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Previous computations of strongly blue tilted axionic isocurvature spectra were computed in the
parametric region in which the lightest time-dependent mass is smaller than the Hubble expansion rate
during inflation, leading to an overdamped time evolution. Here we present the strongly blue tilted axionic
isocurvature spectrum in an underdamped time evolution parametric regime. Somewhat surprisingly, there
exist parametric regions with a strong resonant spectral behavior that leads to a rich isocurvature spectral
shape. We focus on computing this resonant spectrum analytically in a large parametric region amenable to
such computations. Because the spectrum is sensitive to nonperturbative classical field dynamics, a wide
variety of analytic techniques are used including a time-space effective potential obtained by integrating out
high-frequency fluctuations.
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I. INTRODUCTION

Axions are well motivated from the perspective of being
a solution to the strong CP problem [1–4] where the
experimental bounds (see e.g., [5]) have pushed the Peccei-
Quinn (PQ) symmetry-breaking scale fPQ to large values
such that the axions are extremely weakly interacting with
the Standard Model (SM). The largeness of fPQ at the same
time presents an opportunity for axions to be the dominant
component of the cosmological dark matter from the
perspective of both its interaction strengths and the cos-
mological energy density [6–15]. Since axions are impor-
tant from both particle physics as well as cosmological
perspectives, several experiments have been devoted to its
search [16–30]. A few reviews on direct detection can be
found here [31–36] and one can also refer to recent reports
[37,38] for a list of various experimental searches and
methods.
In most popular axion scenarios where a SM singlet field

ϕ⃗ obtains a large vacuum expectation value (VEV) to fix
hjϕ⃗ji ¼ fPQ, the potential for the singlet has a quartic term,

which makes the jϕ⃗j fast roll to its minimum during
inflation if fPQ ≫ H, where H is the expansion rate during
inflation. In such cases, inflation driven by a different field
than ϕ⃗ completes well after hjϕ⃗ji settles to the minimum of
the potential. In these situations where the axions are
spectator fields during inflation, the isocurvature spectrum
associated with the axion field is nearly scale invariant.
The weakness of the axion interactions with the SM fields
allow the axion isocurvature perturbations to survive

thermalization to be observable through cosmological
observables such as the cosmic microwave background
(CMB) and galaxy surveys. Production of spectator axion
isocurvature perturbations, its model dependences, and
associated observational constraints have been widely
studied [39–67].
The work of [39] has pointed out that if the PQ charged

SM singlet ϕ⃗ moves along a flat direction lifted only by
masses of OðHÞ that is typical in supersymmetric embed-
dings of the SM, then because the amplitude of the

isocurvature perturbations is proportional to 1=jϕ⃗j the
isocurvature fluctuations of the spectator axion fields can
have a strongly blue tilt. Such situations allow the iso-
curvature to be negligible on large scales probed by the
CMB yet become large on short length scales. Unlike the
compensated isocurvature perturbations [68–71], which
hide the total matter gravitational effects at linear order,
the strongly blue isocurvature perturbations can give large
gravitational effects at linear order on short length scales.
Also, unlike the phenomena explored in works such as [72]
where the OðHÞ mass field mixing effects with the
curvature perturbations lead to observables, here we are
exploring situations where the OðHÞ mass field is stable
similar to the ideas of [73] and can be observed gravita-
tionally in standard probes such as CMB and large-scale
structure. Besides being important for the completion of
QCD axion phenomenology, a discovery of a strongly
blue tilted isocurvature spectra will generically indicate the
existence of a dynamical degree of freedom during inflation
which has a time-dependent mass, quite model independ-
ently [74]. The transition region from the strongly blue
tilted region to the flat region of the isocurvature spectra
within the supersymmetric axion model of [39] was
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investigated by [75]. All of the previous computations of
the spectrum focused on the overdamped scenarios in
which the mass of ϕ⃗ flat direction is smaller than 3H=2.
Even in the fits to data that were done in [76,77], the
parameters were restricted to overdamped scenarios
because the spectrum was naively expected to be negligible
in the underdamped scenarios.
In this paper, we compute the strongly blue axionic

isocurvature spectrum in the underdamped case where the
mass of the ϕ⃗ flat direction is larger than 3H=2, focusing
on a parametric region where both the spectral shape is
interesting and analytic computation is possible. Somewhat
surprisingly, the isocurvature spectrum can exhibit a set of
rich spectral resonant shapes with a large enhancement in
the amplitude that crucially depends on the underdamped
nature of the ϕ⃗ dynamics. Because the spectrum in this
resonant parametric region depends on nonperturbative
classical dynamics of ϕ⃗, a set of nonperturbative math-
ematical methods is employed to obtain the analytic
spectrum. These include piecewise polynomial solutions
to differential equations in a couple of time regions and
piecewise effective time-space potential (ETSP) modeling
after integrating out fast oscillations. This allowed us to
compute a transfer matrix solution to the isocurvature mode
equations. Because of this lack of perturbativity, the
derivation of analytic expressions as well as the results
are quite lengthy.1 Readers interested in just the main
results can refer to Eq. (222), where the quantity that is
most cumbersome to evaluate is Tc, as explained there.
Intuitively, the isocurvature spectral range that we can

give our analytic results is for the wave vector k range
where the heavy modes can be decoupled in the axionic
model of our interest with multiple degrees of freedom. For
the interesting oscillatory part of the spectrum arising from
a resonance of background field dynamics, we focus on the
parametric region where the velocity of the ϕ⃗ flat direction
field is below a particular critical amount to avoid heavy-
mode mixing and the background field dynamics becoming
chaotic. Due to the already extreme length of the present
paper, we defer the discussion of chaotic dynamics and
numerical fitting functions that may be useful for data
applications to a separate paper. The intuition behind why
there is an interesting resonance in the underdamped
scenarios while such resonances do not occur in over-
damped scenarios is because the overdamped scenarios
have field dynamics characterized by exponentials of the
form expð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9=4 − cþ
p

TÞ (where T is a dimensionless time
parameter obtained by scaling proper time twith expansion
rate H and cþ is a mass squared parameter for the ϕ⃗ flat
direction during the initial period), which turns into

resonant oscillation producing expð−i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ − 9=4

p
TÞ ∋

cosð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ − 9=4

p
TÞ for the underdamped case. This cos

factor which has a zero will allow the field to reach
a dynamically interesting small field region, while the
kinetic energy is enhanced by an expansion parameter
ðfPQ=HÞ2 ≫ 1, which translates to a factor of at least an
Oð10Þ large enhancement in the spectral amplitude over a
range of k values when compared to the overdamped
scenario. Additionally, the resonance condition has the
initial condition-dependent coincidence requirement of
interaction induced mixing between two dynamical degrees
of freedom being efficient, as will be explained.
Although several of our plots are given with reference to

an axion dark matter abundance fraction parameter ω2
a

where the axion dark matter is fiducially assumed to be a
QCD axion, it is written to divide out the effects of the
QCD phase transition. Hence, all of our results can easily
be used with the axion field interpreted as a general
axionlike particle.
The order of presentation will be as follows. After a brief

