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We introduce the Brans–Dick–de Rham–Gabadadze–Tolley massive gravity theory which is the new
extension of nonlinear massive gravity. We demonstrate a detailed study of the cosmological properties of
this theory of gravity, and we show the transformation of the Jordan frame to the Einstein frame. We obtain
the cosmological background equations and show the analyses of self-accelerating solutions for explaining
the accelerated expansion of the Universe. In the following, we analyze the background perturbations,
which consist of tensor, vector, and scalar perturbations within the framework of the new extension of the
de Rham–Gabadadze–Tolley massive gravity in the Friedman-Lemaître-Robertson-Walker cosmology.
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I. INTRODUCTION

The majority of observational research shows that one of
the greatest unsolved puzzles in cosmology is the late-time
accelerated expansion of theUniverse [1–8].We know that in
the framework of general relativity the accelerated expansion
of the Universe is related to the unknown form of energy that
is called dark energy [9–12]. While one of the options is the
cosmological constant that was introduced by Albert
Einstein, there is a big disagreement between the observed
and the theoretical value of vacuum energy [13,14].
In the modified gravity theory, there are several attempts

for explaining the accelerated expansion of the Universe at
late times. It is strongly believed that one of the valuable
modifications of general relativity is the massive gravity
theory, in this theory the gravity is propagated by a spin-2
nonzero graviton mass [15–20].
Over the years, the massive gravity theory has spent

phenomenological and cosmological ups and downs. After
that Fierz and Pauli introduced the first linear ghost-free
action in 1939 [21], it was demonstrated that this theory
does not reduce to general relativity in the limit of zero
graviton mass, i.e., van Dam-Veltman-Zakharov (vDVZ)
discontinuity [22,23]. It is interesting to mention that the
vDVZ discontinuity has been looked at from different
angels [24–27]. In order to avoid the vDVZ discontinuity,
Vainshtein proposed the nonlinear Fierz-Pauli action
instead of linear [28]. While Boulware and Deser claimed
the nonlinear Fierz-Pauli action has a ghost [29], in 2010 de
Rham, Gabadadze, and Tolley (dRGT) exhibited the ghost-
free nonlinear massive gravity [15,16]. On the one hand,
the dRGT massive gravity can explain the accelerated
expansion of the Universe without dark energy, and it is

only valid for an open Friedman-Lemaître-Robertson-
Walker (FLRW) solution. On the other hand, there are
not any stable solutions for homogeneous and isotropic
Universe [30]. Furthermore, because of a strong coupling
problem and a nonlinear ghost instability the scalar and
vector perturbations would be vanished in this theory [31].
A huge number of scientists have been motivated to find

a satisfactory massive gravity theory using changing the
background or the original theory in different ways. In fact,
breaking either homogeneity or isotropy of the background
is one of the ways [32–34]. Moreover, other ways are
adding the new degrees of freedom or changing the
effective parameters of the theory [35–49]. In this present
work, we perform a detailed analysis of Brans-Dick-dRGT
massive gravity that is the new extension of nonlinear
dRGT massive gravity theory. Thus, we try to demonstrate
that the accelerated expansion of the Universe can be
explained in the FLRW cosmology in the framework of this
theory, and the perturbations analysis is free of instability.
The Brans-Dicke theory is one of the many scalar-tensor

alternative theories to the standard Einstein general rela-
tivity. Note that the Brans-Dicke gravity theory introduces
an additional long-range scalar field σ besides the metric
tensor gμν of spacetime. This theory can be considered a
viable alternative to general relativity, one which compat-
ible with Machs principle. It is interesting to point out that
the scalar field does not exert any direct influence on
matter, its role is that of participating in the field equations
that determine the geometry of spacetime. It is noticeable
that the Brans-Dicke theory describes gravitation in terms
of a scalar field [50]. While the singularity problem remains
in Brans-Dicke theory, all the available observational and
experimental tests are being passed [51]. As naturally can
be seen in the string theory, the scalar field provides the
local dynamical degree of freedom to the Brans-Dick
theory [52,53].
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According to the observations, the original Brans-Dicke
theory cannot explain the cosmic acceleration [1,4,50,54]. To
obtain an accelerating universe, it could be possible tomodify
this theory in different ways. Several extended Brans-Dicke
theories have been investigated elaborately [55–68].
The goals of this paper are to find the self-accelerating

solution for the late-time accelerated expansion of the
Universe and to show theperturbations analysis.We introduce
the Brans-Dick-dRGT massive gravity in the Jordan frame
andwe transform it into theEinstein frame bymaintaining the
invariance of physical laws under units transformations.
The paper is organized as follows. In Sec. II, we

introduce the Brans-Dick-dRGT massive gravity theory,
and we show the transformation of the Jordan frame to the
Einstein frame. Moreover, we obtain background equations
and self-accelerating solutions. In Sec. III, we analyze the
cosmological perturbations to demonstrate the tensor,
vector, and scalar perturbations. Finally, in Sec. IV, we
conclude with a discussion.
Here, we define the M2

