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As cosmological data have improved, tensions have arisen. One such tension is the difference between
the locally measured Hubble constant H0 and the value inferred from the cosmic microwave background
(CMB). Interacting radiation has been suggested as a solution, but studies show that conventional models
are precluded by high-l CMB polarization data. It seems at least plausible that a solution may be provided
by related models that distinguish between high- and low-l multipoles. When interactions of strongly-
coupled radiation are mediated by a force carrier that becomes nonrelativistic, the dark radiation undergoes
a “step” in which its relative energy density increases as the mediator deposits its entropy into the lighter
species. If this transition occurs while CMB-observable modes are inside the horizon, high- and low-l
peaks are impacted differently, corresponding to modes that enter the horizon before or after the step. These
dynamics are naturally packaged into the simplest supersymmetric theory, the Wess-Zumino model, with
the mass of the scalar mediator near the eV scale. We investigate the cosmological signatures of such Wess-
Zumino dark radiation (WZDR) and find that it provides an improved fit to the CMB alone, favoring larger
values ofH0. If supernovae measurements from the SH0ES Collaboration are also included in the analysis,
the inferred value of H0 is yet larger, but the preference for dark radiation and the location of the transition
is left nearly unchanged. Utilizing a standardized set of measures, we compare to other models and find that
WZDR is among the most successful at addressing theH0 tension and is the best of those with a Lagrangian
formulation.
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I. INTRODUCTION

The first results from WMAP harkened the arrival of
the era of precision cosmology. The many telescopes—
terrestrial and orbital—since then have allowed us to test
the detailed nature of the evolution of the Universe. While
this has given us incredibly precise measurements of the
parameters of ΛCDM, it has also allowed us to study
whether small deviations from standard cosmology might
appear.
As the data have come in, some tensions have begun to

emerge. The most notable of these is the disagreement
between the value of H0 inferred from Planck observations
of the CMB [1] and the value extracted from late-Universe
supernovae data by the SH0ES Collaboration [2]. Indeed, it
has been argued that the early-Universe inferred value
shows a clear distinction from a broad set of late-Universe
measurements [2–9].1 At the same time, there is a well-
known, smaller tension with ΛCDM within the Planck
CMB data itself; compared to the low-l multipoles, the

high-l multipoles in the TT power spectrum prefer smaller
values of H0 (and larger values of the matter density
Ωmh2) [1,11].
There is no clear solution to these tensions. It has been

argued that the discrepancy in H0 is due to a deviation in
the sound horizon of ΛCDM [12,13]. As a consequence,
many proposed solutions involve the addition of new
components to the cosmological energy density before
matter-radiation equality, which has the effect of decreasing
the sound horizon at the time of recombination, thus
increasing the Hubble rate inferred from the CMB (see,
e.g., Refs. [14–27] for a representative set). Additional
radiation is one such possibility [12,15–18], although at the
cost of suppressing power at high multipoles of the CMB
due to enhanced Silk damping [28]. The situation is
worsened if this radiation is free streaming, since in this
case the acoustic peaks in the CMB angular power
spectrum are additionally suppressed in their amplitude
as well as shifted in their location to smaller multipoles by
the so-called drag effect [29–31]. The drag effect is
significantly suppressed if the radiation is instead strongly
coupled to itself, which allows for a more sizable shift to
the sound horizon in models of interacting radiation.
However, high-l polarization measurements of the CMB

1There are a variety of measurements of H0, including
alternative calibrations of supernovae. To directly compare to
Ref. [10], we focus on the H0 value inferred from SH0ES [2].
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disfavor models involving enough additional radiation to
substantially increase H0 [12,15–17], leaving an open
question of whether such basic frameworks can help
explain the data.
Motivated by the low- versus high-l determinations of

ΛCDM parameters and the incompatibility of substantial
amounts of interacting radiation with high-l polarization
data, we examine in this paper an l-dependent solution to
the Hubble tension. Specifically, we seek to understand
whether cosmological and astrophysical data favor
strongly-coupled radiation with a mass threshold near
the eV scale, which increases the relative density in such
radiation at late times. Our main result is that including
such “stepped” dark radiation does significantly improve
the combined fit to CMB, BAO, and SH0ES data while not
degrading the fit to the CMB and BAO. We find that when
fit to a dataset including CMB and BAO (but no direct
late-Universe measurements of H0), our model predicts
H0 ¼ ½67.6; 70.9� km=s=Mpc at 90% confidence (in
good agreement with Ref. [3]) and reduces the 4.5σ
tension between ΛCDM and SH0ES to 2.7σ. To further
quantify the ability of the model to resolve the tension, we
apply the “H0 Olympics” measures defined in Ref. [10]
and find that it is the only concrete particle physics
model (with a Lagrangian) that passes the established
rubric in all three Olympic criteria (thus qualifying for a
“gold medal”).
In Sec. II we describe the overall setup and outline the

basic physics of a stepped dark sector, finding that it
naturally fits into the simplest supersymmetric model, the
Wess-Zumino model. In Sec. III we describe the effects of a
mass threshold on the CMB. In Sec. IV we perform various
fits to the data, both including and not including late-time
determinations ofH0. In Sec. V we generalize this model to
one with a larger set of parameters that allows for a broader
consideration of other related theories. Finally, in Sec. VI
we discuss how this model is favored by the data and
conclude. We also provide two appendices that include
details of our implementation of the mass threshold and a
full set of posterior densities and best-fit cosmological
parameters as determined by our MCMC analysis.

II. A MODEL OF STEPPED DARK RADIATION

Constructing a model of interacting radiation a priori is
not difficult. AWeyl fermion ψ and complex scalar ϕ that
interact through a Yukawa coupling, λψ2ϕ, provide a
compact and economical model of interacting radiation.
Scalars are naturally massive with masses near the cutoff of
the effective theory, and thus integrating out ϕ yields a four-
fermion operator, λ2ψ4=m2

ϕ. Requiring these interactions to
be faster than a Hubble time at recombination bounds the
mass of the scalar from above, mϕ=λ≲MeV (assuming
that the dark radiation temperature Td is comparable to the
neutrino temperature). The presence of a light scalar (which

is not a Goldstone boson), while efficient practically, is
conceptually incomplete and calls for additional physics to
stabilize its mass.
Remarkably, the above picture follows from the simplest

possible supersymmetric model, the Wess-Zumino model
[32], which has the benefit of automatically controlling the
scalar mass. The fermion and scalar components of a single
superfield X with a superpotential coupling W ¼ ðλ=3ÞX3

yields the Lagrangian

LWZ ¼ λϕψ2 þ λ2ðϕ�ϕÞ2: ð1Þ

We refer to this specific model as Wess-Zumino dark
radiation or WZDR.
Since supersymmetry cannot be exact in nature, we