review of the underlying axion model in Sec. II, we explain
in Sec. III the decoupling of the heavy modes that can be
viewed as the main characterization of the analytic formula
presented in this work. Section IV explains one of the
technically difficult parts of this work, analytically com-
puting the time Tc when the resonant transition occurs.
Section V presents the parametrization of the ETSP that
results from integrating out the fast oscillations of the
classical background fields (which still exists after decou-
pling heavy quantum modes). Section VI maps the param-
eters of the previous section to the underlying axion model
parameter space spanned by the dimensionless Lagrangian
parameters fcþ; c−; Fg and explains the derivation of the
isocurvature spectrum without making assumptions about
how many large dips there are in the ETSP. Section VII
presents a closed form analytic expressions for the iso-
curvature power spectrum in a certain restricted region of
the underlying model space supporting a single large dip in
the ETSP. Section VIII explains how the isocurvature
spectrum changes as the axion model parameters
fcþ; c−; Fg are varied. Section IX summarizes this work.
An extensive set of appendix sections contain some of the
details omitted in the main text.
Appendix A contains an alternative method of computing

a critical time Tc required for the isocurvature computations.
It serves as an independent check of the computation of Tc
presented in Sec. IV. Appendix B describes how the less
striking nonresonant situations can be computed within this
paper’s framework. Appendix C describes a method from
[78] of integrating out the fast oscillations to obtain an
effective differential equation containing smaller frequen-
cies. Appendix D discusses the dynamics of a composite
field object that will be useful in integrating out fast
oscillations in the axion model of interest in this paper.
Appendix E applies the results of Appendixes C and D to

1A Mathematica package to evaluate the spectrum using the
analytic methods is given in https://pages.physics.wisc.edu/
∼stadepalli/Blue-Axion-IsoCurvSpec-Underdamped.nb.
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integrate out the fast oscillations in the axion model.
Appendix F describes the crucial dynamics associated with
the lightest eigenvector rotation that will be helpful in
constructing the ETSP of Sec. V as well as the maps to
the fcþ; c−; Fg space in Sec. VI. Appendix G describes the
time dependence of the lightest mass eigenvalue which will
be useful in constructing the ETSP as well as the parametric
map in Sec. VI. Appendix H describes the form of the ETSP
parametrization used in Sec. V. Appendix I discusses the
slowly varying part of the lightest mass squared eigenvalue
function that governs the physics of one of the parameters of
Sec. V. Appendix J explains the details of the effects coming
from the heavy modes considered in Sec. III.

II. A BRIEF REVIEW OF BLUE AXIONIC
ISOCURVATURE PERTURBATIONS

In [39], a supersymmetric axion model is studied with
the following well-known renormalizable superpotential:

W ¼ hðΦþΦ− − F2
aÞΦ0; ð1Þ

where the subscripts on Φ indicate Uð1ÞPQ global PQ
charges. Note that this is also the most general renormaliz-
able superpotential transforming under a Uð1ÞR as

Φ0 → eirΦ0; ð2Þ

ΦþΦ− → ΦþΦ−; ð3Þ

W → eirW: ð4Þ

The F-term potential is

VF ¼ h2jΦþΦ− − F2
aj2 þ h2ðjΦþj2 þ jΦ−j2ÞjΦ0j2: ð5Þ

A special property of this class of potentials is the existence
of flat directions: i.e., in this particular model, it is

ΦþΦ− ¼ F2
a; Φ0 ¼ 0: ð6Þ

The existence of this flat direction is important because this
is the reason why the effective PQ parameters will be
rolling with a mass of order H during inflation (instead of
being much heavier and having already settled down),
taking advantage of the inflationary η-problem: i.e., the
Kaehler potential induced scalar potential is

VK ¼ cþH2jΦþj2 þ c−H2jΦ−j2 þ c0H2jΦ0j2; ð7Þ

where cþ;−;0 are positive Oð1Þ constants. The parameter cþ
dominantly controls the blue spectral index. This setup
implicitly assumes that the inflaton sector can be arranged
to have H ≪ Fa such that the flat directions are only lifted
by the quadratic terms at the renormalizable level.

Looking along the flat direction of Eq. (6), we set
Φ0 ¼ 0. The resulting relevant effective potential during
inflation is

V ≈ h2jΦþΦ− − F2
aj2 þ cþH2jΦþj2 þ c−H2jΦ−j2: ð8Þ

During inflation, the minimum of V lies at

jΦmin
� j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c∓

pffiffiffiffiffiffi
c�

p F2
a −

c∓
h2

H2

s
ð9Þ

≈
�
c∓
c�

�
1=4

Fa: ð10Þ

The key initial condition is thatΦ� starts out away from the
minimum with a magnitude much larger than OðFaÞ and
rolls toward the minimum during inflation. This implies the
Uð1ÞPQ symmetry is broken during inflation. Hence, there
will be a linear combination of the phases ofΦ� which will
be the Nambu-Goldstone boson associated with the broken
Uð1ÞPQ. In particular, with the parametrization

Φ� ≡ φ�ffiffiffi
2

p exp

�
i

a�ffiffiffi
2

p
φ�

�
; ð11Þ

where φ� and a� are real, the axion is

a ¼ φþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2þ þ φ2

−
p aþ −

φ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2þ þ φ2

−
p a−; ð12Þ

while the heavier combination

b ¼ φ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2þ þ φ2

−
p aþ þ φþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φ2þ þ φ2
−

p a− ð13Þ

is governed by the potential

Vb ¼ −h2F2
aφþφ− cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2þ þ φ2

−
p

φþφ−
b

�
: ð14Þ

Since the b field is heavy [i.e., ðφ2þ þ φ2
−ÞF2

a=ðφþφ−Þ ≫
H2], it is not dynamically important. Hence, one can gain
some intuition for how the axion composition time evolves
by setting b ¼ 0. When φþ is large, the axion is dominantly
aþ and later when φþ becomes comparable to φ−, the axion
is a mixture of a− and aþ.
According to model [39], the background equations are

as follows:

Φ̈þðtÞ þ 3H _ΦþðtÞ þ cþH2Φþ þ h2ðΦþΦ− − F2
aÞΦ− ¼ 0;

ð15Þ

Φ̈−ðtÞ þ 3H _Φ−ðtÞ þ c−H2Φ− þ h2ðΦþΦ− − F2
aÞΦþ ¼ 0;

ð16Þ
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where Φ� has been phase rotated to be real (which is
referred to as Φ̃ in [75]).
The background system can be rescaled as follows:

ϕ̈þðTÞ þ 3 _ϕþðTÞ þ cþϕþ þ ξðϕþ;ϕ−Þϕ− ¼ 0; ð17Þ

ϕ̈−ðTÞ þ 3 _ϕ−ðTÞ þ c−ϕ− þ ξðϕþ;ϕ−Þϕþ ¼ 0; ð18Þ

where

ϕ� ≡Φ�
h
H
; ð19Þ

F ¼ hFa=H; ð20Þ

ξðϕþ;ϕ−Þ≡ ϕþϕ− − F2; ð21Þ

and

T ≡ tH: ð22Þ

The mode equations can be written in these coordinates
as [75]

ð∂2
T þ 3∂TÞI þ

�
Kað0Þ
aðTÞ

�
2

I þ M̃2I ¼ 0; ð23Þ

where

K ≡ k
að0ÞH ; ð24Þ

aðTÞ ¼ að0Þ expðTÞ; ð25Þ

where I ¼ ðIþ; I−Þ and the mass matrix can be rewritten as

M̃2ðTÞ≡
�
cþ F2

F2 c−

�
þ
�
ϕ2
−ðTÞ 0

0 ϕ2þðTÞ

�
: ð26Þ

Note that we are neglecting the slow roll effects since the ε
in models where this scenario is of greatest interest is
negligibly small during most of inflation. Note also that as
explained in [79], Eq. (23) represents the nonsourced part
of the isocurvature modes: i.e., the isocurvature modes. The
full δΦ�ðxÞ field contains gravitational infall inhomoge-
neities sourced by the adiabatic inflaton inhomogeneities.
The expression for the isocurvature can be written as

