffiffiffiffiffi
2ν

p

2

Tll

C2
l

þOðλ2Þ: ðA8Þ

It is important to note here that we could consistently
neglect the Oðλ5Þ term Pl1l2l3 in both the three-point
function and its dimensionless version, since the variance
itself is Oðλ2Þ meaning that connected six-point terms
contribute at Oðλ2Þ in the dimensionless skew. This is in
contrast to the connected four-point function of the power
spectrum estimates. The one-point excess kurtosis for
example is

hΔĈ4
l ic ¼ 48

C4
l

ν3
þ 96

ClB̃lll

ν
þ 144

C2
l Tll

ν2
; ðA9Þ

where we have kept terms atOðλ5Þ. Working to a consistent
Oðλ4Þ order would mean dropping all but the first term
from this expression. In contrast, the dimensionless kurtosis
of Ĉl is

hΔĈ4
l ic

hΔĈ2
l i2

¼ 48C4
l =ν

3 þ 96ClB̃lll=νþ 144C2
l Tll=ν2

ð2C2
l =νþ TllÞ2

¼ 12

ν
þ 24ν

B̃lll

C3
l

þ 24
Tll

C2
l

þOðλ2Þ: ðA10Þ

Therefore, while the raw non-Gaussian cumulant hierarchy
of the power spectrum estimates can be truncated consis-
tently in perturbation theory, all of the dimensionless
cumulants, i.e., the cumulants of a normalized Ĉl estimator
with unit variance, receive corrections from a non-Gaussian
signal. The cumulant hierarchy of the normalized estimator
cannot therefore be truncated consistently, since terms of
order OðλÞ always contribute.
The higher-order non-Gaussian cumulants of a normal-

ized Ĉl estimator thus do not get successively smaller, in
contrast to those of the signal. This observation has
important consequences, since successively smaller cumu-
lants are a requirement for the Edgeworth expansion to
converge. One might be tempted to speculate that a good
way of incorporating the effects of a non-Gaussian signal
into the Ĉl distribution would be to treat the non-
Gaussianity as weak and then Edgeworth expand around
a Gamma distribution, but the argument above tells us this
will not work; we have to instead expand the signal
distribution around a Gaussian. Attempts to use an
Edgeworth expansion directly on the distribution of Ĉl
(or a decorrelated version of it, as in Ref. [27]) in order to
incorporate signal non-Gaussianity should be treated with
caution.

APPENDIX B: DERIVATION OF THE
TOMOGRAPHIC REDSHIFT BIN LIKELIHOOD

In this section we derive the correction to the likelihood
function of tomographic redshift bin power spectra. It is
straightforward to write down the correct likelihood for
full-sky spectra when the signal and noise are both
Gaussian—this is the Wishart distribution for positive-
definite matrices. Similarly, it is straightforward to write
down a Gaussian approximation to the Wishart distribution.
Here we present the derivation for the case of multiple
redshift bins.
Our strategy will be to substitute the Edgeworth-

expanded signal characteristic function (12) into the mode
coupling integral (9) and perform the integrations to derive
the characteristic function of the power spectrum. We will
then inverse Fourier transform this to get the distribution of
the power spectrum.
Wewill compute the trispectrum and bispectrum-squared

corrections separately, but start with the simple case of
Gaussian signal and noise.

1. Gaussian signal, Gaussian noise

As a warm-up, consider the situation where both signal
and noise are Gaussian. The former should be a good
approximation on large scales where the signal is a linearly
evolved version of the (close to) Gaussian initial condi-
tions, and the latter is practically guaranteed for maps made
by compression from large numbers of underlying tracers
(e.g., shear maps constructed from averaged galaxy shapes
or density maps made by counting many galaxies).
We assume throughout that the underlying signal and

noise obey statistical isotropy, such that modes with
different wave vectors are uncorrelated. When the signal
and noise are both Gaussian, the covariance of different
modes captures all the statistical information of the field,
implying that modes with different wave vectors are not
only uncorrelated but statistically independent. The char-
acteristic functions of signal and noise thus factorize, and
since the Fourier transform of a Gaussian is also a Gaussian
we have

ϕsðfklmgÞ ¼ e−
1
2

P
lm
k†
lmSlklm ; ðB1Þ

ϕnðfklmgÞ ¼ e−
1
2

P
lm
k†
lmNlklm ; ðB2Þ

where Sl and Nl are the signal and noise covariance
matrices.
Equation (9) factorizes in each l and m, with each

integral a Gaussian integral. Making these substitutions
immediately gives

ϕfνĈlgðfJlgÞ ¼
Ylmax

l¼lmin

jIþ 2iJlClj−ν
2; ðB3Þ
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where Cl is the total (signal plus noise) covariance matrix
of the map. We recognize this as a product of characteristic
functions of Wishart matrices.
The joint distribution of the power spectra is thus

pðfνĈlgÞ ¼
Ylmax

l¼lmin

2
pðp−1Þ

2

Z
dJl
ð2πÞn e

iTrðνJlĈlÞjIþ 2iJlClj−ν
2;