expect an additional scalar mass m2
ϕϕ

�ϕ, which may
be generated from interactions with, e.g., the Standard
Model. Even without couplings to the Standard Model,
gravity will naturally generate scalar masses of order
mϕ ∼ ðMSUSYÞ2=MPl, where MSUSY is the fundamental
supersymmetry breaking scale and MPl is the Planck mass.
For example, in low-scale gauge mediation [33,34]
MSUSY ∼ 100 TeV and intriguingly the scalar mass is
comparable to the temperature of the photon-baryon
plasma at recombination, mϕ ∼ 1 eV.2 Current and future
measurements of the CMB are and will be sensitive to
new relativistic species during the epoch when the temper-
ature of the baryon-photon plasma was Tγ ∼ ð0.5–50Þ eV.
This happy coincidence, that supersymmetric models
of interacting radiation often predict a mass threshold
that occurs within a detectable epoch, makes them dis-
tinguishable from conventional models of strongly-coupled
radiation.
This then presents a physical picture as follows;

some process (examples of which we will discuss below)
produces an amount of interacting radiation consisting of ψ
and ϕ particles with an energy density equivalent to NUV
additional neutrino species after big bang nucleosynthesis
(BBN). When the temperature of this sector drops below
mϕ, the scalars deposit their entropy into the lighter ψ
species as decays and annihilations between ϕ and ψ
maintain chemical and kinetic equilibrium. For temper-
atures not too far below mϕ, the fluid is a mixture of both
massive and massless particles such that its energy density
redshifts more slowly than that of the relativistic neutrinos.
As a result, over a period of time spanning approximately a
decade in redshift, the relative energy density of the fluid,
as quantified by the effective number of additional neu-
trinos species NðzÞ, increases to a value NIR > NUV. The
size of this increase follows from conservation of comoving
entropy, which gives

2If X is sequestered from SUSY breaking, anomaly mediation
[35,36] generates a scalar mass mϕ ∼ λ2=ð16π2ÞM2

SUSY=MPl.
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NIR

NUV
¼

�
gϕ� þ gψ�

gψ�

�1=3

¼
�
15

7

�
1=3

≃ 1.29; ð2Þ

where gϕ;ψ� is the effective number of relativistic degrees of
freedom in ϕ, ψ , respectively.3 We refer to this general
picture in which the radiation density increases as a
“stepped” model, because the effective amount of interact-
ing radiation relative to neutrinos at the same epoch, NðzÞ,
increases from NUV at large redshift z to NIR at low z as the
fluid transitions through the mass threshold. This model is
parametrized by two quantities—NIR, the amount of
interacting radiation at late times, and zt, the redshift at
which the transition occurs (see Appendix A for the precise
definition of zt). The amount of interacting radiation at
early times NUV is determined by Eq. (2). Note that at
temperatures well below mϕ, when the thermal abundance
of ϕ is exponentially suppressed, the remaining fermions ψ
continue to interact via the four-Fermi interaction mediated
by virtual ϕ’s. Due to the small ϕ mass, this interaction rate
naturally remains much larger than the Hubble rate well
into the era of matter domination, implying that the
remaining ψ particles continue to behave as a perfect fluid.
The transition from NUV → NIR is not instantaneous, but

rather occurs over a period of time. As the temperature Td
drops below the mass of ϕ, its energy density becomes
exponentially suppressed. Entropy conservation dictates
how Td and the energy density of the dark sector evolve
as a function of the scale factor.Wenote that simplymapping
between two relativistic fluids before and after the transition
is not enough to understand the detailed evolution of its
perturbations. During the transition the fluid is a mixture of
massive andmassless particles; consequently, its equation of
state w lies somewhere between that of a massive (w ¼ 0)
and massless (w ¼ 1=3) particle. Likewise, the deviation of
the sound speed cs away from that of a relativistic fluid value
(c2s ¼ 1=3) during the transition leaves a non-negligible
imprint at the level of cosmological perturbations. Since the
transition occurs while ϕ and ψ are chemically coupled, we
use entropy conservation to numerically determine the dark
sector temperature as a function of redshift,TdðzÞ, which can
then be used as an input to calculate the redshift evolution of
N,w, and c2s , as shown in Fig. 1. Further details are provided
in Appendix A.

III. THE EFFECTS OF A STEP ON THE CMB

Before delving into a global analysis of the impact of
WZDR on the data, let us briefly summarize the imprints of
a stepped fluid on the CMB (for a discussion of stepped

fluids with earlier transitions and their effects on BBN, see
Ref. [37]). Perhaps the simplest comparison to make is
between a stepped and unstepped interacting fluid in which
late-Universe parameters are matched. This is illustrated in
Fig. 2, which shows the relative change in the CMB angular

FIG. 1. A representative example of the redshift dependence of
the effective number of additional neutrinos N (dashed black,
left-axis), the equation of state w (solid red, right axis), and the
speed of sound c2s (dotted red, right axis) for a strongly-coupled
WZDR fluid that transitions at a redshift of zt ¼ 2 × 104.

FIG. 2. (Top) The relative change to the EE spectrumΔCEE
l =CEE

l
between the WZDR model and a reference SIDR model for a
variety of step locations zt. (Bottom) The shift to the position of the
peaks Δlpeak in the EE power spectrum as a function of l for the
same choices of zt. In each case, we plotted the lensed spectrum for
the ΛCDM parameters H0 ¼ 71.35 km=s=Mpc, ωb ¼ 0.02272,
ωCDM ¼ 0.1288, τreio ¼ 0.0586, Nν ¼ 3.044,

P
mν ¼ 0.06 eV,

Yp ¼ 0.2455, and the energy density in the new fluid isNIR ¼ 0.6.
The effects are qualitatively similar for the TT spectrum.

3Equation (2) quickly follows from the fact that conservation
of entropy implies that below the mass threshold, the fluid
temperature (relative to the neutrino bath) increases by a factor of
ð1þ gϕ�=g

ψ
� Þ1=3, whereas the number of relativistic degrees of

freedom decreases by gψ� =ðgψ� þ gϕ� Þ.
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power spectrum ΔCl=Cl (top panel) and the change in the
CMB peak positionΔlpeak (bottom panel) between a model
in which the energy density of interacting fluid transitions
as NUV → NIR at a redshift zt, and a reference model in
which the energy density of interacting fluid is always NIR.
In this comparison, we match all other cosmological input
parameters, such as ΩΛ, Ωm, and Yp. We refer to the
reference model as self-interacting dark radiation or SIDR.
In the top panel of Fig. 2, the most striking feature in
ΔCl=Cl is a qualitative transition from rapid oscillations at
high l to almost no oscillations at low l. We also note
that this transition occurs at higher l for models with
earlier steps (larger zt). These rapid oscillations are indica-
tive of a shift in the locations of the high-l CMB peaks.
This is made explicit in the bottom panel of Fig. 2 which
shows the shift of the CMB peaks in the model with a
step relative to the peak locations in the SIDR reference
model. Note that there is no sizeable shift in the position of
the low-l multipoles, whereas the relative shift to the
position of the high-l modes increases approximately
linearly with l.
The qualitatively different behavior of high vs low l is

due to the different evolution of modes which cross the
horizon before and after the step. As we will show below,
the locations of the acoustic peaks are sensitive to the
expansion rate at the time when the corresponding modes
enter the horizon. Low-l modes which enter after the step
experience the same Hubble rate as the corresponding
modes in the reference SIDR model. In contrast, high-l
modes which enter before the step experience a smaller
expansion rate at horizon crossing, which shifts the
corresponding peaks towards smaller l.
It is straightforward to analytically derive the shift of the