Pl ≡ 8πG ¼ 1, and G is Newton’s
constant. We use units in which the speed of light and the
reduced Planck constant assume the value unity. We will
assume natural units (c ¼ ℏ ¼ 1).

II. BRANS-DICK-DRGT MASSIVE GRAVITY

In this section, we review the Brans-Dicke-dRGT
massive gravity theory and show the details of the con-
formal transformation. Also, we discuss the evolution of a
cosmological background for this theory. We start with the
Jordan frame of Brans-Dicke gravity that is extended by
dRGT massive gravity. The action includes the Brans-
Dicke-like field φ, which is a scalar field, the Ricci scalar R,
the function ωðφÞ is the Brans-Dicke coupling, a dynamical
metric gμν and its determinant

ffiffiffiffiffiffi−gp
. Moreover, the last part

of the action is related to the massive gravity theory that
will be introduced in the following. The action is given by

S¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
φR−

ωðφÞ
φ

∂
μφ∂μφþ2m2

gUðKÞ
�
: ð1Þ

In this stage, we use the conformal transformation to the
minimally coupled case for the Brans-Dicke field [69]. We
rescale the metric tensor as

gμν ¼ λ−1g̃μν;ffiffiffiffiffiffi
−g

p ¼ λ−2
ffiffiffiffiffiffi
−g̃

p
: ð2Þ

Also, the other rescaling parameters are defined below:

φ ¼ λφ̃; ð3Þ

ωðφÞ ¼ ωðφ̃Þ; ð4Þ

UðkÞ ¼ λ2ŨðkÞ: ð5Þ

The conformal transformation affects the lengths of time-
like intervals and the norm of timelike vectors. However, it
keeps the light coins unchanged [70].
Now, we introduce the conformal transformation of

the Ricci scalar R and the second part of the action as
below [69,71],

R ¼ λ

�
R̃þ 3□̃ ln λ −

3

2
λ−2∂μλ∂νλg̃μν

�
; ð6Þ

1

φ
∂μφ∂

μφ ¼ λ2

φ̃
∂μφ̃∂

μφ̃þ 2λ∂μλ∂
μφ̃þ φ̃∂μλ∂

λλ; ð7Þ

where

□̃ ln λ ¼ 1ffiffiffiffiffiffi
−g̃

p ð
ffiffiffiffiffiffi
−g̃

p
g̃μνλ−1∂μλÞ;ν; ð8Þ

here □̃≡ g̃μν∇̃μ∇̃ν is d’Alembert’s operator, and the ∇̃μ is
the covariant derivative operator of the rescaled metric g̃μν.
By substituting Eqs. (6) and (7) in Eq. (1), we have

S¼1

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
φ̃R̃þ3φ̃□̃ lnλ−

�
ωðφ̃Þþ3

2

�
φ̃
1

λ2
∂μλ∂

μλ

−2ωðφ̃Þ∂μλ∂
μφ̃

λ
−
ωðφ̃Þ
φ̃

∂μφ̃∂
μφ̃þ2m2

gŨðkÞ
�
: ð9Þ

Note that we can consider λ as a function of φ; therefore, φ̃
is a constant [69]:

λ ¼ φ

φ̃
: ð10Þ

As the φ̃ is constant, after using the ordinary divergenceffiffiffiffiffiffi
−g̃

p
□̃ ln λ, we have

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃ −

ðωðφ̃Þ þ 3
2
Þ

λ2
∂
μλ∂μλþ

2m2
gŨðkÞ
φ̃

�
;

ð11Þ
also, we redefine the λ, as below

λ ¼ eσ; ∂μσ ¼ ∂μλ

λ
: ð12Þ

By substituting into the action Eq. (9) and considering
Eq. (5), we have

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃ −

�
ωðσÞ þ 3

2

�
∂
μσ∂μσ

þ 2m2
g

φ̃
e−2σUðKÞ

�
: ð13Þ

In this stage, as the φ̃ is a constant, we can consider it
φ̃ ¼ 1. Note that a tilde denotes quantities defined in the
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Einstein frame, in the following, we disregard the tilde ( ∼)
for simplifying our calculations, so we have the action in
the Einstein frame

