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Black holes binaries coming from a distribution of primordial black holes might exhibit a large merger
rate up to large redshifts. Using a phenomenological model for the merger rate, we show that changes in its
slope, up to redshifts z ∼ 4, are constrained by current limits on the amplitude of the stochastic gravitational
wave background from LIGO/Virgo-O3 run. This shows that the stochastic background constrains the
merger rate for redshifts larger than the single event horizon of detection (z ≃ 1 for the same detector).
Moreover, we show that for steep merger rates the shape of the stochastic gravitational wave signal at
intermediate frequencies differs from the usual 2=3 IR scaling. We discuss the implications of our model for
future experiments in a wide range of frequencies, such as the design LIGO/Virgo array, Einstein
Telescope, LISA, and PTA. Additionally, we show that (i) the stochastic background and the present merger
rate provide equally constraining bounds on the abundance of PBHs arising from a Gaussian distribution of
inhomogeneities and (ii) degeneracies at the level of the stochastic background (i.e., different merger
histories leading to a similar stochastic background) can be broken by considering the complementary
direct observation of the merger rate from number counts by future detectors such as the Einstein
Telescope.
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I. INTRODUCTION

The GWTC-3 catalog of LIGO/Virgo reports the direct
detection of 63 binary black hole (BBH) mergers from
redshifts z ≃ 0.1 up to z ≃ 0.8 [1]. With these events it is
possible to constrain the merger rate density of BH binaries
as a function of redshift. In particular, for a merger rate
density following a power law distribution given by

dNmerg

dtdV
≡ RðzÞ ¼ R0ð1þ zÞα; ð1Þ

the factor α is found to be 2.7þ1.8
−1.9 [1] for a present merger

rate R0 ¼ 9–35 Gpc−3 yr−1. These constraints are evi-
dently only sensitive up to the largest redshift at which
the merger of a certain binary might be detectable. This is
the so-called horizon distance, and for a BBH of ∼30 M⊙,
zhor ≃ 1 for LIGO/Virgo. An important question is whether
any relevant information at redshifts larger than zhor can be
inferred from GW observations.
The answer is positive, since, apart from the direct

detections of BBHs mergers, gravitational wave detectors
are sensitive to the stochastic background sourced from
past mergers that are not necessarily individually distin-
guishable. The stochastic background is proportional to the

integrated merger rate over time, and therefore it might be
sensitive to the evolution of the merger rate up to redshifts
larger than those inferred from single detections.
At the moment such background has not been detected.

This absence has been primarily used to constrain the BBH
abundance [2–14]. Here we will mostly study how this lack
of observation can constrain the merger rate. This direction
has been taken by some recent works [10,12] (see also
[15,16]), including the analysis of LIGO/Virgo collabora-
tion [17]. Here we will complement these results with a
more phenomenological approach that will allow us to
determine more precisely the maximum redshift that plays
a role in determining the stochastic background [and thus
the maximum redshift at which the merger rate might be
constrained from (non)observations of the stochastic back-
ground], as well as concentrating on the influence of the
merger rate on the resulting shape for the stochastic
background. We will also argue for an extension of the
parameter space studied in these works.
In general, it is assumed that the binary merger rate has

either the form of Eq. (1) up to an arbitrary redshift, or
functions that are given by Eq. (1) up to a certain redshift
and later decay. These two families of models roughly
correspond to primordial and stellar black holes, respec-
tively. Here we will concentrate in the former case
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(although not precluding the possibility of a mixed pop-
ulation). Primordial black holes (PBHs) are interesting
given that they might not only constitute part or the totality
of the dark matter (DM) [18–20], but could also inherit
valuable information of a primordial era of evolution of our
Universe (for some reviews on PBHs and DM, see [21–
24]). For PBHs evolving from an initial Poissonian dis-
tribution—as it happens if the fluctuations leading to the
PBHs are Gaussian [25–27]—it is actually possible to
determine the exponent α of the merger rate density in
Eq. (1). For small abundances, fPBH ≲ 0.01, and small
redshifts, z < 1, we have that α ¼ 1.1. For larger redshifts,
α ¼ 1.4 (see Sec. II). The behavior of the merger rate with
redshift in the case of both large abundances and clustered
distributions remains however unclear.1 For large abun-
dances binaries can not be treated as isolated objects andN-
body effects have to be considered in order to determine the
merger rate evolution [8,29]. This is also a problem for
clustered distributions (see, e.g., [30]), with the additional
complication that the initial distribution could also depend
on an enlarged set of parameters (given by—in principle—
independent N-point correlations functions). Despite these
difficulties, some interesting results have been obtained in
determining the merger rate for some families of clustered
distributions, with the use of numerical simulations [31,32].
For example, BBHs merging inside globular clusters can
exhibit α ¼ 2.3þ1.3

−1.0 [32]. Other studies focusing on non-
Gaussian initial distributions of PBHs—but having
neglected the effects of N-body disruption of binaries—
have shown that the merger rate of PBH binaries can have a
very complex dependence on redshift, in particular, with an
interpolation of various slopes at intermediate red-
shifts [33].
These results are a clear motivation for exploring a larger

set of BBHs merger histories. Given that there is still a large
uncertainty in the class of allowed merger histories, we
adopt a phenomenological approach and consider the
consequences of a change in the slope of the merger rate
at some particular redshift. The primary goal of this paper is
to determine how the nondetection of a stochastic gravi-
tational wave by the LIGO/Virgo collaboration constrains
the changes in the merger rate. As we will see, this lack of
detection allows us to constrain the changes in the slope at
redshift larger than the horizon redshift zh. We will also
explore how future experiments could tighten these bounds.
We will test the future LIGO/Virgo observations and, in the
same frequency band, the Einstein Telescope (ET) [34]. We
will briefly comment on the experiments at smaller
frequencies such as LISA [35] and PTA observatories
(in particular NANOGrav [36] and SKA [37]).
The paper is organised as follows. In Sec. II we first

