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Analytic treatment of underdamped axionic blue isocurvature perturbations
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Previous computations of strongly blue tilted axionic isocurvature spectra were computed in the
parametric region in which the lightest time-dependent mass is smaller than the Hubble expansion rate
during inflation, leading to an overdamped time evolution. Here we present the strongly blue tilted axionic
isocurvature spectrum in an underdamped time evolution parametric regime. Somewhat surprisingly, there
exist parametric regions with a strong resonant spectral behavior that leads to a rich isocurvature spectral
shape. We focus on computing this resonant spectrum analytically in a large parametric region amenable to
such computations. Because the spectrum is sensitive to nonperturbative classical field dynamics, a wide
variety of analytic techniques are used including a time-space effective potential obtained by integrating out

high-frequency fluctuations.
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I. INTRODUCTION

Axions are well motivated from the perspective of being
a solution to the strong CP problem [1-4] where the
experimental bounds (see e.g., [5]) have pushed the Peccei-
Quinn (PQ) symmetry-breaking scale fpq to large values
such that the axions are extremely weakly interacting with
the Standard Model (SM). The largeness of fpq at the same
time presents an opportunity for axions to be the dominant
component of the cosmological dark matter from the
perspective of both its interaction strengths and the cos-
mological energy density [6-15]. Since axions are impor-
tant from both particle physics as well as cosmological
perspectives, several experiments have been devoted to its
search [16-30]. A few reviews on direct detection can be
found here [31-36] and one can also refer to recent reports
[37,38] for a list of various experimental searches and
methods.

In most popular axion scenarios where a SM singlet field
43 obtains a large vacuum expectation value (VEV) to fix
<|(;5|> = fpq, the potential for the singlet has a quartic term,
which makes the |¢| fast roll to its minimum during
inflation if fpgy > H, where H is the expansion rate during
inflation. In such cases, inflation driven by a different field
than ¢ completes well after <\$|> settles to the minimum of
the potential. In these situations where the axions are
spectator fields during inflation, the isocurvature spectrum
associated with the axion field is nearly scale invariant.
The weakness of the axion interactions with the SM fields
allow the axion isocurvature perturbations to survive
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thermalization to be observable through cosmological
observables such as the cosmic microwave background
(CMB) and galaxy surveys. Production of spectator axion
isocurvature perturbations, its model dependences, and
associated observational constraints have been widely
studied [39-67].

The work of [39] has pointed out that if the PQ charged
SM singlet (75 moves along a flat direction lifted only by
masses of O(H) that is typical in supersymmetric embed-
dings of the SM, then because the amplitude of the

isocurvature perturbations is proportional to 1/ \(,75| the
isocurvature fluctuations of the spectator axion fields can
have a strongly blue tilt. Such situations allow the iso-
curvature to be negligible on large scales probed by the
CMB yet become large on short length scales. Unlike the
compensated isocurvature perturbations [68—71], which
hide the total matter gravitational effects at linear order,
the strongly blue isocurvature perturbations can give large
gravitational effects at linear order on short length scales.
Also, unlike the phenomena explored in works such as [72]
where the O(H) mass field mixing effects with the
curvature perturbations lead to observables, here we are
exploring situations where the O(H) mass field is stable
similar to the ideas of [73] and can be observed gravita-
tionally in standard probes such as CMB and large-scale
structure. Besides being important for the completion of
QCD axion phenomenology, a discovery of a strongly
blue tilted isocurvature spectra will generically indicate the
existence of a dynamical degree of freedom during inflation
which has a time-dependent mass, quite model independ-
ently [74]. The transition region from the strongly blue
tilted region to the flat region of the isocurvature spectra
within the supersymmetric axion model of [39] was
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investigated by [75]. All of the previous computations of
the spectrum focused on the overdamped scenarios in

which the mass of {15 flat direction is smaller than 3H /2.
Even in the fits to data that were done in [76,77], the
parameters were restricted to overdamped scenarios
because the spectrum was naively expected to be negligible
in the underdamped scenarios.

In this paper, we compute the strongly blue axionic
isocurvature spectrum in the underdamped case where the

mass of the qz flat direction is larger than 3H/2, focusing
on a parametric region where both the spectral shape is
interesting and analytic computation is possible. Somewhat
surprisingly, the isocurvature spectrum can exhibit a set of
rich spectral resonant shapes with a large enhancement in
the amplitude that crucially depends on the underdamped

nature of the ¢ dynamics. Because the spectrum in this
resonant parametric region depends on nonperturbative

classical dynamics of 43, a set of nonperturbative math-
ematical methods is employed to obtain the analytic
spectrum. These include piecewise polynomial solutions
to differential equations in a couple of time regions and
piecewise effective time-space potential (ETSP) modeling
after integrating out fast oscillations. This allowed us to
compute a transfer matrix solution to the isocurvature mode
equations. Because of this lack of perturbativity, the
derivation of analytic expressions as well as the results
are quite lengthy.1 Readers interested in just the main
results can refer to Eq. (222), where the quantity that is
most cumbersome to evaluate is 7., as explained there.
Intuitively, the isocurvature spectral range that we can
give our analytic results is for the wave vector k range
where the heavy modes can be decoupled in the axionic
model of our interest with multiple degrees of freedom. For
the interesting oscillatory part of the spectrum arising from
a resonance of background field dynamics, we focus on the

parametric region where the velocity of the gZ flat direction
field is below a particular critical amount to avoid heavy-
mode mixing and the background field dynamics becoming
chaotic. Due to the already extreme length of the present
paper, we defer the discussion of chaotic dynamics and
numerical fitting functions that may be useful for data
applications to a separate paper. The intuition behind why
there is an interesting resonance in the underdamped
scenarios while such resonances do not occur in over-
damped scenarios is because the overdamped scenarios
have field dynamics characterized by exponentials of the

formexp(—+/9/4 — ¢, T) (where T is a dimensionless time
parameter obtained by scaling proper time 7 with expansion

rate H and c, is a mass squared parameter for the (;5 flat
direction during the initial period), which turns into

'A Mathematica package to evaluate the spectrum using the
analytic methods is given in https://pages.physics.wisc.edu/
~stadepalli/Blue-Axion-IsoCurvSpec-Underdamped.nb.

c, —9/4T) >
cos(y/c, —9/4T) for the underdamped case. This cos
factor which has a zero will allow the field to reach
a dynamically interesting small field region, while the
kinetic energy is enhanced by an expansion parameter
(fpo/H)? > 1, which translates to a factor of at least an
O(10) large enhancement in the spectral amplitude over a
range of k values when compared to the overdamped
scenario. Additionally, the resonance condition has the
initial condition-dependent coincidence requirement of
interaction induced mixing between two dynamical degrees
of freedom being efficient, as will be explained.

Although several of our plots are given with reference to
an axion dark matter abundance fraction parameter o
where the axion dark matter is fiducially assumed to be a
QCD axion, it is written to divide out the effects of the
QCD phase transition. Hence, all of our results can easily
be used with the axion field interpreted as a general
axionlike particle.

The order of presentation will be as follows. After a brief
review of the underlying axion model in Sec. II, we explain
in Sec. III the decoupling of the heavy modes that can be
viewed as the main characterization of the analytic formula
presented in this work. Section IV explains one of the
technically difficult parts of this work, analytically com-
puting the time 7. when the resonant transition occurs.
Section V presents the parametrization of the ETSP that
results from integrating out the fast oscillations of the
classical background fields (which still exists after decou-
pling heavy quantum modes). Section VI maps the param-
eters of the previous section to the underlying axion model
parameter space spanned by the dimensionless Lagrangian
parameters {c,,c_, F} and explains the derivation of the
isocurvature spectrum without making assumptions about
how many large dips there are in the ETSP. Section VII
presents a closed form analytic expressions for the iso-
curvature power spectrum in a certain restricted region of
the underlying model space supporting a single large dip in
the ETSP. Section VIII explains how the isocurvature
spectrum changes as the axion model parameters
{cy,c_, F} are varied. Section IX summarizes this work.
An extensive set of appendix sections contain some of the
details omitted in the main text.

Appendix A contains an alternative method of computing
a critical time T, required for the isocurvature computations.
It serves as an independent check of the computation of 7',
presented in Sec. IV. Appendix B describes how the less
striking nonresonant situations can be computed within this
paper’s framework. Appendix C describes a method from
[78] of integrating out the fast oscillations to obtain an
effective differential equation containing smaller frequen-
cies. Appendix D discusses the dynamics of a composite
field object that will be useful in integrating out fast
oscillations in the axion model of interest in this paper.
Appendix E applies the results of Appendixes C and D to

resonant oscillation producing exp(—i
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integrate out the fast oscillations in the axion model.
Appendix F describes the crucial dynamics associated with
the lightest eigenvector rotation that will be helpful in
constructing the ETSP of Sec. V as well as the maps to
the {c,, c_, F} space in Sec. VI. Appendix G describes the
time dependence of the lightest mass eigenvalue which will
be useful in constructing the ETSP as well as the parametric
map in Sec. VI. Appendix H describes the form of the ETSP
parametrization used in Sec. V. Appendix I discusses the
slowly varying part of the lightest mass squared eigenvalue
function that governs the physics of one of the parameters of
Sec. V. Appendix J explains the details of the effects coming
from the heavy modes considered in Sec. III.

II. A BRIEF REVIEW OF BLUE AXIONIC
ISOCURVATURE PERTURBATIONS

In [39], a supersymmetric axion model is studied with
the following well-known renormalizable superpotential:

W = h(®, ®_ — F2), (1)

where the subscripts on @ indicate U(1)p, global PQ
charges. Note that this is also the most general renormaliz-
able superpotential transforming under a U(1); as

CDO d €irq)o, (2)
D, P> D, D_, (3)
W — e"W. (4)

The F-term potential is
Vi = RO, ~ P22+ (0.2 + [0_P) L. (5)

A special property of this class of potentials is the existence
of flat directions: i.e., in this particular model, it is

O, O_ = F2, oy =0. (6)
The existence of this flat direction is important because this
is the reason why the effective PQ parameters will be
rolling with a mass of order H during inflation (instead of
being much heavier and having already settled down),
taking advantage of the inflationary #-problem: i.e., the
Kaehler potential induced scalar potential is

Vi = c H?|® > + c H?|®_| + coH?|®|?

- ()

where ¢, _  are positive O(1) constants. The parameter ¢,
dominantly controls the blue spectral index. This setup
implicitly assumes that the inflaton sector can be arranged
to have H <« F, such that the flat directions are only lifted
by the quadratic terms at the renormalizable level.

Looking along the flat direction of Eq. (6), we set
®, = 0. The resulting relevant effective potential during
inflation is

Va0, — F2P +c, 2@, >+ c H|O_|°.  (8)

During inflation, the minimum of V lies at

. C
j@min| = [V Fp2 ST 2 9)
Ve Tk
1/4
z(c—:F) F,. (10)
i

The key initial condition is that @ starts out away from the
minimum with a magnitude much larger than O(F,) and
rolls toward the minimum during inflation. This implies the
U(1)pg symmetry is broken during inflation. Hence, there
will be a linear combination of the phases of @, which will
be the Nambu-Goldstone boson associated with the broken
U(1)pq. In particular, with the parametrization

where ¢, and a, are real, the axion is

a= ;’0+ =a, = 2('0_ ~a., (12)
VA ol (/d Vo1 + @
while the heavier combination
- P+
b= a, + a (13)
Vi + o2 Vo +¢2

is governed by the potential

2 2
V, = —I2F2p, . cos (Lﬂ” b). (14)

PLP—

Since the b field is heavy [i.e., (g% + @2)F2/(p ) >
H?], it is not dynamically important. Hence, one can gain
some intuition for how the axion composition time evolves
by setting b = 0. When ¢, _is large, the axion is dominantly
a, and later when ¢, becomes comparable to ¢_, the axion
is a mixture of a_ and a,.

According to model [39], the background equations are
as follows:

& (1) + 3HD, (1) + ¢, H* @, + h* (D, D_ - F2)d_ =0,
(15)

&_(1) + 3HD_(t) + c_H*D_ + h* (D, D_ — F2)D, =0,
(16)

123511-3
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where @, has been phase rotated to be real (which is
referred to as ® in [75]).
The background system can be rescaled as follows:

G (T)+3¢,(T) +c s + &b )p-=0. (17)
G_(T)+3¢_(T)+c_¢p_+ &y )p, =0, (18)

where
h
=D, H (19)
F=hF,/H, (20)
f(¢+a ¢_) = hip_ — F2, (21)
and
T =1tH. (22)

The mode equations can be written in these coordinates
as [75]

(0% 4 307)1 + (1@(@) 21 +M1=0, (23)

a(T)
where
k
K= OLE (24)
a(T) = a(0) exp(T), (25)

where [ = (I, 1_) and the mass matrix can be rewritten as

=5 D)o (5 o)

Note that we are neglecting the slow roll effects since the &
in models where this scenario is of greatest interest is
negligibly small during most of inflation. Note also that as
explained in [79], Eq. (23) represents the nonsourced part
of the isocurvature modes: i.e., the isocurvature modes. The
full 6@ (x) field contains gravitational infall inhomoge-
neities sourced by the adiabatic inflaton inhomogeneities.
The expression for the isocurvature can be written as

K 0
402 — 1 ( , )1, (27)

A(t, k
3t k) ~ =l U

) 20)
i‘f\/ O 20O

0,

waEQCdm (29)
32 ) 2 (+ \\1/2\ 7er

= won ) (O S OIENT, g

where W, ~ 1.5 and npr ~ 1.19 [see Eq. (14) in [6]] and 7,
is the time just before the QCD phase transition.’

The background field equations (18) control the behavior
of isocurvature modes of Eq. (23). Hence, to understand the
1socurvature modes, we need to understand the solution
space of Eq. (18) in addition to solving Eq. (23). In the
parametric region of ¢, < 9/4, the background solutions
only have a single bump deviation from the time behavior of
the lightest mass squared eigenvalue rising with a constant
log slope connecting to a plateau region in 7" space.

¢, starts from a near Planckian value (but restricted to
sub-Planckian to have a good chance of the effective field
theory being valid) and moves toward F in the approximate
solution
&+ /

@

¢+ (T) =, (0)e7"/2 [cos(wT) +———=sin(wT)|. (31)

where we have labeled the initial time as 7 = 0 and

w=+/c; —9/4, (32)
"= 5o <33>

while ¢_ stays near F?/¢., which is the approximate
minimum of the potential. Hence, during the initial time
period, the background fields ¢, (whose nonzero VEV
breaks PQ symmetry) reduce to a single radial degree of
freedom. The potentially interesting and nontrivial aspect
of this background system’s time evolution occurs in two
cases: (a) when ¢, (T') reaches O(F) during the time when
¢_ < F; (b) T, when the energy transfer from ¢_ to ¢
becomes significant (this will be quantified in Sec. IV C).
Both of these time periods are dynamically potentially
interesting because the mass matrix undergoes transitions
such that the mass eigenvalues and the eigenvectors have
time variations that are nonadiabatic (change fast compared
to timescale of H™'). As we will explain, in most cases,
only event (b) leaves significant imprints on the isocurva-
ture spectrum A2 (k).

III. DECOUPLING

The dimensionality of the mass matrix indicates that
there are two different mass modes. The key de Sitter
physics is that at late times, the massive eigenmodes decay

*The fields @, have settled down long before this.
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away while the lighter mode is important. This means that
we do not care about the full equations but only the
projected equation onto the lightest eigenvector. Let

2
I=> y,(k T)e,(T), (34)
n=1

where ¢, (T) are real normalized eigenvectors of M? with
the n = 1 modes being the lighter eigenvalue mode.” We
will call this the instantaneous normalized eigenvector
basis. The mode equation (23) becomes

Oy = S12y2. (36)
Ory, = Sy )1, (37)

O = (82 +38T) + —8Te . 8Te +k72+m2(T)
e SR |
(38)

Sns(T> = =€, a%"es - SaTes T€y — 2611 : aTesaT’ (39)
where m2(T) are the time-dependent eigenvalues of M.
One can solve Eq. (37) formally using the Green’s function
satisfying

O,G,(T.T') = 8(T - T (40)

This gives
2D) =D + [ G TS (). (1)

where y% is the solution to O,y = 0. Putting this into
Eq. (36) gives

O1y1 = SyA(T) + S, / dT'Gy(T, T') Sy (T")y(T").
(42)

This is the integro-differential equation that needs to be
solved with Bunch-Davies (BD) boundary conditions to
compute the isocurvature perturbations.

There are two independent solutions to Eq. (42), both of
which are excited to some extent by the quantization with
BD boundary conditions. However, the heavy mode is not
excited appreciably for the BD boundary conditions, as has

*For example, when ¢, (T) have reached the values corre-
sponding to Eq. (9), the lightest eigenvector is

(—v/E /) -

e = — —

Veo + ey

been checked explicitly. Hence, we focus on the mode
with the boundary condition with an initial magnitude of
v (T;) < y((T;), which means

yA(T) = 0. (43)

In this case, we see that the right-hand side (rhs) of Eq. (42)
can be neglected for the evolution of y; as long as

(er- 8%61)(61 '3%62)
m%(m% + H?)

< 1. (44)

Before the two fields transition at 7. when the mass
eigenvalues change as a function of time nonadiabatically,4
we can estimate m3 ~ h’¢% and

(e a%31)(61 : a%“32) ~ [c+F§H2/¢i]2, (45)

which means that Eq. (44) is satisfied and y, can be
neglected. On the other hand, at T = T, the ths of Eq. (42)
may be important since at that time there is only one scale
of F in the system. During this transition time, the time
width of the transition is fixed by

1
ATo~ . (46)

The heavy mixing effect is then quantified in the vicinity
of T. in terms of a new parameter yy,; defined in
Appendix J as

)(HM(Z%’ l%) ~

where 12 = (m? — ¢?)/é? and HM stands for heavy mixing.

One can then show that as long as (refer to Appendix J)

max(yym) S O(r,), (48)

the effect of heavy-mode mixing and the associated rhs
of Eq. (42) can be neglected. Close to transition, as é7 tends
to O(F?), m} becomes negative due to nonperturbative
effects of O(F?), while the heavier mass eigenvalue
m3 ~ O(y/c,/c_F?*). The details of the physics and the
derivation are discussed in Appendix J. Therefore, we shall
work with only those cases that satisfy the condition in
Eq. (48). Later we will express these cases more explicitly
in terms of the Lagrangian parameters.

*The transition is defined in Sec. IV B.
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IV. BEHAVIOR OF ¢, NEAR THE FIRST
CROSSING OF ¢..

For analytically solvable cases, the details of ¢ (T') near
the time when

¢ (T1) = p(T1) (49)

for the first time will be important. Hence, in this section,
we provide an analytic approximation of this time behavior.

A. Perturbative solution

For T < T, the system can be solved by making the
following expansion:

Po(T) = 14+ 00 + 00 + 002) + 24!, (50)
_(T) =299 + 0(2%) + PpY) + 0(2*) + P2, (51)

where the near Planck scale initial conditions for (ﬁ(f) gives
rise to the prominence of ¢(+0> justifying A~!, the near flat
direction solution that we seek fixes the A power for ¢©)
and the rest of the 1 powers are simply increasing powers
where we omit some of them [such as O(1°) in ¢ (T)
expansion] because they will not contribute (as one can
check by introducing them). In other words, one can
consider the expansion in A defined here to be that of

smallness of
¢
A< 0 52
o) e

which is valid over a finite time interval before T';.
Putting Egs. (50) and (51) into Egs. (17) and (18) and
collecting powers of A, we find the following:

“1: 920 +30;0 + .9V =0,

1 290 +30:40 + (V)0 + c_p® =0,  (54)

22 RV 430,00 + e ) + P29 =0, (55)

020 + 30,00 + P24\ + @ 0% 4 c_p)

(56)

The A~! order has a simple solution ¢ identical to Eq. (31),
which can be rewritten as

NT) = ¢, (0)e™ sec(q) cos(oT — @), (57)

where

2
tan g = M (58)
1)

The matching order ¢_(T) solution is

2
$_(T) ~ O = %. (59)

+

Note that when ¢ initially does not have much kinetic
energy (i.e., &y < 1), ¢ takes on values that monotonically
decrease from z/2 to order unity as c_ increases from 9/4
to 10. The A' order also has a simple, local solution:

+

The A3 order has a nonlocal solution:

03 +3074) + ¢ )G (T.T)) = 5(T=T'). (61)

- / ATG(T.TY(T).  (62)

1
P2 = i (200 + 3040 + F2¢) + c_g].  (63)

+

Nonetheless, this perturbative expansion by design breaks
down near T since the ¢_/¢_ hierarchy represented by 1
is lost.

Interestingly enough, the correction to

1
b~ (64)

is O(2?), which means that the ratio of the next to leading
order to the leading order is O(4*). In contrast, the next to
leading order to leading order ratio for ¢_ is O(4%). To
understand this, note that unlike in the equation of motion
for ¢_, ¢ is the exact solution to Eq. (17) if ¢p_ = $©. In
contrast, ¢ is not the exact solution to Eq. (18) with
¢, = cj)(f). This means that even though the perturbative
expansions of Egs. (50) and (51) for both ¢, break down
at T, the approximation for ¢»_ breaks down faster in the

region
b
) 65
Vs 2 (65)

corresponding to an error of the leading order approxima-
tion in this region being

Ad 1 A 1
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T

FIG. 1. Numerical background solution compared to the per-
turbative solution near 7} =9.248 and {c, =2.35,c_ =0.5,
F=202,6y=0,¢,(0)=3.32x108}. For TS T, — 1/F, the
perturbative solution corrected by ¢!) does much better than the
leading order solution ¢©) for 7' < 9.18. The increasing deviation
at T is expected as explained in the text.

As a preliminary check on the perturbative ¢ solution,
we can compare the numerical solution to the perturbative
solution for ¢_ for the case of {c+ =235,¢c_.=05F =
20.2,&9 = 0,¢,(0) = 3.32 x 10%} as shown in Fig. 1. The

improvement from ¢! is manifest before the expected

breakdown of small 1 = O(\/¢_/¢p.) expansion at T
defined by Eq. (49).

B. Beyond perturbation theory

Because the background solutions are sensitive to the
details of ¢o_(T';) and the perturbation theory breaks down
when ¢ (T|) = ¢_(T,) [see Eq. (52)], we need a method
to solve for the background fields more accurately at 7'y. As
we will justify later, because most interesting isocurvature
spectral behavior comes from the models in which ¢, (7))
is near a zero crossing [i.e., ¢S?)(T1 + O(1/F)) = 0], this
section will mainly focus on such cases. We will mainly
use the method of interpolation using a cubic order
polynomial between the time when the perturbation in A
starts to break down and T';. We will also check this method
in Appendix A using a Taylor expansion approach.

The interpolation polynomial is parametrized as

=po+piI(T=T,) + po(T —T;)* + p5(T = T,)*,
(67)

$.(T)

¢—(T) ={qo+ ql(T - Ts) + Q2(T - Ts)z + CI3(T - Ts)3’
(68)

where we choose T to be the time when ¢_(T') begins to
deviate significantly (to be defined) from ¢ (T). We will
then choose the interpolation point 7; taken to be the

midpoint between 7'y and 7'} based on the idea that such a

choice approximately minimizes set of competing errors.’
The coefficients {p,, g,, } will be constrained at T; through
the original differential equations.

In choosing the time T, to be where the perturbative
solution starts to break down, we expect the deviation to
come from the neglect of the ¢*) in the zeroth order
perturbative solution. Hence, we set T’ to be the time when

FO ~ (1) ¢, (69)

n

where n parametrizes the (1/n) accuracy we want to
achieve in the approximation. For concreteness, we will
take n = 10 in the analysis below. To solve this equation
analytically in a closed form, it is useful to obtain a

polynomial form. Hence we expand ¢SE)>(T) about

0
¢V(T.

), where

¢(T.) =0 (70)

or equivalently

Q=;@+@, (71)

where ¢ is defined by Eq. (58) and assume that qﬁ@ (T) near

T, is well described by a quadratic expansion of ¢$)(T)
about 7',. We will justify this through self-consistency after
the analysis.