Δ2
Sðt; k⃗Þ ≈ 4ω2

a
k3

2π2
I†
�
r2þ 0

0 r2−

�
I; ð27Þ

r� ≡ ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2
�ðtÞ

ðϕ2þðtÞ þ ϕ2
−ðtÞÞ2θ2þðtiÞ

s
; ð28Þ

ωa ≡ Ωa

Ωcdm
ð29Þ

¼ Waθ
2þðtiÞ

� ffiffiffi
2

p ðΦ̃2þðtfÞ þ Φ̃2
−ðtfÞÞ1=2

1012 GeV

�nPT

; ð30Þ

whereWa ≈ 1.5 and nPT ≈ 1.19 [see Eq. (14) in [6]] and tf
is the time just before the QCD phase transition.2

The background field equations (18) control the behavior
of isocurvature modes of Eq. (23). Hence, to understand the
isocurvature modes, we need to understand the solution
space of Eq. (18) in addition to solving Eq. (23). In the
parametric region of cþ < 9=4, the background solutions
only have a single bump deviation from the time behavior of
the lightest mass squared eigenvalue rising with a constant
log slope connecting to a plateau region in T space.
ϕþ starts from a near Planckian value (but restricted to

sub-Planckian to have a good chance of the effective field
theory being valid) and moves toward F in the approximate
solution

ϕþðTÞ¼ϕþð0Þe−3T=2
�
cosðωTÞþε0þ3=2

ω
sinðωTÞ

�
; ð31Þ

where we have labeled the initial time as T ¼ 0 and

ω≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ − 9=4

p
; ð32Þ

ε0 ≡
_ϕþð0Þ
ϕþð0Þ

; ð33Þ

while ϕ− stays near F2=ϕþ, which is the approximate
minimum of the potential. Hence, during the initial time
period, the background fields ϕ� (whose nonzero VEV
breaks PQ symmetry) reduce to a single radial degree of
freedom. The potentially interesting and nontrivial aspect
of this background system’s time evolution occurs in two
cases: (a) when ϕþðTÞ reaches OðFÞ during the time when
ϕ− ≪ F; (b) Tc when the energy transfer from ϕ− to ϕþ
becomes significant (this will be quantified in Sec. IV C).
Both of these time periods are dynamically potentially
interesting because the mass matrix undergoes transitions
such that the mass eigenvalues and the eigenvectors have
time variations that are nonadiabatic (change fast compared
to timescale of H−1). As we will explain, in most cases,
only event (b) leaves significant imprints on the isocurva-
ture spectrum Δ2

SðkÞ.

III. DECOUPLING

The dimensionality of the mass matrix indicates that
there are two different mass modes. The key de Sitter
physics is that at late times, the massive eigenmodes decay

2The fields Φ� have settled down long before this.
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away while the lighter mode is important. This means that
we do not care about the full equations but only the
projected equation onto the lightest eigenvector. Let

I ¼
X2
n¼1

ynðk; TÞenðTÞ; ð34Þ

where enðTÞ are real normalized eigenvectors of M̃2 with
the n ¼ 1 modes being the lighter eigenvalue mode.3 We
will call this the instantaneous normalized eigenvector
basis. The mode equation (23) becomes

O1y1 ¼ S12y2; ð36Þ

O2y2 ¼ S21y1; ð37Þ

On ≡ ð∂2
T þ 3∂TÞ þ

�
−∂Ten · ∂Ten þ

k2

ðaðTÞHÞ2 þm2
nðTÞ

�
;

ð38Þ

SnsðTÞ ¼ −en · ∂2
Tes − 3∂Tes · en − 2en · ∂Tes∂T; ð39Þ

where m2
nðTÞ are the time-dependent eigenvalues of M̃2.

One can solve Eq. (37) formally using the Green’s function
satisfying

OnGnðT; T 0Þ ¼ δðT − T 0Þ: ð40Þ

This gives

y2ðTÞ ¼ yh2ðTÞ þ
Z

dT 0G2ðT; T 0ÞS21y1ðT 0Þ; ð41Þ

where yh2 is the solution to O2yh2 ¼ 0. Putting this into
Eq. (36) gives

O1y1 ¼ S12yh2ðTÞ þ S12

Z
dT 0G2ðT; T 0ÞS21ðT 0Þy1ðT 0Þ:

ð42Þ

This is the integro-differential equation that needs to be
solved with Bunch-Davies (BD) boundary conditions to
compute the isocurvature perturbations.
There are two independent solutions to Eq. (42), both of

which are excited to some extent by the quantization with
BD boundary conditions. However, the heavy mode is not
excited appreciably for the BD boundary conditions, as has

been checked explicitly. Hence, we focus on the mode
with the boundary condition with an initial magnitude of
y2ðTiÞ ≪ y1ðTiÞ, which means

yh2ðTÞ ¼ 0: ð43Þ

In this case, we see that the right-hand side (rhs) of Eq. (42)
can be neglected for the evolution of y1 as long as

���� ðe2 · ∂2
Te1Þðe1 · ∂2

Te2Þ
m2

2ðm2
1 þH2Þ

����≪ 1: ð44Þ

Before the two fields transition at Tc when the mass
eigenvalues change as a function of time nonadiabatically,4

we can estimate m2
2 ∼ h2ϕ2þ and

ðe2 · ∂2
Te1Þðe1 · ∂2

Te2Þ ∼ ½cþF2
aH2=ϕ2þ�2; ð45Þ

which means that Eq. (44) is satisfied and y2 can be
neglected. On the other hand, at T ¼ Tc, the rhs of Eq. (42)
may be important since at that time there is only one scale
of F in the system. During this transition time, the time
width of the transition is fixed by

ΔTc ∼
1

F
: ð46Þ

The heavy mixing effect is then quantified in the vicinity
of Tc in terms of a new parameter χHM defined in
Appendix J as

χHMðl21; l22Þ ≈
1

l22 − l21

�
1þ 2

ffiffiffiffiffiffiffi
−l21

q

þ 8=3ffiffiffiffiffiffiffi
−l21

p ð−1þ e−
ffiffiffiffiffi
−l2

1

p
cos½l2�Þ

�
; ð47Þ

where l2i ¼ ðm2
i − _e2i Þ= _e2i and HM stands for heavy mixing.

One can then show that as long as (refer to Appendix J)

maxðχHMÞ ≲OðraÞ; ð48Þ

the effect of heavy-mode mixing and the associated rhs
of Eq. (42) can be neglected. Close to transition, as _e2i tends
to OðF2Þ, m2

1 becomes negative due to nonperturbative
effects of OðF2Þ, while the heavier mass eigenvalue
m2

2 ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ=c−

p
F2Þ. The details of the physics and the

derivation are discussed in Appendix J. Therefore, we shall
work with only those cases that satisfy the condition in
Eq. (48). Later we will express these cases more explicitly
in terms of the Lagrangian parameters.