show how a wide variety of binary merger histories can be

obtained in clustered distribution of BHs, and present a
model for the merger rate that takes into account such
variety. In Sec. III we analyze the resulting stochastic
background generated by the merging population of BBHs
with a monochromatic mass distribution. In Sec. IV we
introduce the expected signal-to-noise ratio (SNR) for
various detectors and the so-called abundance criterion.
Both serve as useful constraints of the model’s parameter
space. In Sec. V we present the resulting constraints
coming from the nonobservation of the stochastic signal,
and calculate the minimum SNR ratio that should be
detected in forthcoming experiments if the model under
consideration accounts for BBHs. In Sec. V E we show
how a direct inference of the merger rate with the ET can
help us breaking the degeneracies existing at the level of the
stochastic background. The results are discussed in Sec. VI.
In the Appendix, we calculate the high redshift behavior of
the merger rate of a Poissonian distribution of BHs.
Throughout the paper we use G ¼ c ¼ 1.

II. THE MODEL

A. Motivations

As explained in the Introduction, there are good reasons
for considering a large set of possible merger rate histories.
Here we briefly discuss how these can emerge from
clustered initial distribution of PBHs. This serves as a
motivation for the particular templates that we present in
Sec. II B, although the results of the subsequent analysis do
not rely on this specific mechanism. In other words, the
constraints on the merger rates we report here are inde-
pendent of their physical origin.
In order to find the merger rate of isolated BBHs, it is

necessary to determine the probability Qðx; yÞ, given the
presence of a BH at r ¼ 0, and find the two nearest
neighbors at positions x and y (where x is position of
the binary companion, and y is the position of the BH
giving torque to the binary) [38]. This probability in
principle depends on all the N-point correlation functions
determining the probability of findingN BHs. The reason is
that if we want to find only two BHs (or any number)
within a certain volume, we have to consider the probability
of not finding N BHs in that volume. This hardens the task
of determining in generality this probability. There are
however at least two simple cases where it can be easily
determined. These are the Poissonian and the so-called
separable case.
In a Poissonian distribution, the probability of finding

any BH is independent of the presence of other BHs. Then
the probability of findingN BHs at distances r1…rN from a
BH at r ¼ 0, PNðr1;…; rN−1Þ, is simply N times the
probability of finding a single BH, PN

1 . Another simple
situation, the separable case, is in which the probability PN
is a simple function of the probability of finding 2 BHs, P2.
In particular, if the excess probability ξN, defined as

1Note that N-body effects might also be important for small
abundances [28].

VICENTE ATAL et al. PHYS. REV. D 105, 123522 (2022)

123522-2



ξNðr1;…; rN−1Þ≡ PNðr1;…; rN−1Þ
PN
1

− 1; ð2Þ

follows the simple law [27,39],

1þ ξNðr1;…; rN−1Þ ¼
YN−1

i¼1

ð1þ ξ2ðriÞÞ; ð3Þ

then the probability Qðx; yÞ takes the following form

Qðx; yÞ ¼ 16π2x2y2nðxÞnðyÞ

× exp

�
−4π

Z
y

RBH

nðzÞz2dz
�
Θðy − xÞ; ð4Þ

where n is the local comoving number density of BHs,
given by

nðrÞ ¼ n̄ð1þ ξðrÞÞ; ð5Þ

where now ξðrÞ≡ ξ2ðrÞ, and n̄ is the mean comoving
number density of BHs. Note that the above expressions
also include the case of a Poissonian distribution, for which
ξðrÞ ¼ 0. Now, given a certain configuration ðx; yÞ, a
merger happens at a definite time tobs ¼ tðx; yÞ. This
relation can be inverted to find yðx; tobsÞ. The merger rate
at time tobs can then be obtained by integrating the
probability Qðx; yðx; tobsÞÞ over the interval ðxmin; xmaxÞ,
where ðxmin; xmaxÞ are the minimum and maximum x that
might contribute to a merger at time tobs (their expressions
can be found in the Appendix). Then the merger rate at
time t is

dR
dt

¼ n̄
2

Z
xmax

xmin

Qðx; yðx; tÞÞ
���� dydt ðt; xÞ

����dx; ð6Þ

where the factor 1=2 avoids overcounting the binaries.
The merger rate depends on the correlation function ξðrÞ

through Qðx; yÞ. The former is ultimately determined by
the physical mechanism dictating the distribution of the
BHs. In order to illustrate its effect on the merger rate, here
we will test a simple form, in which the correlation is nearly
constant up to a scale kL and decays to zero for larger
scales. In particular, we choose the following form

ξðr; ξ0; α; kLÞ ¼ ξ0
eΘðr;kL;αÞ − 1

e − 1
with

Θðr; kL; αÞ ¼
1

1þ e2α logðk−1L rÞ : ð7Þ

The correlation ξðrÞ is nearly constant with amplitude ξ0
up to the scale L ¼ k−1L , and then decays to zero with a
slope determined by α. In Fig. 1, we show this correlation
function (left panel) and its effect on the merger rate (right
panel). We also show the case of a Poissonian distribution,
for which ξðrÞ ¼ 0. As can be seen in Fig. 1 there can be
important changes in the slope of the merger rate, in
particular if the correlation function varies around the
scales xmin and xmax that determine the scales of the
binaries merging at low redshifts. In the examples shown,
these changes happen around redshifts 2 to 4. Note that for
the Poissonian case there is a small change in the slope at
z� ≃ 1, from 1.1 to 1.4. While the slope is actually constant
in terms of cosmic time t, the slope expressed in redshift
has a small kink coming from the different scaling of t with
respect to z.

