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Cosmic flexion, like cosmic shear, is a correlation function whose signal originates from the large-scale
structure of the Universe. Building on the observational success of cosmic shear, along with the
unprecedented quality of large-scale cosmological datasets, the time is ripe to explore the practical
constraints from cosmic flexion. Unlike cosmic shear, which has a broad window function for power,
cosmic flexion is only measurable on small scales and therefore can uniquely place constraints on the
small-scale matter power spectrum. Here, we present a full theoretical formalism for cosmic flexion,
including both flexion-flexion and shear-flexion two-point correlations. We present forecasts for measuring
cosmic flexion in the Dark Energy Survey (DES), a stage III cosmological survey, and comment on the
future prospects of measuring these cosmological flexion signals in the upcoming era of stage IV
experiments.
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I. INTRODUCTION

Cosmological studies of the cosmic microwave back-
ground (CMB) have found that observations agree with the
standard model of cosmology (ΛCDM) to remarkable
accuracy [1–4]. As we look at more recent parts of cosmic
history, using tools such as weak lensing, ΛCDM still
appears to be the law of the land. Subtle discrepancies are
found, however, between these low-redshift observations
and the high-redshift measurements of the CMB [4–7].
These discrepancies could indicate that ΛCDM might
not be sufficient to connect all parts of the cosmic history
[8–10]. It is therefore necessary to have multiple cosmo-
logical probes that complement each other in order to get
the full picture of cosmology across all length scales and
cosmic times.
Gravitational lensing has become one of the quintessen-

tial cosmological and astrophysical probes of the last few
decades [11–13]. Lensing probes the gravitational potential
and is therefore a useful measure of the total matter
distribution. To this end, lensing has had a great impact
at several different mass scales. Lensing is powerful for
studying galaxy cluster mass distributions [14,15]. A
weaker effect, known as galaxy-galaxy lensing, is the
lensing of a background galaxy by a foreground galaxy.
Specifically, galaxy-galaxy shear correlates the shapes of
high-redshift “source” galaxies with positions of low-
redshift “lensing” galaxies [16,17]. Even weaker is the
lensing by the large-scale structure of the Universe—

specifically, the so-called cosmic shear—which probes
the underlying matter power spectrum [18–21]. Finally,
lensing of the CMB has also been detected at high
significance [4], which has been a further useful probe
of cosmological parameters.
In studies interested in using low-redshift lensing mea-

surements to extract cosmological information, cosmic
shear is often combined with galaxy-galaxy lensing, along
with galaxy clustering, which allows for very high con-
straining power on cosmological parameters [5].
Beyond shear, there exists a higher-order lensing effect

known as flexion [22–25]. In this work, we will consider
the as-of-yet undetected cosmic flexion signal, the ana-
logue to cosmic shear. Cosmic flexion is the flexion
correlation function whose signal originates from the
large-scale structure of the Universe. Cosmic shear has
proven to be a highly valuable cosmological probe;
cosmic flexion therefore warrants further investigation
in order to determine the extent to which it is cosmo-
logically useful. Cosmic flexion is much more difficult to
detect than cosmic shear, owing to (i) its weaker signal-
to-noise ratio (S=N) on the scale of typical galaxy-
galaxy separation, (ii) the fact that it peaks at
small, nonlinear scales, and (iii) the lack of an appropriate
tool for measuring this signal—until now. We also
consider cosmic shear-flexion—i.e., the cross-correlation
between cosmic shear and flexion—which has a
higher S=N than flexion-flexion, albeit at different angular
scales.
We will first present the theory of cosmic flexion. We

then consider the feasibility of detecting this signal in stage*evan.james.arena@drexel.edu

PHYSICAL REVIEW D 105, 123521 (2022)

2470-0010=2022=105(12)=123521(21) 123521-1 © 2022 American Physical Society

https://orcid.org/0000-0002-6812-6895
https://orcid.org/0000-0002-0696-7576
https://orcid.org/0000-0002-2562-8537
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.123521&domain=pdf&date_stamp=2022-06-21
https://doi.org/10.1103/PhysRevD.105.123521
https://doi.org/10.1103/PhysRevD.105.123521
https://doi.org/10.1103/PhysRevD.105.123521
https://doi.org/10.1103/PhysRevD.105.123521


III lensing surveys such as the Dark Energy Survey1 (DES;
[26]), the Kilo-Degree Survey2 (KiDS; [27]) and the Hyper
Suprime-Cam Subaru Strategic Program3 (HSC SSP; [28]),
with the aim of constraining the normalization and slope
of small-scale cosmic structure. We then comment on
improvements from stage IV surveys such as the Legacy
Survey of Space and Time with the Vera C. Rubin
Observatory4 (LSST; [29]), Euclid5 [30], and the Nancy
Grace Roman Space Telescope6 [31], as well as physics that
may be constrained by these results.

II. THEORY OF COSMIC FLEXION

A. Lensing formalism

In the thin lens approximation, we relate the conver-
gence, κ, to a dimensionless lensing potential, ψ , with
∇2ψ ¼ 2κ. The lensing potential is the two-dimensional
analogue of the Newtonian gravitational potential, inte-
grated along the line of sight. Convergence is a key lensing
quantity, which can be simultaneously thought of as a
projected, dimensionless surface-mass density of matter,
and as an isotropic increase or decrease of the observed size
of a source image. In the weak lensing regime, the
coordinate mapping from the foreground, θ, to background,
β, positions is related to the potential via: βi ¼ δijθ

j −
ψ ;ij θj − 1

2
ψ ;ijk θjθk (where ψ ;ij is shorthand for ∂i∂jψ).

We define a complex gradient operator ∂ ¼ ∂1 þ i∂2, such
that 1 and 2 refer to two perpendicular directions locally on
the sky (i.e., x and y directions on an image of a small patch
of sky). In this formalism, the spin-2 shear is given by [23]

γ ¼ γ1 þ iγ2 ¼ jγje2iϕ ¼ 1

2
∂∂ψ ; ð1Þ

and the spin-1 and spin-3 flexion fields are given by the
derivatives of the convergence and shear, respectively,

F ¼ F 1 þ iF 2 ¼ jF jeiϕ ¼ 1

2
∂∂

�
∂ψ ¼ ∂κ; ð2Þ

G ¼ G1 þ iG2 ¼ jGje3iϕ ¼ 1

2
∂∂∂ψ ¼ ∂γ: ð3Þ

The shear is an anisotropic, elliptical stretching of the
source image. The F -flexion effect is a skewing distortion
which manifests as a centroid shift, whereas the G-flexion is
a trefoil distortion resulting in a triangularization of the
source image.

B. Cosmic lensing power spectra

Starting with the cosmological effective convergence as
in Ref. [11], one can obtain the convergence power
spectrum via Limber’s equation [32,33],

PκðlÞ ¼
Z

χH

0

dχ
q2ðχÞ
χ2

PNL

�
k ¼ lþ 1=2

χ
; χ

�
; ð4Þ

where the lensing efficiency function,

qðχÞ ¼ 3

2
Ωm

�
H0

c

�
2 χ

aðχÞ
Z

χH

χ
dχ0nðχ0Þ χ

0 − χ

χ0
: ð5Þ

In these expressions, H0 is the Hubble constant, Ωm is the
matter density at the present epoch, c is the speed of light, χ
is comoving distance, χH is the horizon distance, a is the
scale factor, k is the comoving wavenumber, PNLðk; zÞ is
the (nonlinear) matter power spectrum7 as a function of k
and redshift, z, and nðχÞ is the effective number density of
(source) galaxies as a function of χ, normalized such thatR
∞
0 dχnðχÞ ¼ 1. The lensing efficiency function, and hence
the power spectrum, depends on the redshift distribution of
galaxies, nðzÞ, which is in turn dependent on the galaxies
available for a particular cosmological survey.
In the case of cosmic shear, it is the shear that is

measured from observed galaxy shapes, not the conver-
gence. However, it is conveniently the case that [12]

PγðlÞ ¼ PκðlÞ: ð6Þ

In Ref. [23] (hereafter referred to as BGRT), it was shown
that a cosmic flexion power spectrum can be derived along
the same lines, with the additional step of differentiating the
cosmological effective convergence, and then making use
of Limber’s equation. From this, we obtain

PF ðlÞ ¼ l2PκðlÞ: ð7Þ

We also note that, owing to the fact that the shear and
convergence statistics are the same, so too [because of the
relations in Eq. (3)] are the F - and G-flexion power spectra,

PGðlÞ ¼ PF ðlÞ: ð8Þ

BGRT also introduced the idea of a convergence-flexion
cross spectrum. Again following Limber’s equation, one
finds

PκF ðlÞ ¼ PκGðlÞ ¼ lPκðlÞ: ð9Þ1https://www.darkenergysurvey.org.
2https://kids.strw.leidenuniv.nl.
3https://hsc.mtk.nao.ac.jp/ssp.
4https://www.lsst.org.
5https://www.euclid-ec.org.
6https://roman.gsfc.nasa.gov.

7We caution the reader that the nonlinear matter power
spectrum must be used, as the cosmic flexion signal exists in
the small-scale, nonlinear regime.
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We will use these power spectra later in the calculation of
measurable two-point correlation functions.

C. Two-point correlation functions:
Cosmic shear and flexion

While one can try to measure the cosmic flexion (or
shear) power spectra defined in Fourier space, it is often
more straightforward to take measurements in real space.
One can calculate real-space two-point correlation func-
tions by taking a Hankel transform of the power spectrum.
BGRT did this; however, they considered what turns out to
be only one out of six possible nonzero cosmic flexion
correlation functions.