To simplify the parametric dependence, define a new
dimensionless parameter a describing the slope of the zero
crossing:

Lo (1)

s 1)
= a;gb}i(zmsec pe 3/, (73)

In terms of initial conditions ¢, (0) and &, the a parameter
can be expressed as

_ 9. 0)\/

Putting Egs. (57) and (59) into Eq. (69), we obtain

(2n)i 27n
T,=T.- 0 . 75
$ ‘ \/5F'+_ 162 F* (75)

3/2 T ) 6_3/2[ (5-+arctan—-"2 2 0)]' (74)

>Since this midpoint choice is an ansatz, we will actually
choose the midpoint between T and 7', where T, defined below
is close to 7.
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where the gbove exp.ansion- is valid for F >>.1. We now Po = ¢$)<TX>7 (77)
choose the interpolation point 7'; to be the midpoint
g0 = $O(T,), (78)
T,+T
T[ _ s + 1, , (76) . (0)
2 P =4 (Ty), (79)
which in most cases will be a point that lies in the q, = §O(T,). (80)
interval [T, T,].°
We then obtain eight equations to solve for the eight 3 81
coefficients of Eqgs. (67) and (68) using the background P2 = =5 P1 = C+Po (81)
differential equations (17) and (18), and the values and
the derivatives of the perturbative solutions [Eqs. (57) g = —Eq —cg (82)
and (59)]. Solving for these coefficients, we obtain 2 21 -0
|
N (64 9¢ + c_e* + (¢+(2)(T1))2£2)(3P1 + P22+ 6¢) + d_0)(T))E2) (T1) + 1P (2)(T))) (83)
p3= <D )
B (—F* + 20 0)(T1)-2)(T1))(3q1 + q2(2 + 6€) + ¢ 2)(T1)E2) (T)) + c—p_(2)(T})) (84)
D/e ’
|
~ _ ’ 85 equations for 7| and ¢, (7T,) by fitting to examples
BRP(E =P q) (85) obtained from the analytic expressions:
where
0.7 1
$o) = &(@12), P-2))5 (86) @
1
D = e (=F* + 2,5 (T1)p-2)(T1))? ¢.(T)) = F(1-02a)+ O (F) (90)
—(6+ 9+ c_e* + (¢10)(T)))€%)
X (6+ 9+ c e+ ( ¢-(2)(T1))282)» (87) By the self-consistency of the solution and the method of
construction involving Eq. (75), the time T, itself is
&= TI - Tsv (88)

and ¢, are defined by Eqgs. (67) and (68) with the
cubic terms dropped: e.g., ¢ (2)(T) = po + pi(T = T,) +
p»(T — T,)?. Note that since we are using the perturbative

solutions ¢ [i.e., Eqs. (57) and (59)] for Eqgs. (77)~(80),
we cannot make n too small (otherwise, the perturbative
solutions will be unjustified). To address this and as a
general check, we also solve the background system using a
Taylor expansion method in Appendix A. We find reason-
able agreement with the current method if we take n = 10.

Now that the background solution is approximately
fixed, we can use Eqgs. (67) and (68) to solve for the
crossing time 7'y and the field value there: i.e., solve for
¢ (Ty) =¢_(T,). A plotof ¢, (T;)/F is given in Fig. 2,
showing that for a <1, the crossing occurs when
¢ (T)) =~ F. In terms of a and F, we obtain the following

6 . . .. . .
In situations where 7T'; coincides with 7’|, one can increase the
value of n to achieve the desired interpolation.

0.9sf’
0.90
0.85

0.80

b+(T1)/F

0.75

0.70

0.65

0.0 0.5 1.0 1.5 2.0

FIG. 2. This plot shows that when ¢, (T) cross each other for
the first time at 7 [evaluated by using the highly nontrivial
equations (67) and (68)], their values are close to F for the
parametric region a S1 discussed in the text. This curve is
insensitive to the choice of {c., F, ¢, (0), &9} except through a
given by Eq. (72). We will use this feature to find an analytic
approximation to the isocurvature spectrum.
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0((2n)i/(/aF)) away from T,. Note that as a becomes

small, & = (2n)i/(y/aF) increases such that the cubic-
polynomial expansion of the background fields in Eqgs. (67)
and (68) is insufficient and higher order terms become
significant. Hence the cubic expansion nonperturbative
method utilized here is valid when

P3 (TI - Ts)3
¢.0)(Ty)

613(T1 - Ts)3

S 0lra). d_)(T))

50(ra), (91

where T; — T, = ¢. Expanding around a = 0 yields

3(48 + n) .
432 + 5n + 96a*(48 +n) ~

O(ra). (92)

which gives us the following lower bound on a:

- V144 +3n —432r, — 5nr,
a a =
L 4./6nr, + 288r,

For r, ~ 0.2 and n = 10 we obtain o, ~ 0.25 serving as a
reasonable cutoff for a 20% accurate computation.

In Sec. 11, we remarked that as long as yyy S O(r,), the
decoupling of the lighter and heavier modes is justified.
Figure 25 in Appendix J suggests that this is true when a is
less than an upper bound given as ay. Using r, ~ 0.2 we
infer that the decoupling is satisfied at the first crossing of
the background fields for

(93)

aSag=1. (94)

Later in Appendix E, we will show that this upper bound
is consistent with another analytic procedure where we
integrate out the high-frequency UV modes. Thus, the
nonperturbative methods and the analytic techniques uti-
lized in this paper are applicable within a specific para-
metric region defined by the parameter o. Henceforth in this
paper, we will limit ourselves to the study of underdamped
axionic isocurvature power spectrum applicable to those
cases where

025<asl. (95)

Interestingly, both the lower and upper bounds are nearly F
independent for F > 1, implying that the parameter « is a
suitable parametrization for studying resonant under-
damped isocurvature modes. Because we will be interested
in resonant cases (to be defined below), @ will never be very
small in the cases of our main interest. For completeness,
the small « cases (a < o) are discussed in Appendix B.

Additionally, using Eqgs. (67) and (68) we note that the
flat deviation |&(¢,, ¢_)| ~ O(F?) at the crossing T',. This
is a unique feature of the underdamped scenario where the
flat deviation can tend to O(F?) if the background fields

cross close to the qSS?) zero crossing (T} ~ T, — O(1/F)).
Post T, the flat deviation oscillates rapidly with a
frequency of O(F) and an O(F?) amplitude that decays
in time with the Hubble friction. These rapid oscillations
are identified as resonance. Accordingly, the axion mode
function is now characterized by the F scale dynamics till
the flat deviation decays or becomes insignificant. This is
unlike the overdamped or nonresonant scenarios where the
flat deviation is negligible and the mode amplitude dynam-
ics is defined primarily by the H scale throughout.

C. Resonant scenarios

In this work, we focus on initial conditions where
the ¢, and ¢_ initially follow the flat direction of the
potential. This corresponds to the initial trajectories

approximated by ¢$> of Eq. (57) for which the flat

deviation f(qﬁf) ,¢9)) = 0. For certain parametric cases,
there is a significant force on ¢, by ¢_ through £¢_ when
the two fields meet. Such forces cause displacements of ¢
toward the ‘“steep” direction in the _})otential where ¢ is
significant. This in turn causes strong" oscillatory behavior
of both ¢, and the order unity coupled ¢_. We now present
a quantitative condition for this class of scenarios which we
call resonant scenarios.

During each T cross when ¢+(Tcross) = ¢—(Tcross)’ the
effective coupling force f, on ¢, can be expressed as

f+(Tcross) = _§¢—|T (96)

whose magnitude measures deviation of ¢, from the flat
direction trajectory. This deviation is a sufficient condition
for the force in the steep direction to be significant. Hence,
we define resonant scenarios to be the cases in which
(1) &_lr_p 2 0(0.0)d, (T,),
@) [ (T)| 2 RF?,
where T, is the first T, that satisfies these conditions.
The first of the conditions ensures sufficient coupling force
S+ so that ¢, deviates significantly from the perturbed

solution 455?), while the second condition here is required
for ¢, to oscillate with an amplitude whose significance is
determined by the choice of R.. For specificity, we will
choose R, = ..

In summary, we can define 7', to be the time at which

¢+(Tc) = ¢—<Tc)’ (97)

for which ¢, has a large kinetic energy and a large
deviation from the flat direction. In this paper, we restrict
ourselves to only those cases where the fields transition
at the first crossing. Therefore 7. = T and henceforth we
drop the notation 7'y for crossing/transition. While this

"The term “strong oscillatory” here refers to the frequency
being much larger than that of w.
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choice may seem very restrictive, in principle the model
presented in this paper is still applicable to other cases where
T does not correspond to 7T, (under certain conditions).
Such cases will be studied in a separate paper [80].

V. NUMERICALLY MOTIVATED MODEL

After the transition time 7', defined in Eq. (97), the ¢
field takes a large dip toward the negative ¢, direction.
During a O(1/F) time period surrounding T, the effective
mass squared eigenvalues in the instantaneously diagonal
mass matrix basis has a large dip of O(F?). We can capture
this behavior in terms of an approximate step function
when solving the mode equation in the background of this

¢ system:
O7y1 (k. T) + 307y, (k. T)
+ (K*e ™ + [, - é; + m}(T)))y; (k,T) =0.  (98)

To model this, define the effective mass squared in
instantaneous normalized eigenvector basis shown in
Eq. (98) as

m2 =—éy-é +md, (99)

=

where m% is the lightest eigenvalue of Eq. (26),

M3, + M3 F*— M3, M3
m3 = 1+ 22(1_\/1+4 11 22>’ (100)

2 (M3, + M7,)?

where M7, are the elements of M. Because we will only be
interested in the longtime behavior of the zero mode here,
we do not need to solve the mode equation with high time
resolution. Hence, we use a double perturbative expansion
in amplitude and frequency as explained in Appendix C to
|

Vo,

m2~{ =V,

Vesqw(T,T,,Tp —T,) + Vs p=3(T-T»)

2

where
I T, <T<T;+ A,
SqW(T, Ti7 Az) = . (102)
0 otherwise,
and
Pset={V,;, V. T5.T;, A;} (103)

are the model parameters for this steplike approximation. In
particular, T is defined as the time when IR averaged m?,
makes a negative jump, and 7', is defined as the time after

-0.5 0.0 0.5 1.0 1.5 20 25 3.0

FIG. 3. Shown is an effective IR mass squared (dashed line)
obtained from integrating out high-frequency oscillations here
illustrated with m2,, = Ae™>' sin[f7] (solid line) where ¢ is the
dependent variable of this toy function. The effective IR mass
squared contribution mf; = 3 (A/f)?e™>" obtained through meth-
ods of Appendix C is exponentially decaying with an additional
factor of A/(2f?) coming from the UV propagator. Note that the
IR ETSP contribution from the UV modes is positive, consistent
with the fact that the UV oscillations are of the decoupling type
(i.e., they are not destabilizing).

separate out the low resolution behavior we are interested
in. After integrating out the UV modes, we find an effective
IR mode mass squared m%(T') that has only a small number
of features. This is illustrated schematically in Fig. 3. In the
context of Eq. (100), combined with m?(T < T..) being c.,
we see that integrating out the UV modes has generated an
effective jump in m?(T). As one can see in the figure, the
effective m?(T) is significantly simpler than the origi-
nal m? (7).

In the step function approximation this can be mod-
eled as

T0<T<T1,
T1<T<T2,
T, <T,

(101)
— i3 Visqw(T, T}, A;),

|
T, when IR averaged m%l makes a positive jump. Later on,
we will see that V  here represents the step approximation
of a smooth decaying nonoscillatory nonequilibrium time-
dependent axion mass function whose extinction point
corresponds to the PQ symmetry-breaking vacuum, where
the Goldstone theorem condition is satisfied. The rest of the
square well bumps are supposed to be approximations of an
oscillatory nonequilibrium time-dependent axion mass
function. This in turn means that

Ty —T,> A,
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K3 exp(=2T) + Vo

) Vy
K2 exp(—2T) + - exp(=3(T = T2)) + Vis

FIG. 4. Schematic diagram of the mass model highlighting key
features for a single dip case. The dashed curve represents m?(T).
The dotted and dot-dashed curves have the addition of
K2 exp(—2T) and K3exp(-2T), respectively, to m?(T). The
K, values have the hierarchy of K3 > K, > K;. The constant
Vg applicable for the region T > T, is typically small as
suggested implicitly in this schematic figure. Given that this
figure is schematic, the K, here should not be confused with
objects such as K, in Eq. (180).

in this parametrization. Figure 4 shows a schematic
depiction of the mass model highlighting its key features
for a single dip case.

Although this model can in principle be parametrized
with an arbitrary number of steplike features controlled by
{V,,T;, A;}, we will in practice consider at most two such
features (i.e., 7; will have at most i € {0,1,2,3} in this
paper where the two dips occur in the intervals [T, T,] and
[T3, T3+ As] with T, =T, + A;). The second dip (V3)
occurs when a 2 a,, where a, is defined in Eq. (150).
It corresponds to the situation where the background
fields ¢ cross each other again after T'.. Since we choose
¢, > c_ throughout this paper, there will always be an even
number of crossings between the two background fields
after T.. Every such crossing corresponds to a dip in the
ETSP within the framework of our mass model. By limiting
the current analysis to two dips, we consider only those
cases where a third dip is less than O(1) in magnitude. This
corresponds to all cases where a < a; with a3 defined by
Eq. (F13). Other cases can be treated by including addi-
tional steplike features as elucidated previously. With an
underlying theory such as Eq. (8), the parameters Pset can
be computed in terms of {c,,c_, F}. However, here we
will first solve this system analytically, then later express
the parameters in terms of {c.,c_, F}.

A. Piecewise solution (scattering matrix approach)

In this subsection, we would like to derive an expression
for (y;,y;) at some final time Ty given its value at some
initial time Ty, assuming that we know the approximate
forms of the solution in N discrete time regions.

Consider a time region R; with boundaries [7';, T ;). As
per this convention, the first region lying between T, and
T, is termed R,. The y;-mode function within any region
can be expressed through superposition of linearly inde-

. : (R;).
pendent basis functions v/, ;":
C(IRO)WSRO) + CgRO)W;RO), T e [T07 Tl}’
YK, T) = q Ry iR o Ry RO e 7y Ty,
(104)

with the Wronskian W) (T) = y}gRj)q/st) - ngj>z//1 (R;),

(Ry)
2

We will take different approximate forms of y, 5 in each of

the regions R,, and match the value and its derivatives at the
boundaries to construct y; in the entire domain U, R, as
will be described below.

Let us define the Y, ¥, and C matrices by rewriting

[yl} P | e
Sl g | ]
as
Y =WRICR), (105)
where
PR = ' v (106)

2
L(R) (R
l//(l ) w§ j)
and Y = (y,, ;). The coefficients C(X/) within the region
R; are given by the expression
R) _ w(R)-1(T+ -
CR) = P&y (THY(T7). (107)

Here T} indicates the incoming y;-mode function from

the left-hand side. The solution Y at 7’7, | as the mode exits

region R; is W) (T7,)C®). The function at T = T7,
can be constructed as

Y(T:

j+1) = lP(Rj)(ij+l)C(Rj)

— W) (T, PR (TY(T)

where the matrix S(7';.;, T ;) acts as a scattering propagator
for the y;-mode function from time 7'; to T';,; through the
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time slice R;. The mode function at time Ty after passing
through N piecewise continuous regions is given as

v(ry) = [ T)v(m). (108

B. Independent analytic functions
in each piecewise region

We shall now give the general linearly independent basis
functions y; , for the form of functions that appear within
our model. Let us consider the following second order
ordinary differential equation (ODE) as a generic case for a
yi-mode equation,

Oy1(K, T) + 30y (K. T)

+ (K?e™?T +m?(T))y, (K, T) =0.  (109)
In each piecewise region [[T;, T;,] in Eq. (101)] of our
m*(T) model, its behavior is either a constant or an
exponentially decaying function. Let us consider these
two situations case by case.
(1) const = ¢, where ¢ can either be positive or negative.
For this case, the above ODE has following linearly
independent solutions:

v = e_%TJﬂ/T—‘c(Ke_T)’ (110)

Wy = e_%TY\/QM—_C(Ke‘T). (111)
(2) exponentially decaying = Ve™T for some arbitrary
V > 0. The effective frequency squared
K?eT + Ve 3T (112)
now has two different orders of decaying exponentials.
A fundamental intuition for these mode function time
evolutions is that whenever K?e™2" +m?(T) >0, |y, (T)|
has a tendency to decay while for the opposite sign, |y, (7],
has a tendency to increase. This can be viewed as the result
of the equation with K?¢=>" + m?(T) = 0 having a con-
stant solution (similar to the usual inflationary adiabatic
mode) which makes K?e=?T +m?*(T) =0 a “point” of
criticality in a family of differential equations represented
by Eq. (109). This means that the sign of m?*(T) is
fundamental to understanding the mode amplitude evolu-
tion as a function of time. Moreover, this behavior of mode
functions is a fundamental element of quantum fields in
curved spacetime.

To solve Eq. (109) analytically, we define an approxi-
mate frequency squared U(T) as explained below and
further divide the region of interest into subregions such
that the ODE can be approximated as

Vi + 3y + U(T)y:(T) = 0. (113)
The idea for the approximation is that competing terms of
the form

A]B_ZT +A26_3T (114)
have only one term dominating except for at most a brief
period when the two terms become comparable. During this
“comparable” time period, the Taylor expansion of the time
dependence is

5
AT+ Aye T m2A e <1—§(T—TX)> (115)

5
~ 2A e xexp <—5(T—TX)), (116)

where we have linearly expanded about the equality time
Ty when the A; and A, terms are equal. Note that the
first of Eq. (114) will dominate over the second term in a
time period of AT ~ O(1). During this time period about
Ty, the fractional error between Eq. (116) and the exact
equation (114) is

exact — approx 1

T—TX) ’

cosh(—==* (117)

exact

which is about 0.2 for the maximum value of 7 — Ty =
2In2 that we take below. This lack of sensitivity is an
accidental property of the cosh(x) which has a flat region
at x = 0.

Now, let us discuss in detail how this approximation is
implemented in the model of Eq. (101). At time 7',, there is
a jump in the m? of Eq. (101) due to the term V,. We will
denote the jump amplitude in the effective frequency
squared U(T) as V in this generically parametrized analysis
here. Because the V term decays faster than the K term,
U(T) will need to take into account the K? term. We define
Ty as the time when V term is equal to the full U(T) that
includes the K? term. Subsequently, U(7T) decays accord-
ing to the approximate expression of Eq. (116). Eventually,
the V term in U(T') will be negligible, and only the K? term
will need to be kept. Since the K? term decays slower than
the approximate U(T) in Eq. (116), the expression for
U(T) will need to be changed to keeping just the K? term
when U(T) term equals the K* term at T.

The previous paragraph can be explicitly expressed in
terms of the effective frequency equation as

Ve—3TXe‘3<T‘TX>, T,<T<Ty,

UT)—c= (Kze_ZTX + Ve_3T")€_%(T_TX), Ty<T<Tk,
K2e=2Tx g=2T-Tx) Tg<T<T,.
(118)
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Thus, the time interval [T, T] is subdivided into three
piecewise regions, where each region is characterized by a
distinct exponential decay rate such that the system of the
differential equation in Eq. (109) is now analytically
solvable in each subregion. We define 7y as when
K?e™*T and Ve™3T are equal,

\%
TX:hl F s

while T, and Ty are defined as the time boundaries that
connect the piecewise regions continuously:

(119)

K?e=2Tx Vv
TV:TX—2]n <1 +‘/e—3TX> :TX—2]n2:1n<4I(2>,

(120)

4v
TK—TX+21n2—ln<F). (121)

To further improve the accuracy of the above piecewise
technique, the amplitude of the exponentials in each
subregion is evaluated as an integrated average of
K?e72T + Ve™T as follows:

[dT(K?e™*T 4 ve=3T)

Jdre T (122)

where n € {3,5/2,2} in each subregion. Using the defi-
nition of 7'y and the amplitude defined above, the expression
for U(T) in Eq. (118) simplifies to

(VK22 S ) e, T<T<Ty,
U(M)—c=1{ (BEKVV)e,

(K2 n vilgfgg’j?,ﬁke;f;)) e T <T<T,.

Ty<T<Tg,

(123)

In each subregion now the ODE has a Bessel solution
of order (1/9/4—c)/n for an ETSP of the form
U(T) = A?e™T +¢:

2 n
w, = e J s (—Ae‘iT>, (124)
n n
37 2 _ar
Yy =72 Yz | —Ae™ |, (125)
n n

such that the general solution is a superposition of v ,.

VI. ISOCURVATURE SPECTRUM RELATION
TO MODEL PARAMETERS

In this section, we give analytic expressions for the
numerically motivated model parameters and provide
isocurvature power spectrum results in certain regions of
the underlying model space {c.,c_, F}. The parameter
region is most efficiently divided by «a introduced in
Eq. (72). Small a resonance corresponds to the dynamics
of the background field with a (;5 +(T,.) (where T, is as
defined in Sec. IV C) that is neither too small (in which case
the dynamics is not resonant) nor large (in which case, the
dynamics becomes difficult to predict due to the large series
of nonlinear interactions involved). More precisely, we
define this set of resonant cases by Eq. (95):

025<asl. (126)

We present below the analytic formula for the isocurvature
spectrum in this corner of the parameter space.

A. General map of analytic model parameters
to {c,,c_,F}

As defined previously, the mass model has following set
of parameters:

Pset={V;, Vp, Ty, T, A;}. (127)
The final y; mode amplitude is evaluated in terms of
these model parameters. Below we will give a map of these
model parameters in terms of {c_, c_, F} and then provide
analytic expressions for their evaluations. We limit our-
selves to i =3 that cover up to double dip cases in
Eq. (101). With a < min (a3, ay) the general map is

Vore,, (128)

V1N|min(m%—é1-é1), (129)

Van B(R) (130)

Ty =0, (131)
3.11 — 1.05a

TWw~T,—|——— |, 132

7= (PR (132
3.11 — 1.05a

T,~T, —_, 133

o (U)o

with the additional second dip for @ 2 a, given by the
following expressions:

;2 —3(T5-T, Ae™32(T3-Tc)
(el>maxe (T >, Y — > 015,

; I (134)
(D (B12)°, 222 < 015,
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¢_(T3)~ F for T3 >T,, (135)
0.72

Ay ——. 136

3 \/V_3 ( )

Further, the background mass parameter V5 for single and
double dip cases is defined as follows:

1 1063 | 106793c_
VBN{C_—FW(W‘Fwszma)’ a < a, (137)
Vi (T), Bn=®
T R a<a )
T~ g 2 i (138)
T3+A3+K7 o < a,
. T, <T<Ts;+As,
e 4_c - M
Ve (T) =4 4 [o= +(C(an4i;),()2l+n LT, Ty+A; <T<Tj,
0 otherwise,
(139)
where

2sin (7n))2*T(1 = 1)) _ pinX™

TLzT2—<i>ln< .
c- ﬂ<3¢—s<T2)xaxJn1 (X) + (3¢—S(T2) + 2¢—S(T2))Jnl (x)) 2

3 9 4dc_c
Axr=— |-———= 14

2 4 c_+c/’ (149)
FooV24/(3Q) lia,

where ¢_,(T > T,) is given in Eq. (E10), and ¢_,(T,)
and ¢_,(T,) are given in Eq. (E14), while
@ min = ¢_(T,). Quite noticeably, the analysis turns
very arduous by the addition of a second dip. Precisely
for this reason, in Sec. VII we will give closed form
analytic expressions for the axion isocurvature spectrum
corresponding to single dip cases only. Although we will
sketch the motivation and the details of the derivation in
the Appendixes F-I, here we describe the intuition behind
this map of the approximation parameters to the under-
lying model.

The parameter V,, represents the effective axion mass
before 7';. During this time the mass is nearly constant
because the background fields are following a flat direction
such that the potential does not change as the fields change.
The V, dip at T~ T, is the type of frame-dependent
eigenvalue rotation mass effect seen in Eq. (129). It is

0.7
T.~T,—— 14
AT = (140)
—A = min(¢), (141)
() ~ F2(0.138 + 14 (142)
' I.I+exp(ll(a—0.72)) )
F4
gS‘(T 2 T2) ~ ¢%9 — T2 (143)
— 0.133F 4-0.045F>
Qr2.05F , 144
T Fexp(7.86(a—0744 1 0.0008F)) 4
1
n=nT)~1- 3 EXP (=AT), (145)
n, = /1—4c_/9, (146)
ny =+/1-8c_/9, (147)
) for c_ < 1, (148)
A

3Q

characterized by the superposition of the —(¢,)* and m?
dips close to T. with a phase separation y between the
lighter eigenvalue and the corresponding eigenvector rota-
tion gradient effects. The phase separation is a dependent.
Fields with small a tend to have an almost coincident
superpositioning of the dips and thus correspond to a
small u. This a dependence can be understood by referring
to the location of the two dips and their subsequent
superposition. From Eq. (157) and Appendix F, we infer
that the location of the first —(¢;)? dip corresponds to the
time when the ¢, field tends to F. Meanwhile Fig. 2
suggests that fields with small « transition close to F and
the m} dip reaches a minimum soon after transition.
Therefore, as a increases, the background fields transition
farther from F such that the separation between the two
dips widens, resulting in an increased phase separation p.
For smaller a, the two dips are almost coincident, resulting
in a smaller phase separation.