FIG. 1. Left: three different two-point correlation functions, as a function of comoving distance x, resulting in different merger rate
histories. In blue and orange we show correlation functions given by Eq. (7), with parameters ðξ0; α; kLÞ given by ð3 × 105;
30; 0.00887ksÞ and ð3 × 105; 30; 0.00959ksÞ, respectively. In red, we show the correlation function for a Poissonian distribution, where
ξðrÞ ¼ 0. Here 1=ks is the size of 30 solar mass BHs. The comoving scales xmin and xmax are evaluated at t ¼ t0, Right: normalized
merger rates for the correlations shown in the left panel.

CONSTRAINING CHANGES IN THE MERGER HISTORY OF BH … PHYS. REV. D 105, 123522 (2022)

123522-3



B. The model

We have presented some motivations for considering
changes in the slope of the merger rate of BBH. In the
following we will concentrate on its observable conse-
quences. We consider a merger rate given by a broken
power law model of the form

RðzÞ ¼
8<
:

R0ð1þ zÞα for z ≤ z�
Cð1þ zÞβ for z� ≤ z ≤ zmax

0 for z ≥ zmax

; ð8Þ

where C is a constant chosen so that the merger rate is a
continuous function. The main novelty of the above
template with respect to previous works lies in the fact
that we consider the possibility of having positive values
for both α and β, which, as shown in the previous section, is
indeed possible from the perspective of a population of
PBHs. We also note that the above template is a “sharp”
version of the template used in previous works (e.g., [12]).
Analysing the effect of a sharp transition in the merger rate
is preferable from the perspective of determining precisely
the maximum redshift that might influence the stochastic
background. For this reason we will mostly deal with the
above template for the merger rate, although we will also
comment on the smooth model later on.
We will consider the merger rate given by Eq. (8) as an

extrapolation to the events detected by LIGO/Virgo, such
that R0 lies in the range of 9–35 events=ðGpc3 yrÞ [1]. As
for the mass function, we will assume a monochromatic
distribution of BHs with mass M ¼ 30 M⊙, although we
will also comment on the effect of a broad mass function.
For the computation of the stochastic background, we

will choose zmax ¼ zeq, where zeq is the redshift of matter-
radiation equality. We choose this cutoff since we will
consider the contribution of mergers that feature, at some
point in their evolution, a circularly inspiraling phase. At
higher redshift mergers are very eccentric, and their
contribution to the stochastic background might be differ-
ent from the one considered here. In the Appendix, we
show that for a Poissonian distribution this distinction is
relevant for mergers happening before or after matter-
radiation equality. Since this distinction relies on the
background dynamics (more precisely, on the time that a
binary at a given distance decouples from the Hubble flow),
we expect that a similar behavior is found for a broader
class of initial distributions.
Having said this, it is important to note that all observ-

ables related to frequencies in the LIGO/Virgo range are at
most sensitive to redshifts z ∼ 10, and so these predictions
are robust to any change in the merger rate happening for
redshifts larger than that. On the other hand, we will discuss
some theoretical constraints on the parameters of the model

that do depend on the redshift of the decay, and so these
should be treated with more caution.2

Fixing R0 and zmax, the model is then characterized by
three parameters ðα; β; z�Þ. Further constraints and priors
on the parameters will be discussed in Secs. IVA and IV B.

III. THE STOCHASTIC BACKGROUND
OF PAST MERGERS

The energy released by binaries that have already
merged contribute to a stochastic background of gravita-
tional waves. Given a merger rate RðzÞ, the energy density
of the stochastic background ΩGW can be expressed in
terms of the critical density ρc as (see, e.g., [5])

ΩGWðνÞ ¼
ν

ρcH0

Z
zsup

0

RðzÞ
ð1þ zÞEðzÞ

dEGW

dνs
ðνsÞdz; ð9Þ

where dEGW=dνs is the GWenergy spectrum of the merger
and νs is the frequency in the source frame, related to the
observed frequency as νs ¼ ð1þ zÞν. The function
EðzÞ≡HðzÞ=H0 ¼ ½Ωrð1þ zÞ4 þΩmð1þ zÞ3 þΩΛ�1=2.
The energy released in GWs considering inspiral, merging
and ringdown phases is given by [40,41]

dEGW

dνs
ðνsÞ¼

π2=3M5=3
c

3

8>>>>>><
>>>>>>:

ν−1=3s for νs <ν1

ω1ν
2=3
s for ν1≤νs <ν2

ω2
σ4ν2s

ðσ2þ4ðνs−ν2Þ2Þ2 for ν2≤νs <ν3

0 for ν3≤νs

;

ð10Þ
where νi ≡ ðν1; ν2; σ; ν3Þ ¼ ðaiη2 þ biηþ ciÞ=ðπMÞ, M ¼
m1 þm2 is the total mass, Mc is the chirp mass
(M5=3

c ¼ m1m2M−1=3), and η ¼ m1m2M−2 is the symmet-
ric mass ratio. The parameters ai, bi, and ci can be found in
[40], and (ω1, ω2) are chosen such that the spectrum is
continuous. For BHs of 30 M⊙ the characteristic frequen-
cies are νi ¼ ð135; 271; 79; 387Þ Hz. The upper limit of the
integral in Eq. (9) is given by zsup ¼ minðzmax; ν3=ν − 1Þ,
since for z ≥ zsup, either the merger rate or the energy
density are zero. Note that there might also be additional
contributions to the stochastic background coming from
(not bounded) hyperbolic encounters [42].
In Fig. 2, we show the corresponding gravitational wave

signal for a merger rate given by Eq. (8) for a range of the
parameters (α; β; z�). We also show the behavior of ΩGW
resulting from a Poissonian initial distribution of PBHs. In
this case we identify the well-known ν2=3 scaling at small
frequencies with the posterior decay at larger frequencies.