1. Coordinate system

The shear and flexion correlation functions are defined
by considering pairs of positions of galaxy images on the
sky, ϑ and θþ ϑ, and defining a coordinate system along
the line connecting the two galaxies [12]. For shear,
γ ¼ γ1 þ iγ2; these components are conventionally referred
to as the “tangential” and “cross” components. These are
defined at position ϑ for this pair as γt ¼ −ℜfγe−2iφg and
γ× ¼ −ℑfγe−2iφg, respectively, where φ is the polar angle
of the separation vector θ.
This spin-2 cosmic shear coordinate system can

be generalized to any combination of spin fields. Let
a ¼ a1 þ ia2 and b ¼ b1 þ ib2 be two fields with spins
sa and sb. Define a0ðϑiÞ and b0ðϑjÞ as the fields a and b at
locations ϑi and ϑj rotated such that the x-axis of the

tangential coordinate systems at directions ϑ̂i and ϑ̂j

become aligned with the vector connecting both
points. (Note: ϑ̂i · ϑ̂j ¼ cos θ and θ ¼ ϑj − ϑi.) We may
then define the components in this rotated coordinate
system as

�
a01
a02

�
¼ csgn½ð−iÞsa �RðsaφÞ

�
a1
a2

�
; ð10Þ

where csgnðzÞ is the complex signum function and the
(passive) rotation matrix is defined as

RðsaφÞ ¼
�

cos saφ sin saφ

− sin saφ cos saφ

�
: ð11Þ

We choose to adopt this SO(2) formalism rather than the
conventional real- and imaginary-component formalism
from the literature, as we believe it more straightforwardly
demonstrates that this is a rotated coordinate system. We
see, then, that

�
γ01
γ02

�
¼ −Rð2φÞ

�
γ1

γ2

�
: ð12Þ

In the same way, we can define the rotated components of
the lensing flexions F ¼ F 1 þ iF 2 and G ¼ G1 þ iG2 as

�
F 0

1

F 0
2

�
¼ −RðφÞ

�
F 1

F 2

�
ð13Þ

�
G0
1

G0
2

�
¼ þRð3φÞ

�
G1

G2

�
: ð14Þ

It should be pointed out that, in this work, the conventional
tangential and cross components of the shear, ðγt; γ×Þ, are
referred to as ðγ01; γ02Þ. The conventional names refer to the
fact that γ01 > 0 corresponds to tangential alignment of
galaxies around an overdensity, and the cross-component is
oriented along a 45° angle with respect to the line con-
necting the galaxy pair. With the spin-1 F -flexion, how-
ever, there is radially inward alignment around an
overdensity, such that a tangential F -flexion is analogous
to a cross shear. To avoid the confusion arising from these
different directional alignments of various spin fields, we
instead choose to refer rather plainly to rotated 1- and 2-
components. Furthermore, csgn½ð−iÞsa � is introduced such
that the G-flexion has what can roughly be thought of as a
radially outward alignment around an overdensity, as
motivated by its behavior around a singular isothermal
sphere (SIS) lens (see BGRT, where γ < 0 and F < 0
around an SIS lens, but G > 0).

2. Real-space two-point correlation functions

It is well known with cosmic shear that one can construct
three two-point correlations from the two shear
components, hγ01γ01i, hγ02γ02i, and hγ01γ02i [12]. The latter
vanishes in a parity-symmetric universe, since γ01 is parity
invariant under a mirror transformation, but γ02 changes
sign. The two nonzero correlations are then combined into
the two components of the cosmic shear correlation
functions.
In general, we can define two correlation functions [34],

ξabþ ðθÞ ¼ ℜha0ðϑiÞb0�ðϑjÞi ¼ ha01b01i þ ha02b02i ð15Þ

ξab− ðθÞ ¼ ℜha0ðϑiÞb0ðϑjÞi ¼ ha01b01i − ha02b02i: ð16Þ

where 1 and 2 refer to the components of each field and
ha01b01i is shorthand for ha01ðϑiÞb01ðϑjÞi. Therefore, in
addition to the well-known cosmic shear correlation func-
tions,8

ξγγ�ðθÞ ¼ hγ01γ01i � hγ02γ02i; ð17Þ

8ξγγ� is referred to simply as ξ� in the cosmic shear literature,
owing to the fact that it is currently the only lensing field
correlation that is widely considered.
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we posit the existence of six cosmic flexion correlation
functions. Firstly, there are the autocorrelations of each
flexion field,

ξFF
� ðθÞ ¼ hF 0

1F
0
1i � hF 0

2F
0
2i ð18Þ

ξGG� ðθÞ ¼ hG0
1G

0
1i � hG0

2G
0
2i: ð19Þ

Secondly, there is a cross-correlation between the two
flexion fields (we will see that this is nonzero in Sec. II E
below),

ξFG
� ðθÞ ¼ hF 0

1G
0
1i � hF 0

2G
0
2i: ð20Þ

Of these six possible correlations, only ξFFþ ðθÞ was
considered in BGRT.
In addition to the shear-shear and flexion-flexion corre-

lations listed above, we further posit the existence of shear-
flexion cross-correlations, given by9

ξγF� ðθÞ ¼ hγ01F 0
1i � hγ02F 0

2i ð21Þ

ξGγ� ðθÞ ¼ hG0
1γ

0
1i � hG0

2γ
0
2i: ð22Þ

Again, wewill find these to be nonzero in Sec. II E. In Fig. 1,
we show a cartoon of the auto- and cross-correlations
of F -flexion and shear for a galaxy pair in real space.

D. Relating the correlation functions to power spectra

In the flat-sky approximation, the two-point correlation
functions are related to the angular power spectra via
[34–36]

ξab� ðθÞ ¼ ð�1Þsa
Z

∞

0

dll
2π

PabðlÞJsb∓saðlθÞ; ð23Þ

where JnðxÞ is the Bessel function of the first kind, order n.
We do not derive this general equation in this paper. Rather,
it is a modified version of that presented in Ref. [34], where
we have swapped sa and sb (we refer the reader to
Appendix A for the justification of this).
From this general expression, we recover the well-known

relationship between the cosmic shear correlation functions
and the convergence power spectrum,

ξγγ�ðθÞ ¼
Z

∞

0

dll
2π

PκðlÞJ0;4ðlθÞ; ð24Þ

where J0ðlθÞ and J4ðlθÞ refer to ξγγþ and ξγγ− , respectively.
The flexion-flexion correlation functions are then given by

ξFF
� ðθÞ ¼ �

Z
∞

0

dll
2π

PF ðlÞJ0;2ðlθÞ ð25Þ

ξGG� ðθÞ ¼ �
Z

∞

0

dll
2π

PF ðlÞJ0;6ðlθÞ ð26Þ

ξFG
� ðθÞ ¼ �

Z
∞

0

dll
2π

PF ðlÞJ2;4ðlθÞ; ð27Þ

and the shear-flexion correlation functions are

ξγF� ðθÞ ¼ ∓
Z

∞

0

dll
2π

PκF ðlÞJ1;3ðlθÞ ð28Þ

ξGγ� ðθÞ ¼ −
Z

∞

0

dll
2π

PκF ðlÞJ1;5ðlθÞ: ð29Þ

In Appendix A, we show how to derive some of these
correlation functions from first principles and demonstrate
that they are in agreement with Eq. (23).

E. Consequences of mixed spin field cross-correlation

The correlation of two different lensing fields is not
widely considered in the literature. Only combinations of
the same lensing field are generally discussed (i.e., shear-
shear correlation). Here, we discuss the implications of
correlating lensing fields of different spin. Note that
throughout this discussion, “spin combination” refers to
the sum and/or difference of the spin fields of two
correlated fields, sa � sb. As such, spin combination can
either be even, as in the case of cosmic shear or any other
two-point autocorrelation, or odd.

FIG. 1. A galaxy pair ði; jÞ with separation θ and polar angle
φij ¼ 0 perturbed by a nearby mass distribution (on the left). In
this case, the overdensity is along the line of the separation vector
such that we have pure tangential shear, γ01 and radial flexion, F

0
1

(we assume that there is no intrinsic ellipticity or flexion in this
case). The shear is represented by the ellipses and the spin-1
F -flexion by the vectors. As galaxy (i) is closer to the over-
density, we see how the magnitude of the shear and flexion is
larger for galaxy (i) than (j). This cartoon illustrates how, for a
given galaxy pair, flexion and shear are coupled between the
objects, and to each other.