After the V, dip, at time T,, there is a jump in the
effective mass squared due to the strong nonlinear inter-
actions through &¢, Eq. (21). The jump amplitude is
approximately V,, and after the jump, there is an expo-
nential decay (see Fig. 3) which captures the results
of the UV modes that have been integrated out. This
UV mode averaging has the effect of multiplying the
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ETSP A ~ O(F?) by the amplitude of the UV mode A
divided by the propagator 1/k*> ~ 1/F?, resulting in

A? )

= O(F~). (151)
V3 represents the next (é;-¢é;) dip, whose physics is
similar to the first (é; - é;) dip modified by the Hubble
friction. Meanwhile, the parameter Vj for a < a, is a
constant of O(c_) that represents the average mass squared

function m3 over the time interval from [T, T'g], as detailed

in Appendix I. The dynamics of the m% function is
controlled by the slow-varying IR components of the
background fields. For a S a, it is effectively positive
and leads to the decay of the mode amplitude, whereas for
a > a, it is negative and results in mode amplification.

The width of each dip can be evaluated analytically by
taking the ratio of the net area under the peak to its
maximum amplitude. In principle, the width of a (é; - é)
dip increases for larger i as the amplitude of each dip
decreases. This can be qualitatively understood by the fact
that the velocity of the fields governing the dip widths are
proportional to the amplitude of the fields which is propor-
tional to the square root of

b6~ Yl P (152)

Hence, as shown in Appendix F, the dip width can be
parametrized as

(153)

The fact that the 0.72 appears in the above expression
approximately independently of other parameters is due to
the fact that we are focusing on the parametric region where
the maximum field excursion parametric dependences are
canceled (see Appendix F). Using the analytically obtained
polynomial fit for (é; - €} ).« from Appendix F, the width
A of the first (¢, - é;) dip can be expressed in terms of « as

293 - 1.
Mo (2,93 - 1.86a)

~ vV 0255a51,
max F

(154)
which highlights that the dip width reduces with an
increasing o or with the incoming velocity of the ¢, field.

A similar expression for the width T, — T’ of the V; dip
is given below:

(3.11 = 1.05a)

TQ—TIQ F

vV 0255as 1. (155)
By rewriting the width 7, — 7 in terms of A . , we

2
obtain the following relation:

a
él)rznax + F :

T)-Ti=A (156)
As expected the width of the V; dip is broader than the
width of the first (é;-¢;) dip. For small a~ O(0.1)
scenarios, the width of the V| dip is nearly equivalent to
that of the (é; - é;). This situation corresponds to a small
phase separation y such that the —(¢; - ¢,) and m? dips
almost coincide.

Next within our model, the logarithmic functional
dependence of 753 —T; comes from the exponentially
decaying frequency of ¢é;-¢; oscillations, as explained
in Appendix F.

From the above parameter assignments, we shall now
give expressions for (é; - €;),,x and A. These are defined
as follows:

L J \? 4 (g+ F? 2 [(g+ F?\?
(el'el)maxz<5F2> <1+5< 7 ) Tl R

28 F2\3
_ 28 9+2 , (157)
125\ F boF
g:M%l _M%Z’ (158)
My =c_+¢2. (160)
§=2b_t_-2d.¢., (161)

where the ¢ fields are as defined in Eqgs. (67) and (68). By
¢, — F, we are denoting that functions such as ¢_(T) are
to be evaluated at the specific time 7 when |¢, (T)| = F.

Next we estimate the amplitude A of the flat deviation
E(po,@_). As shown in Appendix D, & can be approx-
imately represented via sinusoidal oscillations that drive the
resonant exchange of energy between the ¢, and ¢_ fields.
For T > T, we can express & as

E(hs =) % —AeT-T) cos ( / '

T

Q(l)dt), (162)

m

where T,, % T, + O(1/F) and Q ~ O(F) is an approxi-
mate frequency of oscillations. In order to determine A, we
solve for the ¢ fields post transition using another set of
cubic polynomials with primed coefficients

parameters for T > T..: pl, ¢, (163)
where the primed coefficients are used to distinguish
between the nonprimed ones in Eqs. (67) and (68). The
eight coefficients are evaluated using similar expressions
as in Sec. IV B, where the initial conditions must now
be evaluated at the resonant transition time 7| =T,
(instead of T',) and choose instead the interpolation point
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FIG. 5. Shown are the polynomial background ¢.(7T) sol-
utions given in Egs. (67) and (68) with parameters changed
to those of Eq. (163). These solutions accurately track the
numerical solutions over the interval [T, T,,], where T, is the
time at which the minimum of the ¢, (T) occurs. Shown in the
figure for comparison is the numerical solution with ¢, = 2.35
and a standard fiducial set P, of parameters that we will
use throughout this paper: P, = {F =20.2,c_ =0.5,¢, =0,
$,+(0) =0.1M,/H}.

T; =T.+ € [where ¢ is defined in Eq. (88)]. Finally we
evaluate A as

—A = min(¢) (164)

— min(¢h, (T)p_(T) - F). (165)

For a < 1 cases where the minima of £ roughly corresponds
to the first minima of ¢, we can estimate A by evaluating

the location T,, where ¢, (T,,) = 0,

T,=T.+6T,, (166)
2.5 — ‘ ‘
——e— Numerical
ool ~T®- Analytical
15
N
w
<
1.0
0.5

O L L L L L L L
2.335 2.340 2.345 2.350 2.355 2.360 2.365
Ct

—ph +/p% —3p\p}

oTy = 3 (167)
which gives us
—ARET,) = XA (168)
b-lr-1,
/ /

STt q’lézi ; i ch;?;er gors 169

The coefficients turn out to be
4o~ po~ O(F), (170)
qy ~ Py ~ g5~ ph ~ O(F?), (171)
g5 ~ ps~ O(F?), (172)

and the actual parametric dependence of ¢ and p’ with ¢
is extremely complicated, as can be seen in Sec. [V B. We
show comparisons with the numerical results for ¢, = 2.35
in Figs. 5 and 6.

Remarkably, despite the complicated parametric depend-
ence of Eq. (172) in terms of c_,, the parametric dependence
of A in terms of « is very simple, as can be seen in Fig. 6.
For a <2, we can give a third order polynomial fit for the
amplitude A,

Aa,c_=0.5)~F?(-0.089+0.479a+0.599a> —0.170a?),
0.25<as2, (173)
where all the ¢, dependence is contained in a(c ) through

Eq. (74). In this expression, a is not bounded from above
by ay ~ 1 because the determination of A or (é;)2., is

max

independent of mode decoupling or ETSP evaluation.

25

—e— Numerical

20l --m-- Analytical

1.5¢

AIF?

1.0

0.5r

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5

FIG. 6. Equation (169) using an analytic cubic order polynomial expansion is compared with the value of A obtained by putting the
numerically solved ¢, into Eq. (165). Fiducial parameter set P, of Fig. 5 is used.
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Instead the above evaluation is valid as long as the ¢ fields
can be successfully expressed via a cubic expansion. As o
gets close to 2, the |¢, | field becomes much larger than F
after crossing zero. Correspondingly the ¢_ field undergoes
rapid oscillations due to the heavy mass coming from
|| > F. These rapid ¢_ oscillations cannot be captured
by the cubic polynomial in 7 and the analytic method
described above breaks down. Consequently, the analytic
estimation of the minima of £ soon after 7', is lower than the
one obtained numerically, as shown in Fig. 6.

Note that a depends only on ¢, in Eq. (74) because by
definition we are neglecting the backreaction from ¢_ in
considering the initial velocity condition of qﬁ. This type
of parametrization is natural since ¢, is very large [O(F?)]
in the resonant scenario where we are giving our analytic
results. Nonetheless, given that the analytic results are
formulaically (as opposed to numerically) fitting the actual
background field solutions to polynomials before and after
T that contain c_, our analytic results fully capture the c_
dependence in the resonant cases considered here.

We remark that the presence of the V3 dip is
implicitly dependent upon the strength of the flat-deviation
amplitude A. The V5 dip is associated with a second ¢é,.¢,
dip which occurs when the two background fields cross
each other again after transition at 7'.. This second crossing
after T, is controlled by the condition given in Eq. (F11)
that is dependent upon A and F. Including the expression
for the amplitude A from above, we find that the second dip
occurs for a 2 a,.

Although the interpolation method used in this analytic
result seems somewhat ad hoc, the results are consistent
with a more systematic expansion around 7., as described
in Appendix A.

B. The isocurvature spectrum

The axion isocurvature spectrum is given in Eq. (27).
We note that

lim I_ = —rl,, (174)

T—Ty

where we define r = /¢, /c_ and simplify Eq. (27) further
in terms of the y;-mode function,

r(l4+74) 1

4K3
b} |y1 <1+r2>392F2'
+

A2(K) & 02 Ty (K. T o) P (175)
T

The y, (K, T4) is solved using the model of Eq. (101), the
approximations of Sec. VB, and its associated model
parameters in Sec. VIA. Let us now sketch the steps
involved in a bit more detail.

First, we set up the approximate BD equivalent
leading adiabatic order boundary condition for the
v1(K,T)-mode equation at time T, for K modes that
satisfy K273 > ¢, —2:

1 —iKt,
yl(K9T0):a(T0)\/27 5
_ (K=a(To)) ik,
8Tyl(K7 TO) = —(a(TO))Z\/ﬁ K ) (176)
where
1
T= _a(T)H (177)

is the conformal time with the scale factor a(T) = e, and
evaluate the first scattering matrix S(7,T,) of Eq. (108)
using the solutions of Sec. V B evaluated with Egs. (110)
and (111). Using the solution from S(7', T,) for the region
[Ty, T;] we obtain the initial conditions for y,(K,T) at
T =T,, when the nonadiabatic rotation of the mass
eigenvector becomes strong. Next until 7, when the mass
squared jumps, the solutions used to evaluate S(7,, T) are
again Eqs. (110) and (111), but with a tachyonic constant
mass squared. Afterward, until time 7’3 when the rotation of
the mass eigenvector becomes strong again, the effective
frequency squared is

V,ye31-T2) /2 (178)
(this is what we will call the jump ETSP, which is obtained
after integrating out the UV modes). The solution in this
region to be used in S(7'5,7,) of Eq. (108) is governed by
the superposition of Eqs. (124) and (125) via the approx-
imations of the U(T) in Eq. (118). The initial conditions at
T, should be modified due to the UV integration (high-
lighted in Appendix C). This is primarily done by scaling
the y,(T,) and its derivative by a Q matrix as follows:

o= (s 1)

The region (T, T5) is subdivided into time intervals whose
boundaries are dependent on K and the amplitude of the
jump ETSP through Eq. (119). The gentle time-dependent
changes in U(T) exponents are most critical for the
intermediate modes that satisfy the condition Ke™" < 1
slightly after the transition time 7'; while the jump ETSP
is still significant. Starting at time 7T, the cycle repeats
with the eigenvector rotation becoming strong, although
with a smaller magnitude than at 7';. The final y, (K, T,) is
obtained via Eq. (108), where we select Ty = T,. In our
calculations we set Ty = 0 and T, = 35, after which the
background fields oscillations are negligible.

Next we remark that this model has been constructed
using only the lightest mass eigenmodes to keep it
analytically tractable. Even then, we see that the analytic
results are complicated and borders on “intractable.”
Hence, this model is applicable up to a maximum K mode

(179)
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before the coupling from the heavier y, mode becomes
significant: i.e., K S K>,

a(T.)
a(0)

[where m, ~ O(F)]. However, if K becomes sufficiently
large far beyond this heavy-mode coupling values, the
dynamics eventually becomes identical to the usual mass-
less axion dynamics. This usual plateau isocurvature
spectrum exists for K = Kp, where

K2 =my (180)

1

aa((Toz))eXP(TL —T,) (ﬁ)x a<a,
Kp~ . (181)
%exp@(ﬂ -T5)) <i>A, m <a<as,
3 4
Am>—[o/4 -5 (182)
2 c_+cy

corresponding to the wave vector modes that leave the
horizon after the background fields have settled to a
(I —r,) fraction of their respective minima. Therefore,
the only part of the spectrum that we do not have a
prediction for (in this small @ case) is the K range [K,, K p|.

In Fig. 7, we give plots of the axion isocurvature
spectrum generated by the above mass model for ¢, values
2.285, 2.348, and 2.35 with distinct initial conditions
corresponding to increasing values of a of 0.52, 0.97,
and 1.13 respectively.® For comparison, numerically
obtained spectrum is also included. From the plots we
infer that the mass model is successful in generating the
isocurvature spectrum within the parametric region of
applicability. The model generates a blue power spectrum
for small K modes with an approximate spectral index
n; — 1 ~3. The spectrum peaks at the first bump and
subsequently undergoes oscillations that quickly die away.
As we shall see later the location of the first bump and the
frequency of subsequent spectral oscillations (bumps) is
related to the transition time 7'... The discrepancies between
the numerical and analytic computations are noticeable
for K modes beyond the first bump because during the
time these modes exit the horizon, the axion mass is
oscillating with a large amplitude in the resonant scenarios.
As an example, consider in Fig. 7 the case of ¢, = 2.35 for
which the discrepancy is the largest for the K region
[5 x 10%,10].

These discrepancies can be explained through the
limitations of £ modeling and the integrating out approxi-
mation. More specifically, we noted in Sec. V B that the

The ¢, = 2.35 case has a corresponding a = 1.128 which is
slightly larger than ay; defined in Eq. (94), but since this is only at
the cusp of the approximations breaking down, the agreement
with the numerical results are reasonable.

€,=2.285,c_=0.5, eg=—3/2, F =20.2, ®, (Ty)/H=3.3X 10°

T
—— Numerical RK method

~--#-- Analytical (piecewise model)

0.500

0.100

0.050

A}/

0.010

0.005

0.001 . . s R
1000 5000 1x10* 5x10* 1x10°

k
Ha(0)

¢,=2.348, ¢_=0.5, €9=0, F=20.2, ®, (T,)/H=3.3x 10°

T
—— Numerical RK method

—--B-- Analytical (piecewise model)

0.100

AYw?

0.010

0.001 L L ! L
1000 5000 1x10* 5x10% 1x10°

k
Ha(0)

€,=2.35,¢_=0.5, €=0, F=20.2, ®, (T)/H=3.3x 10

T
—&— Numerical RK method

--B-- Analytical (piecewise model)

< 0100k
g

0.010

0.001 . . . —
1000 5000 1x10% 5x 104 1x 107

k
Ha(0)

FIG. 7. These plots illustrate the analytic spectrum computed
using Eq. (108) for the parameter set P, used in Fig. 5 except
with g, also varied [recall &y = —3/2 corresponds to a dynami-
cally reasonable initial velocity situation of ¢ (0) = =3¢ (0)/2]
as denoted in the title of each plot. They are compared with the
Runge-Kutta solution to the mode equation (23). The interesting
feature of the second and the third peaks being higher than the
first peak will be explained in Sec. VIL

analytic approximation of the ETSP U(T) in Eq. (118) to
solve the y;-mode function is most critical for these
intermediate K modes as long as the modes leave the
horizon while the jump ETSP is still significant. The jump
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ETSP V,e=3(T-12) /2 is obtained after the UV modes have
been integrated out, as shown previously in Fig. 3 and
detailed in Appendix H. In the UV integration procedure,
we have made the assumption that the flat deviation
& is purely sinusoidal with a constant amplitude and a
slow-varying time-dependent frequency O(F). Post UV
integration, we averaged out the remaining slow-varying
prefactors to obtain a constant amplitude jump ETSP V,
(see Appendix H for details). These assumptions along with
a pure harmonic approximation can be insufficient to
accurately map the sensitivity of the spectrum to subtle
variations of the mass eigenvalue for the intermediate
modes that leave the horizon around the same time.

One then concludes that background fields with weaker
resonance O(&) < %2 (since that situation will be less
sensitive to the limitations of £ modeling in general) will
show a far smaller discrepancy between numerical and
analytical spectra for these intermediate modes, as observed
for ¢, = 2.285. Nonetheless, note that the mass model
successfully generates the distinct feature of a larger second
bump and a larger third bump than the first for ¢, = 2.348
and c, = 2.35, respectively. We will discuss this more in
the next section.

VII. EXPLANATION OF THE FEATURES OF
ISOCURVATURE SPECTRUM

We will now give analytic expressions for y; (K, T') mode
functions for a specific class of simplified mass model. This
will allow us to explain the parametric dependence of the
isocurvature spectrum at different scales and provide closed
form analytic expressions for the isocurvature power
spectrum in a certain restricted region of the underlying
model space.

For the following discussion, we will restrict ourselves to
single dip cases corresponding to a < a,. Under this
condition, our time-dependent piecewise mass model in
Eq. (101) simplifies to the following form:

Vo, Ty<T<Ty,

mzw _Vl’ T]<T<T2,
Vpsqw(T, Ty, Tp—T,) +%5e3T-T2) Ty <T<T,,

(183)

where the mass model is now limited to a single dip —V/y,
an exponentially decaying jump ETSP V,, and an O(c_)
mass squared term V. As explained in Sec. V B, the above
mass model is used within the corresponding y; differential
equation of Eq. (109).

Furthermore, as discussed in Sec. V B, the above differ-
ential equation is analytically intractable for certain K
modes where the following two terms are of similar orders
of magnitude at 7,

K2e2T20=2(T-T2) Va e—3(T-T>)
2

To solve this system analytically, we subdivided the time
region [T,,T] into regions where either one of the
aforementioned two terms is dominant over the other.

Hence, in order to obtain a simplified closed form analytic
expression for the isocurvature spectrum for o < a, cases,
we will utilize the following approach. As a first step, we will
evaluate the isocurvature power spectrum with the V, term
neglected. This is clearly applicable to all resonance cases
where V, < O(c_). This assumption immensely simplifies
our model and consequently allows us to obtain tractable
analytic expressions. Subsequently, the effect of the V, jump
ETSP is added in the form of a correction factor f . ection-
Through this two-step procedure, we give an approximate
analytic expression for the isocurvature power spectrum
which will allow us to discover some important generic
features. If one is only interested in the results, we refer the
reader to Egs. (222) and (223). We will now give details
regarding the aforementioned approach.

A. Step 1: V, < O(c_)

When V, < O(c_), the mass model simplifies to

Vo, Ty <T<Ty,
m?> =< =V, T, <T<T, (184)
Vgqu(T, T2, TB - Tz), T2 <T< Too
Defining u as
v =eu, (185)
Eq. (109) becomes
Oru+ (K*e" +m?>-9/4)u =0, (186)

which has an incoming BD normalized solution

\/7_T j(lwx  m —
u(K,T < Tl)z2\/§e’(z+4)H}w(Ke n

V Ke T |o

’

(187)

with = \/c, —9/4 for Vy =c,.

For the rest of our discussion, we will use the following
asymptotic forms of the Hankel function H! (z) for a real
argument Z:

Lticot(ion) (zyia _ ;L(i®) 2\ ~iw n
T (iw+1) (2) —l= (2) ) 0<Z<<\/T_—|——l—a;,

lei(z_iﬂ%_%) R
54

Hi,(z)~ )
Z>>)—w

_‘11’_
(188)
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Next we solve within T; < T < T, for a single dip —V,
and express the solution at 7 =T, as

u 1 __tanh[-bAT]
{ } = cosh[-bAT] [ b
Orulr_r, —b tanh[—bAT] 1
u
X { ] . (189)
Oru T=T,

with AT =T, — T, and

B> =V, +9/4 - K2e~(T2tT0), (190)

Note that Eq. (189) is the simplified result coming from the

average value for the K?e¢~2" term within the short interval

AT, while V| containing the initial kinetic energy infor-
mation generically satisfies

Vi~ O(F?) > 0(10). (191)

|

Next we solve within [T, T]. To further simplify our
evaluations, we consider that for Vz < 9/4, the effect
of the model parameter V can be factored in through
the exponential decay of the final mode amplitude.
Equivalently, consider the differential equation

hu+ (K*eT+Vp—9/4)u= (192)
Then the mode function u(7') has the following asymptotic
solution:

i 1TV #0) fim ¢SVERIDuT. v, < 0)

(193)

where u(T, V # 0) is the solution of Eq. (192) with V3 # 0,
while u(T, Vg = 0) is the solution with the V5 term equal to
zero. Hence, if we neglect the V 5 term and solve for u in terms
of Bessel functions of order 3/2 (similar to a massless axion),
we obtain the final mode function as follows:

li [ Y1 ] cosh[—bAT] M— (3/2 + KTz) sin[~K7,]  —cos[-K7,] —l——sm_[;(lf;ﬂ
im —o =t 777/
T3—-T 8T)’1 T=T,; K;\/ —KT2 O 0
1 _ tanh[~bAT] u
X ’ { ] : (194)
—b tanh[—bAT]| 1 Orulrr,
where 7, is the conformal time corresponding to the time 7', [see Eq. (177)] and the factor
@ = e(_%+\/%__VB)(Too_T) (195)

accounts for the mode amplitude decay (amplification) through a positive (negative) Vp parameter as explained previously.
Using the simplified expression in Eq. (194), we examine the axion isocurvature spectrum for our model for different K ranges.

1. Modes that leave the horizon early:

-Kt, < 1

Starting with the above equation, we simplify in terms of —K7, < 1,

) Vi COSh[—bAT] (Ke_TZ)Z (KE_TZ )2 1 _ tanh[;bAT] u
lim RO—F—F— 2 3
T3=Te | Oryy J o, K>VKe ™2 0 0 —b tanh[-bAT] 1 Oru | r—r,
\ 1 1 1 __tanh[-DAT] u
~ D cosh[-bAT]e™" {2 3] [ b ] [ ] , (196)
0 0JL—btanh[-bAT] 1 Oru |,
Jim yl(K T) ~ e 2D cosh [bAT] Y~ f i) | (= - étanh[ bAT] |H! (Ke ™)
\/i 2 3 110}
1 tanh [-DAT]
———————— |OrH] (Ke7T1)|. 197
+ (5- Aoy, ke (197
Since b? ~ V| > 1 [(see Eq. (191)], the mode amplitude is dominated by H} (Ke~T1) rather than its derivative,
Jim yi(K.T) ~ e =P cosh [bAT] X~ VE i) KLétanh [—bAT]>Hl (Ke‘T')}, (198)
2\/5 2 3 [10]
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where AT = T, — T. Observe that the mode amplitude is
dependent upon the freeze-out Hankel function at 7 = T,
such that Ke 7' <« 1. At the outset, the isocurvature
spectrum appears to have a blue spectral index n; ~4
for these scales. However for w < 1, the Hankel function
has K dependence as given in Eq. (188). We apply this to
the Hankel function in our case where Ke™ 7' <1<
V1 +iw to yield the following K dependence for the
power spectrum:

(i) (iw+ 1)

MK K =i o)

1—i

|2
e—2iwln(KfT)‘ ) (199)

cosh[-DAT)
KIVEe T

+ <— cos[—Kr,] +

Tlfpm)’l(Ka T)~D

Ke T

(- (B,

%Sin[—&z}) (b tanh[—bAT]u + 57”)] :

Iio)(io+1)
m ~ 0(1), such that the

power spectrum has oscillations in the long wavelength
region with a log-K dependence. Therefore, one observes
deviation of the spectral index from 4 which is sinusoidal in

log-K. These deviations decay as e~V /% and become
insignificant for large ¢, fields or when @ > 1.

For w < 1, the term

2. Scales near the first bump (- Kzt; — 1)

Next we consider K modes that approach —1/7, such
that the modes leave the horizon after the axion effective
frequency squared undergoes oscillations. We start with
Eq. (194) giving us the mode amplitude y, (K, T):

Since b?> ~ V; > 1 [Eq. (191)], the mode amplitude simplifies as

cosh [DAT] \/m

Iim y(K,T)*®D—F——=
T*Tmyl( ) K% /—Ke_T2 2\/5
1

Ke™T

ciwn o | 3
el (553 K— + b tanh

- ke ) sl (- DT,
(200)
5 [—bAT]> cos[—K1,]
@ + btanh [-DAT] — (Ke—Tz)2> sin[—Krz]] Hl (Ke ). (201)

Putting this into Eq. (175), we find the isocurvature amplitude to be proportional to

| H, (Ke™)|

VKe T2

\/A2(K) «

The location of the first bump K pump is determined by
solving

d

d_K A% (Kﬁrst—bump) =0 (203)

since one can show that there are no small oscillatory
features in the rising part of the spectrum in the region
—K7, < 1. To solve for the peak K pump, W€ approximate
T,~T,since T,—T; = AT ~O(1/F) < 1 to obtain the
following transcendental equation for the small ¢, —2
limiting case Ke™1 ~ 1> |0 = 1|:

2 _
<1 - g) cot(z) = %, (204)

3 1 /3
[(5 + btanh [—bAT]) cos[—K1,] — X T (— + btanh

- [~bAT] - (Ke‘T2)2> sin[—Krz]] .