2For example, in the cases discussed in Sec. II A there might be
additional changes in the slope of the merger rate at redshifts
z≳ 10.
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Once we allow for variations in the merger rate, the family
of possible spectra enlarges.
Generally, α and β set the overall amplitude at large and

small frequencies, respectively, and the frequency of the
transition, ν�, is controlled by z� [more precisely ν� ¼ ν3=
ð1þ z�Þ]. For ν ≥ ν�, the only contribution to ΩGW comes
from redshifts up to z�. Therefore, the exponent α alone
dictates the behavior ofΩGW for this frequency range. On the
other hand, for ν ≤ ν�, all redshifts z ≤ zsup contribute. For
very small frequencies the main contribution comes from
redshifts z ≥ z�, so it is the exponent β that governs the
behavior of ΩGW. In principle, the infrared (IR) tail of the
signal follows the scaling

ΩIR
GWðν; zmax → ∞Þ ∼

�
ν2=3; β < 7

3

ν3−β; β ≥ 7
3

; ð11Þ

where the value βthr ¼ 7
3
comes from the fact that the integral

in Eq. (9) does not converge at large redshifts for β > βthr. In
practice, we found that due to the cutoff of the merger rate at
zmax ¼ zeq

3, this scaling is not achieved in our model (if the
cutoff be at larger redshift, then the scaling would be
recovered). Since the signal is however tending to this limit,
there is an intermediate region not necessarily given by the
well-known 2=3 scaling of the IR. Moreover, even when the
2=3 scaling is achieved, the amplitude of the signal in this
region is dependent on β. The strong dependence of the
stochastic gravitational wave background (SGWB) on the
parameters describing themerger rate shows that thesemight

be strongly constrained. In order to determine this precisely,
we compute the signal-to-noise ratio of the SGWB as a
function of the parameters α; β; z� and for a number of
experiments.

IV. THE SIGNAL-TO-NOISE RATIO AND THE
ABUNDANCE CRITERION

For a merger rate density RðzÞ, we compute the stochas-
tic background ΩGWðνÞ, and the SNR that it generates in
some detector. For detecting a stochastic background we
need to rely on two different detectors, otherwise the noise
overkills any underlying signal (unless the amplitude is
excessively large). Then, the SNR is given by

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs

Z
νmax

νmin

dν

�
γðνÞ2 ΩGWðνÞ

ΩexpðνÞ
�

2
s

; ð12Þ

where Tobs is the time of observation, γðνÞ is the so-called
overlap reduction function between the two detectors (that
can be found in [43]), and ΩexpðνÞ is the noise energy
density in terms of the critical density, given by [44]

ΩexpðνÞ ¼ 2π2ν3SnðνÞ=ð3H2
0Þ; ð13Þ

where SnðνÞ is the experimental strain, in units of strain/Hz.
It is related to the amplitude spectral density h1;2eff ðνÞ of
detectors 1,2 as

h1effðνÞh2effðνÞ ¼ SnðνÞ: ð14Þ

FIG. 2. Left: gravitational wave background for the merger rate as given by the broken power law model, for BHs of 30 M⊙, and
varying parameters (α; β; z�). Here we show the LIGO/Virgo range of frequencies. The parameters for these curves are R0 ¼ 9,
α ∈ ð0.8; 3Þ, β ∈ ð−5; 2.7Þ, and z� ¼ 3.5. The arrows indicates the effect of varying these parameters. The red curve has α ¼ 1.1,
β ¼ 1.4, and z� ¼ 1, and describes the case of an initial Poisson distribution of BHs with no binary disruption. Right: gravitational wave
background with the same parameters, expanded to include the LISA frequency range. For the values of z� under consideration, the
signal in the LISA region follows the 2=3 scaling with an amplitude depending on (α; β; z�). Let us note that at LISA scales there might
be additional contributions to the stochastic background coming from extremely eccentric orbits (where the merger time is given by the
free-fall time) that we do not consider here.

3See the discussion of this point in the Appendix.

CONSTRAINING CHANGES IN THE MERGER HISTORY OF BH … PHYS. REV. D 105, 123522 (2022)

123522-5



For the case of LIGO/Virgo, we use a representative of O3
for the amplitude spectral density h1;2eff ðfÞ of Hanford and
Livingston detectors.4 We use the fact that the third run
detected no stochastic signal, in a time interval of
205.4 days of coincident observations of the Hanford
and Livingston detectors [17]. For future constraints we
use the Advanced LIGO design configuration, the ET,
LISA, and SKA. For SKAwe use the data from [45], while
for LISA we follow the procedure explained in [46].5 In
this case ΩexpðνÞ is given by

Ωexp ¼ ΩI
4π2ν3

3H2
0

with

ΩI ¼
ffiffiffi
2

p 20

3

�
SIðνÞ
ð2πνÞ4 þ SII

��
1þ

�
ν

4ν⋆=3

�
2
�
; ð15Þ

where ν⋆ ¼ c=2πL with L ¼ 2.5 × 106 km and the func-
tions SI and SII are given by

SI ¼ 5.76 × 10−48ð1þ ðν̄=νÞ2ÞHz3 with

SII ¼ 3.6 × 10−41 Hz−1; ð16Þ

where ν̄ ¼ 0.4 mHz and we take the effective time of
observations to be Tobs ¼ 3 yr. Let us note that we expect
many sources of GWs acting as foregrounds to this signal
(for a review on stochastic sources, see [47]), and so a more
refined estimation of the SNR should also take into account
the ability to separate these components (see, e.g., [48,49]).
With these functions at hand, we can proceed to calculate

the SNR for the aforementioned experiments. We set the
threshold for detection to be SNR ¼ 2, and first use the fact
that LIGO/Virgo O3 detected no signal to constrain the
triplets ðα; β; z�Þ producing a signal with SNR > 2.