3For example, when ϕ�ðTÞ have reached the values corre-
sponding to Eq. (9), the lightest eigenvector is

e1 ¼
ð− ffiffiffiffiffi

c−
p

;
ffiffiffiffiffiffi
cþ

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c− þ cþ

p : ð35Þ
4The transition is defined in Sec. IV B.
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IV. BEHAVIOR OF ϕ� NEAR THE FIRST
CROSSING OF ϕ�

For analytically solvable cases, the details of ϕ�ðTÞ near
the time when

ϕþðT1Þ ¼ ϕ−ðT1Þ ð49Þ

for the first time will be important. Hence, in this section,
we provide an analytic approximation of this time behavior.

A. Perturbative solution

For T ≪ T1, the system can be solved by making the
following expansion:

ϕþðTÞ ¼
1

λ
ϕð0Þ
þ þOðλ0Þ þOðλ1Þ þOðλ2Þ þ λ3ϕð1Þ

þ ; ð50Þ

ϕ−ðTÞ ¼ λϕð0Þ
− þOðλ2Þ þ λ3ϕð1Þ

− þOðλ4Þ þ λ5ϕð2Þ
− ; ð51Þ

where the near Planck scale initial conditions for ϕð0Þ
þ gives

rise to the prominence of ϕð0Þ
þ justifying λ−1, the near flat

direction solution that we seek fixes the λ power for ϕð0Þ
− ,

and the rest of the λ powers are simply increasing powers
where we omit some of them [such as Oðλ0Þ in ϕþðTÞ
expansion] because they will not contribute (as one can
check by introducing them). In other words, one can
consider the expansion in λ defined here to be that of
smallness of

λ ↔ O

 ffiffiffiffiffiffi
ϕ−

ϕþ

s !
; ð52Þ

which is valid over a finite time interval before T1.
Putting Eqs. (50) and (51) into Eqs. (17) and (18) and

collecting powers of λ, we find the following:

λ−1∶ ∂2
Tϕ

ð0Þ
þ þ 3∂Tϕ

ð0Þ
þ þ cþϕ

ð0Þ
þ ¼ 0; ϕð0Þ

þ ϕð0Þ
− −F2 ¼ 0;

ð53Þ

λ1∶ ∂2
Tϕ

ð0Þ
− þ 3∂Tϕ

ð0Þ
− þ ðϕð0Þ

þ Þ2ϕð1Þ
− þ c−ϕð0Þ

− ¼ 0; ð54Þ

λ3∶ ∂2
Tϕ

ð1Þ
þ þ 3∂Tϕ

ð1Þ
þ þ cþϕ

ð1Þ
þ þ F2ϕð1Þ

− ¼ 0; ð55Þ

∶∂2
Tϕ

ð1Þ
− þ 3∂Tϕ

ð1Þ
− þ F2ϕð1Þ

þ þ ϕð2Þ
− ϕð0Þ2

þ þ c−ϕð1Þ
− ¼ 0:

ð56Þ

The λ−1 order has a simple solution ϕþ identical to Eq. (31),
which can be rewritten as

ϕþðTÞ ≈ ϕð0Þ
þ ðTÞ ¼ ϕþð0Þe−3

2
T secðφÞ cosðωT − φÞ; ð57Þ

where

tanφ≡ 3=2þ ε0
ω

: ð58Þ

The matching order ϕ−ðTÞ solution is

ϕ−ðTÞ ≈ ϕð0Þ
− ¼ F2

ϕð0Þ
þ

: ð59Þ

Note that when ϕþ initially does not have much kinetic
energy (i.e., ε0 ≪ 1), φ takes on values that monotonically
decrease from π=2 to order unity as cþ increases from 9=4
to 10. The λ1 order also has a simple, local solution:

ϕð1Þ
− ¼ −

1

ϕð0Þ2
þ

½∂2
Tϕ

ð0Þ
− þ 3∂Tϕ

ð0Þ
− þ c−ϕð0Þ

− �: ð60Þ

The λ3 order has a nonlocal solution:

½∂2
Tϕ

ð1Þ
þ þ 3∂Tϕ

ð1Þ
þ þ cþ�GþðT; T 0Þ ¼ δðT − T 0Þ; ð61Þ

ϕð1Þ
þ ¼ −F2

Z
dT 0GþðT; T 0Þϕð1Þ

− ðT 0Þ; ð62Þ

ϕð2Þ
− ¼ −1

ϕð0Þ2
þ

½∂2
Tϕ

ð1Þ
− þ 3∂Tϕ

ð1Þ
− þ F2ϕð1Þ

þ þ c−ϕð1Þ
− �: ð63Þ

Nonetheless, this perturbative expansion by design breaks
down near T1 since the ϕ−=ϕþ hierarchy represented by λ
is lost.
Interestingly enough, the correction to

ϕþ ≈
1

λ
ϕð0Þ
þ ð64Þ

is Oðλ3Þ, which means that the ratio of the next to leading
order to the leading order is Oðλ4Þ. In contrast, the next to
leading order to leading order ratio for ϕ− is Oðλ2Þ. To
understand this, note that unlike in the equation of motion

for ϕ−, ϕ
ð0Þ
þ is the exact solution to Eq. (17) if ϕ− ¼ ϕð0Þ

− . In
contrast, ϕð0Þ

− is not the exact solution to Eq. (18) with

ϕþ ¼ ϕð0Þ
þ . This means that even though the perturbative

expansions of Eqs. (50) and (51) for both ϕ� break down
at T1, the approximation for ϕ− breaks down faster in the
region ffiffiffiffiffiffi

ϕ−

ϕþ

s
≈
1

2
; ð65Þ

corresponding to an error of the leading order approxima-
tion in this region being

Δϕþ
ϕð0Þ
þ

∼O

�
1

16

�
;

Δϕ−

ϕð0Þ
−

∼O

�
1

4

�
: ð66Þ
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As a preliminary check on the perturbative ϕ� solution,
we can compare the numerical solution to the perturbative
solution for ϕ− for the case of fcþ ¼ 2.35; c− ¼ 0.5; F ¼
20.2; ε0 ¼ 0;ϕþð0Þ ¼ 3.32 × 108g as shown in Fig. 1. The
improvement from ϕð1Þ

− is manifest before the expected
breakdown of small λ ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ−=ϕþ
p

) expansion at T1

defined by Eq. (49).

B. Beyond perturbation theory

Because the background solutions are sensitive to the
details of ϕ−ðT1Þ and the perturbation theory breaks down
when ϕþðT1Þ ¼ ϕ−ðT1Þ [see Eq. (52)], we need a method
to solve for the background fields more accurately at T1. As
we will justify later, because most interesting isocurvature
spectral behavior comes from the models in which ϕþðT1Þ
is near a zero crossing [i.e., ϕð0Þ

þ ðT1 þOð1=FÞÞ ¼ 0], this
section will mainly focus on such cases. We will mainly
use the method of interpolation using a cubic order
polynomial between the time when the perturbation in λ
starts to break down and T1. We will also check this method
in Appendix A using a Taylor expansion approach.
The interpolation polynomial is parametrized as

ϕþðTÞ ¼ p0 þ p1ðT − TsÞ þ p2ðT − TsÞ2 þ p3ðT − TsÞ3;
ð67Þ

ϕ−ðTÞ ¼ q0 þ q1ðT − TsÞ þ q2ðT − TsÞ2 þ q3ðT − TsÞ3;
ð68Þ

where we choose Ts to be the time when ϕ−ðTÞ begins to
deviate significantly (to be defined) from ϕð0Þ