peak locations for transitions which happen well before
matter-radiation equality. Readers less interested in this
derivation are encouraged to skip the remainder of this
section. The main results are Eqs. (6) and (7) for the phase
shift. Assuming transitions well before equality, we can
ignore the contributions of the matter density to both the
Hubble parameter and the gravitational potentials during
horizon crossing for all modes of interest. For modes that
enter either well before or well after the transition, NðzÞ is a
constant at horizon crossing, in which case one can show
that the photon number overdensity per coordinate volume
dγ is constant before horizon crossing (in conformal
Newtonian gauge) [29,30]. Moreover, the Einstein equation
involving the photon-baryon velocity, supplemented with
the continuity equation (see, e.g., Eqs. (23b) and (30) of
Ref. [38]), yields the initial condition for the conformal
time derivative of dγ . The superhorizon initial conditions
for the photon perturbation are therefore

dγ ¼ −3ζ; _dγ ¼ −
1

2
k2H−1Φ; ð3Þ

where ζ is the primordial curvature perturbation, H is the
conformal Hubble parameter, and Φ is the gravitational
potential in the notation of Ref. [30]. For low-k modes
which enter the horizon well after the step, the initial
conditions in Eq. (3) are therefore identical to the initial
conditions in the reference SIDRmodel. Furthermore, since
the WZDR and SIDR models employ identical cosmologi-
cal parameters, the poststep evolution of the perturbations
is also identical. Therefore, there is no shift to the peak
locations for such low-l modes when comparing these two
models.
On the other hand, large-k modes enter the horizon well

before the step, i.e., at a time when the amount of fluid is
less than in the reference model. Therefore, these modes
experience a slower expansion rate before and during
horizon crossing than for the same modes in the SIDR
model. After horizon crossing, the gravitational potential
decays quickly, effectively suppressing any direct impact
that the stepped fluid has on the evolution of the photon
perturbations. However, the slower expansion rate encoun-
tered by such photon perturbations means that they undergo
a larger phase evolution until the step is completed. The
resulting phase shift is proportional to the wave number k
as well as the difference in conformal time Δτ, as defined
below in Eq. (6).
To derive Δτ we begin by observing that the perturbation

equations are usually written as differential equations with
derivatives with respect to conformal time τ and coeffi-
cients which depend on H. To solve the equations one
usually begins by substituting H ¼ τ−1 and integrating.
This relation follows from integrating the Friedmann
equations, which during radiation domination and for
constant NðzÞ yield

τðzÞ ¼ H−1ðzÞ þ C; ð4Þ

where C is an integration constant. This integration con-
stant corresponds to the origin of the conformal time and is
arbitrary, a reflection of the time translation invariance of
the perturbation and Friedmann equations. Making the
customary choice C ¼ 0 then implies limz→∞τ ¼ 0 and
H ¼ τ−1. We will follow this convention for the reference
SIDR model. In order to make the comparison simple, we
choose C for the WZDR model such that at late times both
models have the same conformal time τ at fixed z. Using
this boundary condition, we find

H−1ðzÞ ¼
�
τðzÞ z ≪ zt
τðzÞ þ Δτ z ≫ zt;

ð5Þ

in the WZDRmodel, such thatΔτ is the calculable constant

Δτ ¼
Z

∞

z�
dz

�
1

HWZDRðzÞ
−

1

HSIDRðzÞ
�
; ð6Þ
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whereHWZDR;SIDR is the Hubble parameter in the WZDR or
SIDR model, respectively. Note that HWZDR ¼ HSIDR after
the step, so that the integrand vanishes for redshifts
between recombination at z� and the step. Matching onto
the superhorizon solutions of Eq. (3), the well-known
solution for the photon perturbation inside the horizon
takes the form

dγðzÞ ∝
�
cos½cγkτðzÞ� ðk ≪ ktÞ
cos½cγkðτðzÞ þ ΔτÞ� ðk ≫ ktÞ;

ð7Þ

where cγ ≃ 1=
ffiffiffi
3

p
is the speed of sound of the photon fluid

and kt is defined as the wave number of a mode that enters
the horizon during the transition. This solution neglects the
drag effect contribution from the gravitational potentials
[29,30], which modifies both the phase and amplitude of dγ
and gives rise to subleading effects.
From Eq. (7), we see that the photon perturbations for

small-k modes (k ≪ kt) are now manifestly identical to
those of the reference SIDR model, whereas the high-k
modes have a phase shift at recombination approximately
given by cγkΔτ. Since low and high k correspond to low
and high l, respectively, we see that Eq. (7) qualitatively
reproduces the low and high l limits of the phase shift
shown in the bottom panel of Fig. 2; low-l modes have no
phase shift whereas high-l modes have a phase shift given
by Δl=l ¼ Δk=k ¼ −Δτ=τ�. We note that this phase shift
can be removed by adjustingH0 to keep the angular size of
the sound horizon θs fixed between the two models.4

However, this amounts to introducing a corresponding
phase shift at low l. Indeed, the l-dependent signature
of a stepped fluid is distinct from a modification to the
angular scale of the sound horizon at recombination.
The picture described above holds qualitatively even

when matter effects are non-negligible at the time of the
transition. For small-k modes, which enter the horizon well
after the step, the conformal time difference between
horizon entry and recombination is the same as in the
SIDR model, and thus the small-k modes of both the
WZDR and the SIDR models possess the same phase
evolution. On the contrary, large-k modes that enter the
horizon well before the step experience a different expan-
sion rate, and thus have more time to evolve between
horizon entry until the time of recombination.
In the next section, we directly confront the data and find

that the WZDRmodel is preferred compared to ΛCDM and
previously studied models of SIDR. In fact, a fit to the
CMB and BAO prefers a step location near zt ≃ 2 × 104,
the redshift at which multipoles of l ∼ 103 reenter the
horizon.

IV. COSMOLOGICAL IMPRINTS OF WZDR

To understand the implications of this scenario, we
perform a fit of various models to a range of cosmological
data. We use a modified version of standard CLASS v2.9
[39] (implementing the fluid as described in Appendix A)
combined with a MCMC sampler (MontePython v3.4 [40])
to study the cosmological constraints on models of inter-
acting radiation. For the WZDR model, we adopt flat priors
on the cosmological parameters fωb;ωcdm; θs; ns; As; τreio;
NIR; log10ztg with the following ranges log10zt ∈ ½4.0; 4.6�
andNIR ≥ 0.5 We assume a Standard Model neutrino sector
that undergoes a standard cosmological history, consisting
of one massive neutrino species with a mass of 0.06 eVand
two massless neutrino species.
As in Ref. [10], we consider the following datasets in our