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

�
ωðσÞ þ 3

2

�
∂
μσ∂μσ

þ 2m2
ge−2σUðKÞ

�
: ð14Þ

In the following, we introduce the UðKÞ. It is obvious that
the mass of graviton comes up with the potential U that
consists of three parts [16]:

UðKÞ ¼ U2 þ α3U3 þ α4U4; ð15Þ

where α3 and α4 are dimensionless free parameters of the
theory. Ui (i ¼ 2, 3, 4) is given by

U2 ¼
1

2
ð½K�2 − ½K2�Þ;

U3 ¼
1

6
ð½K�3 − 3½K�½K2� þ 2½K3�Þ;

U4 ¼
1

24
ð½K�4 − 6½K�2½K2� þ 8½K�½K3� þ 3½K2�2 − 6½K4�Þ;

ð16Þ

where the quantity “½·�” is interpreted as the trace of the
tensor inside brackets. It should be mentioned that the
building block tensor K is defined as

Kμ
ν ¼ δμν − ð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þμν; ð17Þ

where fαν is the fiducial metric, which is defined through

fαν ¼ ∂αϕ
c
∂νϕ

dηcd: ð18Þ

Here gμν is the physical metric, ηcd is the Minkowski metric
with c, d ¼ 0, 1, 2, 3, and ϕc are the Stueckelberg fields
that are introduced to restore general covariance. According
to our cosmological application purpose, we adopt the
FLRW Universe. So, the general expression of the corre-
sponding dynamical and fiducial metrics are given as
follows:

gμν ¼ diag½−N2; a2; a2; a2�; ð19Þ

fμν ¼ diag½− _fðtÞ2; 1; 1; 1�: ð20Þ

Note that we redefine the fiducial metric as f̃ ¼ λ−1f. Thus,
the relation of g̃−1f̃ should be invariant. Here, it is worth
noting that N is the lapse function of the dynamical metric,
and it is similar to a gauge function. Also, it is clear that the
scale factor is represented by a, and _a is the derivative with

respect to time. Furthermore, the lapse function relates the
coordinate-time dt and the proper-time dτ via dτ ¼ Ndt
[72,73]. Function fðtÞ is the Stueckelberg scalar function

whereas ϕ0 ¼ fðtÞ and ∂ϕ0

∂t ¼ _fðtÞ [74]. Therefore, the
pointlike Lagrangian of the Brans-Dicke-dRGT massive
gravity in FLRW cosmology is given by

L ¼
�
−
3_a2a
N

þ ð2ωðσÞ þ 3Þa3 _σ2
4N

�

þm2
gaðX − 1Þ

X2
f½3ðX − 2Þ − ðX − 4ÞðX − 1Þα3

− ðX − 1Þ2α4�N þ _fðtÞaX½3 − 3ðX − 1Þα3
þ ðX − 1Þ2α4�g; ð21Þ

where

X ≡ eσ

a
: ð22Þ

In order to simplify expressions later, we define

H ≡ _a
Na

: ð23Þ

As we do not consider the matter stress tensor, however,
there is in the realistic theory. It should be noted that in
the Einstein frame both the Brans-Dicke scalar and the
helicity-0 mode of the massive graviton would couple to a
matter stress tensor in the linearized approximation. The
helicity-0 would be screened by the Vainshtein mechanism
to avoid the fifth force, and it is completely similar to the
quasidilation [35].

A. Background equations of motion

By considering the unitary gauge [i.e., fðtÞ ¼ t], we
obtain a constraint equation by varying with respect to f. It
is worth pointing out that the gauge transformations
eliminate the unphysical fields from the Lagrangian on
the classical level [75]. Thus, we achieve a constraint
equation

δL
δf

¼ m2
g
d
dt

�
a2

ðX − 1Þ
X

½3 − 3ðX − 1Þα3 þ ðX − 1Þ2α4�
�

¼ 0: ð24Þ

In the following, the Friedman equation is derived by
varying with respect to the lapse function N,
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1

a3
δL
δN

¼ 3H2 −
ð2ωðσÞ þ 3Þ

4

�
H þ

_X
NX

�
2

−m2
g
ðX − 1Þ
X2a2

½−3ðX − 2Þ þ ðX − 4ÞðX − 1Þα3
þ ðX − 1Þ2α4� ¼ 0: ð25Þ

Taking the variation of action Eq. (14) with respect to the
scalar field, the equation of motion corresponding to σ is
achieved as