− ðTÞ. We will
then choose the interpolation point TI taken to be the
midpoint between Ts and T1 based on the idea that such a

choice approximately minimizes set of competing errors.5

The coefficients fpn; qmg will be constrained at TI through
the original differential equations.
In choosing the time Ts to be where the perturbative

solution starts to break down, we expect the deviation to
come from the neglect of the ϕ̈ð0Þ

− in the zeroth order
perturbative solution. Hence, we set Ts to be the time when

ϕ̈ð0Þ
− ∼

�
1

n

�
ϕð0Þ2
þ ϕð0Þ

− ; ð69Þ

where n parametrizes the (1=n) accuracy we want to
achieve in the approximation. For concreteness, we will
take n ¼ 10 in the analysis below. To solve this equation
analytically in a closed form, it is useful to obtain a

polynomial form. Hence we expand ϕð0Þ
þ ðTÞ about

ϕð0Þ
þ ðTzÞ, where

ϕð0Þ
þ ðTzÞ ¼ 0 ð70Þ

or equivalently

Tz ¼
1

ω

�
π

2
þ φ

�
; ð71Þ

where φ is defined by Eq. (58) and assume that ϕð0Þ
þ ðTÞ near

Ts is well described by a quadratic expansion of ϕð0Þ
þ ðTÞ

about Tz. We will justify this through self-consistency after
the analysis.
To simplify the parametric dependence, define a new

dimensionless parameter α describing the slope of the zero
crossing:

α≡ j∂Tϕ
ð0Þ
þ ðTzÞj
F2

ð72Þ

¼ ω
ϕþð0Þ
F2

secφe−3=2Tz : ð73Þ

In terms of initial conditions ϕþð0Þ and ε0, the α parameter
can be expressed as

α ¼ ϕþð0Þ
F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ð3=2þ ε0Þ2

q
e−3=2½

1
ωðπ2þarctan

3=2þε0
ω Þ�: ð74Þ

Putting Eqs. (57) and (59) into Eq. (69), we obtain

Ts ¼ Tz −
ð2nÞ14ffiffiffi
α

p
F
þO

�
27n

16α2F4

�
; ð75Þ

FIG. 1. Numerical background solution compared to the per-
turbative solution near T1 ¼ 9.248 and fcþ ¼ 2.35; c− ¼ 0.5;
F ¼ 20.2; ε0 ¼ 0;ϕþð0Þ ¼ 3.32 × 108g. For T ≲ T1 − 1=F, the
perturbative solution corrected by ϕð1Þ

− does much better than the
leading order solution ϕð0Þ

− for T ≲ 9.18. The increasing deviation
at T1 is expected as explained in the text.

5Since this midpoint choice is an ansatz, we will actually
choose the midpoint between Ts and Tz where Tz defined below
is close to T1.

ANALYTIC TREATMENT OF UNDERDAMPED AXIONIC BLUE … PHYS. REV. D 105, 123511 (2022)

123511-7



where the above expansion is valid for F ≫ 1. We now
choose the interpolation point TI to be the midpoint

TI ¼
Ts þ Tz

2
; ð76Þ

which in most cases will be a point that lies in the
interval ½Ts; T1�.6
We then obtain eight equations to solve for the eight

coefficients of Eqs. (67) and (68) using the background
differential equations (17) and (18), and the values and
the derivatives of the perturbative solutions [Eqs. (57)
and (59)]. Solving for these coefficients, we obtain

p0 ¼ ϕð0Þ
þ ðTsÞ; ð77Þ

q0 ¼ ϕð0Þ
− ðTsÞ; ð78Þ

p1 ¼ _ϕð0Þ
þ ðTsÞ; ð79Þ

q1 ¼ _ϕð0Þ
− ðTsÞ; ð80Þ

p2 ¼ −
3

2
p1 − cþp0; ð81Þ

q2 ¼ −
3

2
q1 − c−q0; ð82Þ

p3 ≈
ð6þ 9εþ c−ε2 þ ðϕþð2ÞðTIÞÞ2ε2Þð3p1 þ p2ð2þ 6εÞ þ ϕ−ð2ÞðTIÞξð2ÞðTIÞ þ cþϕþð2ÞðTIÞÞ

εD
; ð83Þ

−
ð−F2 þ 2ϕþð2ÞðTIÞϕ−ð2ÞðTIÞÞð3q1 þ q2ð2þ 6εÞ þ ϕþð2ÞðTIÞξð2ÞðTIÞ þ c−ϕ−ð2ÞðTIÞÞ

D=ε
; ð84Þ

q3 ≈ p3ðþ ↔ −; p ↔ qÞ; ð85Þ

where

ξð2Þ ¼ ξðϕþð2Þ;ϕ−ð2ÞÞ; ð86Þ

D ¼ ε4ð−F2 þ 2ϕþð2ÞðTIÞϕ−ð2ÞðTIÞÞ2
− ð6þ 9εþ c−ε2 þ ðϕþð2ÞðTIÞÞ2ε2Þ
× ð6þ 9εþ cþε2 þ ðϕ−ð2ÞðTIÞÞ2ε2Þ; ð87Þ

ε≡ TI − Ts; ð88Þ

and ϕ�ð2Þ are defined by Eqs. (67) and (68) with the
cubic terms dropped: e.g., ϕþð2ÞðTÞ≡ p0 þ p1ðT − TsÞþ
p2ðT − TsÞ2. Note that since we are using the perturbative

solutions ϕð0Þ
� [i.e., Eqs. (57) and (59)] for Eqs. (77)–(80),

we cannot make n too small (otherwise, the perturbative
solutions will be unjustified). To address this and as a
general check, we also solve the background system using a
Taylor expansion method in Appendix A. We find reason-
able agreement with the current method if we take n ≈ 10.
Now that the background solution is approximately

fixed, we can use Eqs. (67) and (68) to solve for the
crossing time T1 and the field value there: i.e., solve for
ϕþðT1Þ ¼ ϕ−ðT1Þ. A plot of ϕþðT1Þ=F is given in Fig. 2,
showing that for α ≲ 1, the crossing occurs when
ϕþðT1Þ ≈ F. In terms of α and F, we obtain the following

equations for T1 and ϕ�ðT1Þ by fitting to examples
obtained from the analytic expressions:

T1 ≈ Tz −
0.7
αF

þO

�
1

F2

�
; ð89Þ

ϕ�ðT1Þ ≈ Fð1 − 0.2αÞ þO

�
1

F

�
: ð90Þ

By the self-consistency of the solution and the method of
construction involving Eq. (75), the time T1 itself is

FIG. 2. This plot shows that when ϕ�ðTÞ cross each other for
the first time at T1 [evaluated by using the highly nontrivial
equations (67) and (68)], their values are close to F for the
parametric region α ≲ 1 discussed in the text. This curve is
insensitive to the choice of fc�; F;ϕþð0Þ; ε0g except through α
given by Eq. (72). We will use this feature to find an analytic
approximation to the isocurvature spectrum.