(202)

2 — 72

2z

(205)

cotz =
where B =3/2 + btanh [-bAT] and z = Ke™'2. Since
B > 1, the solution to the above expression is nearly
independent of B or more explicitly the properties such as

the amplitude and velocity of the field oscillations after 7.
We obtain the solution of

T4+ Vrt-8
2

I(first—bumpe_T2 = + O(B_l) ~2 (206)

analytically by expanding in the limit B > 1.

Calculations in large ¢, — 2 limiting case Ke 7' ~ 1 <

|[v/1+ iw| yield similar results by solving an analog of
Eq. (204):
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(207)

leading to

1
Kby = 1¢ <9n—6+ V8122~ 1087 156) %2.48.
(208)
Thus, we have shown that the isocurvature power has the
first large bump at approximately

~ 2el>

k
Kfirst—bump = a(O)H (209)
with 25% accuracy. Equation (209) shows that the location
of the first bump is the scale that leaves the horizon at time
T, near the resonant transition time 7. Since the transition
T is dependent upon the mass c_ and the initial conditions
|

—iKt, A2 3€_AT/2
W |:COSh [—bAT] ((—le - TI{TZ

13AT/2
+ sinh [-bAT}((’ 6219

yl(K7 Too) ~D

—KT2

he-AT/2 —ieA2Kr,  be AT/
+ > cos [—K12}+< - > sin [—Krz])].

¢ (0) and & [see Eq. (74)], background fields with smaller
a tend to transition later such that they have a larger T..
Under these circumstances the corresponding first-bump
location K pymp Will be pushed to even smaller scales and
become unobservable due to limitations in the experimental
sensitivity of short length scales. This is qualitatively the
same as the situation in which ¢, < 9/4, which was the
subject of previous work on this topic [75].

3. Scales that lie within oscillating spectrum:
3 < —KTZ <K 2

Next we consider K modes satisfying 3 < —K7, < K,
that leave the horizon after the axion effective frequency
squared undergoes oscillations. The upper limit for these K
modes is set by the heavy-mode coupling as elucidated in
Eq. (180). Meanwhile, Eq. (194) gives the mode amplitude
y1(K,T) in the limit Ke™"' > |w? — 1/4| to be

l'eAT/2
) cos [-K1,] + (—e‘AT/z + ) sin [—K12]>

—KT2

210
b K%% (210)

Considering that AT ~ O(1/F) < 1, we can rewrite this expression as

—iK7,

Tl—lg"lmyl (K, T) %QW

We notice from the above expression that the spectrum
oscillates via the cos [-K7,] term for the intermediate K
modes (scales) about a background with an initial decay
envelope proportional to 1/K?. The amplitude of these
oscillations is controlled by the dip amplitude V operating
for a short time interval AT [see Eq. (129)], which is largely
controlled by the mass squared eigenvalue and eigenvector
rotation. Meanwhile, the K spacing of these oscillations is
approximately

Ak = AKa(0)H ~ za(T,)H (212)

~ Kﬁrst—bumpa(O)H‘ (213)
Therefore, the location of the first bump and the frequency
of the first few spectral oscillations is directly related to the
transition time 7. of the background fields. This can be
understood through the following discussion.

For our simplified model, as the background fields
transition, the mass squared m? dips to a negative ETSP
—V, for a time period AT = T, — T;. For all K modes that
are still subhorizon at transition, the incoming mode
amplitude picks up a phase that is dependent upon the
momentum K of the mode sampled at the transition where

[cosh ~bAT](—ie’X™) + sinh [~bAT] <<_ 122) cos|Kry 1 (i—K

T2> sin [—KTZ]):| . (211)
[

T.~ (T, + T,)/2. Later when these modes exit the hori-
zon the resulting mode amplitude is oscillatory in K space
with a K spacing that is dependent upon the transition
time 7.. As a result, the power spectrum for these scales
oscillates while the imaginary part of the phase controls the
amplitude of these oscillations. In Fig. 8§ we plot the
isocurvature power spectrum for a representative example
highlighting the spectral oscillations.

4. Scales leave the horizon late: K > Kp

As remarked near Eq. (181), for the plateau part of the
spectrum (K > Kp), the isocurvature perturbation modes
return to the usual massless form. In this case, it is better to
work in the final massless axion basis. Because the axion
field a in Eq. (12) is not normalized canonically, the
canonically normalized axion is A = a/ /2. This allows us
to write the plateau part of the spectrum as

e G (214)
2 h 2
= (5_1)1/2 4 (%)1/2 (2ﬂ9+(0)F> ’ (215)
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where K > Kp and we have approximated H(rx) to be
constant [neglecting corrections of slow roll parameters
O(e) which are typically negligible in the physical scenar-
ios of interest in this scenario]. The appearance of % in
Eq. (215) is merely dividing out the scaling of F, in
Eq. (20). This flat part of the spectrum has also been
numerically confirmed.

B. Step 2: Adding correction for the V, term

Equation (194) gives the final mode amplitude for
axionic isocurvature perturbation for & < @, cases consist-
ing of a —V single dip and a negligible V, jump ETSP
where the effect of the V parameter (average of m3) is
included through the exponential decay factor D2 in
Eq. (195). Using the expression for V, under Eq. (129)
and the expression for A from Eq. (173), we infer that for F
scales greater than O(20), the amplitude of the resonant UV
oscillations is larger than O(c_) such that the V,/2 term
|

cannot be neglected. Below we will briefly discuss the
corrections coming from V.

Since V, is positive, its inclusion in Eq. (101) for the
y;-mode function leads to a decay of all the modes that are
superhorizon at 7, [see the discussion below Eq. (112)].
Consequently, a significant V, leads to a reduction in the
isocurvature power spectrum for a range of small K modes.
On the other hand, for all modes that are subhorizon at 7,
the effect is significantly diminished since the ETSP decays
exponentially with a decay factor of 3. Another way to
understand this correction is to note that a large resonant
UV oscillations of the background fields imply a significant
interaction energy compared to the mass energy at tran-
sition. This increases the effective mass for the perturbation
modes, thereby reducing their amplitudes.

We now give approximate analytic expressions to
include the effect of the jump ETSP V, to the previously
derived isocurvature perturbation mode amplitude. The
effect of V, ETSP is included as

(kv

f correction (K ) ~

where

a, 3a; + 2a,
I(K) = —+c_
(K) <a1+3+c 77 ) (al

with ay 3 defined as

ay =y (K, T,), (218)
a, = 0ry (K, T), (219)
az = —aj\/ Vs + a. (220)

Note that the expression [(K) is primarily derived for all

superhorizon modes Ke™"> < y/%2. Since {(K) must tend

to 1 for modes that satisfy Ke > /%2 we have

constructed fcomection (K) as a smooth function connecting
these two asymptotic values of /(K). Hence, the above
correction factor is an interpolated approximation for the
intermediate modes lying between the two asymptotic
scales. An important consequence of this interpolation is
that it does not show a gradual shift in the location of the
first bump toward smaller K values due to an increasing V,
jump ETSP, as can be observed in Fig. 9. To accurately

B0, ()] + (@ +2a3/3)0,, (7))

1+ U(K)  1-1(K) (216)
2 9,
)
-1
2sin (zn)I'(1 - nl)VZ‘/zz_"'/23_"' (217)

model this gradual shift of the first bump, one needs to
evaluate an improved correction factor for the intermediate
modes by solving the scattering matrices of Sec. VA with
the V, jump ETSP included explicitly. Furthermore, we
remark that /(K) is nearly a constant since Eqgs. (189)
and (190) suggest that

Iry1 (K. Ty) ~

K. Ty —btanh [-b(T, —Ty)],  (221)

which is independent of K for all modes with Ke™’> «

v/ V] at T2.

C. Isocurvature power spectrum

In summary, the isocurvature power spectrum for back-
ground fields with o, S a S a, [where o and a, are given
in Egs. (93) and (150) respectively] corresponding to a
single —V; dip can be expressed [where a is defined in
Eq. (74)] as follows:
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FIG. 8. Plot of the spectra made using Eq. (108) highlighting
the analytic form of the spectral oscillations on a linear amplitude
scale for k modes for k/(a(T.)H) > 2 (i.e., modes which
become superhorizon after the nonadiabatic transition) where
a(T.)/a(0) = O(10%). The first peak/bump occurs around
k~2a(T,)H, where a(T,)~a(T.). The spectrum oscillates
with a k period me™a(0)H and the initial decay behavior
of the envelope is approximately proportional to k~2. For k >
e a(0)H+/V, the envelope decay then transitions to k! behav-
ior, oscillating about a background spectral amplitude of O (F~2).
Shown are the results with the same parameters set as Fig. 5,
except with &y = —3/2 (sizable initial velocity). Note that the
height of the first bump is ~O(10) larger than the height of the
final massless axion plateau, which on a linear scale is negligible.

3 . [(io)(iw+1)
Gkl - L i cot (iwn))
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FIG. 9. This figure highlights the effect of jump ETSP V, on
isocurvature power spectrum derived using the scattering
matrices of Eq. (108). The thick (blue) curve corresponds to
the actual power spectrum, where modification due to the V,
parameter has been accounted for. The thick dashed (red) curve
neglects the effect due to the V, jump ETSP. The thin dashed
(brown) curve adds the correction factor in Eq. (216) to the
spectrum without the V, jump ETSP. A positive jump ETSP V,
leads to a decay of all modes superhorizon at T',. This can result
in significant attenuation of spectral power for these modes, as
shown in the plots. The above plots are constructed using the

following parameter set {F=161.6,c, =2.415,¢_=0.5,¢,=0,
¢, (0) :O.lMp/H}.

2

—2iu)]n(_KTI> , _KTC < 1,

2

22|, (—Ke)P(=K) (sin (~K )

+(3/2 + btanh [-bAT]) (M _ sin[-Ke)]

2
(—K—Tz)z)) s 0.5 < —KTC < 3,

—K1,
A%(K) ~ |fcorrecti0n(K)|2 X C3®2C08h2 [bAT}X (222)
‘(—ie”ﬁz) + tanh [-bAT]x
((%Tz) cos [-Kt,] + (i_IZTZ) sin[—K12]> 2, 3<-Kr. < K,
C4 X 1, K > KP,
with coefficients Cy 34 given as
n e (3 2|1 4 icot (iwm)|?
C, ~ CD>= e " cosh? [bAT — — btanh |-bAT —_—,
! g ¢ " cosh” [bAT] = <2 anh | ]> T(iw+ 1)
C, ~ Cge_“’” cosh? [HAT], (223)
Cywr C1
3~ 4 ’
h? r
Cyr , 224
$R Va0t 2 <1 + r2> (224)

123511-24



ANALYTIC TREATMENT OF UNDERDAMPED AXIONIC BLUE ...

PHYS. REV. D 105, 123511 (2022)

where

(225)

D~ exp ((—%Jr g— VB>(TB - T)), (226)

2sin ()22 D1 = ) n (55"

which accounts for the mode amplitude decay through the
V p parameter:

Veprc_ +

1 1063 4 106793¢_
(T, —T,) \3072 393216¢c,
for parameters T,

T = max{T,,In (2K/3)}, (227)

and Tz =1T; given in Eq. (I23) which for c_«x1
reduces to

3
TL ~ T2 —(— ] In 2 ,
(C-> (”(3¢—s(T2) 8200, ()| _us + By (T2) + 26, (T2),, (A_ﬁ»)

where ¢_; and its derivative in Eq. (I23) for T'; are given in
Eq. (E14), Qs given in Eq. (E16), and n; = /1 —4c_/9.
As noted near Eq. (181), there is a gap in the analytic
spectrum in the region [K,,Kp]. The correction factor
Seorrection (K) 18 defined in Eq. (216).

The coefficients C, have been defined such as to be
approximately scale independent. Since V| > 1, the term
b=+/V,+9/4-K* in C,, is approximately K
independent. Similarly, ®? is independent of K for long
wavelengths and hence it is absorbed into C;. Meanwhile —
Kr.~2 gives us the approximate location of the first
bump. If V, is neglected, the D> term has the following
approximate form for Av/2/(3Q) < 1,

D2 AT 16, (1 - 4c_/9)

1 2
, K < K,, 229
x <a/2+ 1/5+4/F> 2 (229)

where we remark that D’ eventually tends to 1 for
extremely small scales that correspond to the massless
axion. To evaluate the expressions given in Eqs. (222)
and (223) into a numerical amplitude, the parameters
{T,T,,T.,Vi,AT =T, — T} can be computed through

3.11 — 1.05a
T\~T,— |—— ), 230
1 c ( oF > ( )
3.11 — 1.05a
T,~T —_, 231
T (PR (231)
0.7
T.~T,——, 232
AT = (232)
Vl = |m1n (m% - él . é1)|, (233)

(228)
ED 3Q

|
obtained from Sec. VI A. The definition of 7', can be found
in Eq. (71), and the variables 7, , . are the conformal times
corresponding to T’y , . obtained through Eq. (177). In turn,
to evaluate a in Eq. (230), use Egs. (73) and (75). To
evaluate V; of Eq. (233), put Egs. (67) and (68) into
Egs. (G1) and (F3) and minimize by varying time 7.
For cases with a > @, where a second dip is also
significant, the shape of the isocurvature spectrum is
modified as the parameter C; becomes a K-dependent
function. The modes now carry additional phases that are
dependent upon the dynamics of the V5 dip. This situation
is similar to the explanation provided in Sec. VI B. These
cases are solved using the scattering matrices of Eq. (108)
with the full set of model parameters. Equation (222) and
the more general computational procedure presented in
Sec. VI are the main results of this paper.

D. Discussion
By substituting Eqgs. (223) and (229) into Eq. (222)
we obtain an approximate order of magnitude estimate

for the amplitude of the first bump corresponding to
_Kfirst—bumpT2 ~2for c. < 1:

AL (K frseum
s Bstume) 1) e-or) 1, (2)P) 1 e f9)
C+ Vl -5 2
X - A s A~ b
c_ F2\1/F + .12
(234)
where
e HL, (2) % 0.31 + O(a?) (235)

near w — 0" and varies slowly (fractional power of )
for w ~ O(1). The above expression is an approximation
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and higher order corrections such as the presence of
additional dips (for instance the —V; dip due to the second
crossing after 7'.) can lead to a further increase in the
amplitude.

Next, we compare the above expression to a corre-
sponding one for the overdamped scenario. In a previous
work [77], numerical fitting functions were developed to
estimate the isocurvature power spectrum for over-
damped cases. It was found that the bump amplitude
was maximally approximately a factor of 3 compared to
the massless axion plateau. However, those fitting func-
tions were evaluated in a corner of parametric region
with 0.5 < ¢_ < 1 such that they were largely indepen-
dent of c_ up to the required accuracy. In order to include
the c_ parametric dependence, we note that within the
framework of our mass model, the overdamped scenario
can be studied by considering a single dip followed by the
Vp parameter in Eq. (184). Using the cubic-polynomial
expressions in Egs. (67) and (68), it is easy to show
that for the overdamped scenario V; =~ 1.5~ O(1) and

|

2 9/4
AS<C+> / >(Kﬁrst—bump)

2 9/4
AS<C+< / >(Kﬁrst—bump)

For V| > 0O(10), the @ dependence is

Vi

~ 0(10) (e |HL, 2) P)(1 - 4c_/9) (

1
—100.67a-005+~ Vaz0.l
2~ 067a-005+—= Vaz0l,

AT ~O(1). Using these estimates, we evaluate the
amplitude at first bump as

2(c,.<9/4
AS( =/ )(Kfirsl—bump)
C

~ 0(0.08)7 <C—+) " (236)

c_
where it is worth noting that the residual (c /c_)%°
dependence is obtained by fitting the mode amplification
due to the slow-varying m% function. To understand this,
note that for the overdamped scenario, the background fields
settle to their respective minima along a trajectory where
¢_s < Pmin- Hence, the associated m% function is negative
and can lead to amplification of the mode function (see
Appendix I for further details). Also, note that unlike the
underdamped scenario, there is no large kinetic energy at
transition and thus the absence of any O(F) amplitude
enhancing corrections for the overdamped case.

We now compare the isocurvature spectral amplitude
between the two cases and obtain

5 2y,
— ] . 237
1/F + .12) F? (237)

(238)

which is an approximate numerical value [O(10%) accurate] resulting from evaluating V| as explained below Eq. (233).
Thus, the ratio of the isocurvature power spectrum between the overdamped (¢, < 9/4) and underdamped (¢, > 9/4)
scenarios is approximately

A%(c+>9/4) (K)

A%(c+<9/4) (K) (239)

~ 0(10)e-7|H! (2)|2( 05

2 1
— 2} (0.67a-005+—) VYazo0.l.
1/F+0_12) <06a 005+F> az0

K first-bump

At a ~ 0.1, the above ratio is approximately > 1 and hence as ¢, — 9/4 and V| — O(1), Eq. (239) tends to unity, giving us a
check of the formulas based on the consistency with the results of [77]. Also, Eq. (239) becomes F independent for large F.

Furthermore, the ratio of the amplitude of first bump to the massless axion plateau is

2(c,>9/4
AS(C+> / )(Kfirst—bump) ~

8r(l +74)
A2K > Kp)

(1+7r%)?

Note that as ¢, > 0(10), (e™"|H},(2)]*) ~1/w~1/ /¢,
canceling the r enhancement factor. Therefore the ratio of
the bump amplitudes saturates to a constant for large ¢
values. For ¢, ~ O(1) in the resonant case of our interest,
Eq. (233) can be approximated as

A2(c+>9/4) K- 4/3 )
S 5 ( flrst—bump) ~ 0(30)(1( / ) , (241)
AX(K > Kp) 8/F + 1

O(1)me~#|HL, () 2t <;>2

(240)

F2\2/F +0.24

|

which shows how the underdamped scenarios enhance the
bump amplitude. This large O(30) number ultimately can
be traced to the combination of two coincident effects:
(a) enhancement of the kinetic energy due to a time phase
accident in the context of oscillatory background solutions
which exists only in the underdamped cases, and (b) &-
involving interaction energy dominating the mass energy.
For instance, consider the ratio of the kinetic energy (KE)
to the net potential energy (mass + interaction energy
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ME + IE) at transition for the two cases. Using Eq. (89),
we can approximate this ratio for a > o for the resonant
underdamped case as follows:

< KE ) _ P+ ¢ (242)
ME+1E) . .o & +ci i +c ¢
a?F*
TF (1-020)>—1)2+0(F?) (243)
~0(8), (244)

where we note that for underdamped resonant cases, the
interaction energy &* is O(F*). Remarkably, the parametric
dependences have canceled out in Eq. (244).

A similar evaluation for the overdamped situation where
the interaction energy & is O(1) yields

( KE ) g+ (245)
T2 2 2
IE+ME) . <94 & +cipy +c¢=
F2
~—— 246
9/4F? (246)
~0(0.5), (247)

where we note £ being insignificant in both the numerator
and the denominator. Thus, we observe an approximate
O(10) enhancement in the spectral power for the under-
damped cases compared to those of the overdamped. Since,
the first bump in overdamped cases is maximally approx-
imately a factor of 3 compared to the massless axion plateau,
we obtain an effective enhancement factor of O(30) for the
underdamped scenario as observed in Eq. (241).

As highlighted previously in Sec. VII B, a large V, jump
ETSP leads to an attenuation of spectral power for all
modes superhorizon at 7, while having a decreasingly
small effect on the subhorizon modes. An interesting
consequence of this is that for large enough V,, the
amplitude of a subsequent bump (second or higher) can
appear much greater than the first bump. This can be
understood as follows. From Eq. (222), we infer that the
amplitude of the spectral bumps (oscillations) in the
absence of the V, jump ETSP can be expressed as

Kf' -b 2 _
A%‘,VZ:O(K) z-’40 (%) A Kfirst—bump < KSTC ! V Vl s
(248)

where A, is the amplitude of the first bump and is
independent of V,.

With the inclusion of V,, the spectral power for all
superhorizon modes at T, is attenuated due to a V,-
dependent correction factor |fomecion] < 1 as shown in

Sec. VII B. For V, > 1, the corrected spectral amplitude of
the first bump can be written as

A%,Vz»l (K ﬁrst—bump) ~ |f correction(K first—bump) |2-A0’ (249)
where the K dependence of f ., reciion 1S approximately a

constant for all superhorizon modes. On the other hand, the
spectral power in Eq. (222) for the subhorizon modes have

the property |fcorrection(K)| ~ I

A%,Vz»l (K) ~ |fcorrecti0n(K>|2~A0<

V Ky SKSTW/V

K first-bump 2
K

(250)

where Ky =177'\/V, and defines the mode when the
|fcorrection(K)| ~ 1. The ’fcorrection(KN SmOOthly interpo—
lates between 1 and |f omection (Kfirstbump)| in the spectral
region [K first-bump» K V} .

Comparing Eqgs. (249) and (250), we conclude that it is
possible for certain high K modes to have a larger spectral
power than the first bump. Quantitatively, this is true for the
following approximate range of K modes

K first-bump

<K<

~ B

Ky

=K. (251

f correction (K first—bump)

This is generically observed as a larger second or third
bump than the first [see Eq. (222)]. The amount of this
relative enhancement can be evaluated as

AS(K)

A% (K ﬁrst—bump)

K 2
~ 0<Vé/2><7V> V Ky SKSK:

(252)

where the factor of V;3/ % comes from | £ correction (K) > &
|I(K)|? in Eq. (217) for V, > 1. Hence, the enhancement is
approximately proportional to 1/V, and increases with the
F scale. Thus, we remark that large O(F?) resonant effects,
together with any additional dips (—V; for i > 3) corre-
sponding to higher order corrections, can result in spectral
power enhancement by a factor greater than the O(30) as
derived previously for the resonant underdamped cases.
Unlike the O(30) factor whose origin was discussed in
Eq. (244), this high K mode enhancement is dependent on
the parameter F.

VIII. PARAMETRIC DEPENDENCES OF THE
ISOCURVATURE SPECTRUM

One qualitative predictability difference between the
overdamped and underdamped axionic scenarios where
the PQ symmetry is broken before the end of inflation
stems from the fact that there is an attractor solution for the
background fields as well as for the linear perturbations in
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the overdamped scenarios. This means that given a
Lagrangian in overdamped scenarios, the cosmological
predictions have less dependence on the initial conditions.
As an analogy, in the case of slow roll single field inflation,
one only needs to specify the initial field value and not its
time derivative to specify a prediction for the observables.
For the usual cosmological axion scenarios, the radial field
associated with PQ symmetry breaking is considered to be
sitting at the minimum of its potential. This means that the
only initial condition dependence of the axion isocurvature
during inflation is 6;f,. In the case of the current under-
damped scenario of interest, there is an additional phase
space dependence of the PQ symmetry-breaking radial field
directions as well. Because of the nonattractor behavior
for the underdamped dynamics along the flat direction, the
dominant additional phase space degree of freedom is the
initial field ¢, (0) value and the kinetic energy of the radial
field along the flat direction parametrized by &,,.

In this section we will study the dependence of the axion
isocurvature spectrum on the model parameters {c,c_, F}
and the initial conditions {gy, ¢ (0)}. The effect of
each parameter variation is discussed keeping all of the
others fixed.

A.c,

The numerical model presented in this paper and the
associated axion isocurvature spectrum have been derived
for background fields within the parametric region given
by o, S a Smin (a3, ay). Above the upper bound ay, the
analytic methods utilized in this paper break down due to
the significant heavy-mode mixing from Eq. (48) at 7', and
at around the same upper bound, the adiabatic approxima-
tion technique also breaks down.” For a less than the lower
bound, the cubic-polynomial expansion of the background
fields is insufficient and higher order terms become
significant. The parameter @ can be computed as a function
of underlying Lagrangian model parameters and the initial
conditions from Eq. (73).

In Fig. 10 we plot the ¢, dependence of @ within the
range of Eq. (95) close to ¢, = 9/4 corresponding to the
range of ¢, values where T . is close to (but before) the first

zero crossing of the ¢i?) field."” The monotonic increase in
a is captured through the following expression:

9Beyond a > a3, the background fields will cross at least twice
after transition. For large F, these crossings can occur close
enough such that effective heavy mixing from the superposition
of each crossing becomes significant. Moreover, as a — 1, the
background field dynamics turns highly chaotic after transition
and a closed form prediction of the mode amplitude in terms of
is not feasible. Field configurations with large ¢, tend to fall
under this category. These configurations associated with « = 1
and the accompanying isocurvature spectrum are a subject of
interest and will be explored in a separate compfiorgion paper [80].

"Recall ¢, (T) is approximately equal to ¢’ (T) before T..
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FIG. 10. Plot Eq. (74) showing regions of ¢, with correspond-
ing value of a within the range of Eq. (95). The other parameters
are set to the fiducial set P, of Fig. 5.
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FIG. 11. Plot of spectra made using Eq. (108) for increasing
values of ¢, at transition. Note that other parameters are set at the
fiducial parameter set P, used in Fig. 5.