9One may be curious as to why we choose the ordering shear-
flexion for γF , but flexion-shear for Gγ. Simply put, we choose to
have a convention where the spin of the first field is greater than
or equal to that of the second.
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1. Consequence 1: Order matters for odd spin
combinations, or the noncommutativity of weak lensing

Let us first consider cosmic shear. One might intuitively
guess that hγ01γ02i ¼ 0. After all, the tangential and cross
components are, by definition, not activated in the same
way gravitationally. Indeed, it turns out that hγ01γ02i vanishes
due to the parity symmetry of the Universe. Roughly
speaking, if one were to look at the Universe under a
mirror transformation, the combinations hγ01γ01i and hγ02γ02i
would look the same (i.e., they are parity invariant),
whereas hγ01γ02i would not. The fact that hγ01γ02i is not parity
invariant means that it must be zero in our parity-symmetric
Universe.
These arguments hold for cosmic flexion as well, for

both F and G. One finds that hF 0
1F

0
1i, hF 0

2F
0
2i, hG0

1G
0
1i,

hG0
2G

0
2i, hF 0

1G
0
1i, hF 0

2G
0
2i, etc., are parity-invariant combi-

nations, whereas hF 0
1F

0
2i, hG0

1G
0
2i, hF 0

1G
0
2i, etc., are not and

will equal zero.
One might suppose that parity-symmetry requirements

could pose a problem for the existence of a shear-flexion
cross-correlation. Consider a γ − F correlation. There are
four possible two-point correlations: hγ01F 0

1i, hγ02F 0
2i,

hγ01F 0
2i, and hγ02F 0

1i. We should immediately expect that
hγ01F 0

2i ¼ hγ02F 0
1i ¼ 0 due to parity symmetry. This is

indeed the case.
However, it also could seem as though neither hγ01F 0

1i
nor hγ02F 0

2i are parity invariant either. Recall that shear is
spin-2, and F and G flexions are spin-1 and spin-3,
respectively. The spin-combinations are even for both
shear-shear and flexion-flexion correlation. Even spin
implies a possible parity-invariant combination of compo-
nents. But any shear-flexion correlation will always have an
odd-spin combination. This might appear to be an argument
for any shear-flexion cross-correlation vanishing in our
Universe.
In reality, certain odd-spin constructions do not simply

vanish in this way. In order to demonstrate this, consider
first the example of galaxy-galaxy flexion (the flexion
version of galaxy-galaxy shear). In galaxy-galaxy shear,
there is a tangential alignment of galaxy ellipticities around
a foreground lens. In galaxy-galaxy flexion, there is a radial
alignment of background galaxy flexions around the lens.
Figure 2 shows three different galaxy-galaxy flexion
scenarios. From top to bottom, let us refer to these as
scenarios 1, 2, and 3, respectively. In scenario 1, there is an
F -flexion to the right of an overdensity, and in scenarios 2
and 3, the F -flexion is to the left of the same overdensity.
We notice that the flexion in scenario 2 is the negative of

the flexion in scenario 1. This sign difference might naively
suggest that a galaxy-galaxy flexion signal vanishes (imag-
ine adding these two flexions together), which we under-
stand not to be the case—galaxy-galaxy flexion has been
measured in multiple scenarios (see e.g., Refs. [22,37,38]).
Conversely, the flexion in scenario 3 does carry the same
sign as that in scenario 1. The difference between scenarios

2 and 3 is simply the direction of the separation vector,
which is a result of the order in which the pairing is
constructed. In scenarios 1 and 3, the pairing is i → j, but in
scenario 2, the pairing is j → i. The crucial point here is
that the order in which one field is rotated and correlated
with another matters for odd-spin combinations, whereas
all three of these scenarios give the same sign for an even
spin combination such as galaxy-galaxy shear. We there-
fore distinguish between κ → F and F → κ correlation.
κ → F 0

k denotes hκF 0
ki where the separation vector θ⃗ used

for rotation points from a first object for which we supply κ,
to a second object for which we supply F 0

k. F
0
k → κ is

defined in a similar way, with θ⃗ pointing from a first object
for which we supply F 0

k to a second object for which we
supply κ. κ → F 0

k and F 0
k → κ turn out to be the negative,

or the parity transforms, of each other.
This line of reasoning directly extends to shear-flexion

cross-correlation. With this odd spin combination, we need
to emphasize the difference between γ → F and F → γ
correlation. Note that hγ01 → F 0

1i and hF 0
1 → γ01i are the

parity transformations of each other, and carry opposite
signs. The easiest way to visualize this is to recognize that
γ01 is itself parity invariant, whereas F 0

1 is not. As before,
when one does a mirror transform of F 0

1, it is simply the
negative of itself. Hence,

hF 0
1 → γ01i ¼ −hγ01 → F 0

1i: ð30Þ

FIG. 2. Three different galaxy-galaxy flexion scenarios. In each
scenario, the flexion has only a 1-component and points radially
toward the overdensity shown by the convergence κi. From top to
bottom, we refer to these as scenarios 1, 2, and 3. The separation

vector θ⃗ in scenarios 1 and 2 points from left to right, along the 1-
axis, and from right to left in scenario 3. The polar angle φ (i.e.,
the angle between the 1-axis and the separation vector) is 0 radians
for scenarios 1 and 2, and −π radians for the scenario 3. Using
Eq. (13), the flexion F 0

1
j is þjF jj for scenarios 1 and 3, and

−jF jj for scenario 2.
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This fact is also evident in the real-Fourier space relation.
From Eq. (23), we see that

ξF→γ
� ðθÞ¼−

Z
∞

0

dll
2π

PκF ðlÞJ−1;3ðlθÞ¼−ξγ→F
� ðθÞ; ð31Þ

where we have used

J−nðxÞ ¼ ð−1ÞnJnðxÞ: ð32Þ

This is all to say that parity invariance for γ − F cross-
correlation may be preserved through fixed-ordered pairing
i → j, and hence by distinguishing between γ → F
and F → γ.
As a final point, we note that nonordered parity

invariance is achieved by the fact that, while hF 0
1 → γ01i

is nonzero (and hence measurable), it is indeed the case that
the sum hF 0

1 → γ01i þ hγ01 → F 0
1i ¼ 0.

2. Consequence 2: Mixed lensing field correlations
provide information from more pairs

One can measure both ξF→G
� and ξG→F

� for a given set of
galaxy pairs [for instance, selected as in Eq. (37) as galaxies
i; j > i]. This is an example of how cross-correlation of
different lensing fields offers twice the number of available
measurements as their autocorrelation counterparts. We can
define

ξFG
� ≡ ξF→G

� ∪ ξG→F
� ; ð33Þ

as the combination of both F → G and G → F correlation
measurements. Here, ∪ refers to combining both measure-
ments together while accounting for the algebraic sign of
each so as not to cancel to zero. The spin combination forF
and G is even, so ξF→G

� ¼ ξG→F
� . Therefore, for this field

combination, ∪ is equivalent to addition.
Similarly, one is able to obtain twice the number of

galaxy pairs for shear-flexion correlation functions,

ξγF� ≡ ξγ→F
� ∪ ξF→γ

� : ð34Þ

Here the spin combination is odd, and ∪ is equivalent to
subtraction. The same is true for ξGγ� .

III. MEASURING COSMIC FLEXION

A. Practical estimators for cosmic flexion

Let us consider practical estimators of the correlation
functions. For the case of cosmic shear, one estimates the
ellipticity10 of a galaxy—that is, the combination of the
effect of shear and an intrinsic ellipticity—rather than just

the shear. The observable ellipticity ϵi of a galaxy image at
angular position ϑi is related to the intrinsic ellipticity ϵsi
and the shear11 γðϑiÞ by [12,39]

ϵi ¼ ϵsi þ γðϑiÞ; ð35Þ

in the weak lensing regime κ ≪ 1. In addition to an
observed ellipticity, each galaxy may be assigned a weight
factor wi which reflects the measurement uncertainty.
Noisy objects can be down weighted by assigning small
values of wi to them. We shall assume that the correlation
function is to be estimated in bins of some (typically
logarithmic) angular width Δθ, and we define the function
ΔθðϕÞ ¼ 1 for angular separations within the bin and zero
otherwise. The standard estimators of the cosmic shear two-
point correlation functions are given by [40]12

ξ̂γγ�ðθÞ ¼
P

i;j>iwiwjðϵ0i1ϵ0j1 � ϵ0i2ϵ
0
j2ÞΔθðijÞ

NpðθÞ
; ð36Þ

where again, 1 and 2 refer to the field components, ðijÞ is
shorthand for ðjϑi − ϑjjÞ, and

NpðθÞ ¼
X
i;j>i

wiwjΔθðijÞ; ð37Þ

is the effective number of galaxy pairs per angular bin (it is
equal to the number of galaxy pairs in the case that all
weights are unity), and where the rotated components of the
observed ellipticity are defined in analogy to the corre-
sponding shear components in Eq. (12). Reference [40]
showed that this is an unbiased estimator of the cos-
mic shear.
Following similar lines, we can create estimators for

generalized spin fields. The observable field aoi of a galaxy
image at angular position ϑi is related to the intrinsic field
asi and the lensing field aðϑiÞ by

aoi ¼ asi þ aðϑiÞ; ð38Þ

and similarly, boj ¼ bsj þ bðϑjÞ. An estimator for the
correlation functions ξab� ðθÞ is then

ξ̂ab� ðθÞ ¼
P

i;j>iwiwjða0oi1b0oj1 � a0oi2b
0o
j2ÞΔθðijÞ

NpðθÞ
; ð39Þ

where we emphasize that this estimator specifically should
be written as ξa→b

� in the case where a and b are different
spin fields. Now, by showing that the expectation value of
this estimator is equal to the correlation function, we can

10Ellipticity is given by ϵ ¼ ða − bÞ=ðaþ bÞ × e2iϕ, where a
and b are the semimajor and semiminor axes, respectively, and ϕ
is the position angle.

11This is actually the reduced shear, g, which is equal to γ in the
limit κ ≪ 1.