6In situations where TI coincides with T1, one can increase the
value of n to achieve the desired interpolation.
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Oðð2nÞ14=ð ffiffiffi
α

p
FÞÞ away from Tz. Note that as α becomes

small, ε ¼ ð2nÞ14=ð ffiffiffi
α

p
FÞ increases such that the cubic-

polynomial expansion of the background fields in Eqs. (67)
and (68) is insufficient and higher order terms become
significant. Hence the cubic expansion nonperturbative
method utilized here is valid when

p3ðTI − TsÞ3
ϕþð2ÞðTIÞ

≲OðraÞ;
q3ðTI − TsÞ3
ϕ−ð2ÞðTIÞ

≲OðraÞ; ð91Þ

where TI − Ts ¼ ε. Expanding around α ¼ 0 yields

3ð48þ nÞ
432þ 5nþ 96α2ð48þ nÞ ≲OðraÞ; ð92Þ

which gives us the following lower bound on α:

α > αL ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144þ 3n − 432ra − 5nra

p
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6nra þ 288ra

p : ð93Þ

For ra ∼ 0.2 and n ¼ 10 we obtain αL ∼ 0.25 serving as a
reasonable cutoff for a 20% accurate computation.
In Sec. III, we remarked that as long as χHM ≲OðraÞ, the

decoupling of the lighter and heavier modes is justified.
Figure 25 in Appendix J suggests that this is true when α is
less than an upper bound given as αU. Using ra ∼ 0.2 we
infer that the decoupling is satisfied at the first crossing of
the background fields for

α ≲ αU ≡ 1: ð94Þ

Later in Appendix E, we will show that this upper bound
is consistent with another analytic procedure where we
integrate out the high-frequency UV modes. Thus, the
nonperturbative methods and the analytic techniques uti-
lized in this paper are applicable within a specific para-
metric region defined by the parameter α. Henceforth in this
paper, we will limit ourselves to the study of underdamped
axionic isocurvature power spectrum applicable to those
cases where

0.25 ≲ α ≲ 1: ð95Þ

Interestingly, both the lower and upper bounds are nearly F
independent for F ≫ 1, implying that the parameter α is a
suitable parametrization for studying resonant under-
damped isocurvature modes. Because we will be interested
in resonant cases (to be defined below), αwill never be very
small in the cases of our main interest. For completeness,
the small α cases (α < αL) are discussed in Appendix B.
Additionally, using Eqs. (67) and (68) we note that the

flat deviation jξðϕþ;ϕ−Þj ∼OðF2Þ at the crossing T1. This
is a unique feature of the underdamped scenario where the
flat deviation can tend to OðF2Þ if the background fields

cross close to the ϕð0Þ
þ zero crossing (T1 ∼ Tz −Oð1=FÞ).

Post T1, the flat deviation oscillates rapidly with a
frequency of OðFÞ and an OðF2) amplitude that decays
in time with the Hubble friction. These rapid oscillations
are identified as resonance. Accordingly, the axion mode
function is now characterized by the F scale dynamics till
the flat deviation decays or becomes insignificant. This is
unlike the overdamped or nonresonant scenarios where the
flat deviation is negligible and the mode amplitude dynam-
ics is defined primarily by the H scale throughout.

C. Resonant scenarios

In this work, we focus on initial conditions where
the ϕþ and ϕ− initially follow the flat direction of the
potential. This corresponds to the initial trajectories

approximated by ϕð0Þ
� of Eq. (57) for which the flat

deviation ξðϕð0Þ
þ ;ϕð0Þ

− Þ ¼ 0. For certain parametric cases,
there is a significant force on ϕþ by ϕ− through ξϕ− when
the two fields meet. Such forces cause displacements of ϕþ
toward the “steep” direction in the potential where ξ is
significant. This in turn causes strong7 oscillatory behavior
of both ϕþ and the order unity coupled ϕ−. We now present
a quantitative condition for this class of scenarios which we
call resonant scenarios.
During each Tcross when ϕþðTcrossÞ ¼ ϕ−ðTcrossÞ, the

effective coupling force fþ on ϕþ can be expressed as

fþðTcrossÞ ¼ −ξϕ−jTcross
; ð96Þ

whose magnitude measures deviation of ϕþ from the flat
direction trajectory. This deviation is a sufficient condition
for the force in the steep direction to be significant. Hence,
we define resonant scenarios to be the cases in which
(1) ξϕ−jT¼Tc

≳Oð0.1Þϕ̈þðTcÞ,
(2) j _ϕþðTcÞj ≳ RcF2,

where Tc is the first Tcross that satisfies these conditions.
The first of the conditions ensures sufficient coupling force
fþ so that ϕþ deviates significantly from the perturbed

solution ϕð0Þ
þ , while the second condition here is required

for ϕþ to oscillate with an amplitude whose significance is
determined by the choice of Rc. For specificity, we will
choose Rc ¼ αL.
In summary, we can define Tc to be the time at which

ϕþðTcÞ ¼ ϕ−ðTcÞ; ð97Þ

for which ϕþ has a large kinetic energy and a large
deviation from the flat direction. In this paper, we restrict
ourselves to only those cases where the fields transition
at the first crossing. Therefore Tc ¼ T1 and henceforth we
drop the notation T1 for crossing/transition. While this

7The term “strong oscillatory” here refers to the frequency
being much larger than that of ω.
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choice may seem very restrictive, in principle the model
presented in this paper is still applicable to other cases where
T1 does not correspond to Tc (under certain conditions).
Such cases will be studied in a separate paper [80].

V. NUMERICALLY MOTIVATED MODEL

After the transition time Tc defined in Eq. (97), the ϕþ
field takes a large dip toward the negative ϕþ direction.
During a Oð1=FÞ time period surrounding Tc, the effective
mass squared eigenvalues in the instantaneously diagonal
mass matrix basis has a large dip ofOðF2Þ. We can capture
this behavior in terms of an approximate step function
when solving the mode equation in the background of this
ϕ� system:

∂2
Ty1ðk; TÞ þ 3∂Ty1ðk; TÞ
þ ðK2e−2T þ ½− _e1 · _e1 þm2

1ðTÞ�Þy1ðk; TÞ ¼ 0: ð98Þ

To model this, define the effective mass squared in
instantaneous normalized eigenvector basis shown in
Eq. (98) as

m2
y1 ≡ − _e1 · _e1 þm2

1; ð99Þ

where m2
1 is the lightest eigenvalue of Eq. (26),

m2
1 ¼

M̃2
11 þ M̃2

22

2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

F4 − M̃2
11M̃

2
22

ðM̃2
22 þ M̃2

11Þ2

s !
; ð100Þ

where M̃2
ij are the elements of M̃2. Because we will only be

interested in the longtime behavior of the zero mode here,
we do not need to solve the mode equation with high time
resolution. Hence, we use a double perturbative expansion
in amplitude and frequency as explained in Appendix C to

separate out the low resolution behavior we are interested
in. After integrating out the UV modes, we find an effective
IR mode mass squared m2ðTÞ that has only a small number
of features. This is illustrated schematically in Fig. 3. In the
context of Eq. (100), combined withm2

1ðT < TcÞ being cþ,
we see that integrating out the UV modes has generated an
effective jump in m2ðTÞ. As one can see in the figure, the
effective m2ðTÞ is significantly simpler than the origi-
nal m2

y1ðTÞ.
In the step function approximation this can be mod-

eled as

m2 ≈

8>><
>>:

V0; T0 < T < T1;

−V1; T1 < T < T2;

VBsqwðT; T2; TB − T2Þ þ V2

2
e−3ðT−T2Þ −

P
n
i¼3 VisqwðT; Ti;ΔiÞ; T2 < T;

ð101Þ

where

sqwðT; Ti;ΔiÞ ¼
�
1 if Ti ≤ T ≤ Ti þ Δi;