(253)

cero ()

Next, in Fig. 11, we present isocurvature spectra for three
different ¢, values. We remark that as c, is increased,

the gz’)f) field rolls down faster'' owing to the frequency

® = \/c, —9/4. Consequently, the first zero crossing of
the qﬁﬁ)) field occurs earlier with an increasing c, [see
Eq. (71)]. This in turn increases the exp (—37./2) factor

controlling ) - leading to a larger kinetic energy at T'.. The
larger kinetic energy is later converted into the interaction

"The exact dependence of the velocity on  is dependent on
whether the system is in the resonant, nonresonant, overdamped,
underdamped situations. Here, we will here be focusing only on
the resonant cases, which is the main focus of our work.
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energy at transition whose larger value is responsible for the
growth of the isocurvature amplitude through the resonant
effects. Hence, increasing ¢, results in an amplification of
first bump in the isocurvature spectrum'’. Moreover, an
increasing height of the isocurvature spectrum is accom-
panied by a receding location of the first bump Kt hump
toward lower values. This is again explained by decreasing
T, as c, is increased because Eq. (209) implies
Kfirst—bump ~ O(l)eTc' (254)

When one compares the first-bump amplitude to the
plateau amplitude in the ¢, = 2.348 case of Fig. 11, one
sees that the ratio can be about 30. This is already explained

in Eq. (241) of Sec. VIID, where we evaluated an
enhancement factor of

0(30)a<8/‘¥i 1>2

for modes lying within the range 0.5 S —Kz7. <3 com-
pared to the modes in the massless axion plateau region of
the spectrum (K > Kp).

To understand this qualitatively, one first notes that there
is the possibility in the underdamped scenarios of a large
kinetic energy in the falling ¢, when the ¢_ interaction
with ¢, becomes strong. This large kinetic energy leads
to nonadiabatic effects post 7. such that the axion mode
amplitude obtains an O(10) enhancement compared to an
overdamped scenario.

Note in Fig. 11 that the frequency of the K-space
oscillations also increase with ¢, . This has already been
explained quantitatively in Eq. (213). To understand this
another way qualitatively, note that the temporarily negative
lightest mass squared eigenvalue and the nonadiabatic
rotation of the lightest eigenvector pump the mode amplitude
thereby increasing its magnitude [See Eq. (26)]. Therefore,
the k-space oscillation frequency is reflective of the non-
adiabaticity producing mode dynamics at time ~7'., where
the modes have the characteristic phase exp (—ik exp(-=T.)),
giving a k-space oscillation period of O(exp(T..)), as can be
seen explicitly in Eq. (213).

The examples presented in this paper are limited to a
range of ¢ values where the transition occurs close to the
first zero crossing. One might then worry that the mass
model is no longer applicable for higher ¢, values because
according to Fig. 10, the a value naively seems to increase
to violate the approximation methods used. However, as we
will discuss in a separate paper [80], a is a discontinuous
function of c¢,. As we will show there, the present mass
model is still applicable for a range of larger ¢, values
(although the ¢, regions where the model is applicable are
not continuously connected).

(255)

12 . .
See below regarding how much one can increase ¢, .

B. F

The F dependence of the isocurvature spectrum is
multifaceted. The C term in Eq. (225), which is mostly
about the normalization of the axion field, suggests a
1/F? proportionality of the power spectrum. This is an
expected result since the time-dependent massive axion
isocurvature spectrum has a 1/¢?% dependence within the
long wavelength region (as well as in both the plateau
regions). Thus, the variation of the power spectrum in the
massless plateau region has a 1/F? proportionality similar
to the overdamped scenario.

For scales that lie within the oscillating part of the
spectrum, additional F dependences arise from the D2
and b? terms of Eq. (222). As shown in Sec. VIID, the
spectrum in this region has the following proportionality:

AYK) Vi 5 \2
c FP\1/F+.12)"

(256)

Using the analytic expressions derived previously, the ratio
V,/F? has the following polynomial form within the
parametric region given by Eq. (95),
F—é ~ e+ o, (257)
where ¢; ~ 0(0.1) and ¢, ~ O(1). With all other param-
eters fixed, we have the relationship a o 1/F?. Including

the C term, the power spectrum has the following effective
F dependence in the oscillating region:

A%(K) (o] C3 SF 2
w2 (F+F) (1 +.12F> - (29

where

c3 = wd, (0) secpe™?T: > ¢, (259)
As F becomes large, the power spectrum tends to the
expected 1/F? proportionality. One can understand this by
noting that for all other parameters fixed, an increase in F
results in a rapid reduction in a such that c,a can
subsequently become smaller than c;. This is an interesting
behavior which can be explained more clearly by noting
that for resonant underdamped fields, 7. occurs close to the

0 .
¢(+) ZETo Crossing:

$o(T.) ~ dO(T,) - / “arep.. (260)

At T, the ¢_ field is O(F) and the strong coupling force
Ep- < Oand ¢, (T,) <Oresulting in |, (T.)| < [¢h, (T.)].
Using Eq. (72) and V; ~ | (T,)|, we deduce that the ¢,
parameter in Eq. (257) is associated with |qﬂ(+0) (T,)| = aF?,
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FIG. 12. Tllustrated is how the spectra [made using Eq. (108)]
varies as F' increases. The other parameters are fixed at approx-

imately the set P, as in Fig. 5. The value of « in this plot varies as
{0.38,0.51,0.71} as F is reduced.

whereas c; is related to the integral of the coupling term
E¢_. Figure 12 shows plots of power spectra for a fixed ¢
value with different F scales highlighting a ~1/F" reduc-
tion of the power spectrum for n ~3 —4.

C.c_

Next we consider the c_ dependence of the power
spectrum. We will consider two situations here. In the
first, we discuss fields with a S a, such that the fields
evolve after the transition without any crossings. This
situation gives rise to a slowly varying m% > 0. The second
case is where the fields have large resonant amplitude such
that the fields cross each other at least once after 7. As
explained in Appendix I, such a crossing results in a
situation where the ¢_ field settles to its minimum from
below (¢p_ < ¢h_ min)- Due to this unique alignment, the m3
function now becomes negative as the fields settle to their
minima asymptotically. In both cases we shall see that the
spectrum increases for smaller c_ values with the essential
dynamics dictated by the settling of m% during different
temporal phases. The discussion is limited to c_ < 9/4.

Let us now consider the first case. The m% function
results in an approximate exponential decay of the mode
amplitude through the

1 [T
01 wexp (= [ miar
3Jr

factor where the integral is evaluated through Eq. (I130). The
integral can be divided into two temporal phases. During
the first phase, the dominant ¢_ field rolls down from its
peak amplitude with a decay constant equal to c¢_/3. Later
as the fields get closer to their minima during the second
phase, the decay constant increases by nearly a factor of 4
to~4c_c,/(c_ + c,). Since m% starts out close to c_ and

(261)

€,=2.341, F=20.2, ®, (To)/H=3.3% 108, €y=0
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FIG. 13. This plot shows the ¢_ dependence of the spectra.
The other parameters are fixed at approximately the set
P, as in Fig. 5.

eventually settles to zero, the integral is dominated by the
first phase. In this first phase, m% behaves as the flat
direction mass which decreases with a decrease in c_,
resulting in v, (T)  (c,./c_)"/*:i.e., a smaller c_ results
in a larger effective mode amplitude.

In the second case, the ¢_ field approaches its minimum
from below. Unlike the previous case, the first temporal
phase is insignificant due to the oscillating IR fields and a
dominant V, ETSP. Hence, the effective mode amplifica-
tion due to the negative m3 is brought about during the
second phase through Eq. (261). As c_ decreases, m%
decreases much more slowly due to the ~4¢_/3 exponen-
tial decay rate of ¢p_. Moreover, a smaller c_ results in a
larger value of [m3%]. As a result of these two effects, we see
from Eq. (261) that the mode function undergoes larger
amplification. This is shown in Fig. 13.

D. g and ¢, (0)

Here we discuss the parameters ¢ and ¢ (0) that define
the initial conditions for the underdamped rolling fields.
Varying these initial conditions directly alters 7. and the
value of a. Hence, the effect of these two parameters is best
understood by studying the a expression from Eq. (74). We
consider the minimal case with &y = 0 and expand a to
quadratic order in g, in Eq. (74):

3. 1
(/)}(20) Ve TV

(Z
Z4-arctan
~ —9/4 o

ax

vas >J< %) o)
e 1+—> +0(&}).
2c, 0

(262)

We discover that @ has a local minimum at &y, = 0 evinced
by the absence of the linear term in &. This is expected
since an increase in the initial kinetic energy leads to a
larger q§+ at the zero crossing. As seen in Fig. 14, the
dependence of a on ¢, in Eq. (74) is nonlinear beyond the
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FIG. 14. Plots highlighting the dependence of a on the initial
conditions [see Eq. (74)]. Keeping all other parameters fixed,
a larger initial energy density results in a larger isocurvature
amplitude of the initial bump.

quadratic nonlinearities in Eq. (262). As seen in Eq. (262),
the parameter ¢, (0) leads to a monotonic increase in the
value of @ within the range of Eq. (95) with the intuition
that the initial energy is increased as in the intuition for the
&y increase. A representative set of a values as a function of
¢ (0) is shown in Fig. 14.

As |eg| is continually increased, 7. becomes nearer to the

next higher q’)(f)(T) zero-crossing time, thereby reducing
the overall spectral power. Similarly, if ¢, (0) is continually
increased then the transition time 7, moves to the next
higher zero-crossing time. The subsequent height of the
power spectrum can be analyzed by evaluating the value of
a at the new transition. Due to the length of this paper and
the natural parametric scope of small ¢, in this paper, we
discuss the isocurvature spectra reflecting the higher zero

crossing of qb(f) in a separate companion paper [80].

IX. SUMMARY

In this paper, we provided an analytic expression for the
blue axionic isocurvature spectrum in the underdamped

nonequilibrium axion scenarios for a particular parametric
region corresponding to a mild amplitude (a € [a;, a,]) of
resonantly oscillating PQ symmetry-breaking radial fields.
The main expression given by Eq. (222) exhibits an
amplitude of Eq. (223) and an oscillating spectrum whose
k-space oscillation period is of the order the value of the
first k-break location Kig.pump 10 the spectrum [Eq. (209)].
Remarkably, the first-bump amplitude of the spectrum is
enhanced by a factor of O(30) compared to the plateau
amplitude of the spectrum associated with the massless
axions as explained near Eq. (244). Furthermore, in some
cases with large O(F?) resonant effects, the spectral power
can receive larger than the O(30) enhancement of the first
peak as explained near Eq. (252)."% In contrast, for the
overdamped nonequilibrium axion scenarios (see [75]), the
relative amplitude ratio is only a factor of a few (maximally
approximately a factor of 3). The k-oscillation spacing is
reflective of the mode amplitude-setting dynamics at time
~T,. whose phase is exp (—ikexp(-T.)), giving a k-space
oscillation period of O(exp(T.,)).

Technically, the computation was carried out using a
combination of a parametric restriction where the heavy
modes are decoupled (Appendix J), perturbation theory
(Sec. IVA), analytic fitting to polynomials in the non-
perturbative region (Sec. IV B), piecewise ETSP modeling
[Eq. (101)], and the technique of integrating out fast
oscillations (Appendix C). This allowed us to compute a
transfer matrix solution to the isocurvature mode equations
[Eq. (108)]. Overall, based on comparisons to sample
numerical calculations, the accuracy of the computation
is about 20%-50%, with r, set to 0.2. Most of the
uncertainty is coming from the technique of integrating
out the fast oscillations (for example, estimation of V,) and
the approximations made regarding the IR components of
the ¢, fields after the transition at 7'.. Even though the
analytic formula is complicated, compared to the pure
numerical solver, the speedup factor'* is about O(100).

In this paper, we focused on presenting analytic spectral
results in the resonant oscillatory k range for moderate o
values, where a characterizes the velocity of the falling ¢,
field near the transition time 7. [see Eq. (72)]. This would
be helpful even if a purely numerical approach to the
problem were to be used in data fitting since this will serve
as a solvable check on the system. In a companion paper
[80], we will present results for larger « situations in the
high ¢ limit to complete the understanding of the possibly
observable blue isocurvature spectra. In such cases, there
are no purely analytic results, but there will appear a novel
stochastic model that parametrizes the small k range

PHere we have scaled the PQ symmetry-breaking parameter
F, as F=hF,/H, where h is a quartic coupling and H is the
Hubble expansion rate during inflation.

A Mathematica package to evaluate the spectrum using the
analytic methods can be accessed from https://pages.physics.wisc
.edu/~stadepalli/Blue-Axion-IsoCurvSpec-Underdamped.nb.
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amplitude variation with a. In that paper, we will also
exploit various symmetries to obtain relationships between
parameters, which is useful more as a transferable tech-
nique than quantitative predictions. Finally, we will also
defer to that paper a discussion of general fitting functions
for this underdamped blue axionic isocurvature class
of models that do not refer to underlying Lagrangian
parameters {c., F}.

There are many interesting possible follow-up topics
to be investigated. Recent Planck results [76] show that
axionlike curvaton models with an uncorrelated blue-tilted
spectrum is the most favored of the isocurvature models.
The fits also indicate a possibility of measuring a spectral
index of 1.55 < n; < 3.67 at 95% C.L. consistently with
the recent findings of [77]. It would be interesting to study
whether there are hints of resonant isocurvature spectra
presented in this paper in the existing and future data.
Another possible usage of this enhanced oscillatory peaks
presented in this paper would be to investigate the
formation of primordial black holes similar to the inves-
tigation of the curvaton models in [6,81-89]. Similarly it is
equally appealing to study second order gravitational waves
and non-Gaussianities through either a QCD axion or a
curvaton isocurvature mode as in [58,73,81,82,85,90-94].
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APPENDIX A: TAYLOR EXPANSION
CONSISTENCY CHECK

section, as a check, we give an alternate derivation of T,
assuming 7 = T ., where T satisfies

¢+(Tc) = ¢—(Tc) =rF, (Al)

where

0lxr<l (A2)
We restrict ourselves to solving the case of the resonant
case (see Sec. IV C) in which
cos [wT, — ] < 1 (A3)
[see Eq. (58) for the definition of ¢ and Eq. (31) for the
initial conditions on ¢ ]. The reason why we dwell on the
accuracy of the value of T, is because the numerical results
in the resonant situations are very sensitive to the value
of T, due to the large ¢, (T.) ~ O(F%) > H¢. (T,) ~ HF
and the fact that the complex mode amplitude is sensitive to
the time phase of the real background field ¢ (7). The
solution method presented here involves a combination
of perturbation theory, Taylor expansion, and successive
linearization approximations. The most difficult aspect of
the computation is in estimating the errors associated with
the approximation, and it is this feature that the present
section’s approach is an advantage over that of Sec. IV B.
However, the formalism here is cumbersome compared to
that of Sec. IV B, and the differential equation solution for
&= (¢, ¢_ — F?) used below has limited parametric appli-
cability. The results nonetheless serve as a check on
Sec. IV B and provides an error estimate.
Since the computation is long, we first give the results:

— -1
In Sec. IV B, we gave a solution to 7'y using an analytic re=T.-1TF", (A4)
fit to the cubic polynomial, utilizing the information from
the differential equation and perturbative solution. In this| T=T +1r 51, (AS)
i % (35 6T (8F2 1 8Fjy + 37)cos?(g) + jio? (402 — 9)eF) n)
== 3 . ’
Jia?e (—=8F? + 12Fj; + j}(40® - 9)) — 507 Ton2
TZI _ Ty (T2221¥T2222+T2223)
T, = = , (A7)
Y31 (Y301 + Y300+ 0303) + T24
1, =- - 3¢7 FjioT11¢.(0) cos(p) ’ (A8)
4(Yonn + €7 j1’$71 (0)* (8F? — 121 F + j1*(9 = 40?)))
Yo = (32F* — 16/, F3 +24j,2(3 = 20?)F? = 8,3 (50* = 9)F + 3j,*(9 — 40?)), (A9)
T212 E3€3T5(16F2+ 12]1F+3]12) COSZ<(ﬂ)F4, (AIO)
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3 . .
T3y = cos(e) <T2211 + eT]J12¢i(0)CU2(8F2 - 12, F +112(9 - 40’2)))’
Yoo = 33T (16F? + 12, F + 3,2) cos? () F*,

T2221 = 966T’ (8F2 + 8]1F + 3j12)2(38F2 + 30]1F + 9j12) COS4((p)F6,

Yoo = 66
—8]1 (400) + 117)F2

6j1

Yooy = 2e7 ji ¢4 (0)w* (192F* — 384, F?

Ty = 16]1a)¢+( )(

3j 2
531 = cos(e) <T212 + €722 (0)0*(8F% — 12, F + j2(9 - 40)2))) ;

T2321 = 9€6T (4224F6 + 10688]1F5 + 12272_]12F4 + 8112]13F3 + 3258]14F2 + 756]15F + 81_]1 )COS ((p)F6,

T3 = 1263(%
—8j°(46w? + 45)F?

6j1

Toz3p3 =2e F114¢4< ) 4(384F4

) j, 2% (0)@? cos® () F3 (896 F° + 128, F*
—-9j,4(20w? +9)F — 36j,°0?),

(A11)
(A12)
(A13)

)j12¢% (0)@? cos? () F? (960F5 + 384, F* — 16,2 (14w” + 45)F?
—24j,*(Tw* + 18)F = 9j,° (4 +9)), (A14)
—48j,2(20” = 3)F? + 963w’ F + j*(160* + 81)), (A15)
ST(12F2 + 10/, F + 3j,2) cos? () FP=2¢ 72 (2F = 3j,)¢% (0)0?), (Al6)
(A17)
(A18)

—48j,%(6w? + 11)F3
(A19)

— 864/, F° —8j,%(32w* — 81)F? + 72j,*(4w* — 3)F + 3j,*(16w* — 240* + 27)),
(A20)
To33 = 32Fj *w¢ (0)(3e’:(12F* + 10/, F +3j,%) C052(¢)F3+2€%jl2(2F - 3]'1)453(0)0)2)4’ (A21)
— 6%_3T5¢+(0)a)(8F2 B 12’]1F =+ j12(9 - 4602)) SCC<(p) (A22)

where T, is given by Eq. (71) and
J1=2. (A23)

This j; is very insensitive to the parametric details because
of the 1/6 power in

‘ ATR, 1/6
J1 = ( 4(3T—2)F | 18(T-2) |> ’ (A24)
Tr2) T (142°
where
AF 3 81(4c_+27))?
Ri=—+— _—
1 D + 2A2 +— ./43 + 303
9j;(3(4c_ —|—45)]1’L'(J1) +dc_ —4w? +27)
+ 2
8F
(A25)

8F? '

and A, are functions of j; themselves given in Egs. (A56),
(A57), and (A58). With the fiducial value of j; = 2 without
solving for j; self-consistently, the estimated error on j; is
around 30% for an O(2) variation in ¢, around 2.35. Note
that j, here is the analog of the (21)'/*//a in Eq. (75), and
Jj1 = 2for ¢, = 2.35 is consistent with taking n = 10. This
is one of the main consistency checks of this Appendix
on Sec. IV. The ¢, parametric dependences of T'. values
of this appendix section for c, near 2.35 agree with the
presentation of Sec. IV providing another independent
consistency check. If one wants better accuracy, it is
straightforward (but tedious) to iterate using Egs. (AS),
(A81), (A79), and (A72). One of the most interesting
aspects of this is Eq. (A100), which shows that j; ~ 2 and
shows 0.5ST <1 to be a generic prediction in the
resonant case. These results can also be viewed as an
alternate method of computing 7. that can be combined
with Eq. (222) to evaluate the isocurvature spectrum.
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The improvement in the ¢_(7T'..) solution can be seen by
comparing the solid line and the long-dashed line in
Fig. 16. In the parametric case of

{c,.=2.35,c.=0.5,F=20.2,6y=0,¢,(0)=3.32x 108}
(A26)

the agreement with numerics is about 6% in T = 0.6
[or equivalently about 0.06 x (0.6/F)/T.~0.02% in
T.=9.248, which illustrates that a very high precision
in T. is required to get the ¢p_(T) to be accurate to 6%].
For the more general case, we estimate an error for T of less
than about 35% assuming that the error in the prediction for
¢_ dominates. The T, /T, ratio for this case of Eq. (A26) is
about 5. The reason why the ¢_(7T.) computation is very
sensitive to 7. is because small changes in AT, lead to
large changes in A¢_(T,) since Eq. (A1) implies

Ap_(T.) % [0rd(T.) = Ordp_(T,)|AT,,

where 07, (T.) > ¢_.

In the rest of this section, we derive these results.
Readers not interested in the details can skip most of the
rest of this section.

(A27)

1. ¢p,. behavior in resonant scenarios

Here, we construct the ¢ solution in the region near 7',
where the perturbative expansion equations (50) and (51)
break down. The tools we will use to construct this solution

are (1) different derivative approximations 0}¢.(T) ~

’;(ﬁi))(T) for different n break down at different times
T; (2) an expansion of a different differential equation of
composite operators that restricts the functional space of

¢+ about a special point where q§+ = 0. Note that the
Taylor expansion method of (1) is nonperturbative although
very limited in its time-range extension of analytic com-
putation. For sudden transitions that are being studied here,
even this limited method yields nearly an order of magni-
tude improvement in accuracy in the estimate.

a. Region [T, -j,/F,T,]

As noted when discussing ¢!) in Eq. (60), the ¢
solution becomes a bad solution exponentially fast near
T =T,. Hence, we will define below a time period
[T, —ji/F, T, just before T, to match the known equa-
tion (59) to a finite order polynomial in this time region.
The reason why the finite order polynomial will turn out to
be a better approximation than the original perturbative

solutions will be due to the fact that different Taylor
expansion derivative approximation 04¢. (T, — ji/F) =
8’}459 (T.— ji/F) for different n break down at different
times 7. We will choose j; from the condition that the finite
order polynomial and 0¢. (T, —j/F)~ ’}qﬁ(io)(TC -
Ji/F) be a good approximation at the same time.

Start with a quadratic Taylor expansion of ¢_(T) about
T=T,,

(A28)

We truncate this at the quadratic order and replace the
coefficients with the leading perturbative solution:

@7 _ N i DN LD
¢_(T) = pY (Tc F)+¢_ (Tc F) (T T.+ F)

L. j ji\?
o N (7 L
#3#0(1-3) (T-74%

+E(T) + E(T), (A29)
where the error estimate &, is for the error incurred in
matching the Taylor expansion coefficients to ¢©) deriv-
atives and &, is the error incurred for the quadratic Taylor
expansion truncation to the exact solution. It is important
to keep in mind that the left-hand side of Eq. (A29) is not
the approximate ¢©) (T') but meant to be the exact solution
that is valid even at T.. If one forgets that, then this
equation seems like an approximation of ¢©)(T) as a
quadratic function instead of the exact solution in a small
neighborhood.

How can a Taylor expansion of ¢© do better than
keeping the original ¢ itself? After all, why stop at just
quadratic order in a ¢*) Taylor expansion if one can get
higher derivatives using ¢(®)? The answer is that each
successive derivative Taylor expansion coefficient evalu-
ated at T, — j,;/F becomes an increasingly poor approxi-
mation of the exact solution’s derivative 9%¢_ # 920,
We will demonstrate this explicitly.

In matching the exact solution to ¢p{%) at T =T, — j, /F,
the error incurred for the zeroth order Taylor expansion
can be estimated using the perturbative solution equa-
tion (60) since at T'. — j; /F, the A perturbation of Eq. (60)
is still valid,

123511-34



ANALYTIC TREATMENT OF UNDERDAMPED AXIONIC BLUE ... PHYS. REV. D 105, 123511 (2022)

(1)
&wﬂﬁﬁ | (A30)
s =T,
B {% + c_ + @” sec’|wT — @] + wtan [T — @] (6 + wtan [wT — go])} (A31)
pu— O 2 bl
(1)) 1.4
Orgl)
. ‘ L (A32)
Or¢C =T,
B {81 + 12¢_ + 4w (10wsec?[wT — @] + 18 tan [@T — ¢] — 3(0)} (A33)
pu— O 2 9
A (1) rr, i
Izl
. ‘ﬁ | (A34)
TPt T=T.-%
- 1 1120* sec*(wT — @) + 4T (T) + 47 ,(T) (A35)
- 4[p0 (1) [40® sec (0T — ) + (3 + 20 tan(oT —¢))*] )
27
T(T) =93 + 2wtan(wT — ¢)]? [Z +c_+ (6 + wtan(wT — ¢))w tan(wT — (p)] , (A36)
T5(T) = 2w* sec*(wT — ¢)[189 + 6¢_ + 2w tan(wT — ¢) (129 + 44w tan(wT — ¢))], (A37)
|
where In the resonant cases in which j,/F is not large enough

to destroy the small cosine approximation cos(wT, — @)~
" <Tc B J_1> _ 40 <Tc B _]_1> 1+ &), (A38) (T, —T,.), we can use the following relationship:

F F . e
cos? <a) (TC —]fl) —(p> ~ 0’ (%) <1, (Ad41)

where we have defined

8T¢—<Tc—%) = o) <Tc_]fl>(1+511)’ (A39)

' | Y= (T.-T)F. 42

This can be used to rewrite these errors as

oo e (dhe . 1=?EED) [6 (1=’ (ad3)
CTRGYTHP | P (4T a+T O \F htT
where
rnF=¢,0)e37/? sec(p)wY/F (A44)

has been defined to suggest the appropriate scale to understand this expression in the resonant case. Note that although it
looks dimensionally wrong, it is actually consistent since we have divided out the H scale here. Our final value of computed
T will determine r;. Similarly, the errors for the higher derivative coefficients are
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e et 843c 018 L=’ (M) 342 (a45)
"TRAGYTT+ | P TG+ F i+ |
i . T (T~ +T, (T,
£ U e it e s (A46)
12 = 57 ~—1 2 2 |
ri(ji Y +1 ; a2 (1ET)?
N R G
- 72 - -
| =55 [ 1= [ f1-a )
JiY F </ F F
. 1— wZ(M)Z 1= wz(M)Z
J1 1 F F
F F F

One can see from Fig. 15 (in which we plot £, &1, £1,) how the higher order Taylor expansion coefficients become more
uncertain earlier before reaching 7... In this numerical example case, we see that to keep the second order Taylor expansion
coefficient accurate to about 20%, we need to Taylor expand at about 7. —2/F ~ 9.15. The actual error £, at T'. can be
better than 20% depending on which Taylor expansion term contributes the most.