1

a3N
δL
δσ

¼
�

m2
g

r2X2N2
½−2ð6þ 4α3 þ α4Þ

þ ð3þ rÞð3þ 3α3 þ α4ÞX
− ð3rþ 1Þðα3 þ α4ÞX3 þ 2rα4X4�

−
ðNð6ωðσÞ þ 9Þ þ ω0ðσÞÞH2

2N2

�
¼ 0; ð26Þ

where

r≡ a
N
: ð27Þ

The following equations can be achieved by using the
notation in Eq. (22)

_σ

N
¼ H þ

_X
NX

; σ̈ ¼ d
dt

�
NH þ

_X
X

�
: ð28Þ

Note that the Stueckelberg field f introduces time repar-
ametrization invariance. As a result, there is a Bianchi
identity that relates the four equations of motion,

δS
δσ

_σ þ δS
δf

_f − N
d
dt

δS
δN

þ _a
δS
δa

¼ 0: ð29Þ

Thus, one equation is redundant that is related to the
varying with respect to the scale factor a, and can be
eliminated. Note that in the particular condition, all of the
background equations and total Lagrangian reduce to those
in Refs. [35,76].

B. Self-accelerating background solutions

In this stage, we try to indicate the self-accelerating
solutions elaborately. After integrating the Stueckelberg
constraint Eq. (24) we have

�
1 −

1

X

�
½3 − 3ðX − 1Þα3 þ ðX − 1Þ2α4� ∝ a−2: ð30Þ

The constant solutions of X lead to the effective energy
density and behave similarly to a cosmological constant.
By considering an expanding universe, the right-hand side
of that equation decrease as we have a−2 in Eq. (30). After a
long enough time, X leads to a constant value, XSA, which
is a root of the left-hand side of Eq. (30). Here, we should
pay attention that one obvious solution is X ¼ 1 which
leads to a vanishing cosmological constant, and because of
inconsistency it is unacceptable. So this solution should be
discarded [35]:

½3 − 3ðX − 1Þα3 þ ðX − 1Þ2α4�jX¼XSA
¼ 0: ð31Þ

Thus, the two remaining solutions of Eq. (30) are

X�
SA ¼ 3α3 þ 2α4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
2α4

: ð32Þ

The Friedman equation (25) could be written in a different
form,

�
3 −

2ωðσÞ þ 3

4

�
H2 ¼ ΩC; ΩC ¼

Λ�
SA

a2
; ð33Þ

where

Λ�
SA ≡m2

g
ðX�

SA − 1Þ
X�2
SA

½−3X�
SA þ 6þ ðX�

SA − 4ÞðX�
SA − 1Þα3

þ ðX�
SA − 1Þ2α4�: ð34Þ

According to Eq. (32), the above equation can be written as

Λ�
SA ¼ � 6m2

gð�9α43 þ 3α33
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p ∓ 18α23α4 − 4α3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
� 6α24Þ

α4ð�3α3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
� 2α4Þ2

: ð35Þ

It should be noted that if we consider the ωðσÞ as a
constant, this condition imposes the curvature singular-
ities. In other words, at finite values of a, the right-hand
side of Eq. (33) goes to zero. Note that when the a is finite,
the Hubble parameter, _a, and the scalar field are increasing.
Thus, we have a real curvature singularity that is a big
brake. In this condition, the universe reaches the finite

scale factor and gets stuck. Similar types of singularities
can be found [77–79]. In order to avoid the curvature
singularity, we consider ωðσÞ as an arbitrary function to
remove the scale factor. Therefore, the curvature singu-
larity is eliminated which means the self-accelerating
solutions can be explained by an effective cosmological
constant.
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It is interesting to note that, when using Eq. (26), we calculate the rSA

rSA ¼ 1

H2X�2
SAð6ωðσÞ þ Nω0ðσÞ þ 9Þ f3m

2
gX�2

SAðα3X�
SA − α3 − 2ÞN � ½m2

gX�2
SANð9m2

gX�2
SAð2þ α3

− α3X�
SAÞ2N − 2H2ð2ðα3 þ 3Þ þ X�

SAðα3ðX�
SA þ 3Þ − 6ðα3 þ 2ÞÞÞð6ωðσÞ þ Nω0ðσÞ þ 9ÞÞ�12g: ð36Þ

As there is not any strong coupling, this equation interprets
the self-accelerating universe. As a result, we have shown
that this theory possesses self-accelerating solutions with
an effective cosmological constant that is given by Eq. (33).