0 otherwise;
ð102Þ

and

Pset≡ fVi; VB; TB; Ti;Δig ð103Þ

are the model parameters for this steplike approximation. In
particular, T1 is defined as the time when IR averaged m2

y1
makes a negative jump, and T2 is defined as the time after

T1 when IR averaged m2
y1 makes a positive jump. Later on,

we will see that VB here represents the step approximation
of a smooth decaying nonoscillatory nonequilibrium time-
dependent axion mass function whose extinction point
corresponds to the PQ symmetry-breaking vacuum, where
the Goldstone theorem condition is satisfied. The rest of the
square well bumps are supposed to be approximations of an
oscillatory nonequilibrium time-dependent axion mass
function. This in turn means that

TB − T2 ≫ Δi

FIG. 3. Shown is an effective IR mass squared (dashed line)
obtained from integrating out high-frequency oscillations here
illustrated with m2

osc ≡ Ae−
3
2
t sin½ft� (solid line) where t is the

dependent variable of this toy function. The effective IR mass
squared contribution m2

IR ≡ 1
2
ðA=fÞ2e−3t obtained through meth-

ods of Appendix C is exponentially decaying with an additional
factor of A=ð2f2Þ coming from the UV propagator. Note that the
IR ETSP contribution from the UV modes is positive, consistent
with the fact that the UV oscillations are of the decoupling type
(i.e., they are not destabilizing).
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in this parametrization. Figure 4 shows a schematic
depiction of the mass model highlighting its key features
for a single dip case.
Although this model can in principle be parametrized

with an arbitrary number of steplike features controlled by
fVi; Ti;Δig, we will in practice consider at most two such
features (i.e., Ti will have at most i ∈ f0; 1; 2; 3g in this
paper where the two dips occur in the intervals ½T1; T2� and
½T3; T3 þ Δ3� with T2 ¼ T1 þ Δ1). The second dip (V3)
occurs when α ≳ α2, where α2 is defined in Eq. (150).
It corresponds to the situation where the background
fields ϕ� cross each other again after Tc. Since we choose
cþ > c− throughout this paper, there will always be an even
number of crossings between the two background fields
after Tc. Every such crossing corresponds to a dip in the
ETSP within the framework of our mass model. By limiting
the current analysis to two dips, we consider only those
cases where a third dip is less thanOð1Þ in magnitude. This
corresponds to all cases where α ≲ α3 with α3 defined by
Eq. (F13). Other cases can be treated by including addi-
tional steplike features as elucidated previously. With an
underlying theory such as Eq. (8), the parameters Pset can
be computed in terms of fcþ; c−; Fg. However, here we
will first solve this system analytically, then later express
the parameters in terms of fcþ; c−; Fg.

A. Piecewise solution (scattering matrix approach)

In this subsection, we would like to derive an expression
for ðy1; _y1Þ at some final time TN given its value at some
initial time T0, assuming that we know the approximate
forms of the solution in N discrete time regions.

Consider a time region Rj with boundaries ½Tj; Tjþ1�. As
per this convention, the first region lying between T0 and
T1 is termed R0. The y1-mode function within any region
can be expressed through superposition of linearly inde-

pendent basis functions ψ
ðRjÞ
1;2 :

y1ðK; TÞ ¼

8>><
>>:

cðR0Þ
1 ψ ðR0Þ

1 þ cðR0Þ
2 ψ ðR0Þ

2 ; T ∈ ½T0; T1�;
cðR1Þ
1 ψ ðR1Þ

1 þ cðR1Þ
2 ψ ðR1Þ

2 ; T ∈ ½T1; T2�;
…; …;

ð104Þ

with the Wronskian WðRjÞðTÞ ¼ _ψ
ðRjÞ
2 ψ

ðRjÞ
1 − ψ

ðRjÞ
2 _ψ1

ðRjÞ.
Wewill take different approximate forms of ψ ðRnÞ

1;2 in each of
the regions Rn and match the value and its derivatives at the
boundaries to construct y1 in the entire domain ∪n Rn as
will be described below.
Let us define the Y, Ψ, and C matrices by rewriting

�
y1
_y1

�
¼

2
64ψ

ðRjÞ
1 ψ

ðRjÞ
2

_ψ
ðRjÞ
1 _ψ

ðRjÞ
2

3
75
2
64 c

ðRjÞ
1

c
ðRjÞ
2

3
75

as

Y ¼ ΨðRjÞCðRjÞ; ð105Þ

where

ΨðRjÞ ≡
2
64ψ

ðRjÞ
1 ψ

ðRjÞ
2

_ψ
ðRjÞ
1 _ψ

ðRjÞ
2

3
75 ð106Þ

and Y ≡ ðy1; _y1Þ. The coefficients CðRjÞ within the region
Rj are given by the expression

CðRjÞ ¼ ΨðRjÞ−1ðTþ
j ÞYðT−

j Þ: ð107Þ

Here T−
j indicates the incoming y1-mode function from

the left-hand side. The solution Y at T−
jþ1 as the mode exits

region Rj is ΨðRjÞðT−
jþ1ÞCðRjÞ. The function at T ¼ T−

jþ1

can be constructed as

YðT−
jþ1Þ ¼ ΨðRjÞðT−

jþ1ÞCðRjÞ

¼ ΨðRjÞðT−
jþ1ÞΨðRjÞ−1ðTþ

j ÞYðT−
j Þ

≡ SðTjþ1; TjÞYðT−
j Þ;

where the matrix SðTjþ1; TjÞ acts as a scattering propagator
for the y1-mode function from time Tj to Tjþ1 through the

FIG. 4. Schematic diagram of the mass model highlighting key
features for a single dip case. The dashed curve representsm2ðTÞ.
The dotted and dot-dashed curves have the addition of
K2

1 expð−2TÞ and K2
2 expð−2TÞ, respectively, to m2ðTÞ. The

Kn values have the hierarchy of K3 > K2 > K1. The constant
VB applicable for the region T > T2 is typically small as
suggested implicitly in this schematic figure. Given that this
figure is schematic, the Kn here should not be confused with
objects such as K2 in Eq. (180).
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time slice Rj. The mode function at time TN after passing
through N piecewise continuous regions is given as

YðT−
NÞ ¼

YN−1

j¼0

SðTjþ1; TjÞYðT0Þ: ð108Þ

B. Independent analytic functions
in each piecewise region

We shall now give the general linearly independent basis
functions ψ1;2 for the form of functions that appear within
our model. Let us consider the following second order
ordinary differential equation (ODE) as a generic case for a
y1-mode equation,

∂2
Ty1ðK; TÞ þ 3∂Ty1ðK; TÞ
þ ðK2e−2T þm2ðTÞÞy1ðK; TÞ ¼ 0: ð109Þ

In each piecewise region [½Tj; Tjþ1� in Eq. (101)] of our
m2ðTÞ model, its behavior is either a constant or an
exponentially decaying function. Let us consider these
two situations case by case.
(1) const≡ c, where c can either be positive or negative.