ðB4Þ

i.e., each Ĉl is independent.
The integral in Eq. (B4) is almost the standard integral

that defines the multivariate Gamma function, with the
exception that it is over real symmetric matrices rather than
positive-definite matrices. Now, let T≡ 2C

1
2

lJlC
1
2

l and
change integration variables from Jl to T. We will assume
the total covariance matrix is positive definite. The
Jacobian of this transformation is

dJl ¼ 2−
pðpþ1Þ

2 jClj−
ðpþ1Þ

2 dT; ðB5Þ

which follows from a standard result. Each term in the
product is therefore

2−pjClj−
ðpþ1Þ

2

ð2πÞpðpþ1Þ
2

Z
dTe

i
2
TrðΩTÞjIþ iTj−ν

2 ðB6Þ

where Ω≡ νC
−1
2

l ĈlC
−1
2

l is symmetric and the integration is
over all real symmetric p × p matrices T. Our task is
therefore to compute the integral

Pp;νðΩÞ≡
Z

dTe
i
2
TrðΩTÞjIþ iTj−ν

2: ðB7Þ

There are several ways of solving this integral, as
discussed in, e.g., Ref. [68]. Making the substitution Z ¼
Iþ iT in the definition of Pp;νðΩÞ gives

Pp;νðΩÞ ¼ i−
pðpþ1Þ

2 e−
1
2
TrðΩÞ

Z
ReðZÞ¼I

dZe
1
2
TrðΩZÞjZj−ν

2; ðB8Þ

where the integral is over a fixed real part and a symmetric
imaginary part. The integral is an inverse Laplace transform
and can be derived from the result [69]

2
1
2
pðp−1Þ

ð2πiÞ12pðpþ1Þ

Z
ReðZÞ¼X0>0

dZeTrðZΛÞjZj−a−1
2
ðpþ1Þ

¼ jΛja
Γp½aþ 1

2
ðpþ 1Þ� ; ðB9Þ

where Λ > 0 and the integral is over symmetric imaginary
parts and a fixed positive-definite real part. We require

Ω > 0, i.e., ν ≥ p. Since X0 ¼ I is positive definite, we get,
after some rearranging,

Pp;νðΩÞ ¼ 2
pðp−νþ3Þ

2 π
p
2
ðpþ1Þ

Γpðν2Þ
jΩjν−p−12 e−

1
2
TrðΩÞ: ðB10Þ

Substituting Pp;νðΩÞ back in to Eq. (B4) gives

pðfνĈlgÞ ¼
Ylmax

l¼lmin

jνĈljðν−p−1Þ=2
2

pν
2 Γpðν2ÞjCljν2

e−
ν
2
TrðC−1

l ĈlÞ; ðB11Þ

i.e.,

pðfĈlgÞ ¼
Ylmax

l¼lmin

jĈljðν−p−1Þ=2
2
pν
2 Γpðν2ÞjCl=νjν2

e−
ν
2
TrðC−1

l ĈlÞ

≡ Ylmax

l¼lmin

WpðĈl;Cl=ν; νÞ; ðB12Þ

where Wp is the p-dimensional Wishart density.

2. Convergence of the Wishart distribution to
Gaussianity

Convergence of probability distributions are most easily
studied at the level of the characteristic function. A single
Ĉl has the characteristic function

ϕĈl
ðJlÞ ¼

				Iþ 2iJlCl

ν

				−
ν
2

: ðB13Þ

Consider the characteristic function ofMl≡C−1=2ĈlC
−1=2
l .

This is

ϕMl
ðJlÞ ¼

				Iþ 2iJl
ν

				−
ν
2

: ðB14Þ

We can rewrite this as

ϕMl
ðJlÞ ¼

				Iþ 2iRJlRT

ν

				−
ν
2

; ðB15Þ

where R is any orthogonal matrix. Choosing R as the
matrix that diagonalizes Jl, this gives

ϕMl
ðJlÞ ¼

Yp
i¼1

�
1þ 2iλi

ν

�
−ν
2

; ðB16Þ

where λi are the eigenvalues of Jl.
Now fixing Jl, taking ν → ∞, and keeping terms up to