12Here, we differ from Ref. [40] by having our second
summation over only j > i to avoid double counting.
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prove it is an unbiased estimator of the correlation function.
The expectation value of the estimator is obtained by
averaging over the intrinsic fields, assumed to be randomly
oriented, and an ensemble average of the lensing field.
Considering just ξ̂abþ , we find

ha0oi1b0oj1 � a0oi2b
0o
j2i ¼ σ2abδij þ ξabþ ðijÞ; ð40Þ

where σ2ab is the dispersion of the intrinsic fields, and we
have used the fact that terms of the form,

has�i bsji ¼ σ2abδij ¼ σaσbδij; ð41Þ

and that terms of the form has�i bji ¼ 0, and, by definition,
ha0i1b0j1 þ a0i2b

0
j2i ¼ ξabþ ðijÞ, from Eq. (15). We therefore

see that

hξ̂abþ ðθÞi ¼ ξabþ ðθÞ; ð42Þ

since the term σ2abδijΔθðijÞ vanishes for all i ≠ j, which is
the definition of a galaxy pair. This is similarly the case
for ξ̂ab− .
The unbiased estimators for the flexion-flexion correla-

tion functions are therefore,

ξ̂FF
� ðθÞ ¼

P
i;j>iwiwjðF 0o

i1F
0o
j1 � F 0o

i2F
0o
j2ÞΔθðijÞ

NpðθÞ
ð43Þ

ξ̂GG� ðθÞ ¼
P

i;j>iwiwjðG0o
i1G

0o
j1 � G0o

i2G
0o
j2ÞΔθðijÞ

NpðθÞ
ð44Þ

ξ̂F→G
� ðθÞ ¼

P
i;j>iwiwjðF 0o

i1G
0o
j1 � F 0o

i2G
0o
j2ÞΔθðijÞ

NpðθÞ
; ð45Þ

and the (unbiased) estimators for the shear-flexion corre-
lation functions are given by

ξ̂γ→F
� ðθÞ ¼

P
i;j>iwiwjðϵ0i1F 0o

j1 � ϵ0i2F
0o
j2ÞΔθðijÞ

NpðθÞ
ð46Þ

ξ̂G→γ
� ðθÞ ¼

P
i;j>iwiwjðG0o

i1ϵ
0
j1 � G0o

i2ϵ
0
j2ÞΔθðijÞ

NpðθÞ
: ð47Þ

To this end, we have developed a code capable of
computing the flexion and shear correlation functions,
known as F-SHARP (flexion and shear arbitrary point
correlations).13 This code takes as input the estimated
observed flexion and ellipticity components for a set of
galaxies, and implements Eqs. (43)–(47) above to provide
correlation function measurements (see for instance
Figs. 3 and 4 below).

B. Cosmic flexion covariance

In addition to the two cosmic shear correlation functions,
we have described the existence of six flexion-flexion
and four shear-flexion correlation functions. One may
wish to calculate covariance matrices for these estimators.
Reference [40] analytically calculated three different
covariance matrices for the cosmic shear correlation func-
tions across two different angular bins θx and θy:
Covðξ̂γγþ ; θx; ξ̂γγþ ; θyÞ, Covðξ̂γγ− ; θx; ξ̂γγ− ; θyÞ, and Covðξ̂γγþ ; θx;
ξ̂γγ− ; θyÞ. Following this approach, we can calculate three
covariance matrices for each of the ten additional cosmic
flexion and shear-flexion estimators, for a total of 30
additional covariance matrices. In addition to this, we
could calculate the covariance for two different
estimators—for instance, Covðξ̂γγþ ; θx; ξ̂γFþ ; θyÞ. All told,
twelve cosmic weak lensing estimators allow for 12þ
12ð12 − 1Þ=2 ¼ 78 possible unique covariance matrices.
Owing to the large number of covariance matrix permu-

tations, we choose to calculate the most generalized
versions,

Covðξ̂ab� ; θx; ξ̂
cd
� ; θyÞ and Covðξ̂abþ ; θx; ξ̂

cd
− ; θyÞ:

These covariances are derived in Appendix B.
From these covariance matrices, we are able to approxi-

mate the autovariance of each estimator—i.e., the diagonal
of Covðξ̂ab� ; θ; ξ̂ab� ; θÞ. Under the assumption that the
autovariance of the estimators in each bin is dominated
by the intrinsic field shape noise, Eq. (B1) simply becomes

Varðξ̂ab� ðθÞÞ ≃ σ2aσ
2
b

2½NpðθÞ�2
X
i;j>i

w2
i w

2
jΔθðijÞ; ð48Þ

where the effective dispersion of the intrinsic field is
calculated as

σ2a ¼
P

ijaoi j2w2
iP

iwi
: ð49Þ

Consider the example of the cosmic shear estimators,

Varðξ̂γγ�ðθÞÞ ≃
σ4ϵ

2½NpðθÞ�2
X
i;j>i

w2
i w

2
jΔθðijÞ; ð50Þ

where the effective dispersion of the intrinsic ellipticity,14

σ2ϵ ¼
P

ijϵij2w2
iP

iwi
: ð51Þ

13https://github.com/evanjarena/F-SHARP.

14In cosmic shear studies, it is often standard practice to
measure a dispersion per shear component; however, we choose
not to use this formalism.
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In the case of all weights being equal to unity, this
expression simplifies to the well-known result
Varðξ̂γγ�ðθÞÞ ≃ σ4ϵ=2NpðθÞ given in e.g., Ref. [41].
Unlike shear/ellipticity, which is dimensionless, flexion

has units of inverse length and is therefore not scale/
distance invariant. The combination of a galaxy’s size,15

a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijQ11 þQ22j
p

where Qij are quadrupole image
moments, and flexion produces a scale-invariant,
dimensionless flexion: jaF j and jaGj [22,42]. We may
then define the scatter in intrinsic flexions in the following
way:

σ2aF ¼
P

ijaiF o
i j2w2

iP
iwi

ð52Þ

σ2aG ¼
P

ijaiGo
i j2w2

iP
iwi

: ð53Þ

The autovariance of the flexion-flexion estimators is
approximated by

Varðξ̂FF
� ðθÞÞ ≃ σ4aF

2½NpðθÞ�2
X
i;j>i

w2
i w

2
jΔθðijÞ
a2i a

2
j

ð54Þ

Varðξ̂GG� ðθÞÞ ≃ σ4aG
2½NpðθÞ�2

X
i;j>i

w2
i w

2
jΔθðijÞ
a2i a

2
j

ð55Þ

Varðξ̂F→G
� ðθÞÞ ≃ σ2aFσ

2
aG

2½NpðθÞ�2
X
i;j>i

w2
i w

2
jΔθðijÞ
a2i a

2
j

; ð56Þ

and the autovariance of the shear-flexion estimators is

Varðξ̂γ→F
� ðθÞÞ ≃ σ2ϵσ

2
aF

2½NpðθÞ�2
X
i;j>i

w2
i w

2
jΔθðijÞ
a2j

ð57Þ

Varðξ̂G→γ
� ðθÞÞ ≃ σ2aGσ

2
ϵ

2½NpðθÞ�2
X
i;j>i

w2
i w

2
jΔθðijÞ
a2i

: ð58Þ

C. Testing cosmic flexion with a Gaussian random field

In order to test both our theoretical assumptions and the
estimators for the two-point correlation functions, we make
use of a simple toy model. We generate a Gaussian random
field for the convergence in Fourier space. We take this to
be a delta-function field, which can be used to obtain the
lensing potential via the relation,

κ̃ðkÞ ¼ −
1

2
k2ψ̃ðkÞ; ð59Þ

where we have taken the Fourier transform of ∇2ψ ¼ 2κ.
The shear is obtained in Fourier space by [12,43]

γ̃1 ¼
ðk21 − k22Þ

k2
κ̃

γ̃2 ¼
2k1k2
k2

κ̃; ð60Þ

and the flexion via16 [23]

F̃ 1 ¼ ik1κ̃

F̃ 2 ¼ ik2κ̃ ð61Þ

G̃1 ¼
iðk31 − 3k1k22Þ

k2
κ̃

G̃2 ¼
ið3k21k2 − k32Þ

k2
κ̃: ð62Þ

Using these relations, one can create maps of the lensing
fields on some patch of sky by using a fast Fourier
transform. The patch of sky used in this toy problem is
approximately 30 × 30. With random sampling, one can
obtain measurements of the correlation functions in angular
bins. To do this, F-SHARP makes use of Eqs. (43)–(47) to
compute the estimators of each correlation function. The
noise in this toy problem comes from cosmic variance, so
we compute errors of the correlation function measure-
ments over multiple random realizations of the field. Given
the fact that the convergence power spectrum is a delta
function, one easily obtains analytical solutions to
Eqs. (25)–(29) for the various theoretical correlation
functions.
Figures 3 and 4 show a comparison of the theoretical

versus measured two-point correlation functions. These
results demonstrate agreement between our theoretical
equations for the correlation functions and the estimators
of these correlators coded in F-SHARP. Most notably,
we point out the fact that our results demonstrate
ξF→γ
� ¼ −ξγ→F

� , as posited in our discussion of the non-
commutativity of weak lensing fields with odd spin
combinations.

IV. COSMIC FLEXION IN ΛCDM FOR STAGE III
LENSING SURVEY

When cosmic flexion was first proposed by BGRT more
than a decade ago, there was neither the computational
pipeline to compute flexion quickly nor a sufficient dataset
for its detection. Now that observations have caught up
with theoretical estimates, the time is ripe to measure

15The size of a galaxy, a, is not to be confused with the
generalized lensing field in previous equations.

16These have the opposite sign convention from that in BGRT.
We also correct for a missing factor of 2 in the G-flexion.
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cosmic flexion, which will give us new insight into cosmic
structure on the arcsecond to arcminute scale.
Stage III lensing surveys such as the Dark Energy Survey

(DES), the Kilo-Degree Survey (KiDS) and the Hyper
Suprime-Cam Subaru Strategic Program (HSC SSP) are
ideal candidates for measuring the cosmic flexion signal.
As a representative example, in this section we will forecast
what could be achieved in measuring flexion correlations
with DES.
We first calculate the functional form of the cosmic

flexion power spectrum, which is done using F-SHARP.
F-SHARP makes use of the Einstein-Boltzmann code
CLASS [44] to compute the linear matter power spectrum,

which in turn makes use of HALOFIT [45] to compute the
nonlinear matter power spectrum. This assumes a Planck 18
cosmology [4] using the TT;TE;EEþ lowEþ lensing
constraints. Next, we make use of the DES (Y3) SOMPZ
nðzÞ source distributions for each redshift bin (as described
in Ref. [13]), which are publicly available,17 combining
these in order to estimate the overall source redshift
distribution. F-SHARP then makes use of Eqs. (5) and
(7) to calculate the flexion power spectrum; this is shown in
Fig. 5.Most significantly, this power spectrum peaks around

FIG. 3. Theoretical cosmic flexion-flexion correlation functions ξFF
� , ξGG� , and ξF→G

� for a delta-function convergence Gaussian
random field. The solid (blue) lines are the “þ” theoretical correlation functions, and the dash-dotted (red) lines are the “−” correlations.
We see that the measurements of the “þ” and “−” correlation functions are consistent with the theoretical curves. We also see that the so-
called “cross” (“×”) correlation functions, which vanish due to parity-symmetry, are consistent with zero. Angular separation, θ, has
units of arcseconds, and the flexion-flexion correlation functions have units of ½radians�−2.