default analysis. The dataset D includes the Planck 2018
dataset [1], including TT,TE, and EE in both low (l < 30)
and high (l ≥ 30) multipole ranges, as well as CMB
lensing [1] and the full set of nuisance parameters. It also
includes late-Universe constraints, such as BAO measure-
ments from BOSS DR12 (z ¼ 0.38, 0.51, 0.61) [41] and
small zmeasurements from 6dF (z ¼ 0.106) [42] and MGS
(z ¼ 0.15) [43] catalogs, as well as PANTHEON super-
novae data [44]. In addition to our baseline dataset D, we
also consider a dataset Dþ that additionally includes
measurements from SH0ES [2] via a prior on the intrinsic
magnitude of supernovaeMb. We summarize our results for
a range of models fitting to D and Dþ in Appendix B.
When we consider the impact of WZDR on cosmologi-

cal observables, the immediate question is—relative to
what? Because the presence of new interacting radiation
changes integrated quantities (such as the sound horizon at
recombination), the change in any one parameter naturally
changes others, making direct comparisons between differ-
ent models complicated. Two natural points of comparison
are to models with additional strongly-coupled or free-
streaming radiation without a step. The former is the
conventional SIDR model discussed above, and the latter
is a minimal extension of ΛCDM, in which the effective
number of free-streaming neutrino species is allowed to
take values greater than the ΛCDM contribution from the
Standard Model neutrino sector, i.e.,Neff > 3.044 (denoted
as ΛCDMþ Neff ) [45–47]. Using Table I, we proceed to
make these comparisons, which shows results of a fit to the
SH0ES-independent datasetD. For convenience, we define
the variable Neff;IR as the late-time value of the effective
number of neutrinos in free-streaming and strongly-
coupled radiation (including the Standard Model neutrino
contribution).
We note at the outset that the best-fit points for the

dataset D in conventional models involving additional

4We have verified numerically in CLASS that the change to θs
from the step satisfies Δθs=θs ≃ Δτ=τ�.

5We restrict the range of zt in order to avoid very late and very
early transitions because with current data such points are
indistinguishable from conventional SIDR models.
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free-streaming or strongly-interacting radiation are either
identical or very close to ΛCDM and do not improve the χ2

by more thanOð0.1Þ. This changes with the addition of the
WZDR step. Considering only data from D, we see a slight
improvement going from SIDR to WZDR, reducing the
best-fit χ2 by 1.2, about as would be expected with the
addition of the one new parameter zt, which has a posterior
mean-value of zt ¼ 1.9þ0.9

−0.6 × 104. Thus, although the
quantitative pull is small, there is a nonzero preference
in the data, independent of SH0ES, for a step in an
additional interacting fluid component.6

Remarkably, the preferred value for H0 in a fit to D is
shifted to larger values in the WZDR model, with a
best-fit of H0 ¼ 69.1 km=s=Mpc, as compared to H0 ¼
67.9 km=s=Mpc for SIDR, H0 ¼ 67.7 km=s=Mpc for
ΛCDMþ Neff , and H0 ¼ 67.6 km=s=Mpc for ΛCDM.
A similar trend is evident in the 90% CL ranges listed
in Table I. This immediately raises the question—can
WZDR help address the existing tension between the
ΛCDM-inferred value of H0 and the late-Universe meas-
urement of H0 ¼ ð73.2� 1.3Þ km=s=Mpc by the SH0ES
Collaboration?
The short answer to this question is—yes, the presence

of the WZDR-step does allow for a significant reduction to

this tension. Earlier analyses have shown that additional
free-streaming radiation can naturally allow for a larger
value of H0 when fitting to the dataset Dþ that includes
SH0ES, but only at the cost of significantly worsening the
fit to the SH0ES-independent dataset D. Making this
radiation interacting (as in the SIDR model) somewhat
ameliorates the issue, but this is still constrained by the
high-lmultipoles of the CMB polarization power spectrum
[12,15,17]. In theWZDRmodel, this is compensated by the
l-dependent modifications to the CMB, allowing for
additional levels of interacting radiation.
We provide additional results of our dedicated MCMC

analysis in Fig. 3, which shows the posteriors for H0 and
the late-time value of the effective number of neutrinos in
free-streaming and strongly-coupled radiation for the
ΛCDMþ Neff , SIDR, and WZDR models (the full set
of posteriors for each of these scenarios is provided in
Appendix B). As for conventional early-Universe solutions
to the Hubble tension, additional radiation is correlated
with larger values of H0, corresponding to an approxi-
mately fixed angular size of the sound horizon at recombi-
nation [28]. Most notable in Fig. 3 is the fact that WZDR
predicts H0 and Neff;IR posteriors that extend out to larger
values, in the case that SH0ES is either included (right
panel) or not included (left panel) in the analysis. We show
the resulting best-fit values and posterior ranges for the full
Dþ dataset in Table II.
But, of course, simply predicting a larger value of H0 is

not a solution to the tension if it simply provides an overall
bad fit to the data. Recently, Ref. [10] established a rubric
for comparing models that could address this tension with
three basic measures: GT (Gaussian tension), QDMAP
(difference of the maximum a posteriori), and ΔAIC
(Akaike information criterium). The values of these mea-
sures are provided in Table III for ΛCDM and the three
benchmark radiation models. We now briefly summarize
each of these in turn (see Refs. [10,48] for further details).
GT and QDMAP both address the residual level of tension

between the results of SH0ES (expressed as the measured
supernova magnitudes Mb) and a model-predicted value
obtained by fitting to the SH0ES-independent dataset D. In
particular, GT is defined as the difference in the Mb mean
value as determined from either method, in units of σ (the
standard deviation obtained from D and SH0ES added in
quadrature). QDMAP, on the other hand, is defined as the
square root of the difference between the best-fit χ2

obtained by either fitting a model to Dþ or D, in units
of σ. Smaller values of either measure signify a reduced
tension in the data, and for Gaussian distributed posteriors,
they are equivalent. We find that while ΛCDMþ Neff and
SIDR reduce the 4.5σ tension between ΛCDM and SH0ES
to the ∼4σ, 3σ level, respectively, WZDR significantly
reduces it further still, down to ∼2.5σ.
ΔAIC measures the success in fitting to the full dataset

including SH0ES, defined as the difference in the best-fit χ2

TABLE I. A summary of a fit to the SH0ES-independent
dataset D for various models listed in the first column. The
second column gives the Δχ2 of the best-fit compared to ΛCDM.
The third and fourth columns display the preferred values of the
effective number of neutrinos in free-streaming and strongly-
coupled radiation at late times Neff;IR (i.e., including the Standard
Model neutrino contribution) and the Hubble parameter H0,
respectively. The first entry of each cell for Neff;IR and H0 gives
the best-fit value. The brackets that follow denote the 90% CL
posterior range, which is defined to be the narrowest interval
containing 90% of the integrated posterior density. These are
computed directly from the posterior densities and not using
Gaussian fits to the posteriors.