III. PERTURBATIONS ANALYSIS

The perturbations analysis is the essential tool for
determining the stability of the solutions. In fact, we would
like to pay attention to the quadratic perturbations.
In order to find the quadratic perturbations, the physical

metric gμν could be expanded in terms of small fluctuations

δgμν around a background solution gð0Þμν .

gμν ¼ gð0Þμν þ δgμν: ð37Þ

Moreover, we can divide the metric perturbations into three
parts, namely scalar, vector, and tensor perturbations. So,
we have

δg00 ¼ −2N2Φ;

δg0i ¼ NaðBi þ ∂iBÞ;

δgij ¼ a2
�
hij þ

1

2
ð∂iEj þ ∂jEiÞ þ 2δijΨ

þ
�
∂i∂j −

1

3
δij∂l∂

l

�
E

�
; ð38Þ

it should be noted that all perturbations are functions of
time and space, and they agree with the transformations
under spatial rotations. Furthermore, we have these con-
ditions δijhij ¼ ∂

ihij ¼ ∂
iEi ¼ ∂

iBi ¼ 0 for scalar, vector,
and tensor perturbations, which means that the tensor
perturbations are transverse and traceless.
We perturb the scalar field σ as follows

σ ¼ σð0Þ þ δσ: ð39Þ

It is worth pointing out that the spatial indices on
perturbations can be raised and lowered by δij and δij.
Also, the actions can be expanded in Fourier plane waves,

i.e., ∇⃗2 → −k2, d3x → d3k. Note that we show all calcu-
lations in the unitary gauge, thus there is not any worry
concerning the form of gauge-invariant combinations.

A. Tensor

It is noticeable that the tensor perturbations are the only
sources of gravitational waves in general relativity.
Meanwhile, we know that passing the gravitational waves
through spacetime stretches it. The dispersion relation of
gravitational waves in modified gravity models changes. In
other words, the propagation speed of the gravitational
wave could be different from the speed of light, and the
friction term of the tensor perturbations changes too. This
way we calculate the dispersion relation of gravitational
waves in the new extension of the dRGT massive gravity
theory in the Einstein frame.
We start by considering tensor perturbations around the

background,

δgij ¼ a2hij; ð40Þ

where

∂
ihij ¼ 0 and gijhij ¼ 0: ð41Þ

The tensor perturbed action in the second order could be
obtained for each part of the action separately. The Einstein
gravity part of the quadratic perturbed action is

Sð2Þgravity ¼
1

8

Z
d3kdta3N

� _hij _h
ij

N2

−
�
k2

a2
þ 4 _H

N
þ 6H2

�
hijhij

�
: ð42Þ

The Brans-Dicke part of the perturbed action in quadratic
order is

Sð2ÞBrans-Dicke¼−
1

8

Z
d3kdta3N

�ð2ωðσÞþ3Þ
2N2

_σ2hijhij

�
: ð43Þ

The massive gravity sector of the perturbed action can be
written as

Sð2Þmassive ¼
1

8

Z
d3kdta3Nm2

ge−2σ
�

1

X�2
SAr

2N2
½ðα3 þ α4ÞrX3

− ð1þ 2α3 þ α4Þð1þ 3rÞX2 þ ð3þ 3α3 þ α4Þ

× ð3þ 2rÞX − 2ð6þ 4α3 þ α4Þ�
�
hijhij: ð44Þ
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Summing up the second order pieces of the perturbed

actions Sð2Þgravity, S
ð2Þ
Brans-Dicke, and S

ð2Þ
massive, we demonstrate the

total action in a second order for tensor perturbations

Sð2Þtotal ¼
1

8

Z
d3kdta3N

� _hij _hij
N2

−
�
k2

a2
þM2

GW

�
hijhij

�
:

ð45Þ

Using Eqs. (32) and (36) we obtained α3 and α4. Thus, the
dispersion relation of gravitational waves is obtained as