Oðν−1Þ gives
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lim
ν→∞

ϕMl
ðJlÞ ¼ exp

�
−i

Xp
i¼1

λi −
Xp
i¼1

λ2i
ν

�

¼ exp

�
−iTrðJlÞ −

1

ν
TrðJlJlÞ

�
: ðB17Þ

This implies that the characteristic function of our original
variable is

lim
ν→∞

ϕĈl
ðJlÞ ¼ exp

�
−iTrðJlClÞ −

1

ν
TrðJlClJlClÞ

�
: ðB18Þ

The inverse Fourier transform is a Gaussian integral, giving

lim
ν→∞

pðĈlÞ ¼ 2
pðp−1Þ

2

Z
dJl

ð2πÞpðpþ1Þ
2

eiTr½JlðĈl−ClÞ�e−1
νTrðJlClJlClÞ:

ðB19Þ

To do this integral, it is advantageous to move to
vectorized notation [70]. For a general p × p matrix Y
define vecðYÞ as the p2-dimensional vector whose elements
are ðY1;1;…; Yp;1; Y1;2;…; Yp;2;…Þ. For a symmetric p ×
p matrix X, define vecpðXÞ as the 1

2
pðpþ 1Þ-dimensional

vector whose elements are ðX1;1; X1;2;…; X1;p; X2;2;
X2;3;…Þ. Then some standard matrix identities give

TrðXDXEÞ¼ vecTðXÞðE⊗DÞvecðXÞ
¼ vecpTðXÞBþ

p ðE⊗DÞBþT
p vecpðXÞ; ðB20Þ

where ⊗ is the Kronecker product, and Bþ
p ¼

ðBT
pBpÞ−1BT

p is the Moore-Penrose inverse of Bp, the p2 ×
1
2
pðpþ 1Þ transition matrix. This matrix satisfies

vecðXÞ ¼ BþT
p vecpðXÞ and vecðXÞ ¼ BT

pvecpðXÞ and
has typical elements given by [70]

ðBpÞij;gh ¼
1

2
ðδigδjh þ δihδjgÞ; i ≤ p; j ≤ p; g ≤ h ≤ p:

ðB21Þ

Note that Bþ
p is a 1

2
pðpþ 1Þ × p2 matrix. We also have

TrðXAÞ ¼ vecTðXÞvecðAÞ
¼ vecpTðXÞBþ

pBþT
p vecpðAÞ: ðB22Þ

Making these substitutions, defining ΔĈl ¼ Ĉl −Cl and
using that jBT

pBpj ¼ 2−
1
2
pðp−1Þ gives

lim
ν→∞

pðĈlÞ ¼ 2
pðp−1Þ

2

Z
dvecpðJlÞ
ð2πÞpðpþ1Þ

2

eivecp
TðJlÞBþ

pB
þT
p vecpðΔĈlÞe−

1
νvecp

T ðJlÞBþ
p ðCl⊗ClÞBþT

p vecpðJlÞ

¼ exp f− 1
2
vecpTðΔĈlÞ½2νBT

pðCl ⊗ ClÞBp�−1vecpðΔĈlÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ12pðpþ1Þj 2νBT

pðCl ⊗ ClÞBpj
q ; ðB23Þ

i.e., vecpðĈlÞ is 1
2
pðpþ 1Þ-dimensional Gaussian with mean vecpðClÞ and covariance matrix 2

νB
T
pðCl ⊗ ClÞBp. The

matrix Ĉl is thus symmetric matrix normal. Note that the mean and covariance matrix do not change compared with their
Wishart forms when the limit is taken.
We have shown that the characteristic function of the Wishart distribution tends pointwise to that of a symmetric matrix

Gaussian in the limit ν → ∞. This is enough to establish that Wishart matrices converge in distribution to symmetric
Gaussian matrices, by Lévy’s continuity theorem.

3. Signal with nonzero trispectrum

We write the signal characteristic function as

ϕsðfklmgÞ ¼
�
1þ 1

24
κijkmlm kil1m1

kjl2m2
kkl3m3

kml4m4

�
ϕG
s ðfklmgÞ: ðB24Þ

Substituting this into Eq. (9) gives a Gaussian integral, as in the Gaussian signal case, but now with four factors of the wave
number in the integrand. This integral can be done analytically, which gives the power spectrum characteristic function as