A. The abundance constraint

From the merger rate RðzÞ we can find the total number
of black holes in the form of binaries. If we define fb as the
fraction of black holes in binaries and as fBH the total
amount of dark matter in the form of black holes, then the
number density of black holes in binaries is given by

Z
zmax

0

RðzÞ
H0ð1þ zÞEðzÞ dz ¼ fbfBH

nDM
2

: ð17Þ

We expect the fraction of BH in binaries to be quite small.
In some simulations of BH clusters it has been shown that
fb ≃Oð10−3Þ [31]. If we adopt this as a fiducial value, and
because fBH ≤ 1, then it holds that

Z
zmax

0

RðzÞ
H0ð1þ zÞEðzÞ dz ≤ 0.001nDM: ð18Þ

This equation will allow us to constrain the possible values
of ðα; β; z�Þ. In principle there might be some additional
observational constraints on the total number of primordial
black holes. In this range of masses, these come from the
nonobservation of microlensing events in EROS [50],
MACHO [51], and type Ia supernovae [52]. These con-
straints can however be evaded if the BHs sourcing the
lenses are clustered [53], and so we do not consider
them here.

B. Priors for the model parameters

As for the parameter space, we choose values for the
transition redshift z� ≥ 0.8. That is, we consider that the
change in the slope of the merger rate happens for redshifts
larger than the redshift of the most distant binary merger
that has been directly observed. This ensures that the
current constraints on α coming from the direct observa-
tions also hold in this model. In particular, this means that
α ¼ 2.7þ1.8

−1.9 [1], and that we can treat the constraints
coming from direct and indirect detection as being inde-
pendent. We will then choose α in the interval (0,5),
keeping in mind that values α < 0.8 are outside the
90% confidence level found from the analysis of direct
observations [1].
As we already mentioned we will allow β > 0, since we

are interested in exploring new merger histories for the case
of PBHs. The case with β < 0 describes astrophysical BHs
[54] (for an analysis of the stochastic background which
such condition, see [12], and for the estimation of the
evolution of the merger rate using direct observations, see
[55]). We will then choose −5 < β < 5. Let us note that for
positive values of β, the abundance criteria Eq. (18) result in
a restriction β ≲ 2.3, roughly independent of α and z� (for
z� ≪ zmax). For smaller allowed fractions of binaries with
respect to DM (e.g., fb < 0.001), the bound on β changes
slightly (by 10% with respect to fb < 1). We will choose
R0 as the minimum allowed by direct detection, i.e.,
R0 ¼ 9, and so the constraints presented here are a lower
bound on the SNR within this model. Since we choose R0

consistent with the current present merger rate, we implic-
itly assume that the sum of all BHs (astrophysical and
primordial) is given by such power law. In this sense, the
change in the slope at z� could also represent a change in
the binary population, e.g., a transition from astrophysical
to primordial binaries. Of course, following the same type
of reasoning, we should also take into account the change
in the spectrum of masses resulting from each channel of
BH formation. It is not our goal here to perform such study,
but to delve into the importance of the stochastic back-
ground to determine changes in the merger rate, and so we
will consider the simple scenario of a single mass function.

4This can be found at https://dcc.ligo.org/LIGO-T1500293/
public.

5The amplitude spectral density data for these experiments,
except LISA and SKA, can be found at https://dcc.ligo.org/
LIGO-T1500293/public.
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V. RESULTS

In the following we proceed to present contours of the
SNR as a function of the parameters α, β, and z�. Note that
since the shape of the signal (and not just the overall
amplitude or scale) changes with the varying parameters, it
is probably not very accurate to compare our model with a
single integrated sensitivity curve (which is constructed
assuming a signal with a single power law), as can be done,
e.g., in [56,57]. For the baseline cosmological model we
use the results of the Planck satellite [58].

A. LIGO/Virgo—O3 run—present constraints

In Fig. 3, we show the SNR for the LIGO/Virgo O3 run.
The region in gray corresponds to sections of the parameter
space where SNR > 2, and thus can be considered ruled
out by the nonobservation of a stochastic background. The
green dashed line shows the equality of the abundance

constraint Eq. (18), so all the parameters above that line are
also ruled out.
From these results we can see that LIGO/Virgo O3 is

sensitive to the changes in the stochastic background
coming from the evolution of the merger rate at large
redshift (4 > z > 0.8). On the other hand, the SGWB is not
very sensitive to changes in the merger rate happening at
redshift z� > 4. This shows that by using the stochastic
background we can constrain the merger rate at redshifts
larger than the horizon redshift for the detection of
individual mergers, zhor ≃ 1.
In general, we find that the nondetection of a stochastic

background largely restricts the allowed parameter space.
We find that for any β and for z� > 0.8, α < 3.7. The
maximum allowed value for α decreases as the redshift of
transition increases. For z� > 4, we found α < 1.3, which
combined with the direct observation constraint implies
that α lies in the small range 0.8 < α < 1.3. As for β,

FIG. 3. SNR for LIGO/Virgo O3 run and for our model. At the top left z� ¼ 1 (where we highlight in red the Poissonian case, α ¼ 1.1
and β ¼ 1.4), while at the top right z� ¼ 2 and at the bottom z� ¼ 4. The SNR becomes independent of β when the transition z� happens
for z > 4. For z� < 4, the constraints on the high redshift evolution (β) are similar to the low redshift evolution (α). The green line is the
equality of the abundance criterion, given in Eq. (18) and with zmax ¼ zeq (practically the same bound is found for zmax > zeq) and the
yellow band is the exclusion of α coming from direct measurements.
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we found that it is also greatly constrained. For transitions
happening at redshift z� < 1.6, we find β < 2.3 from the
nondetection of a SGWB. For transitions happening at
larger redshifts, larger values of β are allowed from the
perspective of the SGWB, but then either the abundance
constraint or the direct detection constraint on α is not
satisfied.