Model Δχ2 Neff;IR H0 ðkm=s=MpcÞ
ΛCDM 0.0 3.04 67.6 [67.0, 68.3]
ΛCDMþ Neff 0.0 3.04 [3.04, 3.30] 67.7 [67.2, 69.4]
SIDR −0.1 3.07 [3.04, 3.43] 67.9 [67.4, 70.6]
WZDR −1.2 3.27 [3.05, 3.56] 69.1 [67.6, 70.9]

6Many previous analyses have assumed that the additional
radiation was also present during BBN, increasing the predicted
abundance of primordial helium Yp. Since that is a much earlier
era, we instead assume that the radiation is populated well after
BBN, at temperatures below ∼100 keV [37]. This is a natural
assumption in the context of interacting fluids, and we make this
same assumption for the SIDR model, so as not to penalize it
compared to WZDR. For completeness, we also show results for
SIDR and WZDR in which the energy density in interacting
radiation is present during BBN in Table IV of Appendix B. For
the ΛCDMþ Neff model, we assume that the extra radiation is
present during BBN, as considered in Ref. [10].
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for Dþ between a given model and ΛCDM with a χ2

penalty of þ2 for each additional (beyond ΛCDM) model
parameter,

ΔAIC ¼ χ2 − χ2ΛCDM þ 2 × ðnew parametersÞ: ð8Þ

Hence, more negative values signify increased agreement
with the full dataset. As shown in Table III this measure
further illustrates the dramatic improvement in a fit

involving WZDR. In particular, while ΛCDMþ Neff and
SIDR reduce the ΔAIC down to −3.7 and −8.6, respec-
tively, this is improved further to −11.1 in the WZDR
model (corresponding to a best-fit χ2 which is lower by
−15.1 compared to ΛCDM).
With the addition of a single parameter, WZDR provides

an improvement of Δχ2Dþ ¼ −4.5 when fitting to Dþ, as
compared to SIDR (see Appendix B). Also noteworthy is
the fact that when fitting to the dataset Dþ including
SH0ES, the fit to the SH0ES-independent dataset D for
WZDR is comparable to that of ΛCDM. In contrast, both
ΛCDMþ Neff and SIDR provide markedly worse fits to D
when fitting to the full Dþ (see Table VIII).
To summarize, the WZDR model exemplifies a signifi-

cant improvement in each of the three standardized
measures of Ref. [10], as shown in Table III. Thus, this
model provides a potential scenario to explain this dis-
crepancy. Moreover, as future data at high l arrive, such as
from the Simons Observatory or CMB-S4, a direct com-
parison to the CMB, even without SH0ES data, should
further clarify the degree of this success.

V. GENERALIZATIONS AND STEPPED
DARK SECTORS

Although the minimal supersymmetric model for inter-
acting radiation (WZDR) has two free parameters (NIR and
zt), one can envision generalizing this to a scenario where
the parameter NIR=NUV is not a fixed number, as in Eq. (2),
for instance if ψ is a fundamental and ϕ an adjoint under a
global symmetry rather than residing in a single chiral

FIG. 3. Comparison of the marginalized 1D and 2D posterior distributions for the Hubble parameter H0 and the late-time value of the
effective number of neutrinos in radiationNeff;IR (including the Standard Model neutrino contribution) for theΛCDM þ Neff , SIDR, and
WZDR models when fitting to the dataset D (not including SH0ES) in the left set of panels or Dþ (including SH0ES) in the right set of
panels.

TABLE III. The GT (Gaussian tension), QDMAP (difference of
the maximum a posteriori), and ΔAIC (Akaike information
criterium) measures, which together serve to address the success
in resolving the Hubble tension for various models.

Model GT QDMAP ΔAIC

ΛCDM 4.5σ 4.5σ 0.0
ΛCDMþ Neff 3.7σ 3.8σ −3.7
SIDR 3.1σ 3.1σ −8.6
WZDR 2.7σ 2.4σ −11.1

TABLE II. As in Table I, but after fitting to the dataset Dþ that
includes SH0ES.

Model Δχ2 Neff;IR H0 ðkm=s=MpcÞ
ΛCDM 0.0 3.04 68.2 [67.5, 68.9]
ΛCDMþ Neff −5.7 3.37 [3.20, 3.63] 70.0 [68.9, 71.6]
SIDR −10.6 3.51 [3.31, 3.77] 71.0 [69.6, 72.6]
WZDR −15.1 3.63 [3.37, 3.92] 71.4 [69.7, 73.0]
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superfield. This then makes NIR=NUV an adjustable param-
eter of the model. Additionally, if the dark radiation is
populated via late-time freeze-in from neutrinos, the energy
density in free-streaming radiation Nfs can be modified
[49,50]. We thus take Nfs as a free parameter, as well.
Thus from a physical point of view, in such models the

four free model parameters are the effective number of
neutrinos in interacting species NUV at early times, the
number of interacting species NIR at late times, the redshift
at which the dark sector drops below a mass threshold zt,
and the amount of free-streaming radiation Nfs. Such a
parametrization is a simple extension of interacting fluid
models, motivated by the simple presence of a mass
threshold in the sector, which is essentially required in
models involving scalars. We refer to this generalization of
a stepped fluid as “General StepDR.”
We perform a fit of the General StepDR model to the

datasets D and Dþ. The parameters for this model are
fωb;ωcdm; θs; ns; As; τreio; NUV; NIR; Nfs; log10ztg with the
ranges log10 zt ∈ ½4.0; 4.6�, NUV ≥ 0, and NIR ≥ NUV.
Additionally, we assume one massive neutrino species
with a mass of 0.06 eV. The results of this analysis are
included in Appendix B. From the full set of posterior
distributions in Appendix B, we see that the introduction of
these additional parameters widens the posterior density for
NUV and NIR, while the favored region of parameter space
for the General StepDR model is consistent with the
favored region in the restricted WZDR model. We also
see from Appendix B that the best-fit χ2 values are reduced
by Oð1Þ when comparing the General StepDR and WZDR
models, as expected from the introduction of two additional
free parameters.

VI. DISCUSSION

Models of interacting radiation provide a plausible and
testable extension beyond ΛCDM. In many such scenarios
there is a natural mass threshold present, corresponding to
the scale of the force carrier. In such models, there is a
“step” as the massive mediator entropy is transferred to the
remaining degrees of freedom. The simplest such model—a
single fermion and a single scalar—is nicely packaged into
a well-known supersymmetric theory, namely the Wess-
Zumino model. Such a framework naturally allows for a
scalar mass which is light enough to be relevant during the
era in which the CMB-detectable modes are inside the
horizon.
We emphasize that this framework of stepped dark

radiation is a theoretically simple one. The Standard
Model has copious mass thresholds, including the critical
late threshold of the electron mass where photons are heated
in analogous fashion. Our purpose here is to understand the
implications of such a step in the context of present-day
cosmological data. There is a well-known tension between
CMB data and late-Universe measurements of the Hubble
constant, and so it is important to distinguish them.