ϕfνĈlgðfJlgÞ ¼
� Ylmax

l¼lmin

jIþ 2iJlClj−ν
2

��
1þ 1

8

X
l1;l2

ð2l1 þ 1Þð2l2 þ 1ÞhΔĈij
l1
ΔĈkm

l2 iNGMij
l1
Mkm

l2

�
: ðB25Þ
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A few consequences of the corrected distribution are
immediately evident from Eq. (B25). First, the leading-
order correction in the limit Jl → 0 is quadratic in Jl, which
tells us that both the normalization and the mean of pðĈlÞ
are unaffected by our correction (the latter is true by

construction), but the covariance does receive a correction,
given by hΔĈij

l1
ΔĈkm

l2 iNG. This is as expected, agreeing with
the nonperturbative expression (A1).
Inverse Fourier transforming Eq. (B25) gives the cor-

rection to the probability density as

ΔpðfνĈlgÞ ¼
1

8
2

λpðp−1Þ
2

Z
dfJlg
ð2πÞnλ e

i
P

l
TrðνJlĈlÞ

� Ylmax

l¼lmin

jIþ 2iJlClj−ν
2

�X
l1;l2

ν1ν2hΔĈij
l1
ΔĈkm

l2 iNGðMl1ÞijðMl2Þkm; ðB26Þ

withMl ¼ ½Cl þ ð2iJlÞ−1�−1 and λ≡ lmax − lmin þ 1. The quantity hΔĈij
l1
ΔĈkm

l2 iNG is the non-Gaussian contribution to the
covariance matrix. In the p ¼ 1 case we call this Tl1l2 . The crucial effect of non-Gaussianity here is to couple Ĉl with
different l, a result of nonzero off-diagonal terms in the non-Gaussian covariance matrix; the probability density no longer
factorizes in l.
The integrals in Eq. (B26) are of the Wishart type when l1 ≠ l2, and the only new term is that with l1 ¼ l2. After some

rearranging and relabeling, one can show that it is necessary to compute the integral

Hab;cd
p;ν ðΩÞ≡

Z
dTe

i
2
TrðΩTÞjIþ iTj−ν

2½ðIþ iTÞ−1�ab½ðIþ iTÞ−1�cd: ðB27Þ

We will evaluate this using derivatives, but first we need to establish a few rules for taking derivatives with respect to
symmetric matrices. These can be found in Ref. [71].

For a symmetric matrix X, we have

∂X
∂Xij

¼ Jij þ Jji − JijJij; ðB28Þ

∂TrðAXÞ
∂X

¼ AþAT − ðA∘IÞ; ðB29Þ

∂ det X
∂X

¼ ðdet XÞ½2X−1 − ðX−1∘IÞ�; ðB30Þ

where ∘ denotes the Hadamard (elementwise) product, and
Jij is the matrix whose km element is δikδjm, i.e., the matrix
whose only nonzero values are in cell ij.
We can therefore write the following identity holding for

symmetric matrices T:

jIþ iTj−ν
2ðIþ iTÞ−1ij ¼ i

ν

∂

∂Tij
jIþ iTj−ν

2þ1

2
ðIþ iTÞ−1ij δij;

ðB31Þ

with no summation over repeated indices. Using this identity one can establish the identity

jIþ iTj−ν
2ðIþ iTÞ−1ij ðIþ iTÞ−1km ¼ þ i

ν

∂

∂Tij
½jIþ iTj−ν

2ðIþ iTÞ−1km� þ
1

2
jIþ iTj−ν

2ðIþ iTÞ−1ij δijðIþ iTÞ−1km

−
1

ν
jIþ iTj−ν

2½2ðIþ iTÞ−1iðkðIþ iTÞ−1mÞj−δijðIþ iTÞ−1kj ðIþ iTÞ−1mi �; ðB32Þ

where again there is no summation over repeated indices, and parentheses denote symmetrization over enclosed indices.
Substituting this into Eq. (B27), integrating by parts, and noting that the boundary term vanishes (which it must do for the
Fourier transforms to converge) gives

Hijkm
p;ν ðΩÞ ¼ 1

2ν
ð2Ω −Ω∘IÞijPp;νðΩÞΩkm

ν
þ 1

2
δijH

ijkm
p;ν ðΩÞ − 2

ν
HiðkmÞj

p;ν ðΩÞ þ 1

ν
δijH

kjmi
p;ν ðΩÞ: ðB33Þ

Permuting indices we can get three simultaneous equations for Hijkm
p;ν . The solution is
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Hijkm
p;ν ðΩÞ ¼ ðνþ 1Þ