B. The Poissonian PBH case

An interesting case is when the merger rate is given by a
population of PBHs following an initial Poissonian distri-
bution. The simplestway to constrain this scenario iswith the
total number of events. For R0 ¼ 9–35 Gpc−3 yr−1, this
implies that fPBH < 0.001–0.003 (considering R0 as the
maximum possible number of PBH binary mergers).6

Interestingly however, the stochastic background provides
a competitive constraint on the abundance (see [5] for a
previous analysis along these lines). In this case, α ¼ 1.1,
β ¼ 1.4, and z� ¼ 1 (shown in red in Fig. 2 for
R0 ¼ 9 Gpc−3 yr−1). For these parameters SNR < 2 implies
R0 < 8, which from the expression above implies
fPBH < 0.001. This shows that the constraints coming
from the stochastic background are of the same order, or
even stronger, than the constraint coming from direct
observations.

C. Future constraints in LIGO/Virgo and LISA band

While the O3 constraints still leave some part of the
parameter space viable, future runs of LIGO/Virgo/Kagra
and future GW experiments operating at frequencies larger
that 10−4 Hz should be able to detect a signal for this family

of merger rates. In Fig. 4 (left panel, black curve) we show
the smallest SGWB background from this model that is
allowed by O3 (i.e α ¼ 0.8; β ¼ −5; R0 ¼ 9; z� ¼ 1).7

For any allowed parameter, the signal should thus be
visible by future runs of LIGO/Virgo, and also by LISA,
which operates at smaller frequencies than LIGO/Virgo,
around ð10−4; 10−1Þ Hz. This interplay between observa-
tions in LIGO/Virgo and LISA bands has already been
discussed for PBHs [6,59–61].
Even though at intermediate frequencies, ν ∈ ð0.1;

10Þ Hz, the slope of the SGWB shows large deviations with
respect to the canonical 2=3 scaling, in the LISA frequency
range the 2=3 scaling is recovered. The amplitude at these
scales however depends on the parameters (α, β).
These considerations imply that if we only consider

observations in the LISA band there might be a degeneracy
between (α, β) and the mass of the binary system, since
BBHs with larger masses results in spectra radiating at
smaller frequencies. This degeneracy is however broken by
comparing the signal at both LIGO/Virgo and LISA bands.
Naturally, experiments planned at frequencies between

LISA and LIGO/Virgo, as the Einstein Telescope [34],
DECIGO [62], and TianQin [63] will also contribute in a
similar direction. These experiments have the advantage of
being sensitive in the range of frequencies where the signal
deviates from the 2=3 scaling.

D. Pulsar timing arrays

The infrared tail of the SGWBmight be largely enhanced
with respect to the Poissonian case and thus there might be

FIG. 4. Left: SGWB for two different models generating a very similar stochastic background and characterized by the following
parameters. Model 1 (blue): α ¼ 0.5, β ¼ 0.25 and zmax ¼ 0.8 and Model 2 (orange): α ¼ 0.25, β ¼ 0.5 and zmax ¼ 0.8. In black we
show the smallest stochastic background generated by this class of models (R0 ¼ 9, α ¼ 0.8, β ¼ −5, and z� ¼ 0.8). This means that the
signal should be observed among other observatories, by LIGO/Virgo design configuration, ET and LISA. Right: number of expected
mergers, for the same value of the parameters. While the stochastic background are nearly degenerated, there are large differences in the
expected number of events in the ET.

6In this case, an analytical expression for the merger rate can
also be obtained [7,22].

7For small β, the SGWB becomes independent of β. In this
sense β ¼ −5 is very similar to considering a sharp cutoff
(β → −∞).
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consequences for observables at very small frequencies. In
particular, it is interesting to compute the predictions at
pulsar timing array scales, lying in a frequency inter-
val ν ∈ ð10−9–10−6Þ Hz.
The signal detected by the NANOGrav collaboration

[36] has already been shown to be accommodated by the IR
tail of the stochastic background coming from mergers of
super (or “stupendously”) massive BHs, either of astro-
physical [64] or primordial origin [65]. We found however
that for BBHs of 30 M⊙ the enhancement is not so
pronounced to neither explain the NANOGrav signal nor
being detectable by SKA (and at the same time being
consistent with LIGO current bounds and the abundance
constraint).8 It might be possible however that for BBH of
larger masses, the signal at these scales is large enough to
be detectable.

E. A joint analysis with direct detection: Einstein
Telescope

Here we discuss in more detail the prospects for making
a joint observation of the stochastic background and
individual sources. For mergers of this mass, the ET should
detect individual mergers, up to redshifts z ≃ 10 [66].
In order to better assess its constraining power, let us take

two sets of parameters having the same SNR in the
stochastic background in the LIGO experiment, for exam-
ple (α, β)=(0.7,0.2) and (α, β)=(0.2,0.7), with z� ¼ 0.8 in
both cases. These two sets of parameters generate an almost
identical stochastic background, as can be seen in Fig. 4.
However they could be distinguishable if the merger rate as
a function of redshift can be inferred from direct observa-
tions. We can estimate the number of mergers observed by
the ET by using the expression

NobsðzÞ ¼
Z

z

0

dz0Rðz0Þ
�
dVc

dz0

��
Tobs

1þ z0

�
PETðz0Þ; ð19Þ

where we have denoted by Vc the comoving volume
given by

�
dVc

dz

�
¼ 4π

�
1

H0

�
3
�Z

z

0

dz0

Eðz0Þ
�

2

EðzÞ−1; ð20Þ

and we take the probability of observation of these mergers
by the ET to be PETðzÞ ≈ 1 for z < 10. This is indeed a
good estimate as can be seen in Fig. 2 of [66] (moreover,
adding a mild redshift dependence to this probability would
not change our conclusions). Finally, we take the obser-
vation time, Tobs, to be 1 year. Using the expressions above
we can find the number of expected mergers as a function
of redshift. In Fig. 4, we show the number of sources that
ET should detect, showing that both models generate large
differences in the number count. This means that we can
use this measurement to break the degeneracy between
models whose signal to noise ratio for the stochastic
background is the same.