Hence, we conclude based on coefficient errors alone

: . N N JiNo
m(r It W SN g ) (L
¢_(c F)+¢_ c~F)F T\ T T )\ F

40 ( j1> _ e F2cos? psec? (wT — ¢) {27 }
T~

E(T,)~ , (A49)

T,—— “— +c_ + @? sec’ [T — ¢] + wtan [wT — ¢](6 + wtan [T — ¢])

F ¢ (0) 4 i
(A50)
. H %T(. F2 3 3 T — 3
J <Tc _ ]1;> _e cosq;,gs?g) (0T — @) (2 + wtan [T — (ﬂ]>
+
81
X {Z + 3c_ + o(10wsec?|wT — @] + 18 tan [wT — ¢ — 3a))} . (A51)
T4
; 3T 12003 3
. J ex' cFecos’gpsec’ (T — @ ~ ~
¢(_1) <Tc _ fl> - v 5 ( ) [70)4 sec4(a)T -—p)+7T,+ TZ]Tc—j,—[’ (A52)
+
~ a)2
T, = 7sec2 (0T — @)[189 + 6¢_ + 2w tan(wT — @) (129 + 44w tan(wT — (p)]TC_%, (A53)
~ 9 5 [27
T, = 2 3 + 2w tan(wT — )] 7T +c_ + wtan(wT — ¢)(6 + tan(wT —@))| . (A54)
T,
In the resonant case, we can expand as before about 7 = T
E(T,) ~ = = (A55)

r(i+7)°? ’
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18018
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FIG. 15. Uncertainty in the Taylor expansion coefficients as a
function of matching time 7 for the same parameters as in Fig. 1
for which T, = 9.248 (the rightmost 7T is about 7. — 1/F and the
leftmost T is about T, — 2/ F). Note that as expected, the higher
derivatives become nonperturbative faster as 7' approaches T,
which is consistent with the notion that truncated Taylor
expansions are better approximations over a longer time period
as T, is approached. This shows that we want to match the Taylor
expansion coefficients to the zeroth order perturbative solution at
an earlier time as much as possible.

M) = 200 @+ 9722 0) + L
1U1) =71 J1 J1 (j1+T)4
2 +4j12(j1) (5 + 115,7(j1))
(L +71) ’ (A36)
Ay (1) = 2(j1) (4 + 3j17(j1) (4 + 9517(j1)))
J1(10 +43j,2(jy)) (AS57)

(ji+7)? 7

As(1) =27(1 4+ 7j17(j1)) + 4e- + 1851272 (j1) (27 + ¢-)

. . 37,2(63 +2c_
12t (e — a?) 4 200312

(i +71)* 7
(A58)
P A S (A59)
T = ~ ,
Jt J+7T h+T

where one should keep in mind that T and r; are of order
unity in the resonant scenarios where the expansion
involving Y about the zero crossing of cos(wT — ¢) has
been made. Since we are evaluating at 7. — j,/F, which is
farther away from the zero crossing of cos(wT — @), this
expression is only about 25% accurate. Typically, the
A F/2 term dominates and this large coefficient pushes
the error toward larger than unity at T',.. Therefore j; needs
to be made as large as possible to induce the (j; + )~ in
Eq. (A55) to reduce &£;. This is a motivation for having a
quadratic Taylor expansion compared to a linear Taylor

expansion since generically a Taylor expansion has a larger
degree of accuracy for higher order polynomials.15

Let us discuss the competing error &, incurred from
Taylor expanding the exact solution to quadratic order
(which is always possible for any analytic solution in a
sufficiently small neighborhood):

&) = |1 max a;¢_(u)(r—rc+%)3‘. (AGO)

B 6 MG[T(—%,T[]

According to the equation of motion for ¢_ [Eq. (18)]:

Rrp_(u) = =[-3CBd_(u) + c_¢p_ + (¢, ¢ — F*).)
+o_d_(u) + 2y (W)p_(u) — F). (u)
+ % (u)_(u)). (A61)

Let us first see why it is a bit delicate to estimate the rhs. We
know that the largest contribution to the rhs of Eq. (A61)
are from the potential terms near its maximum since

F2p. > F*:

0rp_(u) ~ =[2¢p, (W)p_ () = F?)o, () + B2 (w)p_(u)).
(A62)

There is a partial cancellation in this expression since at
least at T, — j, /F, we have by construction

bip ~F > ~—_¢,. (A63)

making

Oup-(u) = —[(#1 (w)p-(u) = F)p, (w)].  (A64)
This cancellation fails more and more as ¢, ¢_ becomes
smaller and smaller compared to F? as u approaches T,.
This means we expect 93¢_(u) to be maximized near 7.
On the other hand, since (2. (u)¢_(u) — F2)p. (1) <0
near T, — j,/F (since that is where ¢, ¢_ ~ F?), whereas
¢% (u)p_(u) > 0 in this region, there is a cancellation
which could increase near 7., making the exact location of
the maximum of J3¢_ uncertain. Nonetheless, as long as
T. does not exactly represent the zero of d3¢_(u), we
expect from these arguments that

One might ask, why not then go to even higher orders in
Taylor expansion? That is because of Fig. 15, which tells us that
the higher order polynomial coefficients are not approximated
well for a given expansion point T = T, — j, /F. To rigorously
optimize, one would have to minimize the error in the (n,j;)
plane where n is the degree of polynomial with which one is
expanding. However, we will be content with setting n = 2 and
maximizing j; to approximately minimize the error.
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31|~ 0 __max

0.w). (69
]
which is what we will evaluate now.

Since the rhs of Eq. (A62) only involves first derivatives
and lower, we can use the assumed solution to evaluate
these derivatives:

~ I g0 _IN (rog 40
¢—(T) N¢g)> <Tc F) +¢— <Tc F) <T Tc+ F)

1. j in\?
o (1 2\ (-7 +7L A
+2¢_(c F)( et ) (AG6)
which when evaluated at 7. is
Ty mgO (7 I 2 g0 (7 _Jr) (L
31 %90 (1= 2) 440 (1. - 2) (2
+1¢'<_°> 7, -2 (1) (A67)
2 ¢ F)\F

The derivative can also be evaluated at T.:

(T~ <T—]F‘> %dﬂ_“) (T—i;) (?,)2 (A68)

After using Eq. (A44), the largest number in 93¢_ is F.
Hence, we expand in powers of F to obtain

_4n (3T -2)F*

18"1 (T - 2)F3
83T¢—(Tc) ~ T(T + 2)3

(r+2)> °

(A69)

where ry is defined in Eq. (A44) and T is defined as
Y=(T,-T.)F~O0(1), (A70)

where T, is given by Eq. (71). Note the mass matrix
becomes strongly off diagonal at 7',: i.e.,

F2
¢ (0)e™= sec(p)

~ O(F). (A71)

Because (T + 2)? can easily be of order F (because of the
cubic power) and because 18 can be of order F, these two
terms can compete. Also, 3T — 2 can easily be negative.
Hence we arrive at the Taylor expansion error estimate

187, (T = 2)\ |
Xy )J?

gZ(Tc) =

’ 1 <4r1 (3Y —2)F (A72)

6\ YT(Y+2)3

at T',.. The equivalent fractional error of Taylor expansion is

ol 2Y=%  3(r-2)
71 (T(T + ;)3 * (T + 2)3F>

i

‘ 52(T0> ~ , (A73)

$_(T,)|~

where

rn (T,

r B ¢+(Tc)

r and r; were defined in Egs. (A2) and (A44). This error

pushes the choice of j; toward smaller values (i.e., in the

opposite direction of the push by &). To evaluate this error,

we need a value of Y (or equivalently 7'.) which is

calculated with j; fixed. Hence, T itself is a function of j;.
Ideally, we want to compute

~1, (A74)

dij][smTC(jl)) LETG)) =0 (AT5)

to minimize the errors. Because Y itself depends on j;, the
derivative is tedious to obtain.

The combined error (in absolute values added instead of
quadrature) is plotted in Fig. 16."° We see that the minimum
error occurs when the Taylor expansion point of Eq. (A29)
is T~T.—2/F. The expected error for the value of the
function is at most around 35%. However, to get the plots
[or equivalently, to use Egs. (A55) and (A72)], we need to
compute Y for a given model, i.e., T. = T. — YF~! using
Eqgs. (Al), (A29), and the analogous equation for ¢
approximation:

0 J (0 J j
¢.(T) ~¢<+)(TC —;) +¢‘+><TC —fl) (T— T, +fl)
10 Ji i\2
= .-\ (-7, + 2.

+2¢+ ( c F C+F

However, in practice this does not need to be done. That is
because the minimum error generating j; is not sensitive to
the exact value of 7',.. This is illustrated in Fig. 17 where the
errors are evaluated with two different estimates of 7',.. The
Taylor approximation curve is generated by solving for 7',
self-consistently by solving

(A76)

BT, = I (T, (A77)
for T. =T.(j;), which is now a function of j; and
evaluating &, (j;,T) + &,(j;, T) evaluated at T = T.(j;).
The “naive T,.” curve is generated by solving
pO (TN = F (A78)
and Eq. (A71) is satisfied. Hence, we see j; = 2 gives the
minimum error in the parametric case of Fig. 1.

'®Although we could add in quadrature to tighten the error
estimates, we here stay conservative both because we do not
really know the distribution shape of the errors and because we
want to keep the algebra simpler.
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FIG. 16. Left panel: combined error for the case of the fiducial parameters of Fig. 1 (e.g., T. = 9.248). The value of T ~ 0.6
corresponding to the approximate location of 7', has been fixed by hand and not varied with j;. The minimum error for the value of
¢_(T,) using Eq. (A29) occurs at around j; = 2 corresponding to a Taylor expansion at T = T, — 2/F. The denominator ¢!/ (T.)
used for this comparison plot has been made using Eq. (A29) instead. Right panel: the right plot shows the approximate ¢ ¥'°%1=2 of
Eq. (A29) matches the numerical solution ¢»_ very well compared to the approximation obtained with j; = 1. Itis clear that the solution
where the Taylor expansion is done about j; = 2 works much better than the approximation made through expanding about j; = 1 or
J1 = 3 as predicted by the left plot. Also, as expected and noted before, all the Taylor expansion approximations in the j; € [1, 3] are

much better than the zeroth 4 order solution ¢,

Let us analyze the sensitivity of j; to the parameters
more generally. Start by rewriting Eq. (ASS5) as

T3€_%Rl
ET) " ————, A79
REREPES A7)
AF 3 1 81(4c_ +27)j3
Ri=—+— — _—
1=ty At 32F3
9j,(3(4c_ +45)j,7(j;) + 4c_ — dw? + 27)
+ 5 .
8F
(A80)
The solution to Eq. (A75) is thus
- -3(1+09;YT) 30, 9;R, 9;YOrR
<9+ (.+11 ) J1 +111+ J1 T1>81
2F (i +7) T R, R,
3
+ =& =0. (A81)
J1

To get an approximation for the solution, we approximate
R, as a smooth polynomial in j;, note 5—12 is unimportant,
and assume that we are close to the solution of Eq. (A75)
such that |0; T/T| < I:

d -3 O(l)) 3
—[&(T,.) + & (T, %<.—+ : E+-6.
djl[ 1( ) 2( )] (]1+T) ]1 1 ]1 2
(A82)
Setting this to zero gives
Ji 0(1)>
S =——-——""7)¢ A83
(e ww

or equivalently

‘ 1 <4r1 (3Y —2)F

18r (T =2
6\ r(r+27 : )>'3

(x 127 )

9i1
J1 O(1)\ T’eorR,
= - i A84
(v e T
Hence, for j; = 27 we can approximate
. 4T3R, /6

J1 ™ ( 4B3TF |, 18(T—2) ) : (A85)

| T(T+2)* + (Y+2)? |

Since T stays near unity for different ¢, and R; ~ O(F),
we see that this j; varies slowly with different parameters of
¢ owing to the 1/6 power dependence. Hence, we will use
the result of Fig. 17 and use

J1=2

for the resonant cases. This should be a good approxima-
tion to about 30% accuracy since 1/6 power reduces O(1)
uncertainties to about this level. The j, variable is the
analog of the (2n)'/*//a in Eq. (75), and j, = 2 for ¢, =
2.35 is consistent with taking n = 10. This Appendix has
thus provided a consistency check as well as an error
estimate of Sec. IV.

2. Solving for T

Although the value of j; that minimizes the error is not
very sensitive to the value of 7'., we see from the second
figure of Fig. 17 that ¢ (T..) is sensitive to T.. We defined
T, to be the solution of Eq. (A1), which is approximately
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pravior =2
8
¢Taylcr/1=1
______ ¢Taylcrj1 =3
. gTaylorjg=2
&1+, with Taylor approx T, @, e N
&1+6, with naive T, 1 — = ¢Iaylorn=1

Taylor j1=3
S ¢+Y il

¢(°)

1 1) P .__¢(°)
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J1 T ¢.

FIG. 17. Here, we again consider the parametric point of Fig. 1. Errors with less accurate T, (the dashed curve) gives about the same j;
location of the minimum error as the errors evaluated with the more accurate 7', (the solid curve). The exact definition of the more
accurate versus less accurate value of 7. is explained in the text. This insensitivity is expected to occur because of the steepness of the
slope of ¢, in the resonant case as seen the second figure, where we put on top of Fig. 16 various ¢, approximations. Note unlike in the

case of ¢\, the leading perturbative qﬁ(f) solution accurately describes the numerical solution at 7', = 9.248.

0) Ji £ (0) MYANRE) NYIAS
o0 (re-3) + 87 (7o) (5) + 27 (r-2) (3)
= ¢ <TC - %) +¢Y (TC - %) (’fl) - %d}@ (TC - %) <%>2 (A86)

This equation and Eq. (A75) together determine j; and T [where Y is a parametrization of 7. through Eq. (A70)].

Use resonant condition
j h+7T

to turn the trigonometric functions in this expression into polynomials:

 p.(0)wsec(p)e T BT 4 jy (—12FY — i (40 = 9)(j; + T)))
N 8F3
_ Feos(p)(8F>(3/1 + 31T +Y%) + 12Fj, (i + 1) (2, + 1) + 910, +1)%)

8¢, (0)w(j; +T)°

0

(A88)

Although this equation can be linearized successively to obtain an accurate solution, the algebra becomes significantly
simpler with only about an O(3Y/(FT.)) loss of precision if we drop the T dependence on arising from the exponent

3(=FT +ji + 3j
R <—3TZ + % + 3TF‘1> (A89)
.
~exp <—3TZ + I{f) . (A90)

Use successive linearization (effective Newton’s method) to obtain a solution to the simplified nonlinear equation:

T.=T.-YTF, (A91)
T~ + 7T, (A92)
3
i35G € (8F + 8Fji + 3 )c0s’ () + jlo? (4” —9)e)
Yi=- 02 M 2 S 2402 F* 3T 2 ; 2\ 2( 1) (A93)
Jiw et (=8F* + 12Fj; + ji(4w* - 9)) — 3¢+(0)2€ :(16F* + 12Fj; + 3j7)cos*(¢)
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where the definition of the rest of the Yy objects are given
in Egs. (A7)-(A22). These expressions indicate that
T ~ O(1) since for example in the Y| contribution we
have contributions such as

Ft 2 - o\ 2 F* 2
¢+(0)2e T-(8F% + 8Fj, + 3j7)cos ((ﬂ)NFO(F )

3

(A94)

in the numerator'” with an O(F2) in the denominator. Also,
note that even though T looks like it is sensitive to j;, one
can check that there are cancellations when the j; derivative
of T is computed. This cancellation occurs because if the j;
is chosen in the region where the error £, + &, of Eq. (A29)
is minimized, the sensitivity on j; by construction is
minimized.
For example, consider

oY JY a (N
AT NEC R
dji Oji 9j1 \ D1,

where Ny is the numerator and Dy, is the denominator
of Eq. (A93). The derivative receives contributions from
the numerator and denominator (after combining over a

common denominator)

ON 1 6F* 3 .
Dp=Kl————r— 4 eF20? +...
(5]'1 ) T2 <d)i(0)e‘3Tfseczgo+e Jio” + >,
(A96)
oD 3,
—Nm( aﬁ) = K(=2eF 2w’ +..).  (A97)

where K is a common factor and we have displayed the
leading terms.'® To see the cancellation between these two
terms, Eq. (A96) can be rewritten using Eq. (A70):

6F4 3 o
K W+er]la) + ...
6F* TP
=K\ oo ST e, T €T 0Tt
70 ey
(A98)
Y26 i L] o,
=K e_3—T/FgT+J1 erw.+ ... ). (A99)

Comparing with Eq. (A97), we see that the cancellation
occurs because

""Recall that ¢, (0)e=372/2 ~ O(F?) in the resonant scenarios.
'_eading terms at least for ¢, near the 2.35 parametric region.

<22 (A100)

6 .
(et o) -2

One of the merits of this exercise is to see that this
cancellation is independent of ¢, in the resonant region
considered here. This also allows one to see Y has to be in
the approximate region of the zero of the left-hand side of
Eq. (A100).

In the case of ¢, = 2.35 considered in the plots such
as 1, T, dominates over T, by about a factor of 5.
However, since the entire point of this messy exercise
was to obtain a good numerical estimate of 7', we keep Y.
In this parametric point example, we find Eq. (A92)
evaluates to

T ~ 0.64 (A101)

with 7, = 9.278, while the numerical solution for this
case is
rrumerical & (0,61, (A102)

attesting to a good approximation (about 5% error). Note
this also allows us to compute for example

b (T.) ~ b, (0) exp (‘—3 [TZ —%]) sec(g)w T/ F

2
(A103)
~15.294, (A104)
giving
ry ~0.76 (A105)

[defined in Eq. (A44)] very close to the numerical value
of ymumerical — ()78, In evaluating this, we made use of
Egs. (71) and (32) as well.

The error in the more general case can be estimated as
follows. To account for the u = 35% type of error A¢_ in
the ¢_(T.) field value, note

Ag_
LR 6
afe 8T¢+(Tc) - 8T¢—(Tc) <A10 )
uflF
> 0rh, (T) (A107)
u
~ (A108)

which means that the error in ¢p_ shifts Y by u. This is why
T, has to be very accurately determined to obtain Ag¢_.
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APPENDIX B: SMALL «

For field configuration where a < a; [where o is
defined in Eq. (93)] at transition, the resonant conditions
in Sec. IV C are not satisfied. In such cases, the mass
eigenvalue and the rotated eigenvector gradient effects are
less than O(F') post transition. As a result, the axion mass
transitions smoothly from ¢, to a massless state. In these
cases, the separation between the transition 7. and the
zero crossing 7', is usually O(1). However, by evaluating
Eq. (60) at T, one finds that the leading order correction
#) ~ 207 F. Hence, we see that the perturbative solution is
still valid for @ < a1, and the cumbersome nonperturbative
computation is no longer necessary for computing the value
of the fields at T.. However, to compute the spectrum, —V/;
still needs to be computed, and this requires an accurate
computation of 7', using the nonperturbative computation
that we have presented in Sec. IV. Using this —V; and a
slowly time-dependent mass squared function m3, the final
mode amplitude can be computed. The absence of reso-
nance and a weak V| dip less than O(F) results in a power
spectrum with the long wavelength region plateauing after
the first bump without any further noticeable bumps similar
to an overdamped scenario.

APPENDIX C: ADIABATIC APPROXIMATION
FOR AN OSCILLATING TIME-SPACE
POTENTIAL

Consider the following second order ODE with an
oscillating time space potential:

¥+ Ap(1) cos(fr)y = 0,

where f(¢) is a slow-varying envelope function with
amplitude A, while the harmonic oscillations are rapidly
varying (large frequency f). The solution y(z) of the
aforementioned ODE can be approximated by separating
into the IR and UV components. As long as this hierarchy
can be maintained we can approximate y as

y=ys+tYs (C1)
whereby y, represents the slow-varying (IR) adiabatic
behavior superimposed with a fast high-frequency (UV)
noise y,. Next, we substitute this into our original equation
to get

Vs + 3 + AB(t) cos(f1)(ys +ys) = 0.

We now apply the initial conditions. Assuming that the
incoming function is y =y, at some ¢ = f;, and has no
UV behavior, the slow-varying component y, will match
appropriately with the y,. The fast-varying y, will then be
matched with 0 or be negligible. Accordingly, over a small
timescale Az, the UV component will be initially sourced
by the incoming IR component

100y y(x)
| ys(x)
0.5 .
0.0
-05 ]
-1.0 .
0 1 2 3 4
X
FIG. 18. Comparison of exact and adiabatic solution for the

equation ¥ + 3y + 200sin(30x)e™>y = 0, y(0) = 1, y(0) = 0.
Using the adiabatic or IR approximation, we solved the reduced
equation ¥ + 3y + (200/30)%2e=*y/2 =0, y(0) =1, y(0) =
—200/30. Note that the initial conditions are modified.

V¢ +Ap(t) cos(ft)ys ~0

and by assuming a slow-varying envelope function f3(z) we
obtain up to a leading order

vy~ 3B os(FO.

Note that |y;/y,| ~ O(A/f?*) and sets the scale of the UV
component compared to IR. Next, we substitute the UV
solution into our original differential equation and integrate
out the UV scale over one time period,

A2 )
Ve +—=p7(t)y, ~O.
Vs 2f2 ( )y.s

(2)
The above differential equation governs the dynamics
of the IR component subject to the initial conditions
ys(to) = y(to) and y(ty) = y(ty) — ys(ty). By defining
5=A/f?, we note that if § < 1, then the above UV
and IR treatment is also valid up to O(5). Figure 18 gives
plots of y(x) and y,(x) obtained by solving the exact ODE
¥ + 3y 4 200sin(30x)e *y = 0, y(0) = 1, ¥(0) = 0, and
its adiabatically reduced form respectively.

APPENDIX D: FLAT DEVIATION §&

The quantity & = ¢, ¢_ — F? defines a deviation from
the flat direction. This is a crucial measure as it controls the
strongly coupled dynamics of the two fields. To obtain a
differential equation for £ we start with the background
field equation (18). We multiply the two equations by ¢_
and ¢, respectively and add them together to obtain
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— 20, + 03(bgp_) +301(d.0-)
ey +e +@r+ )b p — FA (P2 +¢2) =0,

which yields an effective equation for the flat deviation

E+3E+ (M3 +M3,)e=—(c+c )PP +2¢,.¢_, (D)
where M7, are the elements of the /> matrix. This is an
interesting equation in that apart from the kinetic mixing
terms on the rhs, the equation for £ has been made to “look”
linear, although it certainly is not because of M?, + M3,.
Consider an expansion about a neighborhood of 7', defined
to be the zero of q5+:

$+(T,) = 0. (D2)
In that neighborhood, the solution must behave as
1.
¢ (1) = ¢ (Ty) + 50 (Tn)(T = Tp)* + ... (D3)

Since T, comes O(1/F) time after T, while ¢_ has been
increasing beyond F while ¢, has been decreasing toward

_ _ . 1.
M%l +M%2 =Cy +ooo+ [¢—(Tm) + ¢—(Tm)(T_ Tm) + ]2 + ¢+(Tm) +§¢+(Tm)(T - Tm)z + .

= ¢y + oo+ UTy) + ¢A(T0) +20_(T,)(Ty)(T = T,) + O[T = T,,)?).