M2
GW ¼ 4 _H

N
þ 6H2 þ ð2ωðσÞ þ 3Þ

2N2
_σ2 þ Ξ; ð46Þ

where

Ξ ¼ 1

2r2SA½X�
SAðX�

SAð3rSA − 1Þ − 4Þ þ 2�ðX�
SA − 1ÞN3

f2m2
g½X�3

SAð3r2SA − 1Þ þ 6X�2
SAð1 − 2rSAÞ

þ 6rSAX�
SA − 2�N −H2r2SAðX�

SAðX�
SA − 3ÞðrSAX�

SA − 2Þ − 2ÞðNω0ðσÞ þ 6ωðσÞ þ 9Þg: ð47Þ

We demonstrated the modified dispersion relation of
gravitational waves. In fact, the propagation of gravitational
perturbations in the FLRW cosmology in the new extension
of the dRGT massive gravity in the Einstein frame is
presented.
It should be noted that if the mass square of gravitational

waves is positive, then the stability of long-wavelength
gravitational waves is guaranteed. But, if it is negative, it
must be tachyonic. Meanwhile, we know that the mass of
the tachyon is of the order of the Hubble scale, so, the
instability would take the age of the Universe to develop.
Clearly, this result introduces an extra contribution to the

phase evolution of gravitational waveform [80,81], and can
be detected with the accurate matched-filtering techniques
in the data analysis. Furthermore, there has been a tendency
towards tests of graviton mass after the first discovery of
gravitational waves in a merging binary black hole [82–85].
The latest constraint on the graviton mass is around
mg ≤ 1.76 × 10−23 eV=c2 at 90% credibility [84]. Also,
the corresponding Compton wavelength is still much
smaller than the Hubble scale, so the relevance to modified
cosmology is restricted at present. Using the future space-
based gravitational-wave detectors that are much more
sensitive to the mass of graviton, we hope that it can be
possible to test this essential aspect of gravitation with
several gravitational events at different wavelengths [80].
It is worth mentioning that if we consider only the

Einstein-Hilbert part, the dispersion relation of gravita-
tional waves shows the speed of gravitational waves is
equal to light.

B. Vector

In this stage, we would like to perform the vector
perturbations analysis in the new extension of the dRGT
massive gravity theory in the Einstein frame. It is worth
noting that there is evidence that indicates the privileged
direction in the Universe. The hemispherical asymmetry
and the alignment of the low multipoles in the Cosmic
Microwave Background (CMB) are the evidence that

shows this issue, and this is the significance of the vector
perturbations analysis. On the other hand, it is obvious that
the vector perturbations decay as the Universe expands. If
the initial amplitudes of vector perturbations were so large,
then these perturbations could have significant amplitudes
at present, so they spoiled the isotropy of the very early
Universe. But, in an inflationary universe, we have no large
primordial vector perturbations, and they do not have any
role in the formation of the large-scale structure of the
Universe. However, the late time’s vector perturbations that
have been formed after nonlinear structure can explain the
rotation of galaxies [86].
Here, we consider the vector perturbations

Bi ¼
aðr2 − 1Þk2

2½k2ðr − 1Þ þ a2ð2ωðσÞ þ 3ÞH2�
_Ei

N
: ð48Þ

The field Bi is a nondynamical, and we can enter it into the
action as an auxiliary field. Therefore, we find a single
propagating vector

Sð2Þvector ¼
1

8

Z
d3kdta3N

�
β

N2
j _Eij2 −

k2

2
M2

GWjEij2
�
; ð49Þ

where

β ¼ k2

2

�
1þ k2ðr2 − 1Þ

a2H2ð2ωðσÞ þ 3Þ
�

−1
: ð50Þ

It seems that there are two cases, in the first case, we have
r2−1

ð2ωðσÞþ3Þ ≥ 0, and there is no critical momentum scale.

But in the second case for r2−1
ð2ωðσÞþ3Þ < 0, in order to

avoid a ghost, we have a critical momentum scale

kc ¼ a2H2ð2ωðσÞþ3Þ
1−r2 . In other words, to have stability in the

system we require the physical critical momentum scale
that should be above the ultraviolet cutoff scale of effective
field theory, so we have
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Λ2
UV ≲H2ð2ωðσÞ þ 3Þ

1 − r2
; if

ðr2 − 1Þ
ωðσÞ þ 3

2

< 0: ð51Þ

In order to determine whether the vector modes suffer from
other instabilities, the canonically normalized fields can be
considered

ζi ¼
βEi

2
: ð52Þ

By considering and inserting the above equation in
Eq. (49), we have

S ¼ 1

2

Z
d3kdta3N

�j _ζij2
N2

− c2V jζij2
�
: ð53Þ

The sound speed for vector modes is

c2V ¼ M2
GWð1þ u2Þ −H2u2ð1þ 4u2Þ

ð1þ u2Þ2 ; ð54Þ

here we consider the dimensionless quantity as below

u2 ≡ k2ðr2 − 1Þ
a2H2ð2ωðσÞ þ 3Þ : ð55Þ

It is interesting to note that for avoiding tachyonic
instability, which can be originated from the first part of
Eq. (54), if M2