Remarkably, WZDR provides a good fit to the CMB data,
alone. The best-fit point, not including SH0ES data, prefers
additional radiationNIR ¼ 0.23, excludingNIR ¼ 0 at better
than 90% confidence (Table I). This contrasts conventional
interacting radiation which has a best-fit of NIR ¼ 0.03, and
free-streaming radiation which has a best-fit of ΔNeff ¼ 0.
At the same time, theWZDRmodel prefers a higher value of
H0 ¼ 69.1 km=s=Mpc with a wide range of allowed values
at 90% confidence, ½67.6; 70.9� km=s=Mpc. Including
SH0ES in the analysis changes the values somewhat, but
qualitatively, the picture does not shift, preferring a best-fit
value H0 ¼ 71.4 km=s=Mpc.
Comparing WZDR to SIDR with the same late-time

parameters, the change to the CMB power spectrum is an
l-dependent phase shift. Modes entering the horizon ear-
lier, with relatively less radiation present, experience a
larger sound horizon, thus shifting the peaks to lower l
multipoles. While our analysis does not analyze χ2 values
for separate l regions (see, e.g., Ref. [51], l < 650), the
WZDR and General StepDR models give a good fit to all
data, including high-l data.
We should also comment on another discordance in

cosmological data, the S8 tension, which we have so far
ignored. The ΛCDM-preferred value of S8, as inferred from
fitting to theCMB, is about 2σ higher than thevalues inferred
from weak lensing surveys [52–55]. This tension motivates
new physics that suppresses the matter power spectrum. We
have not included such large scale structure (LSS) data in our
fits, in part because the S8 tension is not as severe or robust as
the H0 tension, LSS data was not included in the fits of
Ref. [10], and the dark radiation models that we have
investigated do not significantly alter the prediction for S8
compared to ΛCDM (see Appendix B), and so neither
improve nor worsen the fit to LSS data.
However, we remark that in the context of an interacting

sector of dark radiation, it is very natural to expect a
component of the dark matter to couple to dark radiation.
Such a coupling endows the dark matter with pressure that
slows the growth of structure and therefore predicts a lower
value for S8 [25,56–58]. This pressure depends on a new
parameter; the coupling between dark matter and dark
radiation. Thus, it would be straightforward to resolve the
S8 tension in a natural extension of the stepped-fluid
models considered here. Such a model could arise by
including an additional field Y with a Z2 symmetry and
superpotenial term of the form XY2. This would naturally
yield an interacting dark matter subcomponent.
In our analysis, we have assumed the standard BBN-

predicted value of primordial helium, assuming the dark
radiation is not present at that time. It’s quite easy for the
radiation to appear at late times, for instance through the
decay of a relic particle, for which the allowed value ofNUV
can be anything. If the dark radiation was in thermal contact
at early times such that NUV ∼Oð0.1Þ at BBN, it can be
boosted by a factor of a few if the dark sector has a
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strongly-coupled gauge group which confines with a mass
gap, such as supersymmetric QCD. One might also study
this scenario assuming the radiation is present at BBN,
naturally raising the level of primordial helium, and likely
worsening the fit to a small degree.
It is also worth comparing WZDR and General StepDR

to other models that invoke qualitatively similar dynamics.
For instance, Ref. [25] recently discussed a mirror copy of
the Standard Model within the context of the Hubble
tension. Although such theories involve some of the same
ingredients as discussed in our work, they also involve
additional dynamics arising from transitions from strongly-
coupled to free-streaming radiation and epochs in which the
dark sector undergoes its own version of nucleosynthesis
and recombination. However, we are unable to mean-
ingfully compare to the fits of Ref. [25], since these were
performed only with data that include SH0ES and LSS. We
also note that of all the models cataloged in Ref. [10], the
one involving a neutrino-coupled majoron [19,20] is the
most similar to WZDR. However, WZDR is much more
successful in addressing the H0 tension, as quantified by
comparing the results of Table III and Ref. [10].
Going forward, as data improve, there is a great hope that

the CMB data alone will give clarity on whether a scenario
similar to ours provides a reasonable description of Nature.
A recent analysis by Ref. [51] showed that an early dark
energy model could be distinguished with future ACT data
at the level of 25σ from the current best-fit ΛCDM point.
The WZDR model has similar sized residuals, and thus we
can be hopeful that these data might distinguish it from
ΛCDM as well. A proper analysis is warranted, however.
In summary, we have studied a simple, natural, theo-

retical model extension beyond ΛCDM, namely interacting
radiation with a step, arising from a straightforward mass
threshold. This minor extension provides a good fit to the
CMB data with a higher value ofH0. Including SH0ES data
strengthens the evidence for additional radiation, as well as
the step, improving the χ2 by 15.1 compared to ΛCDM and
by 4.5 compared to conventional SIDR, with only a single
additional parameter (the step location). As further data
appear, we may learn the Hubble tension is the first
indication of a dynamic and interacting dark sector.
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APPENDIX A: EVOLUTION
OF A STEPPED FLUID

We assume that the interaction rate in the dark fluid is
large enough such that local thermal equilibrium is main-
tained. At the background (homogeneous) level, this
implies that entropy conservation is sufficient to track
the evolution of the fluid parameters

N ≡ ρ

ρ1ν
; w≡ p

ρ
; c2s ≡ dp=dTd

dρ=dTd
; ðA1Þ

through the step, where ρ1ν is the energy density of a single
neutrino in ΛCDM. N, w, and c2s are functions of the dark-
sector temperature Td, which depends on the scale factor a.
Determining NðaÞ, wðaÞ, and c2sðaÞ is the purpose of this
appendix.
The dark energy density ρðTdÞ and pressure pðTdÞ of the

interacting dark fluid have contributions from both massive
and massless particles. For a single particle of mass m with
g internal degrees of freedom and temperature Td in
equilibrium, the energy density and pressure are

ρðTdÞ ¼ g
Z

d3p
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
1

e
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
=Td � 1

;

pðTdÞ ¼
g
3

Z
d3p
ð2πÞ3

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p 1

e
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
=Td � 1

; ðA2Þ

where �1 corresponds to fermions/bosons, respectively. It
will be convenient to rewrite this by factoring out the
energy density and pressure of a single relativistic boson
degree of freedom, ρBðTdÞ ¼ 3pBðTdÞ ¼ T4

dπ
2=30. This

gives

ρðTdÞ≡ g�ρBðTdÞρ̂ðxÞ;
pðTdÞ≡ g�pBðTdÞp̂ðxÞ; ðA3Þ

where x ¼ m=Td, and we have defined the effective
degrees of freedom, g� ¼ g for bosons and g� ¼ ð7=8Þg
for fermions. Note that the dimensionless integrals ρ̂ and p̂
depend on the temperature and mass only through their
ratio x. ρ̂ð0Þ ¼ p̂ð0Þ ¼ 1 and both decay exponentially for
large x. ρ̂ and p̂ are quite similar for bosons and fermions
and we approximate them by dropping the �1 terms in the
distribution functions. This approximation works to better
than 8% for all x, and to better than 4% for x for which ρ̂
and p̂ are not exponentially suppressed and therefore
irrelevant.
The (Maxwell-Boltzmann) integrals can now be evalu-

ated analytically
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ρ̂ðxÞ ¼
Z

∞

0

dq q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ x2

q
e−

ffiffiffiffiffiffiffiffiffi
q2þx2

p �Z
∞

0

dq q3e−q

¼ x2

2
K2ðxÞ þ

x3

6
K1ðxÞ;

p̂ðxÞ ¼
Z

∞

0

dq
q4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ x2
p e−

ffiffiffiffiffiffiffiffiffi
q2þx2

p �Z
∞

0

dq q3e−q

¼ x2

2
K2ðxÞ; ðA4Þ

in terms of modified Bessel functions of the second
kind, Ki.
The energy density of a fluid which contains gIR�

massless and gUV� − gIR� massive particles can then be
written as7

ρðTdÞ ¼ gIR� ρBðTdÞð1þ rgρ̂ðxÞÞ; ðA5Þ
where we defined the step size rg ≡ ðgUV� − gIR� Þ=gIR� . The
pressure is

pðTdÞ ¼ gIR� pBðTdÞð1þ rgp̂ðxÞÞ: ðA6Þ
Equations (A5) and (A6) again include a factor of 7=8 in
the definition of gIR� and gUV� for each fermion. Therefore,
the equation of state is

wðxÞ ¼ 1

3

1þ rgp̂ðxÞ
1þ rgρ̂ðxÞ

¼ 1

3
−
rg
3

ρ̂ðxÞ − p̂ðxÞ
1þ rgρ̂ðxÞ

; ðA7Þ

and the speed of sound is

c2sðxÞ ¼
dp=dx
dρ=dx

¼ 1

3

1þ rgðp̂ðxÞ − x
4
p̂0ðxÞÞ

1þ rgðρ̂ðxÞ − x
4
ρ̂0ðxÞÞ

¼ 1

3
−
rg
36

x2p̂ðxÞ
1þ rgð34 ρ̂ðxÞ þ ð1

4
þ x2

12
Þp̂ðxÞÞ ; ðA8Þ

where in the second line we used Bessel function recursion
relations to rewrite ρ̂0 and p̂0 in terms of ρ̂ and p̂. We see
that both w and c2s are 1=3 minus a term proportional to the
step size rg which vanishes for both small and large x
(see Fig. 1).
The expressions above are written in terms of x ¼ m=Td,

but we will need them as functions of scale factor a.
Therefore, we determine xðaÞ from entropy conservation in
the dark fluid

S ∝ a3
ρðTdÞ þ pðTdÞ

Td
¼ a30

ρðTd0Þ þ pðTd0Þ
Td0

; ðA9Þ

where a0 ¼ 1 is the scale factor today and Td0 is the dark
sector temperature today. Substituting the expressions for

ρ and p from Eqs. (A5) and (A6), assuming that the
massive particles have annihilated away today so that
ρ̂ðm=Td0Þ ¼ p̂ðm=Td0Þ ¼ 0, and defining the transition
scale factor at ≡ Td0=m, we obtain�

xat
a

�
3

¼ 1þ rg
4
ð3ρ̂ðxÞ þ p̂ðxÞÞ; ðA10Þ

which can be solved numerically for xðaÞ for any given set
of model parameters rg and at. Note that well after the
transition, ρ̂ðxÞ and p̂ðxÞ are negligibly small. In this
case, Eq. (A10) simplifies to xat ¼ a, or equivalently
Td ¼ Td0=a. At early times, well before the transition,
x ≪ 1 so that ρ̂ð0Þ ¼ p̂ð0Þ ¼ 1 and therefore xat ¼
ð1þ rgÞ1=3a or Td ¼ ð1þ rgÞ−1=3Td0=a. Thus, the temper-
ature of the dark sector in the UV is smaller than the naive
1=a scaling by a factor of ð1þ rgÞ−1=3 because of the step.
Finally, we can calculate the “effective number of

neutrino species” from Eq. (A1)

NðxÞ ¼ NIR
1þ rgρ̂ðxÞ

ð1þ rgð34 ρ̂ðxÞ þ 1
4
p̂ðxÞÞÞ4=3 ; ðA11Þ

where we used ρ1ν ¼ 7
4
π2

30
ðTν0
a Þ4, substituted Eq. (A10), and

identified

NIR ¼ gIR�
7=4

�
Td0

Tν0

�
4

; ðA12Þ

by taking the IR (x → ∞) limit. Taking the UV (x → 0)
limit gives the UV endpoint of the step

NUV ¼ NIR

ð1þ rgÞ1=3
¼ NIR

�
gUV�
gIR�

�
1=3

: ðA13Þ

This equation confirms Eq. (2) and relates the parameter rg
to NIR=NUV by

rg ¼
�
NIR

NUV

�
3

− 1: ðA14Þ

In summary, the background quantities describing the
fluid are wðxÞ, c2sðxÞ, and NðxÞ, which are given in
Eqs. (A7), (A8), and (A11). xðaÞ is obtained by numeri-
cally solving (A10), rg is given in (A14), and ρ̂ðxÞ and p̂ðxÞ
in (A4). These are the equations we implement in CLASS,
along with the standard perturbation equations for a
strongly-coupled fluid (in synchronous gauge) [38]

_δ ¼ −ð1þ wÞ
�
θ þ

_h
2

�
− 3Hðc2s − wÞδ

_θ ¼ k2c2s
1þ w

δ −Hð1 − 3c2sÞθ: ðA15Þ

The parameters of the stepped dark fluid are the
transition scale at (or equivalently, zt ¼ 1=at − 1), the
amount of dark radiation in the IR, NIR, and the ratio rg

7For simplicity, we assume a single mass scale m. It is
straightforward to generalize to several particles with different
masses.
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determining the size of the step (or equivalently,NIR=NUV).
In the WZDR model, rg ¼ 8=7.

APPENDIX B: TRIANGLE PLOTS
AND PARAMETER VALUES

In this appendix we provide triangle plots and tables
(shown below), which show the full set of posteriors

and parameter values as determined from our analysis,
respectively. In Fig. 4 we compare the posteriors for the
WZDR and General StepDR dark fluid models when
fitting to the dataset Dþ including SH0ES. In Fig. 5
we compare the posteriors for the WZDR model when
fitting to a dataset that does (Dþ) or does not (D)
include SH0ES. In Fig. 6 we compare the posteriors
for the WZDR, General StepDR, SIDR, ΛCDMþ Neff ,

FIG. 4. A comparison of the posteriors for the minimal stepped fluid (WZDR in blue) and generalized stepped fluid (General StepDR
in red) when fitting to the dataset Dþ that includes SH0ES. The dark and light shaded regions correspond to 68.3% and 95.4% CL,
respectively. It is interesting to note that while the introduction of two additional free parameters in the General StepDR model widens
the posterior density for NUV and NIR, the favored region of parameter space is approximately unchanged compared to the restricted
WZDR model.
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and ΛCDM models when fitting to the dataset Dþ.
Table IV shows χ2 values as well as other fit parameters
and measures relevant to evaluating the success of various
models in resolving the Hubble tension. Furthermore,

Tables V and VI provide posterior mean-value and �1σ
ranges for various cosmological parameters when fitting
to eitherD orDþ, whereas Tables VII and VIII show best-
fit values.