FIG. 4. Theoretical cosmic shear-flexion correlation functions ξγ→F
� , ξF→γ

� , and ξG→γ
� for a delta-function convergence Gaussian

random field. The solid (blue) lines are the “þ” theoretical correlation functions, and the dash-dotted (red) lines are the “−” correlations.
We also see that the so-called “cross” (“×”) correlation functions, which vanish due to parity-symmetry, are consistent with zero. From
these plots, we see that ξF→γ

� ¼ −ξγ→F
� , which verifies Eqs. (30) and (31). Angular separation, θ has units of arcseconds, and the shear-

flexion correlation functions have units of ½radians�−1.

17https://des.ncsa.illinois.edu/releases/y3a2/Y3key-catalogs.
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l ≃ 104 or angular scales on the order of an arcsecond. This
should be compared to cosmic shear measurements, which
typically peak on scales ∼100–1000 times larger.
We also calculate the convergence-flexion power spec-

trum given by Eq. (9); as seen in Fig. 6, shear-flexion power
peaks on scales intermediate to that of flexion-flexion and
shear-shear. This cross-power bridges the gap between
these two probes; since it is (partly) measurable in the linear
regime (≳10 arcminutes), it offers the possibility of
constraining cosmological parameters and allows for sys-
tematics checks between cosmic shear and flexion.

A. Handling infinities:
Renormalization of cosmic flexion

When calculating the theoretical correlation functions
from the cosmic flexion power spectrum, one encounters
integrals that do not converge. For χ ≪ χH, the lensing
efficiency scales as qðχÞ ∝ χ [since aðχÞ ≃ 1 for χ ≪ χH].
Asymptotically, the matter power spectrum follows some
power law PNLðk ¼ l=χ; χÞ ∝ k−n

0
s. Therefore, for low χ

and high l, the cosmic flexion power spectrum scales as

PF ðlÞ ∝ l2−n0s ðasymptoticÞ: ð63Þ

If we examine the integrand of the cosmic flexion-flexion
two-point correlation functions, they all have the form,

dξflex−flex

dl
∝ lPF ðlÞJnðlθÞ: ð64Þ

Asymptotically, the Bessel functions of the first kind take
the form,

JnðxÞ ¼
ffiffiffiffiffi
2

πx

r
cos

�
x − ð2nþ 1Þ π

4

�
þO

�
1

x3=2

�
: ð65Þ

The integrand then has the asymptotic behavior,

dξflex−flex

dl
∝ l2.5−n0s cos

�
lθ − ð2nþ 1Þ π

4

�
: ð66Þ

Therefore, if n0s ≤ 2.5, then these integrals do not converge,
because the integral takes the form of a runaway cosine
envelope. This is indeed the reality we are faced with if one
allows the HALOFIT routine to compute PNL out to asymp-
totically large k (or perform a linear extrapolation to
arbitrarily large k). However, in Ref. [46], it is discussed
that the matter power spectrum will be proportional to kns−4

for arbitrarily large k, where ns is the scaling of the matter
power spectrum at low k: PNLðk ¼ l=χ; χÞ ∝ kns , where
the Planck 18 best fit value for ns is ≃0.96 [4].
We therefore propose the following renormalization:

compute the matter power spectrum up to some very large
kmax using the small-scale power spectrum generated by
HALOFIT, and then have the matter power spectrum take the
form kns−4 for k beyond that computed by HALOFIT. This
modification of PNL affects the shape of the convergence

FIG. 5. The cosmic flexion power spectrum expected for the
DES Y3 lensing sample using a Planck 18 cosmology. The
shaded region is the response of the power spectrum to varying σ8
over ten times the TT;TE;EEþ lowEþ lensing 68% interval.
The small width of this region is a consequence of the (very) tight
constraints of the current Planck estimates. This does not,
however, include variations of modeling approaches to highly
nonlinear substructure.

FIG. 6. The cosmic convergence-flexion power spectrum
expected for the DES Y3 using a Planck 18 cosmology. The
shaded region is the response of the power spectrum to varying σ8
over 10 times the TT;TE;EEþ lowEþ lensing 68% interval.
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power spectrum via Eq. (4), which in turn affects the
flexion power spectrum via Eq. (7). This allows the cosmic
flexion integrals of Eqs. (25)–(27) to converge. We note
that, since we are only changing the shape of the power
spectrum asymptotically, cosmic shear is very insensitive to
this renormalization. For instance, we find that computing
ξγγþ for the nonrenormalized and renormalized power
spectra are indistinguishable to within one part in 107.
We next encounter another problem with integration, but

this time it is numerical. For increasingly large θ, these
integrals become very difficult and computationally expen-
sive to integrate due to rapid oscillation of the integrand.
Highly oscillatory integrals have been studied extensively
in applied mathematics; however, there does not exist a
conventional way to numerically handle them [47]. We
therefore offer two possible methods that we find to be in
agreement with each other at the percent level. First, we
offer in this paper a novel technique in which we renorm-
alize the integrals given in Eqs. (25)–(27). Here, we
multiply the integrands by a decaying exponential. These
integrands then take the form,

dξflex−flex

dl
∝ lPF ðlÞJnðlθÞ × e−lðlþ1Þ=l2s ; ð67Þ

where ls is taken to be the location of the second maximum
of the integrand. An alternative method to a second
renormalization is an existing technique: a double-expo-
nential variable transformation based on the zeros of the
Bessel function of the first kind [48,49]. We use the
approximation [50],

Z
∞

0

dxfðxÞJnðxÞ

≃π
X∞
k¼1

wnkf

�
πψðhrnkÞ

h

�
Jn

�
πψðhrnkÞ

h

�
ψ 0ðhrnkÞ; ð68Þ

where rnk are the roots of JnðxÞ divided by π, ψðtÞ ¼
t tanhð1

2
π sinh tÞ is the double-exponential transform, h is

the step size of the integration, and the weights are
wnk ¼ YnðπrnkÞ=Jnþ1ðπrnkÞ, where Yn is the Bessel func-
tion of the second kind, order n. For our purposes, we take
fðxÞ → lPF ðlÞ and JnðxÞ → JnðlθÞ.
A special technique of either renormalization or the

double-exponential transform is not necessary for small θ,
where the integrand ringing is negligible. We can therefore
test these two approaches by comparing them to the
nonrenormalized integration at low θ. These results are
shown in Fig. 7 for ξFF

− . The renormalization integration
method is computed using F-SHARP and the double-
exponential transform integration method is computed
using the public library hankel18 (see Ref. [51]). We see that for small θ, where the integrand ringing is minimal

and can be easily integrated numerically, all three methods
of integration are in agreement. For large θ, where the

FIG. 7. In the top panel, we show the integrand of the flexion-
flexion correlation function ξFF

− as a function of l for
θ ¼ 10 arcseconds. We see that after the first peak, there is a rapid
oscillation of the cosine envelope. This ringing makes numerical
integration very computationally expensive. The vertical dashed
line is located at the second localmaximum,ls. In themiddle panel,
we show the renormalized integrand, given by Eq. (67). The bottom
panel shows the results of integrating the nonrenormalized integrand
(solid, gray line) and the normalized integrand (tightly dashed, red
line). Additionally, we show the result of integration via the double-
exponential transform of Eq. (68) (loosely dashed, blue line).

18https://github.com/steven-murray/hankel.
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FIG. 8. The theoretical cosmic flexion F -F autocorrelation (top row), F -G cross-correlation (middle row), and G-G autocorrelation
(bottom row) functions with forecast errors for DES Y3. Note that the data points are equal to the theoretical values and do not represent
a measurement. Here, we anticipate a higher S=N for the F -G cross-correlation than the F -F autocorrelation. Note that ξFG

� here
represents the combined use of both ξF→G

� and ξG→F
� .
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nonrenormalized numerical integration fails, the renorm-
alization and the double-exponential transform allow for
efficient and accurate numerical integration. Again, since
both of these techniques agree with each other at the
percent level, and are therefore indistinguishable in this
context, we can use either.

B. Forecasts for the Dark Energy Survey

We can preview the expected signal-to-noise of DES
flexion correlation functions by measuring flexion estima-
tors for a small sample of galaxies constituting ≃0.5 square
degree patch of sky, taken from the publicly available DES

Shape Catalogue (Y3)19 (see Ref. [52]). We retrieve the
corresponding galaxy images from the DES Data
Management public server.20 The measurement pipeline
for this subsample is as follows: first flexion and ellipticity
are measured for each individual galaxy using the code
Lenser21—a fast, open source, minimal-dependency
Python tool for estimating flexion and shear from real
survey data and realistically simulated images (see
Ref. [42] for a detailed description). For these forecasts,

FIG. 9. The theoretical cosmic shear-flexion γ-F (top row) and G-γ (bottom row) cross-correlation functions with forecast errors for
DES Y3. Note that the data points are equal to the theoretical values and do not represent a measurement. Here, we anticipate a much
higher S=N for shear-flexion than flexion-flexion. Note that ξγF� here represents the combined use of both ξγ→F

� and ξF→γ
� (and similarly

for ξGγ� ).