GW < 0 and u2 > 0, then we should consider
the below conditions:

Λ2
UV≲H2ð2ωðσÞþ 3Þ

r2 − 1
; if

ðr2 − 1Þ
ωðσÞþ 3

2

> 0 and M2
GW < 0:

ð56Þ

By considering all physical momenta below the UV cutoff
ΛUV, we have a growth rate of instability lower than the
cosmological scale.
On the other hand, concerning the second part of Eq. (54)

we have two cases. In the first case, by considering u2 > 0,

we do not have instabilities faster than the Hubble
expansion. In the second case, if we have u2 < 0, according
to the no-ghost condition Eq. (51), then we have ju2j ≲
k2

a2
1

Λ2
UV

to avoid instabilities. Therefore, the second part of

Eq. (54) does not lead to any instabilities.
Finally, it should be pointed out that for avoiding

instabilities we should have c2V > 0, which means that
the stability for vector modes is guaranteed. Using this fact,
we know that the mass square of the dispersion relation of
gravitational waves should be positive as we have men-
tioned in the Sec. III A, i.e., (M2

GW > 0).

C. Scalar

It is interesting to mention that the scalar fields have been
introduced to explain the accelerated expansion of the
Universe, and they do not break the isotropy of the
Universe. The analysis of scalar perturbations contains
interesting phenomenology. However, in this stage, we
want to focus on the stability of the scalar perturbations in
the new extension of the dRGT massive gravity theory in
the Einstein frame.
We begin with the action quadratic in scalar perturbations

δg00 ¼ −2N2Φ;

δg0i ¼ Na∂iB;

δgij ¼ a2
�
2δijΨþ

�
∂i∂j −

1

3
δij∂l∂

l

�
E

�
; ð57Þ

σ ¼ σð0Þ þ δσ: ð58Þ

As the perturbationsΦ andB are free of time derivatives, we
can eliminate them as auxiliary fields using their equations of
motion

B ¼ r2 − 1

ð3ωðσÞ þ 9
2
ÞaH2

�
H

��
3ωðσÞ þ 9

2

�
δσ − 6Φ

�

þ 1

N
ðk2 _Eþ 6 _ΨÞ

�
; ð59Þ

Φ¼ 1

½ð3ωðσÞþ 9
2
Þð27

2
−ωðσÞÞa2H2þ12k2ðr2−1Þ�

�
k4E

�
ωðσÞþ3

2

�
þ
�
3ωðσÞþ9

2

��
2k2ðr2−1Þ− ð3ωðσÞþ 9

2
Þa2H2

r−1

�
δσ

þ
�
3ωðσÞþ9

2

��
2k2þð3ωðσÞþ 9

2
Þa2H2

r−1

�
Ψ−

ð3ωðσÞþ 9
2
Þa2H

N

��
ωðσÞþ3

2

�
δ _σ−6 _Ψ

�

þ 2k2

HN
ðr2−1Þðk2 _Eþ6 _ΨÞ

�
: ð60Þ

By substituting these equations into the action, we achieve
the actionwhich contains three fields,E,Ψ, and δσ. Also, we
determine another nondynamical combination to remove the
sixth degree of freedom, which is

Ψ̃ ¼ 1ffiffiffi
2

p ðΨþ δσÞ: ð61Þ

Furthermore, an orthogonal combination can be defined as
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eδσ ¼ 1ffiffiffi
2

p
k2

ðΨ − δσÞ: ð62Þ

By redefining these fields, we write the action in terms of Ψ̃, eδσ, and E, with no time derivatives on Ψ̃. Therefore, the Ψ̃ is
auxiliary and could be eliminated

Ψ̃ ¼
�
−k2 −

24a2H2

rðr − 1Þ þ
2a2H2k2½ð48 − ðωðσÞ þ 3

2
Þð9

2
− ωðσÞÞÞr − ðωðσÞ2 þ 3ωðσÞ þ 9

4
Þ�

ð4k2 − a2H2ðωðσÞ þ 3
2
Þð9

2
− ωðσÞÞÞðr − 1Þ

� eδσ
−

2
ffiffiffi
2

p
k4E

½12k2 − 3ðωðσÞ þ 3
2
Þð9

2
− ωðσÞÞa2H2� þ 2a2H

�
3

r
þ ð2k2ðr − 1Þ þ ð3ωðσÞ þ 9

2
Þa2H2Þð9

2
− ωðσÞÞ

½4k2 − ðωðσÞ þ 3
2
Þð9

2
− ωðσÞÞa2H2�ðr − 1Þ

� _eδσ
N

þ k2a2H
ffiffiffi
2

p ð9
2
− ωðσÞÞ

½12k2 − 3ðωðσÞ þ 3
2
Þð9

2
− ωðσÞÞa2H2�

_E
N
: ð63Þ

Note that by substituting this solution in the action and considering the notation A≡ ð eδσ; EÞ, the scalar action can be
obtained