F. Broad mass function and smooth transition models

In this section we will briefly comment on the effect of
broad mass functions and a smooth merger rate transition
on the detectability of a given model. As for the mass
function we will consider a log-normal distribution [67,68]
given by

Pðm;Mc; σÞ ¼
1

mσ
ffiffiffiffiffiffi
2π

p e−ðlnðM=McÞ2=2σÞ: ð21Þ

The stochastic background coming from mergers following
such distribution can be calculated from the mean energy
emitted by a pair of such BHs. This is obtained by taking
many pairs of BHs from the above distribution, calculating
the energy released by all such pairs, and averaging. We
show, in Fig. 5, the mean energy emitted by a distribution in
comparison with the energy emitted by a pair of BHs
having the same mass. The effect of considering such
distribution is to broaden the peak towards larger frequen-
cies, while the amplitude slightly decreases. This, in turn,
creates a similar effect at the level of the stochastic
background. The resulting background is calculated with
the same expression (9) but replacing dEGW=dνs with the
mean hdEGW=dνsi. For the masses under consideration, the
effect of the distribution is to slightly lower the amplitude
of the signal at LIGO frequencies. The opposite would be
true for more massive binaries. Note that variations in the
amplitude and position of the peak can also be due to
changes in the merger rate parameters, and thus there might
be some degeneracy between these and the mass function.
However, the slope in the UV is a very clear proxy of the
mass function, since this part is not affected by changes in
the slope of the merger rate, as can be seen in Fig. 2.
As for a smooth merger rate model, we show results for

the model used in [12], given by

RðzÞ ¼ R0

ð1þ zÞα
1þ ð 1þz

1þz�
Þα−β : ð22Þ

This model, similarly to the one we have studied, also
behaves as ð1þ zÞα at small redshifts, and as ð1þ zÞβ for

8Note that since we are extrapolating to very small frequencies,
the first thing is to determine the smallest possible frequency
generated by a merger. In particular, for a spectrum of the form
given by Eq. (10), it is assumed that the frequency spectrum has a
tail ν−1=3 in the IR, without any additional cutoff. We should
however consider that at any time there is a minimum frequency
at which a binary can radiate, given by the maximum distance at
which they could be separated. This in turn is given by the radius
at which they decouple from the Hubble flow. This is found to be
νminðzÞ ¼ ð1þ zÞ1=3ð M

ρeqa4eq
Þ−1=3, which is smaller than PTA scales

for the masses considered.
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large redshifts. The difference is that the amplitude of the
merger rate for the smooth template is larger at small
redshifts with respect to the sharp template, while at large
redshifts the opposite is true. This in turn means that the
constraints are weaker for α and stronger for β with respect
to the sharp template. We show an example of this in Fig. 6.

VI. DISCUSSION AND CONCLUSIONS

We have tested a model inspired by a population of
PBHs, which can have an increasing merger rate up to large
redshifts. We have shown that if the merger rate exhibits
changes in its slope, a wide range of possible stochastic
backgrounds can be generated.
In particular, we have shown that in a midfrequency

range of the SGWB, between ν ∈ ðν3=zmax; ν3Þ and where
zmax is the redshift at which the merger rate decays, the

spectra can exhibit slopes that are different from the usually
expected ν2=3 scaling.9 At smaller frequencies the ν2=3

scaling is recovered, however the amplitude turns out to be
highly dependent on the slope of the merger rate. This
dependence shows that the SGWB is a powerful probe of
the merger history of BBHs.
We have thus analyzed to which extent the current

nondetection of a SGWB constrains the merger rate. We
have found that indeed the nonobservation of the SGWB
puts constraints on the merger rate at redshift as high as
z ∼ 4, a redshift that is much larger than the maximum
redshift at which we have detected BH binaries. We have
also shown that future runs of LIGO/Virgo should be able
to detect such SGWB and that the signal should be visible

FIG. 5. Left: comparison of the mean energy emitted by a binary BH between a monochromatic and a broad distribution of masses.
The chosen values of σ, between 0 and 1, are reasonable from the point of view of the mergers that haven been measured [69]. Right:
effect on the stochastic background.

FIG. 6. Left: comparison of the SNR coming from two templates having the both a behavior ð1þ zÞα and ð1þ zÞβ at small and large
redshifts. In solid lines we show the model we use in this paper, which is given by a sharp cutoff. In dashed lines we show the model
most used in the literature, which smoothly interpolates between the two regimes. The two figures correspond to two different values of
z�, given by z� ¼ 0.8 and z� ¼ 3.5 in the left and right plots, respectively.

9Note that this is only the case for value of β > 0.
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by LISA for any of the considered parameters of the model.
Note that if a sufficiently large signal is detected, the
spectral shape could be found following the techniques
developed, e.g., in [70], allowing for a precise determi-
nation of the merger rate history.
We have finally considered the prospects of the Einstein

Telescope for determining the merger rate through the
observations of individual mergers. The expected number
of BBHs is so large that the existing degeneracies in the
stochastic background can be broken, meaning that the
merger rate can be unambiguously determined.
Finally, we should mention that a large merger rate at

high redshifts should also imply that a large number of the
events seen by LIGO/Virgo would be lensed. This is a
certain possibility [71,72] although more data is needed in
order to confirm such hypothesis. This means that lensing
provides a complementary channel for the determination of
the merger rate.
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APPENDIX: THE HIGH REDSHIFT MERGER
RATE FOR A POISSONIAN INITIAL