νðνþ 2Þðν − 1Þ
�
ΩijΩkm −

2

ðνþ 1ÞΩiðkΩmÞj

�
Pp;νðΩÞ: ðB34Þ

Putting everything together gives the corrected density for the Ĉl as

pðfĈlgÞ ¼
� Ylmax

l¼lmin

WpðĈl;Cl=ν; νÞ
��

1þ 1

8

X
l1;l2

ν1ν2hΔĈab
l1 ΔĈ

cd
l2 iNGC−1

l1;ai
C−1
l1;bj

C−1
l2;ck

C−1
l2;dm

×

�
ΔĈl1;ijΔĈl2;km þ 2δl1l2

ðνþ 2Þðν − 1Þ ðĈl1;ijĈl1;km − ν1Ĉl1;iðkĈl1;mÞjÞ
��

; ðB35Þ

with implicit summation over repeated indices. One can verify that the distribution (B35) is correctly normalized and has a
mean given by hĈli ¼ Cl, i.e., unchanged from the Wishart case.
We can write the correction in a more compact vectorial notation as follows. We define the Gaussian covariance matrix

Σl ≡ hvecpðΔĈlÞvecpTðΔĈlÞiG ¼ 2

ν
BT

pðCl ⊗ ClÞBp; ðB36Þ

which implies that Σ−1
l ¼ ν

2
Bþ

p ðC−1
l ⊗ C−1

l ÞBþT
l . After some manipulations, the term quadratic in ΔĈl in Eq. (17) can be

written as

1

2

X
l1;l2

vecpTðΔĈl1ÞΣ−1
l1
hvecpðΔĈl1ÞvecpðΔĈl2ÞiNGΣ−1

l2
vecpTðΔĈl2Þ; ðB37Þ

which is the next-to-leading-order term in the expansion of

−
1

2

X
l1;l2

vecpTðΔĈl1Þ½Σl1δl1l2 þ hvecpðΔĈl1ÞvecpTðΔĈl2ÞiNG�−1vecpTðΔĈl2Þ; ðB38Þ

i.e., an expansion of a chi-squared having the inverse of the total covariance matrix. Once the Gaussian part of this
expansion is available when the ν → ∞ limit is taken, we will be left a Gaussian possessing the correct inverse covariance
matrix in its exponent.
The first of the two terms quadratic in Ĉl in Eq. (B35) has the same form as the term above and can be written as a

quadratic in vecpðĈlÞ. Note that this term is suppressed with respect to the second term quadratic in Ĉl by a factor of ν. This
second term can be written as, with Al ≡C−1

l ĈlC−1
l ,

−
1

4

X
l1

ν31
ðν1 þ 2Þðν1 − 1ÞTr½ðAl1 ⊗ Al1ÞhvecðΔĈl1ÞvecTðΔĈl1ÞiNG�

¼ −
1

4

X
l1

ν31
ðν1 þ 2Þðν1 − 1ÞTr½B

þ
p ðAl1 ⊗ Al1ÞBþT

p hvecpðΔĈl1ÞvecpTðΔĈl1ÞiNG�: ðB39Þ

This looks like the next-to-leading-order term in an expansion of the determinant of the total covariance, with the exception
that it depends on the measured power. In the limit ν1 → ∞ we can write Ĉl ¼ Cl þOðν−1Þ, so we set Ĉl ¼ Cl in this term
and hence Al ¼ C−1

l . In that limit, this term dominates over the first term quadratic in Ĉl and is precisely the expansion of
the determinant of the total covariance, i.e., the prefactor in the asymptotic Gaussian density.

4. Signal with nonzero bispectrum

We now consider a signal having nonzero bispectrum. The signal characteristic function reads

ϕsðfklmgÞ ¼
�
1 −

1

72
κijklm κ

lmn
l0m0kil1m1

kjl2m2
kkl3m3

kll0
1
m0

1
kml0

2
m0

2
knl0

3
m0

3

�
ϕG
s ðfklmgÞ: ðB40Þ
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Following the same steps as the trispectrum case, the correction to the characteristic function is

ΔϕfνĈlgðfJlgÞ ¼
� Ylmax

l¼lmin

jIþ 2iJlClj−ν
2

��
1 −

1

12

X
l1;l2;l3

ν1ν2ν3B̃
ijk;lmn
l1l2l3

×

�
Cl1 −

i
2
J−1l1

�
−1

il

�
Cl2 −

i
2
J−1l2

�
−1

jm

�
Cl3 −

i
2
J−1l3

�
−1

kn

�
: ðB41Þ

In the limit that Jl → 0 this is a cubic correction to the Wishart characteristic function, telling us that the effect of B̃ is to
modify the three-point function or skewness of Ĉl, as expected. Just as in the trispectrum case, the correction is not a
polynomial in Jl and hence not an Edgeworth expansion, even though it is perturbatively “close” to the zero-order Wishart
distribution.11