19https://des.ncsa.illinois.edu/releases/y3a2/Y3key-catalogs.
20https://des.ncsa.illinois.edu.
21https://github.com/DrexelLenser/Lenser.
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it is not necessary to measure the correlation functions.
Rather, we are interested in measuring the autovariances of
the correlation functions using Eqs. (54)—(58). To do this,
we use F-SHARP in order to (i) compute the root mean
square noise for the various lensing estimators in the
subsample of galaxies (which will remain constant across
the entire DES field) using Eqs. (51)—(53) and (ii) calculate
the number of pairs given by Eq. (37), which is scaled to the
remaining amount of sky in the survey. These are then used
in Eqs. (54)–(58) to calculate predicted errors on the
various DES full-survey correlation functions. These fore-
casts are shown in Figs. 8 and 9. The cosmic flexion-flexion
correlations are just detectable with the full survey. We
immediately see why shear-flexion cross-correlation is a
very valuable signal to measure—it has a much higher S=N
than does flexion-flexion.
Equations (54)—(58) are adequate for calculating errors

on the cosmic flexion signals at least in the short term.
Typically, cosmic shear studies make use of analytical and/
or Gaussian and log-normal simulations to estimate the
covariance matrix of the cosmic shear correlation functions.
This subpercent level accuracy of the covariance is neces-
sary in cosmic shear studies that wish to make likelihood
analyses that lead to constraints on cosmological param-
eters. As we do not wish to use the cosmic flexion results to
constrain cosmological parameters, we do not require this
subpercent level accuracy of the covariance. While we have
full analytical covariances worked out in Appendix B, they
have not yet been tested against, and corrected by, N-body
simulations as is done with cosmic shear covariances in
DES. In addition to the fact that we do not require this level
of precision on our errors, there also do not currently exist
N-body simulations capable of producing weak-lensing
maps at a fine enough resolution to study the small-scale
structure probed by cosmic flexion.

C. Discussion

As we have seen, cosmic flexion peaks at small, non-
linear scales. These scales are typically discarded in weak
lensing studies that seek to only use larger scale informa-
tion to constrain cosmological parameters. However, the
fact that cosmic flexion signals peak at these scales put
them in a unique position to constrain the amplitude and
shape of this small-scale matter power spectrum, which can
lead to a better understanding of the physics at the
substructure level.
It is interesting to note that shear-flexion cross-correlation

is partly measurable in the large-scale, linear regime
(≳10 arcmin). One could undertake a study of how the
covariance of the shear-flexion cross correlators at
these large scales compare with N-body simulations, as is
done with cosmic shear. This could indeed lead to shear-
flexion cross-correlation placing constraints on cosmological
parameters.

In the coming decade, cosmologists are preparing to
move from the current stage III experiments such as DES,
into the era of stage IV surveys such as LSST and Euclid.
These will offer greater sky coverage than DES, as well as a
higher number density of source galaxies [29,30]. Higher
number density is particularly beneficial for cosmic flexion,
as its signal increases with decreasing galaxy separation.
As such, stage IV surveys will allow for much stronger
detection of cosmological flexion signals.
Constraints from cosmic flexion in stage III and IV

surveys could allow us to place limits on various models of
poorly understood baryonic effects at small, nonlinear
scales [53]. It has also been proposed that cosmic flexion
could place constraints on primordial non-Gaussianity
using stage IV surveys [54]. Finally, we note that cosmic
flexion may be an interesting probe of modified gravity;
there may exist modified gravity models that deviate from
general relativityþ Λ on small scales that cannot be
detected by cosmic shear or other large-scale cosmological
probes [55].

V. CONCLUSIONS

In this paper, we have formalized a full theory of cosmic
flexion, including flexion-flexion and shear-flexion correla-
tions.Weprovide a full real- andFourier-space treatment of the
cosmic flexion two-point correlation functions. This includes
the previously known signal ξFFþ as well as new signals ξFF

− ,
ξGGþ and ξGG− .We further posit, for the first time, the existence of
a cross-correlation between theF - andG-flexions, ξF→G

� . This
cross-correlation extends to our treatment of the shear-flexion
cross-correlations ξγ→F

� and ξG→γ
� . For the first time, we

demonstrate that there exists noncommutativity in weak
lensing—and in all odd spin-field combinations in general.
Furthermore, we point out that, provided a given object
contains multiple spin fields, generalized two-point cross-
correlations yield twice the information of their autocorrela-
tion counterparts. To our best knowledge, this has never before
been demonstrated or considered.
We have developed measurement techniques for cosmic

flexion that consist of estimators and covariances of the
cosmic flexion-flexion and flexion-shear two-point corre-
lation functions. In calculating the covariance of the
estimators, we fully work out generalized covariance
matrices for all combinations of generalized two-point
correlators of any spin-field combination. We have addi-
tionally presented the results of testing our theoretical
equations by comparing them to measurement of the real-
space correlation functions on a Gaussian random field. To
this end, we have developed the code F-SHARP in order to
handle the computation of all cosmic flexion correlation
functions. We have presented a renormalization to deal with
the nonconvergence of the theoretical correlation function
integrals in ΛCDM cosmologies and also present a tech-
nique for efficient numerical computation.
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Finally, we have presented a forecast for cosmic flexion
measurements in the Dark Energy Survey Y3 field, indicat-
ing that measuring cosmic flexion is currently feasible. We
have also discussed the fact that there is significant cosmo-
logical value that cosmic flexion will be able to offer to the
upcoming era of cosmology, as we seek to further constrain
the large- and small-scale structure of the Universe.

This work makes use of publicly available data from the
Dark Energy Survey, which can be found at: Ref. [56].
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APPENDIX A: DERIVING THE THEORETICAL
TWO-POINT CORRELATION FUNCTIONS

1. Shear-shear

It is well known that one can define the convergence
power spectrum in the following way under the flat-sky
approximation: [12]

hκ̃ðlÞκ̃�ðl0Þi ¼ ð2πÞ2δDðl − l0ÞPκðlÞ; ðA1Þ

where, due to statistical homogeneity and isotropy, the
power spectrum is a function of the modulus of the
two-dimensional multipole vector, l (the Fourier-conjugate
of θ, in the case of flat-sky approximation). Let us
consider the case of cosmic shear. In Fourier space,
the relationship between shear and convergence is given
by [12]

γ̃ðlÞ ¼ l2
1 − l2

2 þ 2il1l2

l2
κ̃ðlÞ ¼ e2iβκ̃ðlÞ; ðA2Þ

where β is the polar angle of l, such that l ¼
ðl1;l2Þ ¼ ðl cos β;l sin βÞ. We notice that

hγ̃ðlÞγ̃�ðl0Þi ¼ e2iðβ−β0Þhκ̃ðlÞκ̃�ðl0Þi
¼ e2iðβ−β0Þð2πÞ2δDðl − l0ÞPκðlÞ: ðA3Þ

Wewill now take the Fourier transform of this. By Eq. (15),
the left-hand side (LHS) of this expression is simply ξγγþðθÞ.
Thus, we have

ξγγþðθÞ ¼
Z

d2l
ð2πÞ2 e

−il·θ
Z

d2l0

ð2πÞ2 hγ̃ðlÞγ̃
�ðl0Þi

¼
Z

d2l
ð2πÞ2 e

−il·θ
Z

d2l0

ð2πÞ2 e
2iðβ−β0Þð2πÞ2

× δDðl − l0ÞPκðlÞ; ðA4Þ

Upon integration about l0, the delta function picks out
l0 ¼ l and β0 ¼ β, leaving us with

ξγγþðθÞ ¼
Z

d2l
ð2πÞ2 e

−il·θPκðlÞ

¼ 1

ð2πÞ2
Z

∞

0

dllPκðlÞ
Z

2π

0

dβe−ilθ cos β: ðA5Þ

The Bessel integral can be expressed as

JnðxÞ ¼
1

π

Z
π

0

dτ cosðnπ − x sin τÞ

¼ 1

2π

Z
π

−π
dτeiðnð−π

2
þτÞþx cos τÞ

¼ in

2π

Z
2π

0

dτe−ix cos τeinτ; ðA6Þ

where the second expression is obtained from the first via
Euler’s formula, and the third expression is obtained from
the second via the substitution of variables τ ⟶ τ þ π and
the relation ðe−iπ=2Þn ¼ in. We therefore obtain the useful
result,

Z
2π

0

dβe−ilθ cos βineinβ ¼ 2πJnðlθÞ: ðA7Þ

Using this expression, Eq. (A5) becomes

ξγγþðθÞ ¼
Z

∞

0

dll
2π

PκðlÞJ0ðlθÞ: ðA8Þ

The next quantity of interest is hγ̃ðlÞγ̃ðl0Þi. First, we note
that

hκ̃ðlÞκ̃ðl0Þi ¼ ð2πÞ2δDðlþ l0ÞPκðlÞ: ðA9Þ

Upon integration, the delta function will pick out l0 ¼ −l,
necessarily implying that κ̃ð−lÞ ¼ κ̃�ðlÞ. Notice that the
shear in Fourier space remains unchanged under the
transformation,

l → −l ⇒ ðl1;l2Þ → −ðl1;l2Þ ¼ −ðl cos β;l sin βÞ;
ðA10Þ
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and hence γ̃ð−lÞ ¼ γ̃ðlÞ. Understanding that the delta
function will be integrated over, we simply note that

hγ̃ðlÞγ̃ð−lÞi ¼ e4iβð2πÞ2PκðlÞ: ðA11Þ

Upon Fourier transformation, making use of Eq. (16), this
expression yields

ξγγ− ðθÞ ¼
1

ð2πÞ2
Z

∞

0

dllPκðlÞ
Z

2π

0

dβe−ilθ cos βe4iβ

¼
Z

∞

0

dll
2π

PκðlÞJ4ðlθÞ: ðA12Þ

2. Flexion-flexion

In Fourier space, the relationship between F -flexion and
convergence is given by [23]