¢.(T,), we can approximate that ¢_ has a Taylor
expansion in time:

¢—<T) = ¢—(Tm) + 4.7—(Tm)(T - Tm)

+%di_(Tm)(T—Tm)2+ (D4)

We then find

BolT) = BT, (T =T 43 by (L) =T, +
(03)

(lé—(T) = (IS—(Tm) + &—(Tm)(T - Tm)

1.
+§¢—<Tm><T_Tm>2+“'7 (D6)
yielding

4.5-5-4.5— = &-&—(Tm)qé—(Tm)(T - Tm) + 0[(T - Tm)z]' (D7)

We also know

(D8)

(D9)

Keeping to zeroth order in 7 — T,,, we put into Eq. (D1) the zeroth order terms in Eqs. (D7) and (D9). The resulting

equation (D1) has a solution in the vicinity of 7,

&= —AeTTn) COS(Q(Tm)(T - Tm)) -

Q(T,) = |/, (T,) + F(T,) . (DI1)

For the remainder of our discussion, we will consider the
following approximate expression for the flat deviation
with a constant amplitude A and a slow-varying time-
dependent frequency

T F2
E=—AeTTw) cos ( / Q(t)dt) _lerte )P
Tm

o - P12

Flat deviations of O(F?) occur close to a zero crossing
of ¢, characterized by a strong nonlinear interaction
between the two background fields. After transition, when

(c; +c )F?
Q(T,,)?

+ 0((T_ Tm>3¢.+(Tm)q;—(Tm))’ (DIO)

the background fields are settling to their minima, the
frequency of flat deviation is ~O(F). As the fields initially
start out along the flat direction, &~ 26, d_/¢2 ~
O(¢p_/¢,) <1 is negligible since ¢, > ¢_. When the
fields reach close to the transition, the 2¢ +¢5_ term causes
the fields to deviate away from the flat direction. Later
when the fields have settled to their minima, the flat
deviation tends to

(cx +e )F*

R o LV (D13)
M3, + M3,

ciC_.

The kind of dynamic behavior described above can lead to
resonance which is characterized by a significant flat
deviation >0(0.1F?), as shown in Fig. 19.
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c,=2285c =05¢ =-32,F=20.2, % (T )H=3.3x 108
T

T T T T

50 b

50 + 4

100 1

c,= 2.35,¢c_=0.5, €= 0,F=20.2, q)+ (TO)/H =3.3x10°
400 T T T T T

FIG. 19. Comparison of numerical solutions to flat deviation &(7T) after transition for ¢, = 2.285, &y = —3/2 (left panel) and
¢, = 2.35, gy = 0 (right panel) highlighting the resonant cases. All other parameters were set at their fiducial values P, of Fig. 5.

APPENDIX E: UV AND IR DECOMPOSITION OF
THE BACKGROUND FIELDS

Post transition, the background fields are strongly coupled
through the interaction term £¢.. as shown in the equations

bi + 34‘5+ +cip +Ep- =0, (E1)

b +3b_+c_¢p_+Ep, =0, (E2)

where £ is an oscillating function given in Eq. (D12). The
dynamics of the coupled system post transition can be
understood in terms of a UV and IR decomposition detailed
in Appendix C. If the frequency of the oscillating function &
is much larger than the root of its amplitude, the system
exhibits a hierarchy between the UV and IR states. We may
then integrate out the UV degree of freedom and retain the IR
components to describe the adiabatic behavior of the coupled
system. In principle we can write

i R+ Piy, (E3)

where the subscripts s, f represent the slow (IR) and fast
(UV) components of the fields.

From Appendix C and assuming A/Q? < 1 (which we
will justify below), we can write down an approximate
solution for the UV component of the ¢, fields as

A

o= g sin(f(1))¢.
A s
by =TT ST (E4)

where we have used Eq. (D12) in place of & [with a time-
dependent frequency term f(7) = [}, Q(t)dr] and switched
the cosine function in Eq. (D12) to a sine for convenience.
In terms of the UV and IR components we can write the flat
deviation as

E=¢. . —F (E5)
~ ¢+s¢—s + ¢+f¢—s + ¢+s¢—f + ¢+f¢—f - Fz' (E6)

Meanwhile from Eq. (E4) we infer that

Ex —Ae T T sin(f(T)) ~ bisp_s+ by (ET)

subject to the approximation Q2 ~ ¢2 | + @2, = Q2. Thus,
we will approximately take the frequency squared of the &
function as the sum of the squares of the IR components
of the background fields. Since the UV components are
smaller in amplitude compared to IR, we obtain an
approximate relationship between the IR components of
the background fields,

¢+s¢—s ~ F2 - 0<¢+f¢—f)' (E8)

This is an important result which indicates that if the
background fields can be factorized into UV and IR
components, then the IR components continue to follow
the flat direction.

Post transition, |¢p_| begins to increase due to a positive
velocity of O(F?) and becomes dominant compared to a
decreasing |¢,|. During this time, the UV integrated
equation of motion for the IR component of the dominant
¢_ field is given below,

2

.. . A
3
A

e3¢+ /e e, ~0,
(E9)

while the smaller ¢, field is obtained through the flat
direction condition ¢, (¢p_, ~ F?. Note that Q2 ~ ¢% | + ¢2
is a function of the background fields highlighting the
nonlinearity of the above equation. However, to obtain an
analytic solution we will consider an average value for the
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parameter Q. over a half-oscillation of ¢_; (since ¢_;
increases up to a maximum and then falls back toward F)
such that a general solution to the above damped oscillator
equation for a constant average Q is given as (during the
time when the term ,/c_c ¢, is not appreciable)

b, = e3T-T2) (01 T, (A_\{E e—%(T—T:))

AV2
where
ny=+/1-4c_/9, (EI11)

€12 L <¢—S(T2)MJIZFn1 (A—\{i>

27 2sin (zn;) 30 30

 (Bor(T2) + 26 (T2) 3] (A—ﬂ)) (E12)

3
for
D_(Tr) = p_(T>), (E13)
§o(T2) ~ §_(T) - % , (E14)

where ¢_(T) properties near T, can be obtained from
Eq. (163). Meanwhile, the ¢, field is given by the flat
direction

F2
¢
Since Q is a time-dependent function of the background
fields, we apply a seminumeric approach to estimate an
average value of Q between 7, and the time 7, when
¢_y(T,) ~4/3¢_ i for ¢, > c_. This choice of T, allows
us to consider both the situations where the two back-
ground fields may either cross each other again after 7', or
not. The procedure involves matching the analytical sol-
ution in Eq. (E10) to the numerical results for the fit
parameter Q. Through this procedure we obtain an empiri-
cal fit expression for Q as a function of a and F:

¢+s ~ (ElS)

0.1327F + 0.0454F?

QR205F + oy (B16)

where
ap = 0.7442 — 0.0008F. (E17)
When /2A4/(3Q)e=3/2T-T2) > |3 /4 — 4c_/9|, the above

solution has an oscillating behavior with a maximum
frequency fig,

V2 A

R—=. E18
frnls (E13)

Within our parametric region of interest, the amplitude
satisfies A < F? from Eq. (173) imposed by a < ay. Since
the transition occurs close to F, the two fields oscillate over
the equilibrium scale F such that Qg =~ Se >

V/2F with an average value of approximately O(2F) at T.
Therefore, we see the self-consistency of the assumption
that A/Q? < 1 for T > T,. Between T, and T, the system
of background fields can be given by the cubic-polynomial
solution. Also, the IR fields can oscillate momentarily
with a frequency fir ~O(0.1F), while the UV scales
oscillate with frequency Q; ~ O(F). Therefore, the hier-
archy between the two scales is clearly established.

In summary, prior to transition the fields are best

described via primary frequency @ = \/c, —9/4. After

50

45

40+

35

30

25 -

50 T T T T T T T T T

Trajectory of b, -0

45

- - - - Flat-direction

FIG. 20. Plots showing UV and IR components of the back-
ground fields ¢, for ¢, = 2.35 where the curves for ¢, have
been computed numerically by solving Egs. (17) and (18). The IR
components ¢, have been computed by subtracting ¢, of
Eq. (E4) from the numerically computed ¢_.. On the right, the
trajectory of the background fields clearly highlights the devia-
tions away from the flat direction. All the parameters have been
set to the P, set used in Fig. 5.
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transition, we can separate the fields into UV and IR
components as long as A/Q? < 1. As T — T, the UV
component decays away and the IR components settle to
the minima. Figure 20 highlights the above conclusions by
showing UV and IR components of the background fields
¢ for c,. = 2.35 with all the other parameters set to the P,
set used in Fig. 5.

APPENDIX F: LIGHTEST EIGENVECTOR

We will now study the lightest mass eigenvector e
corresponding to the lightest mass eigenvalue and derive an
analytical expression for (9re; ). We begin by defining the
lightest mass eigenvector,

€11
o = [ } , (F1)
€1
where the column matrix elements are
ey = Y —¢-
VE+ 1 /2 + ¢~
1 ¢_

€y = \/ez i ~ \/¢i n ¢% s (FZ)

with the definition

e= # (M%l - M3, - \/(M%z - M%) +4F4)-
We would like to evaluate the derivative squared term
(Orey)? = (Ore1r)?* + (Ores )?. Using the definitions from
above, we note that 9re,, = (9re)/(e*+1)*>? and Ore,, =
Ore(—e/(e* +1)%?) so that é,-é; = é>/(e* + 1)%. By
defining g = M?, — M3, we expand ¢, - ¢,

2
. Y e 1
Lo, = , F3
cra=yg ((62+1)292+4F4> (F3)
with

§=2b_¢_-2d.¢.. (F4)

Thus, the ¢, - ¢, peak amplitude is related to the relative
velocity of the two fields as they cross each other. The peak
is maximized if the two fields approach from opposite
directions, thus maximizing the relative velocity. Upon
substituting the analytical form of ¢ into Eq. (F3) and
solving we obtain that the first maxima close to 7. occurs
when the |¢ | field is approximately F. The maximum
amplitude is given as

&2 1 )’
1P +AF) |,

<é1 : él)max ~ 92 (((32

As|¢p.| — F, wehave —F? < g < 0 so that we can expand
in terms of (g + F?)/F* < 1, which simplifies (¢, - é,)

max>

L N J \2 4 g—f—F2 2 g—i—F2 2
(¢ el)mﬁ”(sﬂ) (Hs( 7 ) Tns\Te

28 <g + F2> 3)
- | = , (F5)
125\ F? b —F
which has a limiting case
m(é, - é,). . — - F2a? (F6)
as1 1 TPmax T o8 '

Using the above analytical expressions, we present a
second order polynomial fit in terms of parameter o for
the Eq. (F5) in the range [0.25, 1.5]:

(é1 - €1)max ~ F2(=0.0030 + 0.2156a + 0.177942),
ae[0.25,1.5]. (F7)

As the ¢, field rapidly rolls down from the Plank scale, the
first peak (é, - é;) peak occurs slightly before transition
and is characterized by the dominant w = \/c, —9/4
frequency. After transition, the ¢ fields can be divided
into the UV and IR components. When the jump ETSP
in Eq. (E9) is significant at T, it leads to an O(0.1F)
frequency oscillations of the IR fields (see Appendix E) such
that the fields cross again after transition (also characterized
by the zeros of g~ ¢> — ¢%). Quantitatively, this is equiv-
alent to ¢p_, — F since ¢, ~ F?/¢_,. Thus, we can obtain
the approximate location of the second crossing of the
background fields by solving Eq. (E10) for the time 7; when
¢—S(T3) =F.

Since additional crossings require a significant jump
ETSP, we begin with the Eq. (E10) for the ¢_, background
field and evaluate an approximate condition for the back-
ground fields to cross after transition. As we are interested
in cases where the crossings are caused by the jump ETSP,
we will neglect the c_ term in Eq. (E9). Hence, we consider
the following equation:

. . A2
¢—x + 3¢7s + ﬁ 6_3(T_T2)¢—A‘ ~ 0’ (Fg)
which has the general solution

$_y(T > Ty) m e T-T2)[ch ]| (me2(T-T2))
+ Y, me‘%(T-Tz))], (F9)

where the primed coefficients ¢/ , are obtained similar to

the ¢, , below Eq. (E10) and m = v/24/(3Q) is a function
of a.

123511-46



ANALYTIC TREATMENT OF UNDERDAMPED AXIONIC BLUE ...

PHYS. REV. D 105, 123511 (2022)

As T — T, we look for the minimum value of m such
that ¢_ (T > T,) = F. Hence, we equate

Jim g, (T2T) (T, (m)

(d)—s(TZ) +2¢—S(T2)/3)J

m

+

((m)=F.

(F10)

Since ¢_y(T>)~O(.5F2) > ¢_,(T,) ~ O(F), we reduce
the above expression to

(F11)

Equation (F11) gives us an approximate minimum value
of m such that the two background fields cross each other
after T'.. For c_ < 1 and F > 1, we find that the minimum
value of m saturates to about

m=2z;~3.8, (F12)
where J;(z;) =0. The term A in Eq. (F11) can be
evaluated using the nonperturbative cubic-polynomial
expansion for the background fields from Egs. (67) and
(68) around T,. The minimum value of « that satisfies
the conditional equality in Eq. (F11) is defined as a,. It
corresponds to a parametric cutoff such that for a = a5,
the background fields cross each other again after T'.. For
F = 20.2 (corresponding to the fiducial parameter set P,),
we obtain @, ~ 0.87. Similarly, for a much larger value of
F =100, we obtain a, = 0.6, highlighting that @, reduces
with F. If the resonance amplitude A is large enough,
the background fields can cross each other more than once
after T.. This corresponds to the situation where
m 2 22, (F13)
where z, corresponds to the second zero of J,(z). Further,
we remind the reader that each crossing of the background
fields corresponds to a (é,)* peak which is modeled as a
—V,; dip within our numerical mass model in Eq. (101).
Since we limit ourselves to just two dips in this paper, we
will consider only those cases where a < ;.

For a Z a, cases, the —V; dip within our mass model can
be evaluated using Eq. (F3) wherein the peak amplitude of
the ¢; - ¢; function around T’ is evaluated by substituting
¢y into g P> — P2 using the solution provided in
Egs. (E10) and (E15). Meanwhile, the maximum amplitude
of these peaks located close to the zeros of g requires an
evaluation of g as observed in Eq. (F3). In terms of the IR
and UV components, we rewrite ¢ as

gzgs+gsf+.g‘fs'+gf’ (F14)

where o we ide.ntify g, ~ 2(¢_S¢._S - ¢+S¢TS)’ gr =
2(¢—f¢—f - ¢+f¢+f)’ gfs & 2(¢—f¢—s - ¢+f¢+x)s and
Gy = 2(¢_S¢}_f- - ¢+s¢"+f)- Using Eqs. (E4), one can show
that the mixed terms gy, and g,r cancel out due to an
accidental symmetry ¢p. — —¢_. that exists in the potential
governing ¢, while the amplitude of the first derivative of
the UV component is given as

gf|TNT3 ~ 8T<¢%f - ¢3'f)|T~T3

A20-3(T5=T.) Ae3/2AT=TIN2
R (T)g.\' + (T) gs- (F15)

Up to a linear order in the Taylor expansion, we can
approximate g, in the vicinity of 75 as

95(T) = g,(T3)(T = T5). (F16)

Therefore, including the additional contributions from the
UV term g, we can approximate the (é%)T~T; peak in the
vicinity of T3 using

A2€_3(T3_Tf)

i~ 1) (1) (142 (14 0T - 7))

(F17)
within Eq. (F3). Through fitting, we find that up to a 20%
error, the above evaluation procedure can be approximated

by the following simplified expression:

Ae3/ATj=Te

. - i— :
(62) ~ (6%)maxe 3 T()’ 2F? >0.15,
(F18)

where T'; refers to the time when the two background fields
cross each other again after T, and ¢,(T.) are evaluated
from the cubic-polynomial solution for the background
fields in Eqgs. (67) and (68). These peaks are lower in
magnitude due to the Hubble friction, as shown in Fig. 21.

Next we note that Eq. (F5) can be qualitatively under-
stood by the following factorization:

¢nq25m i <F19)

€1 e~ Y dunldy p-)

nm

where the coefficients d,,, are dimensionless and order
O(1). The width A of a é; - é; peak is characterized by

A¢max
x—,

max

A (F20)
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FIG. 21.
parameters have been set to the P, set used in Fig. 5.

where ¢, i the field at the maximum of ¢, - ¢, which
gives us

Admas  Adba/Targer cigenvalue d,, (¢ ¢_)

Dmax VF%é, - é,

We shall therefore consider the following repatriation for
the width A:

(F21)

Amw—t0 (F22)
e - e

where r, takes the following form:

_ Adpray/larger eigenvalue d,,,, (¢, ¢-)
~ 7 .

ra (F23)

Therefore, r, has parametric dependence on A,
and +/largereigenvalued,, (¢ .¢_). As a increases,
A must also increase due to increasing resonance
amplitude. On the other hand, the corresponding value
of ¢_ at the location of the peak reduces monotonically
with an increasing «, which results in a smaller
\/larger eigenvalue d,,,,, (¢, ¢_). Within the parametric
region (0.25 Sa < 1), the two competing behaviors are
equally important and tend to cancel each other out such

c,=2285¢c =05¢,=-3/2,F=202,& (T)H= 3.3x108
70 T T T T T T T

~ 40

30

20

7 7.5 8 8.5 9 9.5 10 10.5 11
T

Plots depicting peaks of é; - é; [Eq. (F3)] for ¢, = 2.35, &5 = 0 (left panel) and ¢, = 2.285, ¢, = —3/2 (right panel). All the

that within the region of our interest we can approximate
ra~0.72 so that the width of the ¢é;-¢; peaks are
approximately given as A x~0.72/+/é, - ¢, within 10%
accuracy. Using Eq. (F7) for the (é,.€}),,. into Eq. (F22),
we obtain the following linear expression in a for the
width of the first (¢, - ¢;) dip:

(293 - 1.86a)

A(él)lznax ~ F

(F24)

In general, the width of these Gaussian-like peaks can also
be evaluated by taking the ratio of the total area under the
peak to its maximum amplitude.

APPENDIX G: LIGHTER MASS EIGENVALUE m3?

In this section, we will study the variation of lightest
mass eigenvalue over time. The lightest eigenvalue of the
mass matrix M is given by the expression

M3, + M3 F* — M3, M3
i = T2 22(1—¢1+47“ 22). (G1)

(M3, + M3, )?
In terms of Q> = M3 + M3, and E=¢ . ¢p_—F> we
rewrite Eq. (G1) as

Q? £\2

Q? ot

<£) _4c+¢i+c_¢3+c_c+>'

During the early phase when ¢, | > F and any transient oscillations ¢ of ¢_ are negligible i.e., p™" <« ) m?

reduces to
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1/~ - _ _
i~ 5 (W83 + 83, = 883, 1)

¢transient
~e 10 <F2 4>
b

2F* )
M3, —Mi,)

(G2)

As the fields then approach transition, the zero order

approximate perturbative solution qﬁf) is no longer valid.
The lighter mass eigenvalue transitions from c, to a
negative dip. Post this dip, m? oscillates due to the
resonance before settling down to zero. As explained in
Appendix E, the background fields post —V; dip can be
factorized in terms of the UV and IR components. Using

these components we can write Q2 as

QgL+ g2
~ ¢3—s + ¢%s + ¢1f + ¢3f + 2¢+s¢+f + 2¢—s¢—f

2 4F2 2
~ Q2 +§§+ 0(Q) (G3)

such that we can factor out the resonant UV oscillations
over the slow-varying Q2 background.

Next we substitute the above factorization for Q2 into
Eq. (G2) and expand m? in powers of § = £/Q2,

c_* +c Pt QF 2F?
1/Q, 4F3\2

s 5+ 0(8%].
<F 9?) ol )]

2

Within the parametric region of interest where |5| < 1, we
drop all terms of O(8%) and higher such that

w2 (T) ~ 25 {5+ <QZ 2F2>52} N c ¢ + c+¢i.

2P Q2 Q2
(G4)

The above expression highlights that the mass eigenvalue
thus oscillates in tandem with the flat-deviation oscillations
before settling down to zero. The expansion leading to
Eq. (G4) is appropriate as long as the term
&/ (P2, + ¢2,) S O(0.2). From Eq. (173) we infer that
|€| S F? fora < 1, meanwhile ¢ (T,) ~ 2F and hence the
expansion term &/(¢2, + ¢2,) tends to ~0.2 as
a—1=ay. To the contrary, if the two fields tend to
O(1) momentarily, the above expansion breaks down.
However, the lighter mass eigenvalue in those conditions
tends to —F2. This situation arises when the trajectory of
the two fields tends to be chaotic and unstable, which is
outside the scope of our parametric region.

APPENDIX H: BUILDING THE NUMERICAL
MODEL

In Appendix G we obtained an approximate expression
for the lighter mass eigenvalue in the limit £/Q2 < 1. Next
we substitute for the flat deviation & from Eq. (D12) into

Eq. (G4),
'3 Q2 2F° &\?
Flat (wsT) (Q—%)}mgm

¢«

2

v (H1)
where the slow-varying background term —(c_. +c_)F?/Q?
of ¢ from Eq. (D12) has been absorbed within m%(T)
such that

C—¢%s + C+¢3—s _ 2F4(C+ + C—) (H2)
2 9

2 ~
"N g, i)

where ¢, are the IR components of the ¢, fields as given
in Appendix E. We identify m%(T) as a low-frequency
axion mass of order O(c_) that eventually tends to
zero when the background fields settle to their respective
minima. In this context, the effective axion mass post
transition comes from physics at two different frequency/
energy scales. In order to obtain an analytically solvable
model, it is convenient to integrate out the high-frequency
terms and obtain an effective low-frequency model in terms
of the IR components. We begin by redefining ¢ after the first
dip as follows:

AT i (T
ErAe? sin Q(1)dr |,

where T" =~ T, + O(1/F) is the approximate time when the
flat deviation £ first crosses zero after the initial 0( F?) dip.
Thus, up to a quadratic expansion in £/Q2, m?} in Eq. (H1)
has the following harmonic expansion:

(H3)

mi ~ O(sin(f)) + O(sin’(f)) (H4)

O(sin(f)) + O(1 = cos (2f)), (H5)
where f = f t)dt. Applying the adiabatic approxima-

tion method elu(;ldated in Appendix C we integrate out the
UV degree of freedom in m? to yield

o [2FN\? 1
mi~|(—
! Q) 202

1 4FH\ A2
‘I’E% 1—97? 26

(T-1)

T 4 i (7)

V a<l,

~

(Ho)
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where the first term in the above expression comes from the
IR reduction of the term linear in £ in Eq. (H1), while the
second term is a positive offset due to the O(sin?(f)) term
from the &> quadratic term in Eq. (H1). Moreover, while the
first term in Eq. (H6) results in a modification of the initial
conditions at 7”, the second term does not. An important
consequence of the IR reduction in Eq. (H6) is that the
contribution from the linear term cancels out. This cancel-
lation of the first order UV contribution is similar to the
one we observed and explained in Appendix F. Thus, the
adiabatic reduction approximates the oscillating time-space
potential in m? to a nonoscillating exponentially decaying
positive time-space potential,

2

Ny A
m? e 3I-T >ﬁ27 +m3(T) Y asl, (H7)
where the prefactor
, 1

Since Q2 is a time-varying function, we evaluate an average
value for % within a half oscillation of the background
fields using e3(7=7") as the weighing function."” Using the
analytic solutions for the background fields in Appendix E,
we obtain the following approximate empirical fit expression
for average (f?):

.14
1.08 +oxp (11{a = o.72)>) - (1)

() ~ F2 (0.139 +

Note that the above estimation is approximate and hence one
of the sources of uncertainty for all superhorizon modes
at T,. With this approximation, the system is now analyti-
cally solvable where the reduced low-frequency mass model
has a jump ETSP V, defined as

2
= e—3(T—T’) <ﬁ2> A?

Va

—3(r-1") V2
2

e (H10)
at T =T ~T,. Within the framework of this adiabatic
reduction, the y; axion mode function is expressed in terms
of its slow (IR) and fast (UV) components,

Y1 =Yis T Vi (HI1)
where we will neglect the y,, component since E/Q2 «x 1
(within the scope of the adiabatic reduction). The effective
mass squared (m} —¢; - é;) for the y;,-mode function is
now generalized in terms of a low-frequency mass model m?

"Note that this averaging of / is different from the procedure
we carried out in Appendix E since there we were concerned with
a nonlinear differential equation of the background fields.

with a reduced mass eigenvalue in Eq. (H7) and the —¢, - ¢,
dips (explained in Appendix F) modeled as negative square
wells/dips.