FIG. 5. A comparison of the posteriors for the minimal stepped fluid (WZDR) when fitting to either the SH0ES-independent datasetD
(red) or the datasetDþ that includes SH0ES (blue). The dark and light shaded regions correspond to 68.3% and 95.4% CL, respectively.
Comparing the two sets of posteriors, we see that a fit to data including SH0ES prefers a larger value ofH0 and a correspondingly larger
energy density in dark radiation, as expected, while leaving the preferred location of the transition zt nearly unchanged. Since an
enhanced radiation density strengthens the effect of the step on the CMB, the data is increasingly sensitive to the location of the
transition, as can be noted from the narrower posterior for zt when fitting to Dþ : Along with the increase in radiation density, the fit to
Dþ also requires increases in ωcdm, ωb, as well as θs and ns.
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FIG. 6. A comparison of the posteriors for models of a minimal stepped fluid (WZDR in green), conventional self-interacting dark
radiation (SIDR in blue), additional free-streaming radiation (ΛCDMþ Neff in red), and ΛCDM (gray) when fitting to the dataset Dþ
that includes SH0ES. The dark and light shaded regions correspond to 68.3% and 95.4% CL, respectively. Most notable is the fact that
WZDR predicts H0 and Neff;IR posteriors that extend out to larger values, reflecting its ability to more successfully resolve the Hubble
tension.
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TABLE IV. A summary of the fit results for various models. The two versions of SIDR andWZDR refer to different assumptions about
when the extra radiation is populated. “SIDR (ET—Early Thermalization)” and “WZDR (ET—Early Thermalization)” refer to models
in which the energy density of interacting radiation is present during BBN, whereas “SIDR” and “WZDR” refer to the corresponding
model in which we assume that this radiation was not yet present. In the last four columns, H0 is given in units of km=s=Mpc.

Model ΔNparam Mb þ 1σ GT QDMAP min χ2Dþ min χ2D Δχ2Dþ ΔAIC HBF
0 D HMean

0 D HBF
0 Dþ HMean

0 Dþ
ΛCDM 0 −19.418þ 0.011 4.5 4.5 3828.3 3808.5 0.00 0.00 67.6 67.6 68.2 68.2
ΛCDMþ Neff 1 −19.396þ 0.017 3.7 3.8 3822.6 3808.5 −5.7 −3.7 67.7 68.4 70.0 70.2
SIDR (ET) 1 −19.381þ 0.021 3.2 3.3 3819.1 3808.4 −9.2 −7.2 67.8 68.9 70.6 70.8
SIDR 1 −19.380þ 0.023 3.1 3.1 3817.7 3808.4 −10.6 −8.6 67.9 68.9 71.0 71.0
WZDR (ET) 2 −19.376þ 0.024 3.0 2.8 3815.3 3807.6 −13.0 −9.0 68.7 69.0 71.0 70.9
WZDR 2 −19.368þ 0.027 2.7 2.4 3813.2 3807.3 −15.1 −11.1 69.1 69.3 71.4 71.4
General StepDR 4 −19.382þ 0.041 2.5 2.4 3811.7 3805.9 −16.6 −8.6 67.9 68.8 71.5 71.5

TABLE V. Mean and �1σ values for a fit to dataset D.

ΛCDM ΛCDMþ Neff SIDR WZDR General StepDR

100θs 1.04195þ0.00028
−0.00027 1.04166þ0.00039

−0.00034 1.04208þ0.00032
−0.00031 1.04243þ0.00040

−0.00044 1.04339þ0.00080
−0.00095

Ωbh2 0.02240þ0.00013
−0.00014 0.02248þ0.00015

−0.00016 0.02255þ0.00016
−0.00018 0.02253þ0.00015

−0.00017 0.02249þ0.00019
−0.00020

Ωcdmh2 0.11931þ0.00091
−0.00094 0.1213þ0.0013

−0.0022 0.1226þ0.0019
−0.0032 0.1239þ0.0023

−0.0037 0.1227þ0.0037
−0.0042

ln 1010As 3.049þ0.013
−0.016 3.054þ0.015

−0.016 3.046� 0.015 3.050þ0.014
−0.016 3.038þ0.021

−0.019
ns 0.9662þ0.0040

−0.0035 0.9703þ0.0045
−0.0055 0.9670� 0.0038 0.9721þ0.0048

−0.0054 0.9664þ0.0083
−0.0092

τreio 0.0571þ0.0069
−0.0078 0.0570þ0.0071

−0.0077 0.0578þ0.0075
−0.0080 0.0577þ0.0068

−0.0080 0.0573þ0.0069
−0.0078

Nfs … 3.17þ0.03
−0.12 3.044 3.044 2.75þ0.25

−0.25
NUV … … … 0.22þ0.09

−0.17 0.39þ0.15
−0.30

NIR … … 0.19þ0.05
−0.19 0.28þ0.12

−0.22 0.48þ0.18
−0.30

log10ðztÞ … … … 4.29þ0.17
−0.16 4.35þ0.18

−0.11

Mb −19.418þ0.011
−0.012 −19.396þ0.017

−0.025 −19.380þ0.023
−0.036 −19.368þ0.026

−0.038 −19.382þ0.041
−0.045

H0 [km=Mpc=s] 67.6� 0.4 68.4þ0.6
−0.8 68.9þ0.8

−1.2 69.3þ0.9
−1.3 68.8þ1.3

−1.5
S8 0.825� 0.010 0.828� 0.011 0.824� 0.011 0.829� 0.011 0.823� 0.013

TABLE VI. Mean and �1σ values for a fit to dataset Dþ.

ΛCDM ΛCDMþ Neff SIDR WZDR General StepDR

100θs 1.04207þ0.00029
−0.00031 1.04120� 0.00042 1.04233þ0.00029

−0.00030 1.04300þ0.00039
−0.00040 1.04324þ0.00088

−0.00096
Ωbh2 0.02252� 0.00014 0.02274þ0.00016

−0.00015 0.02282� 0.00016 0.02270þ0.00015
−0.00016 2.274þ0.018

−0.017
Ωcdmh2 0.11817þ0.00097

−0.00092 0.1245þ0.0026
−0.0025 0.1269þ0.0029

0.0028 0.1288þ0.0030
−0.0033 0.1294þ0.0032

−0.0033
ln 1010As 3.054þ0.015

−0.016 3.067þ0.016
−0.017 3.044þ0.015

−0.017 3.052� 0.015 3.045� 0.020
ns 0.9691þ0.0037

−0.0039 0.9802þ0.0057
−0.0055 0.9694þ0.0037

−0.0036 0.9789þ0.0047
−0.0052 0.9752þ0.0082

−0.0086
τreio 0.0606þ0.0071

−0.0086 0.0598þ0.0075
−0.0082 0.0599þ0.0070

−0.0084 0.0587þ0.0075
−0.0077 0.0585þ0.0071

−0.0078
Nfs … 3.41þ0.13

−0.15 3.044 3.044 2.93� 0.27
NUV … … … 0.46þ0.13

−0.14 0.601þ0.24
−0.27

NIR … … 0.47þ0.15
−0.14 0.60þ0.16

−0.18 0.74þ0.26
−0.29

log10ðztÞ … … … 4.26þ0.12
−0.13 4.30þ0.09

−0.13

Mb −19.404� 0.012 −19.342� 0.026 −19.320þ0.027
−0.028 −19.308� 0.029 −19.302þ0.031

−0.029
H0 [km=Mpc=s] 68.2� 0.4 70.2� 0.9 71.0þ0.9

−1.0 71.4� 1.0 71.5þ1.1
−1.0

S8 0.814� 0.011 0.827� 0.012 0.818� 0.010 0.829� 0.011 0.823� 0.013
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