DISTRIBUTION

In this Appendix, we discuss how the merger rate as a
function of redshift is found for the case of an initial
Poisson distribution of equal mass black holes. We will be
particularly interested in large redshift mergers, a case that
to our knowledge has not been much considered in the
literature.
In a Poissonian distribution, the probability of finding a

binary separated by a comoving distance x and their nearest
neighbor at distance y is given by (see, e.g., [38])

Qðx; yÞ ¼ 16π2x2y2n2 exp

�
−4π

Z
y

RBH

nz2dz

�
Θðy − xÞ;

ðA1Þ

where n is the comoving number density of BHs.
There are two effects that might play an important role in

the case of early time mergers, in particular for those
happening before matter radiation equality. The first one, as
correctly stated in [73], has to do with the fact that the so-
called Peters time used to relate ðx; yÞ with t does not
provide an accurate description for very eccentric mergers.
This approximations tells us that the time to collapse

from the moment of decoupling is given by [74]

tp ¼
3

170

r4x
M3

j7 with j ¼ ðx=yÞ3; ðA2Þ

where rx ¼ aðtdecÞx is the semimajor axis of the binary at
the moment of the decoupling of the binary from the
cosmic flow,10 andM is the mass of the black holes. While
this is a good description for binaries with small eccen-
tricities, it fails for very eccentric orbits. A binary that
decouples at time tdec and has a very large eccentricity
might merge in “no time” according to Peters formula. Of
course this is incorrect, since the time of merger is at least
equal to the free falling time, tff , which is given by

tff ¼
�
r3x
M

�1
2

: ðA3Þ

Therefore, Peters approximation will fail for configura-
tions having tp < tff . Taking into account this consideration
we can write the time tobs in which a binary merges as

tobs ¼ tdecðxÞ þ tpðx; yÞ þ tffðxÞ: ðA4Þ

The time of decoupling tdec is related to the comoving
size of the binary by the following argument. A binary of
size rx ¼ aðtdecÞx will decoupled at a time tdec given that
the energy density created by a binary at such a distance is
larger than the background energy density,

M
rxðtdecÞ3

¼ ρbackðtdecÞ: ðA5Þ

In order for this to be satisfied, the decoupling has to
happen in radiation dominated era, where ρ ∼ ρeqa−4ðtÞ. So
this implies that

x ¼ f
1
3x̄a

1
3ðtdecÞ; ðA6Þ

where x̄ is the mean comoving distance of two PBHs,
defined by

x̄ ¼ f−
1
3

�
M
ρeq

�1
3

: ðA7Þ

Then tdec is related to the comoving distance x via Eq. (A6).
This relation inherits an important consideration, and has to
do with the maximum size of a binary that participates in
mergers at tobs. From Eq. (A6), one can see that this
maximum size will be given by the latest time a binary can
decouple. Since binaries can only decouple in radiation
dominated era, for systems merging at tobs > teq þ tff , the
maximum size a binary can have is a constant given by

10We set aðteqÞ ¼ 1.
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xmax ¼ f1=3x̄; tobs > teq þ tff : ðA8Þ

For mergers happening before that time, note that the latest
time it can decouple andmerge at time tobs is tmax

dec ¼ tobs − tff .
After some calculations it can be found that

xmaxðtobsÞ ≈ f1=3x̄½tobs2ρeq�1=12; tobs < teq þ tff ; ðA9Þ

which is explicitly timedependent. This timedependence has
large consequences for the early merging rate.
The last piece that we need to determine is xmin, the

minimum comoving distance participating in a merger at
time tobs. This is given by the distance such that a circular
merger (the configuration having the largest merging time)
with such semiaxis merges at time tobs. This implies that all
binaries separated by a distance x < xmin would have
merged in a time t < tobs, for all the possible eccentricities.
This is approximately given by

xmin ¼
�
170M3tobs
3ðf1=3x̄Þ4

�
1=16

f1=3x̄: ðA10Þ

We can then perform the integral (6), considering xmin as
given in (A10) and xmax as given by either (A8) or (A9)
depending on whether the observed time is after or before
matter radiation equality. The function yðx; tobsÞ in Eq. (6)
is given by Eq. (A4)

yðx;tobsÞ¼
�

3

170M3ðf1
3x̄Þ12

�
1=21 x37=21

ðtobs−tdecðxÞ−tffðxÞÞ1=21
:

ðA11Þ

Note that this function blows up at x� ¼ xmaxðtobsÞ, which
defines the “free fall” configuration ðx; yÞ ¼ ðx�;∞Þ.
Let us now consider, for a fixed observation time tobs,

binaries of sizes up to x0 ¼ λx�ðtobsÞ, for some λ≲ 1. This
takes into account configurations with finite y, so we avoid
the “free fall” configuration. The extremal configuration
ðx0; yðx0ÞÞ gives us, for the Peters, free fall time and
decoupling time

tp ¼ ð1 − λ6Þtobs; tff þ tdec ≈ λ6tobs: ðA12Þ

So, for λ > 0.9, the mergers will be dominated by the free
fall time. In Fig. 7, we show the resulting merger rate. For
redshifts before matter radiation equality, the rate follows
the typical scaling for the Poissionan case RðzÞ ∝
ð1þ zÞ1.4. At high redshift, after matter radiation equality
the merger rate grows as RðzÞ ∝ 1þ z, mostly because of
the contribution of “free fall” orbits. However, if we only
consider the contribution of the mergers with torque, e.g.,
binaries of size up to 0.9x�, then the merger rate drops as
RðzÞ ∝ ð1þ zÞ−1=2, due to the shrinking of the maximum
comoving distance participating in the merger. As we can
see in Fig. 7, this drop persists even after we consider
binaries of size within 0.9x� and x�, although it will be
visible at larger redshifts.
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