Inverse Fourier transforming Eq. (B41) gives the correction to the density as

ΔpðfνĈlgÞ ¼ −
1

12
2

λpðp−1Þ
2

Z
dfJlg
ð2πÞnλ e

i
P

l
TrðνJlĈlÞ

� Ylmax

l¼lmin

jIþ 2iJlClj−ν
2

� X
l1;l2;l3

ν1ν2ν3B̃
ijk;lmn
l1l2l3

ðMl1ÞilðMl2ÞjmðMl3Þkn; ðB42Þ

with Ml ¼ ½Cl þ ð2iJlÞ−1�−1.
Once again the only new term is the case l1 ¼ l2 ¼ l3. The new integral we need is

Kab;cd;ef
p;ν ðΩÞ≡

Z
dTe

i
2
TrðΩTÞjIþ iTj−ν

2½ðIþ iTÞ−1�ab½ðIþ iTÞ−1�cd½ðIþ iTÞ−1�ef: ðB43Þ

Our strategy will again be to take derivatives. Letting A≡ ðIþ iTÞ−1, we have the identity

jAjν2AabAijAkm ¼ i
ν

∂

∂Tij
ðjAjν2AkmAabÞ þ

1

2
δijjAjν2AabAijAkm −

2

ν
jAjν2AabAkðiAjÞm

þ 1

ν
δijjAjν2AabAkiAmj −

2

ν
jAjν2AkmAaðiAjÞb þ

1

ν
δijjAjν2AkmAaiAjb; ðB44Þ

with no summation over repeated indices.
Integrating by parts, substituting Eq. (B34), and defining Kab;ij;km

p;ν ≡Mab;ij;kmPp;ν [where Pp;ν is defined in Eq. (B10)]
gives

Mab;ij;km −
1

2
δijMab;ij;km þ 2

ν
Mab;kði;jÞm −

1

ν
δijMab;ki;mj þ 2

ν
Mkm;aði;jÞb −

1

ν
δijMkm;ai;jb

¼ ðνþ 1Þ
ν2ðνþ 2Þðν − 1Þ

�
Ωij −

1

2
Ωijδij

��
ΩkmΩab −

2

νþ 1
ΩkðaΩbÞm

�
: ðB45Þ

Multiplying by δij and subtracting the result gives

Mab;ij;km þ 2

ν
Mab;kði;jÞm þ 2

ν
Mkm;aði;jÞb ¼ ðνþ 1Þ

ν2ðνþ 2Þðν − 1Þ
�
ΩijΩkmΩab −

2

νþ 1
ΩijΩkðaΩbÞm

�
: ðB46Þ

We can write two further equations like Eq. (B46) by taking derivatives with respect to Tkm and Tab. Adding all three
equations gives an expression manifestly symmetric in its indices

11Note that to get the characteristic function of Ĉl rather than νĈl one has to replace Jl with Jl=ν.
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3Mab;ij;km þ 2

ν
ðMab;ki;jm þMab;kj;im þMkm;aj;ibþMkm;ai;jb þMij;ak;mb þMij;am;kbÞ

¼ ðνþ 1Þ
ν2ðνþ 2Þðν − 1Þ

�
3ΩijΩkmΩab −

1

1þ ν
ðΩijΩkaΩbm þΩijΩkbΩam þΩkmΩiaΩbj

þΩkmΩibΩaj þΩabΩkiΩjm þΩabΩkjΩimÞ
�
: ðB47Þ

From the p ¼ 1 case we know that the solution must be cubic in the elements of Ω. There are three kinds of terms that we
can use to build Mab;ij;km dictated by the symmetries in play, given by

Mab;ij;km ¼ XΩijΩkmΩab þ 2Y½ΩijΩkðaΩbÞm þ ΩkmΩiðaΩbÞj þ ΩabΩkðiΩjÞm� þ 2Z½ΩjmΩkðaΩbÞi þ ΩikΩjðaΩbÞm
þ ΩjkΩiðaΩbÞm þ ΩimΩkðaΩbÞj�; ðB48Þ

for unknown coefficients X, Y, Z. The three terms here are closed under the symmetries of Mab;ij;km. Substituting into
Eq. (B47) and identifying coefficients of these terms gives the following equations for the unknown coefficients:

3X þ 12

ν
Y ¼ 3ðνþ 1Þ

ν2ðνþ 2Þðν − 1Þ ; ðB49Þ

6Y þ 2

ν
ð2X þ 2Y þ 8ZÞ ¼ −

2

ν2ðνþ 2Þðν − 1Þ ; ðB50Þ

6Z þ 2

ν
ð6Y þ 6ZÞ ¼ 0: ðB51Þ

The solution is

X ¼ ν2 þ 3ν − 2

νðν − 1Þðν − 2Þðνþ 2Þðνþ 4Þ ; ðB52Þ

Y ¼ −1
νðν − 1Þðν − 2Þðνþ 4Þ ; ðB53Þ

Z ¼ 2

νðν − 1Þðν − 2Þðνþ 2Þðνþ 4Þ : ðB54Þ

The integral (B43) is thus

Kab;cd;ef
p;nu ðΩÞ ¼ Pp;νðΩÞ

νðνþ 4Þðν − 2Þðν − 1Þ
�
ν2 þ 3ν − 2

νþ 2
ΩabΩcdΩef − 2½ΩcdΩeðaΩbÞf

þΩefΩcðaΩbÞd þΩabΩeðcΩdÞf� þ
4

νþ 2
½ΩdfΩeðaΩbÞc

þΩceΩdðaΩbÞf þΩdeΩcðaΩbÞf þ ΩcfΩeðaΩbÞd�
�
: ðB55Þ

ALEX HALL and ANDY TAYLOR PHYS. REV. D 105, 123527 (2022)

123527-26



Putting everything together gives the correction to the density as

pðfĈlgÞ ¼
� Ylmax

l¼lmin

WpðĈl;Cl=ν; νÞ
��

1þ 1

12

X
l1;l2;l3

ν1ν2ν3B̃
abc;def
l1l2l3

C−1
l1;ai

C−1
l2;bj

C−1
l3;ck

C−1
l1;dl

C−1
l2;em

C−1
l3;fn

×

�
ΔĈl1;ilΔĈl2;jmΔĈl3;kn þ ½3� 2δl1l2

ðν1 þ 2Þðν1 − 1Þ Ĉl1;ilĈl1;jmΔĈl3;kn − ½3� 2δl1l2ν1
ðν1 þ 2Þðν1 − 1Þ Ĉl1;iðjĈl1;mÞlΔĈl3;kn

þ 32δl1l2δl2l3
ðν1 þ 2Þðν1 − 1Þðν1 þ 4Þðν1 − 2Þ Ĉl1;ilĈl1;jmĈl1;kn − ½3� 16ν1δl1l2δl2l3

ðν1 þ 2Þðν1 − 1Þðν1 þ 4Þðν1 − 2Þ Ĉl1;jmĈl1;kðiĈl1;lÞn

þ ½4� 4ν21δl1l2δl2l3
ðν1 þ 2Þðν1 − 1Þðν1 þ 4Þðν1 − 2Þ Ĉl1;mnĈl1;kðiĈl1;lÞj

��
; ðB56Þ

with implicit summation over repeated indices. We have
verified that this distribution is correctly normalized.
Computing the corrections to the mean, covariance, and
three-point function is tedious so we have only checked for
the p ¼ 1 case, confirming that these three cumulants are
recovered correctly.
Equations (B35) and (B56) give the leading-order

correction to the Wishart distribution from signal non-
Gaussian. The expressions are clearly quite cumbersome
when p ≠ 1, but may be simplified using the symmetries of
the bin indices. It may also be possible to write these
expressions in a more covariant way, although we were not
able to find a more compact expression.

APPENDIX C: ALTERNATIVE
BINNING CHOICES

The default results of Sec. III B are made with evenly
spaced logarithmically binned power spectra withΔ log l ¼
0.1 and a weight function Wl ¼ 2lþ 1. The mathematical
details of the binning are described in Sec. II D.
The main use of binning for our purposes is to allow us to

easily measure the covariance matrix of our log-normal
maps from a finite number of simulations. Binning reduces
the Monte Carlo noise in this measurement and increases
the relative strength of the non-Gaussian part.
As discussed in Sec. II D, the correction to posteriors

from signal non-Gaussianity in expected to depend only
mildly on the bin width, as we verify numerically in Fig. 9
where we plot the corrections to Cl and amplitude poste-
riors for logarithmic bins with Δ log l ¼ 0.2. This plot
should be compared with Fig. 7. The impact of these
broader bins is very mild. The broader bins roughly
preserve the total mode count when Wl ¼ 2lþ 1, so the
effect on the posterior is naturally expected to be small.
It is beyond the scope of this paper to provide an

exhaustive investigation of the different binning choices
for the power spectrum, but a few obvious schemes deserve
discussion. Instead of logarithmic bins we can also choose
linearly spaced bins. This choice compresses many of the
large-scale modes into a single bin and hence does not
allow the low-l behavior of the likelihood to be clearly

FIG. 9. The leading-order fractional corrections to the Gamma
posterior with band powers binned with Δ log l ¼ 0.2. Curves
have the same meaning as in Fig. 7.
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seen, so we chose not to adopt this choice in our baseline
results. Another alternative is to use a weight function
Wl ¼ lðlþ 1Þ, which is a common choice for power
spectrum band powers. This upweights the smallest scales
in each bin and consequently causes our likelihood
approximation to break down at smaller lb (the bin bary-
center) for logarithmic bins withΔl ¼ 0.1. An advantage of
our formalism is that the likelihood correction diagnostic
hεi can be computed for any binning choice, something
which we advocate when analyzing power spectra binned
with this weight function.