F̃ ðlÞ ¼ ðil1 − l2Þκ̃ðlÞ ¼ ileiβκ̃ðlÞ: ðA13Þ

Following the same lines as for cosmic shear, we can obtain
a similar expression for F -flexion,

hF̃ ðlÞF̃ �ðl0Þi ¼ ll0hκ̃ðlÞκ̃�ðl0Þi
¼ ð2πÞ2δDðl − l0Þll0PκðlÞ: ðA14Þ

Again, upon integration about l0, the delta function picks
out l0 ¼ l and β0 ¼ β. Noting this, we can simply write

hF̃ ðlÞF̃ �ðlÞi ¼ ð2πÞ2PF ðlÞ; ðA15Þ

where we have used Eq. (7). Next, we take a Fourier
transform of this expression, which leaves us with

ξFFþ ðθÞ ¼ 1

ð2πÞ2
Z

∞

0

dllPF ðlÞ
Z

2π

0

dβe−ilθ cos β

¼
Z

∞

0

dll
2π

PF ðlÞJ0ðlθÞ: ðA16Þ

Unlike shear, F -flexion changes sign in Fourier space
under the transformation l → −l [see Eq. (A13)],
such that F̃ ð−lÞ ¼ −F̃ ðlÞ. Hence, for the quantity
hF̃ ðlÞF̃ ðl0Þi, we have

hF̃ ðlÞF̃ ð−lÞi ¼ ð2πÞ2l2e2iβPκðlÞ ¼ ð2πÞ2e2iβPF ðlÞ:
ðA17Þ

Taking a Fourier transform of this expression leaves us with

ξFF
− ðθÞ ¼ 1

ð2πÞ2
Z

∞

0

dllPF ðlÞ
Z

2π

0

dβe−ilθ cos βe2iβ

¼ −
Z

∞

0

dll
2π

PF ðlÞJ2ðlθÞ: ðA18Þ

In Fourier space, the relationship between G-flexion and
convergence is given by

G̃ðlÞ ¼ il3
1 − 3il1l2

2 − 3l2
1l2 þ l3

2

l2
κ̃ðlÞ ¼ ile3iβκ̃ðlÞ:

ðA19Þ

From here, it is straightforward to derive expressions for
ξGG� ðθÞ. However, there is an additional complication for
F − G cross-correlations. If we analyze the expression
hF̃ ðlÞG̃�ðl0Þi, its Fourier transform is not simply given
by Eq. (15). Since G0

1 and G
0
2 have a sign difference relative

to the definitions of F 0
1 and F

0
2 [see Eqs. (13) and (14)], the

Fourier transform of hF̃ ðlÞG̃�ðl0Þi is actually −ξF→G
þ ðθÞ.

We have

hF̃ ðlÞG̃�ðl0Þi ¼ ll0eiðβ−3β0Þhκ̃ðlÞκ̃�ðl0Þi
¼ ð2πÞ2δDðl − l0Þll0eiðβ−3β0ÞPκðlÞ:

ðA20Þ
Again, upon integration about l0, the delta function picks
out l0 ¼ l and β0 ¼ β. Noting this, we can simply write

hF̃ ðlÞG̃�ðlÞi ¼ ð2πÞ2l2e−2iβPF ðlÞ: ðA21Þ

As we stated earlier, the Fourier transform of the LHS is the
negative of Eq. (15):

−ξF→G
þ ðθÞ ¼ 1

ð2πÞ2
Z

∞

0

dllPF ðlÞ
Z

2π

0

dβe−ilθ cos βe−2iβ

¼ −
Z

∞

0

dll
2π

PF ðlÞJ2ðlθÞ; ðA22Þ

and therefore

ξF→G
þ ðθÞ ¼

Z
∞

0

dll
2π

PF ðlÞJ2ðlθÞ: ðA23Þ

G-flexion changes sign in Fourier space under the trans-
formation l → −l [see Eq. (A19)], such that
G̃ð−lÞ ¼ −G̃ðlÞ. Hence, for the quantity hF̃ ðlÞG̃ðl0Þi,
we have

hF̃ ðlÞG̃ð−lÞi ¼ ð2πÞ2l2e4iβPκðlÞ ¼ ð2πÞ2e4iβPF ðlÞ:
ðA24Þ
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Taking a Fourier transform of this expression leaves us with

−ξF→G
− ðθÞ ¼ 1

ð2πÞ2
Z

∞

0

dllPF ðlÞ
Z

2π

0

dβe−ilθ cos βe4iβ

¼
Z

∞

0

dll
2π

PF ðlÞJ4ðlθÞ; ðA25Þ

and therefore,

ξF→G
− ðθÞ ¼ −

Z
∞

0

dll
2π

PF ðlÞJ4ðlθÞ: ðA26Þ

One can also compute hG̃ðlÞF̃ �ðlÞi and hG̃ðlÞF̃ ð−lÞi,
which leads to the result ξG→F

� ðθÞ ¼ ξF→G
� ðθÞ.

3. Shear-flexion

Let us consider the correlation γ → F . First,

hγ̃ðlÞF̃ �ðl0Þi ¼ −il0e2iβ−iβ0 hκ̃ðlÞκ̃�ðl0Þi
¼ −ð2πÞ2δDðl − l0Þil0eið2β−β0ÞPκðlÞ:

ðA27Þ

Again, upon integration about l0, the delta function picks
out l0 ¼ l and β0 ¼ β. Noting this, we can simply write

hγ̃ðlÞF̃ �ðlÞi ¼ −ð2πÞ2ieiβPκF ðlÞ; ðA28Þ

where we have made use of Eq. (9). Taking the Fourier
transform of this yields

ξγ→F
þ ðθÞ ¼ −

1

ð2πÞ2
Z

∞

0

dllPκF ðlÞ
Z

2π

0

dβe−ilθ cos βieiβ

¼ −
Z

∞

0

dll
2π

PκF ðlÞJ1ðlθÞ: ðA29Þ

Next, we consider hγ̃ðlÞF̃ ðl0Þi. After dropping the delta
function, we have

hγ̃ðlÞF̃ ð−lÞi ¼ ð2πÞ2ie3iβPκF ðlÞ: ðA30Þ

The Fourier transform gives us,

ξγ→F
− ðθÞ ¼ 1

ð2πÞ2
Z

∞

0

dllPκF ðlÞ
Z

2π

0

dβe−ilθ cos βie3iβ

¼
Z

∞

0

dll
2π

PκF ðlÞJ3ðlθÞ: ðA31Þ

Finally, one can compute hF̃ ðlÞγ̃�ðlÞi and hF̃ ðlÞγ̃ð−lÞi,
which leads to the result ξF→γ

� ðθÞ ¼ −ξγ→F
� ðθÞ. Similarly,

one can compute the expressions for the G-γ correlations.

APPENDIX B: COSMIC FLEXION
COVARIANCES

Here we calculate the generalized covariance matrices of
two generalized two-point correlation function estimators,
ξ̂ab� and ξ̂cd� , across two different angular separations θx and
θy, where a, b, c, and d, are four different spin fields. We
will not present a closed-form solution here—rather, we
work through the steps necessary to compute individual
terms. We follow the analysis of Ref. [40], generalized to
arbitrary estimators.
We begin with the “þþ” and “−−” covariances,

Covðξ̂ab� ; θx; ξ̂
cd
� ; θyÞ

¼ hðξ̂ab� ðθxÞ − ξab� ðθxÞÞðξ̂cd� ðθyÞ − ξcd� ðθyÞÞi: ðB1Þ

The first term we must evaluate is

hξ̂ab� ðθxÞξ̂cd� ðθyÞi ¼
1

NpðθxÞNpðθyÞ
X
i;j>i

X
k;l>k

wiwjwkwl

× hða0oi1b0oj1 � a0oi2b
0o
j2Þ

× ðc0oi1d0oj1 � c0oi2d
0o
j2ÞiΔθxðijÞΔθyðklÞ;

ðB2Þ

where we have used the definition of the estimators given
by Eq. (39). Now, it is necessary to work in terms of the
unrotated coordinate system. We will demonstrate that we
can relate the component lensing two-points haiαbjβi to the
correlation functions in a simple way, whereas it is not
convenient to do so in the rotated formalism. Notice that we
can simply invert Eq. (10) to obtain (up to a factor of
csgn½ð−iÞsa �, which we take to simply be −1 here for
simplicity),

�
a1
a2

�
¼ −

�
cos saφ − sin saφ

sin saφ cos saφ

��
a01
a02

�
: ðB3Þ

Using this transformation, we find that
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hða0oi1b0oj1 � a0oi2b
0o
j2Þðc0oi1d0oj1 � c0oi2d

0o
j2Þi

¼ hðaoi1boj1 cosðsa ∓ sbÞφij þ aoi2b
o
j1 sinðsa ∓ sbÞφij ∓ aoi1b

o
j2 sinðsa ∓ sbÞφij � aoi2b

o
j2 cosðsa ∓ sbÞφijÞ

× ðcok1dol1 cosðsc ∓ sdÞφkl þ cok2d
o
l1 sinðsc ∓ sdÞφkl ∓ cok1d

o
l2 sinðsc ∓ sdÞφkl � cok2d

o
l2 cosðsc ∓ sdÞφklÞi

¼ haoi1boj1cok1dol1i cosðsa ∓ sbÞφij cosðsc ∓ sdÞφkl þ haoi1boj1cok2dol1i cosðsa ∓ sbÞφij sinðsc ∓ sdÞφkl