The first dip at the transition 7', is obtained through a
superposition of the first ¢; - ¢; dip and a corresponding dip
due to the evolution of the mass eigenvalue from ¢, to an
oscillating function (due to a strong resonance between
the ¢ fields). This explains the first V; dip of our model
given in Eqgs. (101) and (129). After this first negative dip
of O(F?), the effective mass squared is governed by the
exponentially decaying positive function e=3("~72)V, /2 of
O(F?/20). Once the V, mass squared function decays
away, the parameter Vg of O(c_) evaluated as an average
of the m%(T) defines the asymptotic behavior of the y-
mode amplitude. The dynamics of the m% function and its
effect on the mode amplitude is covered in Appendix L.

APPENDIX I: EFFECTIVE MASS SQUARED
FUNCTION m3

The effective axion mass after IR averaged m§| makes a
positive jump transition at time T, (see Fig. 4) is derived
from physics at two different frequency/energy scales.
These are specified by underdamped O(F) oscillation of
the lightest mass eigenvalue and slowly varying part of the
lightest mass squared eigenvalue function m% given by
Eq. (H2). In this Appendix, we will discuss the function m3
in detail and evaluate its effect on the y;-mode amplitude.
From Eq. (H2) we note that dynamics of m% is charac-
terized by the motion of IR components of the fields ¢,
along the flat direction toward the minimum of the potential.
Along this direction, the fields can move toward the
minimum either from above (¢_; > ¢_,) Or below
(P_s < ¢_ min)> as shown in Fig. 23. When the fields have
settled to their respective minimum, m% goes to zero.
Interestingly then, if the ¢_ field settles from above the
minimum then the condition m% > ( is satisfied, while if it
moves from below, then m% < 0 subject to a few conditions.

We shall now study this behavior starting from the
expression for m% of Eq. (H2), which can be rearranged
to get

(Vb + RS- FE+Ve)? g
(92, + ¢%,)? '

mi =

Next we parametrize

¢—S(T) = n(T)¢— min>» <12)

where n(T) > 1 for ¢_ moving from above and n(7T) < 1
when ¢_ moves from below. In terms of the function n(7),
Eq. (I1) becomes

my o« (\/@7112 + n‘2>2 - ( cife_+ 1)2. (13)
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16} — (cule)™

14} (mp)*>0

121

—s/P-min

1.0r
o8} (mz)*<0

0.6

0.4t L . . . .
0 1 2 3 4 5

N

FIG. 22. Plot highlighting regions in {\/c,/c_,¢_s/P_ min}
parametric space where m% > 0 or m% < 0 corresponding to the
expression in Eq. (I4).

Hence, we find the following conditional expression for the
m% sign for ¢, > 9/4 > c_:

—1 if (&) < <,
sgn(m3) = { & ¢~ min (14)

1 otherwise,

as mapped in Fig. 22.

Therefore, dependent on the trajectory of ¢_,, a pro-
longed exponential decay or amplification of the super-
horizon axion modes behaves as

-3 3 4
Y1 & exp {/dT(T—i—E 1—§m23>]
1 2
R exp |~ dTmg |, (I5)

where the integral in the exponent is cut off when m3

decays faster than 1/7. The lower limit of this integral
corresponds to when the exponentially decaying term
proportional to V, in Eq. (101) can be neglected.

In situations where c¢_ <« 9/4 < c,, the magnitude
of the gradient of the potential is much smaller when
¢_g > ¢P_ min than when ¢p_; < ¢_ .in. Therefore, the fields
evolve slowly [O(1) timescale in T-dependent evolution] in
the former scenario and fall toward the minimum rapidly in
the latter (see Fig. 23). Accordingly, the axion background
mass is significant in the latter case only when the fields are
close to the minimum.”

When the jump ETSP is significant at T,, it leads to
an O(0.1F) frequency oscillation of the IR fields (see
Appendix E). These oscillations cause the fields to cross
each other at least twice after the transition. To see this, first

Ofe_>9 /4, then there is no appreciable m% since the mass
squared function time dependence due to the fast rolling fields
rapidly diminishes the magnitude of this function.

3 . . . . .
25¢ .
Rolling from above
2t J
w
4
§+ 15F g
o
© ’ Minimum of the potential ‘
1 -
05F
0 . . . . .
0 05 1 15 2 25 3
6 (clc )
+
5
4
=
>3
2
1
-1 0 1 2 3
X
FIG. 23. In the first plot we show the two directions from which

the fields can settle to the minimum of the potential while moving
along the flat direction. In the second plot, the normalized
potential V(¢.) is parametrized along the flat direction via
parameter x for some fiducial ¢, such that ¢ <9/4 < c,.
The minimum of the potential occurs at x = 0, where x > 0
corresponds to movement of the fields from above. We note that
the potential has a large gradient when moving from below and
falls to the minimum rapidly.

note that the resonant conditions force ¢, to cross ¢_;
(first crossing) to make ¢, > ¢_,. Next, the asymptotic
values of these fields are ¢, where ¢_ i > @1 min
for ¢, > c¢_, and this fact requires a second crossing.
These crossings give rise to second and third ¢ - ¢,
peaks (the first one being at 7.). Since the crossings
occur at approximately F [due to the initial conditions
making ¢.(T.) ~O(F)l, we know ¢_; < P_pin~
(c./c_)Y*F > F at the second crossing. For a < 1, the
interaction energy now decays away due to the Hubble
friction while ¢_; < ¢_;, before ¢_, crosses ¢_in
again. Without the interactions mediated by the flat
deviation &, the ¢_, settles toward the minimum from
below (¢_; < ¢_ n;in) and m% can become significant.
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The parametric boundary of when the IR components
of the ¢ fields cross each other at least once after 7', is set
by the following condition provided in Appendix F

J1(V24/(39))

3
F~ \2A/(3Q)

The above provides an approximate minimum value of
V2A4/(3Q) for the background fields to cross again
after T.. Substituting for A using Eq. (173) and Q using
Eq. (E16), we obtain a cutoff (boundary) in terms of «
defined to be a,. Therefore, we will consider the a < a,
and a > a, cases separately.

1.a<(x2

For the parametric region a < a,, the fields will not cross
again for T > T,. To solve for this system, it is convenient
to divide the time regions based on whether or not the
\/€-¢ ¢, term is appreciable compared to the c_¢_, term
in Eq. (E9). We will call the region [T,,T;] the period
when /c_c ¢ is negligible and T > T the period when

\/C_Ci ¢, is important.

Consider the equation of the ¢_; field in the region
[T5,T,]:

2

Bos b 3o+ eyt 2 TN R0, (16)
where we can safely neglect the effect from the asymptotic
term ,/c_c ¢ . The solution to the above equation is given
in Eq. (E10) in Appendix E, while ¢ is given by the flat
direction condition in Eq. (E15).

Due to a large positive velocity at T,, the ¢_; reaches a
maximum and then moves slowly toward the minimum
with an initial exponential decay rate equal to

-V P) s S o). m)

During this period when ¢, ,/¢_, < 1 we can expand m%
using Eq. (H2):

x e — 2F4(c:—|— c_)
s
4 2
+ (c+ —c_+ 4F(CZ+C_)> <Z+'Y) (18)
N+ om3. (19)

Note that as T — T, the ratio ¢_;/¢,, gradually
decreases. As the two fields then approach closer to their
respective minima, the interaction term &g, ~—,/C c_
becomes important starting at time 7;, and the decay
rate changes. Therefore, the integral corresponding to the

exponential decay of the superhorizon mode amplitude
during the first temporal phase where the ¢_; field has an
exponential decay factor given by Eq. (I7) is

"midT ~c (T, —T)+ | " omddT, (110
- mpdTrc_ (T, —-T)  OmpdT, (110)
where

T = maX{Tz,Tv,TK} (Ill)
and 7 g is the time when the K mode becomes superhorizon
ie., Ka(Tg)=3/2. Thus, modes that exit the horizon
before transition (7 ¢ < T,) have a K-independent decay
factor. The time Ty, is when the V, jump ETSP has decayed
and becomes negligible compared to m%(T).

Next, we consider the time period T € [T}, T,], where
the ,/c c_¢, term is non-negligible compared to c_¢_;.
By comparing the two terms and using the flat direction
¢~ F?/¢_,, we make an approximate choice of T, as
when

D-(T1) %5 b (112)
such that
Ve g (Tr) ~05c_¢p_(Tr), (113)
where additionally we note that at 7'
Vi (Te) = c-¢p_(To). (114)

To derive the field equations, we consider the field
displacements d¢ as

Opis = sy — P mins (115)
which implies
¢— min
59_.(1,) » (116)

in which case the terms quadratic in ¢, can be neglected
compared to ¢ i, With the minima of the fields located at

Cc
¢imin R —CF + F? _:F
\/ Vcx

Expand the expressions c ¢, + &, in equations of
motion (17) and (18) in terms of d¢, to yield

(117)
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Citpys+ 8Py~ (cp + B2 )00
+ (20 min®— min — F)¢_.
C_py +Eps (o + Y i) 00—
+ (201 min®—min — F*)0¢ 1
where all terms quadratic in 8¢, within [T;,T] have
been neglected. Hence, the effective mass matrix in

Egs. (17) and (18) has the following T — T, asymptotic
form:

. =0 Cy + ¢% min 2¢+ min¢—min - F2
lim M- — ) )
T-Te 2¢+ min¢—min -F c_+ ¢+ min
(118)
with the smallest eigenvalue
de_c 1
Iin = ———+ 0 =5 ). 119
min c_+ cy + <F2> ( )

The field motion is overdamped if Ay, < 9/4, which
provides an upper bound on c_,

<21 o\
““16\" 16c,) -

(120)
|

2sin (2n1)227 (1 = 1y )h_ pinx™

We will assume that the c_ lies within this bound because
that ensures that there will be no second crossing of ¢,
for T > T;. In terms of the smallest eigenvalue, the d¢
field displacements along the approximate flat direction
(=~ —/c_c) can be expressed in the following general
asymptotic form:

Sy~ Cye ™, (121)
where
3
ANE—\/9/4_/1min (IZZ)

and the constants C, and C_ have opposite signs such that
the fields follow the flat direction. Using Eq. (E10), we can
solve Eq. (I16) to obtain

TL%TZ_

2/3 . 22M(1 = 1)) min (AV2\™
(1—n1)n< 3¢, <3Q> )

(123)

and C_ of Eq. (I121). In the limit c_ <« 1, T, in Eq. (I123)
reduces to

In situations where A3—‘§ <1,

T, 243
/ om%dT ~ —
T

Next, we extend Eq. (I10) integral to 7T':

3
T, ~T, - <_> In ( : ) . (124)
c- ﬂ<3¢—s<T2)xaxJn1 (X) + (3¢—5(T2) + 2¢—S(T2))Jn1 ()C)) x:%
3 4 i
T, ~T, - (—) ln< P —min'™s ) (125)
c- 3¢—s(T2) + ¢—S(T2)
and thus is independent of resonance term A. Combining with Eq. (I15), the ¢_; field solution is given as
1
¢—S(T) ~ ¢—min <] + ge_A(T_TL)> ’ TL < T < Tooa (126)
which together with Eq. (E15) can be used to compute the second term of Eq. (I10):
— — 4 .
_ 73629¢_ 243 —72¢, +8lc_/c, +8c_(2¢, —27) . F ST L o(2). (127
1024 131072c, 4/3 ¢t (T5)
ch ~ TL Too
ﬁ midT ~c_(T;, —T) + / om%dT + / m3dT. (128)
T T T,

In terms of the ¢_; field equations derived above, the last term is
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/T‘”a 2T
mydl ~ — +
r, 12

and substituting these, Eq. (I28) becomes

106793c_

(45— 14c, )c_

/T“’ 247 1000 | +e (T,-T)+
w3072 73032160, TV L

where T is defined in Eq. (I11). In Fig. 24, we give sample
plots of ¢, and m% for @ ~ 0.51, where the curves have
been computed numerically by solving Eqgs. (17) and (18).

The above expression in Eq. (I30) is utilized in Sec. VII
to give an approximate decay of the superhorizon mode
amplitude for cases where a < a,. Alternatively, we define
a constant mass-model parameter V in Eq. (101) as an
average value for the time-varying m% function. Since
m% ~ O(c_) is much larger during the first time period
T € [T,, T, ] than the second period T € [T, T,] and also
since T; — T, > T, — T}, we can approximate the m%(T)
function by a mode-independent constant parameter Vp
during the entire time interval from 7' € [T, T; ] as follows,

1 /Tm
Vpn | " mddr 131
Eo(TL-T) Jr, ° (1)
1 1063 106793¢
~ =), @2
T =T (3072 + 393216c+> (132)

Therefore, during the time interval from T, to T, the y;-
mode equation has the following form for single dip cases:

\%4
y; + 3y + (Kze_ZT +Vp+ 226_3(T_T2>>y1 ~0, (I33)

with the general solution given in Egs. (124) and (125) of
Sec. VB.

2.0> a,

For fields with @ > a,, the m% function during the first
temporal region is O(c_) and mostly insignificant due to
the oscillating IR fields. Within the second region, the IR
fields are overdamped and are moving asymptotically
toward their respective minima. Using the solution derived
in the previous subsection, the ¢_; field can be expressed as

1
DTy (15T ) Ty ST <D (9

where the negative 1/3 factor indicates that the ¢_; field is
settling from below as explained previously. Hence, the m%
function is positive and can lead to mode amplification.
In terms of

i + 0(c?), (129)
+
243-T2¢, +8lc_/c, +8c_(2c, —27)) . F* ST (130)
|
U o a@-r
n(T)=(1- 3¢ (T=T1) ), (135)
the m% function can be expressed as
c_cy(eynt —c ) (=1 +n%)
my(T) ~ (cor® T c ) , (136)
100 T T T T T T
9 —, |
80 ) it
70 F ,'I 1

60 -

50 -

40 -

30 [

20 -

09 b

08 r 1

0.7 1

9 10 1 12 13 14 15 16 17 18 19 20
T,

FIG. 24. Plots of ¢, and m% for a ~0.51 where the curves
have been computed numerically by solving Eqs. (17) and (18).
Notice the slow roll of the fields past the ¢_;, maximum. This
slow roll results in an effective decay of the mode amplitude
through the O(c_) axion mass squared function m3, as explained
in the text. In this instance, the approximate mode amplitude

decay through the exp[—3 [‘m3dT] factor is 1/2.
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which can be used to evaluate the m% integral from T
to T',. Note that the integral is independent of the location
of 7. Similar to Eq. (I31), we average out the m?% integral
during the second temporal region within a time interval
from Ty~Ts;+ O(1/F) to 2/A, where Tj is defined
within the model equation (101) and is the time when
the background fields cross each other again after T, since
a > a,. Meanwhile, % is an approximate time at which the
m% integral is naturally cut off where A is the smallest
eigenvalue of the asymptotic M? effective mass squared
matrix.

APPENDIX J: DECOUPLING OF HEAVY MODES

In this section, we will estimate the effect of heavy mode
mixing and show that the scalar modes y, , are effectively
decoupled at transition within the parametric region a < 1
such that the heavier mode y, can be completely neglected
within a 20% error margin. We begin with the y;, mode
mixing equations from Egs. (36) and (37) with the mode-
mixing term S, in the rhs defined in Eq. (39),

Y1+ 7 =Sy, Sy
Vo +73y2 = Savn, (12)

with
S,s(T) = —e, - é; —2e, - 6,07 (J3)

and
yi=mp—é-é +k/a, (74)

where we define y2 as the effective frequency squared. Note
the Hubble friction term has been removed by rescaling the
mode functions.

Let us assume that the eigenvector gradient term €, - €,
peaks at a time 7', when the background fields tend to cross
each other such that the kinetic energy corresponding to
the relative velocity of the two fields is maximized and the
eigenvector gradient é;, is larger than O(F). Thus, the
mode-mixing operator S, is significant in a small neigh-
borhood O(1/F) around T',.. We begin with the normalized
eigenstates and rewrite the gradient terms in S,,; through an
approximate Lorentzian function L, (T — T,) with a peak
at T, such that

e, Ore;~ L, (T—-T,), J5)

P a%es ~ aTLnS(T - T*) (J6)

Note that the e, - ¢, term is symmetric around 7', while
e, - €, is antisymmetric. The second term —3¢j - ¢, in S, is

due to Hubble friction and can be removed by scaling the
mode functions without affecting our discussion.

During the early phase when |¢, | > |¢_|, the heavier
mode y, is forced driven by the lighter mode y;. This is
similar to the perturbed solution for the ¢, background
fields where the ¢_ field is effectively forced driven by ¢ .,.
Accordingly, the y, mode has the following solution:

S
vy a2 (97)
72

where y, , satisfies the condition

2

Y1

< L (J8)

Meanwhile, the right-hand side term S,y in the y;-mode
equation is negligible and thus

Therefore, the lighter mode is decoupled from the heavier
during the early phase since y5 ~ O(¢2) > O(F?).

Later at T~ T, the eigenvector gradient terms in S,
become significant O(F?). At the same time, the effective
frequency squared y%_z approach a local minima at T = T,.
Consequently, the y, amplitude reaches a local maximum
close to T, such that the heavy mode-mixing effect due to
the term S;,y, on the rhs of Eq. (36) cannot be neglected.
Post T, the heavier mode y, behaves like an underdamped
harmonic oscillator and undergoes rapid oscillations with a
large frequency \/y;g due to the heavier mass eigenvalue.

To evaluate the heavy mode-mixing effect, we will
approximate the function L, (T —T,) as a rectangular
ETSP?! of amplitude E and width AT~1/E, where
E~O(F):

E T,<T<T,,

) (J10)
0 otherwise.

|en ’ 8Tesl ~ {

Using this approximation, the e, - €; term peaks at the
boundaries 7' , and remains 0 within the interval [T, 7).

1. y; solution

The general solution for the lighter mode y; from
Eq. (J1) can be expressed as

= <Cl —/fzsleyZdT>f1(T)

+ (c2+/f1 Sleysz)fz(T), (711)

*'The following assumption can be verified using the analyti-
cal form of the background fields from Sec. IV B.
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where f,(T) are the linearly independent functions that
solve the homogeneous equation y; + y%yl = 0. The coef-
ficients ¢;, are obtained from the initial conditions at
T =T, and the integral terms correspond to the inhomo-
geneous part on the rhs of Eq. (J1). W is the associated
Wronskian of f ,. Within the interval [T, 7,],0 < é; - é;~
O(F?), while m? < 0 due to the deviation of the background
fields away from the flat direction. Therefore, the effective
lighter frequency squared y3 =m?—¢,-¢é,+k*/a(T,)* <0
for k2/a(T,)*> < m? — é, - é,. Therefore, the lighter mode
v has the homogeneous solution

Yi(T) % 31 (Ty) cosh [/9/4 = (T = T)].

where

(112)

f1(T) = 3\/__7%,

fo(T) = e VT,
and 7y, (Ty)/y1(T)) < \/9/4 —y} ~ O(F) so that ¢; , &
y1(T1)/2. Note that a positive value of the [ dTf,S1,y,/W
integral accounts for a decrease in the power of the lighter
mode [dominated by the f| mode if k*/a(T,)*> < mi] — é; -
é; such that y? < 0] due to the heavy mode coupling.
As we will show later, the integral term is indeed positive
such that a finite fraction of the power is removed by the
heavier mode.

(J113)

2. y, solution
To solve for the heavier mode y, within the interval
[T\, T,], we rewrite Eq. (J2) as

V2 +73y2 = —2Ly (T,)Ory;. (J14)

Assuming decoupling of the modes™, we will substitute vy with y’f. The y, is then given by

2L, (T )y (T . — Oy Loy (T))yy(T
2% f((g/iy_l(y%;)\/9/4—7%51nh {\/9/4—7%(T—T1)} +— 11%((;1);1( Y cosfra(T = 7).

(115)

where the first term is via the forced component on the rhs, while the second term is the homogeneous component that
oscillates with frequency y, with initial conditions set at 7;. Using the above solution for y,, the rhs term Sj,y, =

—2L,(T,)0ry, is evaluated as

Siayy A —2 (—2L12(T*)L21(T*)y1 (T) (=72) cosh {\/—T/%(T B T1)} _ —La(T.)0rLyy (T1)y1(T)) sin [y(T — T1)]>-

-1

r2(T1)
(716)

Using the equations for the background fields in Sec. IV B, L»(T,)Ly(T,) =~ —E* and L ,(T,)07Ly, = —nE? for n ~ 4/3.

Hence we have

P
y / nE/2
S12y2 z4)’1(T1)E2< -~ cosh { —71(T - Tl):| +——sin [y, (T - T1)]>-

Y2~ V1

E/2 (17)

72(T1)

3. Heavy mixing coefficient y gy

We are now in a position to complete the y; solution in Eq. (J11) by solving the integral terms. Since the homogeneous
function f; dominates over f, we will only solve f dT f,S1,y,/W within the interval [T, T,| when the S, operator is

significant. Using the Wronskian W = —2/—y?,

s 22 1 _ Wi /2T —T E3/2 [T, e~V 1T
/f2 22 1 _ gy (1) 0 /26_./__ylrcos W T=T)] 4y ) /ze sin[yy(T—T))]dT
T

w =71

272 2 -2
y1E5 (142\/—yiAT —e
~Ay ()5 ( :

-1} -8(-r7)

—y%AT
> +4y(T))
Y21

T, -2 _}’%

72(T1)

1 -2 V —}’%

(J18)

nk’/2 <—}’2 +e _y%AT(\/ —y1sin[y, AT]+y,cos [72ATD>
r2(Ty) '

2v/=ri(r3=ri)
(J19)

*Although this is a cyclic argument, we prove this by self-consistency at the end.
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The above can be further simplified as

S12y E* [1+42/-y?AT nE/4 =
/f2 24T (1)) i e aR VT o5 [1,AT]) . (120)
2 1 —/1
We now define the heavy mixing coefficient yi as
f2 2T
XHM = I 125 . (J21)
€1
Using ¢; = y,(T,)/2 and EAT = 1, we obtain
xam(B,B)| L 1+2¢/-8+ o (=1 + eV~ cos|l,)) (J22)
B AN V& |

where 17 = y?/E? for E* = max(¢?) and we approximate
n~4/3. Since m? and E? are O(F?), the parameters [7 are
almost F independent for F > 1.

From Eq. (J11), we infer that the two modes shall remain
decoupled as long as max(yuy) < 1, where we define
max (yyy) as a local maxima in the vicinity of 7', within a
neighborhood of O(1/F). Note that a positive value of yyy
accounts for a decrease in the power of the lighter mode due
to the heavy mode coupling. The mixing between the two
modes thus results in a significant proportion of power
transfer from the lighter mode to the heavier and as a result
the isocurvature power spectrum reduces. Figure 25 gives
an analytical plot of yy\ evaluated at 7, = T, in the limit
k*/a(T,)* — 0 using Eq. (J22) plotted with respect to the

0.35

0.30

0.25

0.20

XHM

0.15¢

0.10

0.05¢

0.00t

04 06 08 10
a
FIG. 25. Analytical plot of the fractional reduction in the
amplitude of the lighter mode y; due to heavy mode mixing
evaluated at T, ~ T, using Eq. (J22) in the limit ¥?/a(T,)* - 0
plotted with respect to the parameter a defined in Eq. (74).

Numerical results suggest that the estimation given in Eq. (J22) is
an approximate upper bound, as explained in the text.

parameter a defined in Eq. (74). By considering a reason-
able decoupling between the two modes for yyy S 0.2, we
obtain an upper bound of ay ~ 1 for fields crossing each
other close to 7,. If we consider F > 1 cases, then the
upper bound ay; is almost F independent. For @ > a,, every
subsequent crossing of the two background fields post
transition will give rise to similar ¢ -é; peaks. The
effective heavy mixing is then a sum of the contributions
from each of these peaks. Since the peaks are exponentially
suppressed by Hubble friction, their contribution is sig-
nificantly low. However, for large F, the subsequent peaks
can get closer to each other and hence the net heavy mixing
contribution can become significant.

From Eq. (J22), we infer that as k increases from zero, Z%
begins to reduce in magnitude such that yy; initially
reduces until k/a(T.) ~ \/——m% Thereafter, yyy turns
imaginary and begins to increase in magnitude. The above
analytical estimate is primarily valid as long as yuum
remains much less than unity since in order to estimate
xum We have approximated S,,y; as S,/ by substituting
with the homogeneous y? solution. As |y,| < [y"|, one
expects that the yp; evaluated using the exact y; solution
should be lower than the above estimate as long as Eq. (J22)
is valid. If k eventually becomes large enough that the
k*/a(T,)* term dominates over the remaining mass
squared terms, we obtain y? =3 at T, and the modes
are strongly coupled such that |y,| — |y;|. Similar strong
coupling is possible if £ > m3 ~ F?\/c_ /c_. However, in
such cases, the corresponding value of AT <« 1/F. Since
the coupled system of y; , has only one dominant time scale
of O(1/F), the two modes momentarily tend to |y,| ~ |y;]
at T, before y; returns back to the attractor solution y”.
Hence, whenever E > m3, the coupling between the two
modes can be neglected.
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