We close by noting that any binning choice may be
adopted so long as the bins are sufficiently small that the
power spectrum can be approximated as flat over the extent
of the bin. This assumption can be avoided entirely by
working with Ĉl=Cl rather than Cl, as discussed in
Sec. II D.

APPENDIX D: DEPENDENCE
ON SOURCE REDSHIFT

The baseline results in this paper have assumed a broad
source redshift bin following a Euclid-like distribution,
peaking at zs ≈ 1. Lensing surveys typically place galaxies

FIG. 10. Leading-order fractional corrections to the Gamma
posterior for a Gaussian source redshift distribution centered at
zs ¼ 0.325 with width σz ¼ 0.1. Power spectra are assumed to be
binned with Δ log l ¼ 0.1. Curves have the same meaning as
in Fig. 7.

FIG. 11. Same as Fig. 10 but with shape noise corresponding
to n̄ ¼ 3 sq: arc min−1.
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in tomographic redshift bins—the fiducial choice of
Ref. [50] uses ten redshift bins, which is representative
of upcoming stage-IV surveys. Assuming equipopulated
bins, the redshift distribution of the lowest bin is approx-
imately Gaussian (after accounting for photometric redshift
errors) with a peak around zs ¼ 0.325 and width σz ¼ 0.1.
Non-Gaussianity in the shear field is relatively stronger at a
fixed angular scale at lower redshift due to that scale
subtending smaller, more nonlinear spatial scales and the
evolution of structure formation toward lower redshift. This
is offset to an extent by the overall signal strength being
suppressed by the lensing kernel compared with a bin at
higher source redshift. This also makes the relative effect of
any Gaussianizing shape noise stronger.
To test our likelihood approximation in what is likely the

most extreme case for a Euclid-like survey, we generate an
ensemble of log-normal fields for this low-redshift source
bin. We scale the shift parameter quantifying the strength of
the log-normality according to the redshift-scaling formula
proposed by Ref. [44], confirming this provides a reason-
able match to the covariance matrix of the ray-traced
N-body simulations of Ref. [43].
Figure 10 shows the leading-order corrections to the

posterior and the convergence statistics for this redshift bin,
which should be compared with Fig. 7. The stronger non-
Gaussianity is clear to see, with the blue curves quantifying
the correction to the Fisher matrix on an individual Cl (left
panel) or an amplitude parameter (right panel) passing
unity around l ≈ 100. Our assumption of perturbative non-
Gaussianity in the signal is valid only up to around l ≈ 30.
At this angular scale the Gamma distribution is reasonably
well approximated by a Gaussian, and passing the full

non-Gaussian covariance matrix to this Gaussian absorbs
most of the correction to the posterior that our approximation
implies. Residual post-Gaussian effects are at most 1%, and
extrapolating out to l ¼ 1000 we see that corrections are
likely to be no more than 10%. It therefore appears that even
for this low source redshift bin the scale of non-Gaussianity
(l ≈ 30) and the scale where Gamma-type corrections are
necessary (l ≈ 10) are separated enough that the likelihood
can be approximated as transitioning from a Gamma to a
Gaussian with the correct covariance matrix.
When shape noise is added the effects of non-Gaussianity

are strongly suppressed. Figure 11 shows leading-order
corrections to the posterior for a model in which Cl ¼
AðS0;l þ NlÞ when applying shape noise with a galaxy
number density of n̄ ¼ 3 sq: arc min−1, appropriate for a
single redshift bin in aEuclid-like survey.Our approximation
is now convergent out to much higher l, and post-Gaussian
corrections are negligible. It thus appears that although the
strength of the signal non-Gaussianitymaybe stronger at low
redshift, the relatively higher noise level suppresses non-
Gaussianity in the likelihood.
We close this section by noting that these conclusionsmay

need to be modified when considering galaxy clustering at
low redshift. There the geometric suppression suffered by
lensing is smaller, and hence the Gaussianizing effect of
noise may be expected to be relatively weaker. We have also
neglected intrinsic alignments, which may be expected to
play a greater role in cross-bin combinations at low redshift.
We advocate that the statistics plotted in Figs. 7 and 10 be
computed whenever a likelihood approximation needs to
be made.
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