∓ haoi1boj1cok1dol2i cosðsa ∓ sbÞφij sinðsc ∓ sdÞφkl � haoi1boj1cok2dol2i cosðsa ∓ sbÞφij cosðsc ∓ sdÞφkl

þ haoi2boj1cok1dol1i sinðsa ∓ sbÞφij cosðsc ∓ sdÞφkl þ haoi2boj1cok2dol1i sinðsa ∓ sbÞφij sinðsc ∓ sdÞφkl

∓ haoi2boj1cok1dol2i sinðsa ∓ sbÞφij sinðsc ∓ sdÞφkl � haoi2boj1cok2dol2i sinðsa ∓ sbÞφij cosðsc ∓ sdÞφkl

∓ haoi1boj2cok1dol1i sinðsa ∓ sbÞφij cosðsc ∓ sdÞφkl ∓ haoi1boj2cok2dol1i sinðsa ∓ sbÞφij sinðsc ∓ sdÞφkl

þ haoi1boj2cok1dol2i sinðsa ∓ sbÞφij sinðsc ∓ sdÞφkl − haoi1boj2cok2dol2i sinðsa ∓ sbÞφij cosðsc ∓ sdÞφkl

� haoi2boj2cok1dol1i cosðsa ∓ sbÞφij cosðsc ∓ sdÞφkl � haoi2boj2cok2dol1i cosðsa ∓ sbÞφij sinðsc ∓ sdÞφkl

− haoi2boj2cok1dol2i cosðsa ∓ sbÞφij sinðsc ∓ sdÞφkl þ haoi2boj2cok2dol2i cosðsa ∓ sbÞφij cosðsc ∓ sdÞφkl: ðB4Þ

Next, we need to calculate the four-point correlation functions of the observed fields. We can generalize these sixteen
permutations to haoiαbojβcokμdolνi, where the greek letters ∈ f1; 2g. Using Eq. (38), we see that

haoiαbojβcokμdolνi ¼ hðasiα þ aiαÞðbsjβ þ bjβÞðcskμ þ ckμÞðdslν þ dlνÞi: ðB5Þ

Now, using Eq. (41) and noting that since there is no preferred direction on average for intrinsic fields, then

hasiαbsjβi ¼
σ2ab
2

δijδαβ ¼
σaσb
2

δijδαβ: ðB6Þ

Then, since hasiαbsjβckμdlνi ¼ hasiαbsjβihckμdlνi ¼ ð1=2Þσ2abδijδαβhckμdlνi, and further noting that only terms of even power
in as and a survive, we are left with

haoiαbojβcokμdolνi ¼ hasiαbsjβcskμdslνi þ
σ2ab
2

δijδαβhckμdlνi þ
σ2bd
2

δjlδβνhaiαckμi þ
σ2bc
2

δjkδβμhaiαdlνi

þ σ2ad
2

δilδανhbjβckμi þ
σ2ac
2

δikδαμhbjβdlνi þ
σ2cd
2

δklδμνhaiαbjβi þ haiαbjβckμdlνi: ðB7Þ

Next, let us consider the four-point functions of the intrinsic and the lensing fields. We assume that both are Gaussian, so
that the four-point function can be written as a sum over products of two-point functions. Even without the assumption of
the intrinsic field being Gaussian, we can note that the four-point function of the intrinsic fields factorizes, since at most two
of the indices i, j, k, l are equal. Therefore, the intrinsic four-point function becomes

hasiαbsjβcskμdslνi ¼ hasiαbsjβihcskμdslνi þ hasiαcskμihbsjβdslνi þ hasiαdslμihbsjβcskμi

¼ σ2abσ
2
cd

4
ðδijδαβδklδμνÞ þ

σ2acσ
2
bd

4
ðδikδαμδjlδβνÞ þ

σ2adσ
2
bc

4
ðδilδανδjkδβνÞ: ðB8Þ

Before analyzing the lensing four-point, we note that some of the terms in the above expressions can be dropped. The
summations in Eq. (B2) require j > i and l > k, so we can simply drop terms that contain δij and/or δkl. Also in the
summation, it is possible to have k ¼ i, k > i, and k < i.22 Therefore, terms where i ¼ l and j ¼ k individually survive;

22One may be tempted here to only compute the upper or lower triangle of the covariance matrix, and for example require k ≥ i in the
summation. While this is reasonable for e.g., the shear-shear covariance matrices, it is not advisable in general. This is because
the generalized covariance matrices are not symmetric about the diagonal. This can be demonstrated in the case of two angular bins. The
covariance matrix elements would be of the form ðabðθ1Þcdðθ1Þ; abðθ2Þcdðθ2ÞÞ along the diagonal, and ðabðθ1Þcdðθ2Þ; abðθ2Þcdðθ1ÞÞ
off the diagonal. These off diagonal terms are equal only in the case c ¼ a and d ¼ b.
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however, the requirements j > i and l > k require that we can never simultaneously have i ¼ l and j ¼ k, so the product
δilδjk vanishes in the sum. Dropping these terms, and expanding the lensing four-point in the sameway as the intrinsic four-
point, we are left with

haoiαbojβcokμdolνi ¼
σ2acσ

2
bd

4
ðδikδαμδjlδβνÞ þ

σ2bd
2

δjlδβνhaiαckμi þ
σ2bc
2

δjkδβμhaiαdlνi þ
σ2ad
2

δilδανhbjβckμi

þ σ2ac
2

δikδαμhbjβdlνi þ haiαbjβihckμdlνi þ haiαckμihbjβdlνi þ haiαdlμihbjβckμi: ðB9Þ

The next step is to express these two-point functions in terms of the correlation functions. Using Eqs. (15), (16), and (B3),
and noting that terms of the form ha0i1b0j2i vanish due to parity in the rotated coordinate system, we find that

hai1bj1i ¼
1

2
fξabþ ðijÞ cos ½ðsa − sbÞφij� þ ξab− ðijÞ cos ½ðsa þ sbÞφij�g

hai2bj2i ¼
1

2
fξabþ ðijÞ cos ½ðsa − sbÞφij� − ξab− ðijÞ cos ½ðsa þ sbÞφij�g

hai1bj2i ¼
1

2
f−ξabþ ðijÞ sin ½ðsa − sbÞφij� þ ξab− ðijÞ sin ½ðsa þ sbÞφij�g: ðB10Þ

The second and third covariance terms we must evaluate are

hξab� ðθxÞξ̂cd� ðθyÞi ¼
1

NpðθyÞ
X
k;l>k

wkwlhða0i1b0j1 � a0i2b
0
j2Þðc0oi1d0oj1 � c0oi2d

0o
j2ÞiΔθyðklÞ

hξ̂ab� ðθxÞξcd� ðθyÞi ¼
1

NpðθxÞ
X
i;j>i

wiwjhða0oi1b0oj1 � a0oi2b
0o
j2Þðc0i1d0j1 � c0i2d

0
j2ÞiΔθxðijÞ: ðB11Þ

Consider expanding the expectation value in these terms. They are simply Eq. (B4) with the replacements ðao → a; bo → bÞ
and ðco → c; do → dÞ, respectively. For each of these covariance terms, only the lensing four-point functions survive in the
generalized terms. This is because we drop terms that are not even in as, and we also drop terms where l ¼ k and j ¼ i,
which appear in the second and third covariance terms, respectively. After ignoring these terms, we are left with

haiαbjβcokμdolνi ¼ haoiαbojβckμdlνi ¼ haiαbjβihckμdlνi þ haiαckμihbjβdlνi þ haiαdlμihbjβckμi: ðB12Þ

Finally, the fourth covariance term is

hξab� ðθxÞξcd� ðθyÞi ¼ hða0i1b0j1 � a0i2b
0
j2Þðc0i1d0j1 � c0i2d

0
j2Þi: ðB13Þ

Expanding this term gives us Eq. (B4) with the replacement ðao → a; bo → b; co → c; do → dÞ. Again, the only
generalized term that survives is the lensing four-point function.
Finally, there also exists the “þ−” covariance,

Covðξ̂abþ ; θx; ξ̂
cd
− ; θyÞ ¼ hðξ̂abþ ðθxÞ − ξabþ ðθxÞÞðξ̂cd− ðθyÞ − ξcd− ðθyÞÞi; ðB14Þ

where the first covariance term is

hξ̂ab� ðθxÞξ̂cd� ðθyÞi ¼
1

NpðθxÞNpðθyÞ
X
i;j>i

X
k;l>k

wiwjwkwlhða0oi1b0oj1 þ a0oi2b
0o
j2Þðc0oi1d0oj1 − c0oi2d

0o
j2ÞiΔθxðijÞΔθyðklÞ: ðB15Þ

Using the transformation in Eq. (B3), we find that
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hða0oi1b0oj1 þ a0oi2b
0o
j2Þðc0oi1d0oj1 − c0oi2d

0o
j2Þi ¼ hðaoi1boj1 cosðsa − sbÞφij þ aoi2b

o
j1 sinðsa − sbÞφij − aoi1b

o
j2 sinðsa − sbÞφij

þ aoi2b
o
j2 cosðsa − sbÞφijÞðcok1dol1 cosðsc þ sdÞφkl þ cok2d

o
l1 sinðsc þ sdÞφkl

þ cok1d
o
l2 sinðsc þ sdÞφkl − cok2d

o
l2 cosðsc þ sdÞφklÞi: ðB16Þ

We note that the remaining calculation follows the same lines as before.
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