S ¼ 1

2

Z
d3kdta3N

�
_A†

N
F

_A
N
þ

_A†

N
DAþ A†DT

_A
N
− ATϖ2A

�
; ð64Þ

whereD is a real antisymmetric 2 × 2matrix, andF andϖ2 are real symmetric 2 × 2matrices. In the following, we show the
components of the matrix F as below

F 11 ¼ k4ð2ωðσÞ þ 3Þ
�
1þ 9a2H2

k2ðr − 1Þ2 −
a2H2½ðωðσÞ þ 3

2
Þ þ ð9

2
− ωðσÞÞr�2

½4k2 − ðωðσÞ þ 3
2
Þð9

2
− ωðσÞÞa2H2�ðr − 1Þ2

�
; ð65Þ

F 12 ¼ k4
ffiffiffi
2

p �
ωðσÞ þ 3

2

��
r

ðωðσÞ þ 3
2
Þðr − 1Þ −

k2½ð2ωðσÞ þ 3Þ þ ð9 − 2ωðσÞÞr�
½12k2 − 3ðωðσÞ þ 3

2
Þð9

2
− ωðσÞÞa2H2�ðr − 1ÞðωðσÞ þ 3

2
Þ
�
; ð66Þ

F 22 ¼
k4ðωðσÞ þ 3

2
Þ

36

�
1 −

ð9
2
− ωðσÞÞ2a2H2

4k2 − ðωðσÞ þ 3
2
Þð9

2
− ωðσÞÞa2H2

�
: ð67Þ

In order to determine the sign of the eigenvalues,we study the
determinant of the kinetic matrix F . Thus, we have

detF ≡ F 11F 22 − F 2
12

¼ 3k6ðωðσÞ2 þ 3ωðσÞ þ 9
4
Þa4H4

½ðωðσÞ þ 3
2
Þa2H2 − 4k2

ð9
2
−ωðσÞÞ�ðr − 1Þ2 : ð68Þ

Note that to avoid appearing the ghosts in the scalar sector,
we should have

k
aH

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωðσÞ þ 3

2
Þð9

2
− ωðσÞÞ

q
2

: ð69Þ

As a result, we should note that the stability of the scalar
sector is guaranteed using the determinant of the kinetic
matrix. In fact, the determinant is positive andwe do not have

FIG. 1. According to the determinant of kinetic matrix Eq. (68),
the stability of the scalar sector is imposed. As it can be seen, the
below solid line shows that there is no ghost degree of freedom,
which means that the determinant is positive. But, above the solid
line, we have a ghost.
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a ghost degree of freedom in the determining part (see
Figure 1).

IV. CONCLUSION

The significance of this study is the understanding of
how the extended theory could be well behaved and ghost
free in perturbations analysis around their cosmological
backgrounds. In this work, we have introduced the Brans-
Dick-dRGT massive gravity, which is the new extension of
massive gravity theory. First of all, we have performed the
transformation of the Jordan frame to the Einstein frame,
and we have exhibited maintaining the invariance of
physical laws under this transformation.
We have presented the total Lagrangian and the full set

of equations of motion for an FLRW background. In order
to explain the late-time accelerated expansion of the
Universe, we have demonstrated the self-accelerating
background solution in the context of the new extension
of the dRGT massive gravity in the Einstein frame.
This way, we have considered the function of ωðσÞ instead

of a constant to avoid the curvature singularities and a
big brake.
Finally, we have analyzed the cosmological perturba-

tions, which consist of tensor, vector, and scalar modes. For
studying the mass of graviton for the new extension of the
dRGT massive gravity theory, we have calculated the
dispersion relation of gravitational waves, and we have
shown the propagation of gravitational perturbations in the
FLRW cosmology in the Einstein frame. In vector and
scalar perturbations, we have presented the conditions of
the guaranteed stability of the vector and scalar sectors.
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