For this case, the above ODE has following linearly
independent solutions:

ψ1 ¼ e−
3
2
TJ ffiffiffiffiffiffiffiffiffi

9=4−c
p ðKe−TÞ; ð110Þ

ψ2 ¼ e−
3
2
TY ffiffiffiffiffiffiffiffiffi

9=4−c
p ðKe−TÞ: ð111Þ

(2) exponentially decaying≡ Ve−3T for some arbitrary
V > 0. The effective frequency squared

K2e−2T þ Ve−3T ð112Þ

nowhas two different orders of decaying exponentials.
A fundamental intuition for these mode function time
evolutions is that whenever K2e−2Tþm2ðTÞ>0, jy1ðTÞj
has a tendency to decay while for the opposite sign, jy1ðTÞj,
has a tendency to increase. This can be viewed as the result
of the equation with K2e−2T þm2ðTÞ ¼ 0 having a con-
stant solution (similar to the usual inflationary adiabatic
mode) which makes K2e−2T þm2ðTÞ ¼ 0 a “point” of
criticality in a family of differential equations represented
by Eq. (109). This means that the sign of m2ðTÞ is
fundamental to understanding the mode amplitude evolu-
tion as a function of time. Moreover, this behavior of mode
functions is a fundamental element of quantum fields in
curved spacetime.
To solve Eq. (109) analytically, we define an approxi-

mate frequency squared UðTÞ as explained below and
further divide the region of interest into subregions such
that the ODE can be approximated as

ÿ1 þ 3 _y1 þUðTÞy1ðTÞ ≈ 0: ð113Þ

The idea for the approximation is that competing terms of
the form

A1e−2T þ A2e−3T ð114Þ
have only one term dominating except for at most a brief
period when the two terms become comparable. During this
“comparable” time period, the Taylor expansion of the time
dependence is

A1e−2TþA2e−3T≈2A1e−2TX

�
1−

5

2
ðT−TXÞ

�
ð115Þ

≈ 2A1e−2TX exp

�
−
5

2
ðT−TXÞ

�
; ð116Þ

where we have linearly expanded about the equality time
TX when the A1 and A2 terms are equal. Note that the
first of Eq. (114) will dominate over the second term in a
time period of ΔT ∼Oð1Þ. During this time period about
TX, the fractional error between Eq. (116) and the exact
equation (114) is

exact − approx
exact

¼ 1 −
1

coshðT−TX
2

Þ ; ð117Þ

which is about 0.2 for the maximum value of T − TX ¼
2 ln 2 that we take below. This lack of sensitivity is an
accidental property of the coshðxÞ which has a flat region
at x ¼ 0.
Now, let us discuss in detail how this approximation is

implemented in the model of Eq. (101). At time T2, there is
a jump in the m2 of Eq. (101) due to the term V2. We will
denote the jump amplitude in the effective frequency
squaredUðTÞ as V in this generically parametrized analysis
here. Because the V term decays faster than the K2 term,
UðTÞ will need to take into account the K2 term. We define
TV as the time when V term is equal to the full UðTÞ that
includes the K2 term. Subsequently, UðTÞ decays accord-
ing to the approximate expression of Eq. (116). Eventually,
the V term in UðTÞ will be negligible, and only the K2 term
will need to be kept. Since the K2 term decays slower than
the approximate UðTÞ in Eq. (116), the expression for
UðTÞ will need to be changed to keeping just the K2 term
when UðTÞ term equals the K2 term at TK.
The previous paragraph can be explicitly expressed in

terms of the effective frequency equation as

UðTÞ−c¼

8>><
>>:
Ve−3TXe−3ðT−TXÞ; T2<T<TV;

ðK2e−2TX þVe−3TXÞe−5
2
ðT−TXÞ; TV <T <TK;

K2e−2TXe−2ðT−TXÞ; TK <T<T∞:

ð118Þ
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Thus, the time interval ½T2; T∞� is subdivided into three
piecewise regions, where each region is characterized by a
distinct exponential decay rate such that the system of the
differential equation in Eq. (109) is now analytically
solvable in each subregion. We define TX as when
K2e−2T and Ve−3T are equal,

TX ¼ ln

�
V
K2

�
; ð119Þ

while TV and TK are defined as the time boundaries that
connect the piecewise regions continuously:

TV ¼ TX − 2 ln

�
1þK2e−2TX

Ve−3TX

�
¼ TX − 2 ln2¼ ln

�
V
4K2

�
;

ð120Þ

TK ¼ TX þ 2 ln 2 ¼ ln

�
4V
K2

�
: ð121Þ

To further improve the accuracy of the above piecewise
technique, the amplitude of the exponentials in each
subregion is evaluated as an integrated average of
K2e−2T þ Ve−3T as follows:

R
dTðK2e−2T þ Ve−3TÞR

dTe−nT
; ð122Þ

where n ∈ f3; 5=2; 2g in each subregion. Using the defi-
nition of TX and the amplitude defined above, the expression
for UðTÞ in Eq. (118) simplifies to

UðTÞ−c¼

8>>>>><
>>>>>:

	
VþK2 3=2ðeT2þeTV Þ

1þ2coshðT2−TV Þ


e−3T; T2<T<TV;	

3125
1364

K
ffiffiffiffi
V

p 

e−

5
2
T; TV <T <TK;	

K2þV 1þ2coshðTK−T∞Þ
3=2ðeTKþeT∞ Þ



e−2T; TK <T<T∞:

ð123Þ

In each subregion now the ODE has a Bessel solution
of order ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9=4 − c
p Þ=n for an ETSP of the form

UðTÞ ¼ A2e−nT þ c:

ψ1 ¼ e−
3
2
TJ ffiffiffiffiffiffi9−4c

p
n

�
2

n
Ae−

n
2
T

�
; ð124Þ

ψ2 ¼ e−
3
2
TY ffiffiffiffiffiffi9−4c

p
n

�
2

n
Ae−

n
2
T

�
; ð125Þ

such that the general solution is a superposition of ψ1;2.

VI. ISOCURVATURE SPECTRUM RELATION
TO MODEL PARAMETERS

In this section, we give analytic expressions for the
numerically motivated model parameters and provide
isocurvature power spectrum results in certain regions of
the underlying model space fcþ; c−; Fg. The parameter
region is most efficiently divided by α introduced in
Eq. (72). Small α resonance corresponds to the dynamics
of the background field with a _ϕþðTc) (where Tc is as
defined in Sec. IV C) that is neither too small (in which case
the dynamics is not resonant) nor large (in which case, the
dynamics becomes difficult to predict due to the large series
of nonlinear interactions involved). More precisely, we
define this set of resonant cases by Eq. (95):

0.25 ≲ α ≲ 1: ð126Þ
We present below the analytic formula for the isocurvature
spectrum in this corner of the parameter space.

A. General map of analytic model parameters
to fc+ ; c − ;Fg

As defined previously, the mass model has following set
of parameters:

Pset≡ fVi; VB; TB; Ti;Δig: ð127Þ
The final y1 mode amplitude is evaluated in terms of
these model parameters. Below we will give a map of these
model parameters in terms of fcþ; c−; Fg and then provide
analytic expressions for their evaluations. We limit our-
selves to i ¼ 3 that cover up to double dip cases in
Eq. (101). With α ≲min ðα3; αUÞ the general map is

V0 ≈ cþ; ð128Þ

V1 ≈ jmin ðm2
1 − _e1 · _e1Þj; ð129Þ

V2 ≈ A2hβ2i; ð130Þ

T0 ¼ 0; ð131Þ

T1 ≈ Tc −
�
3.11 − 1.05α

2F

�
; ð132Þ

T2 ≈ Tc þ
�
3.11 − 1.05α

2F

�
; ð133Þ

with the additional second dip for α≳ α2 given by the
following expressions:

V3 ≈

8<
:

ð _e21Þmaxe
−3ðT3−TcÞ; Ae−3=2ðT3−TcÞ

2F2 > 0.15;

ð _e21Þmax

	
_gsðT3Þ
_gsðTcÞ



2
; Ae−3=2ðT3−TcÞ

2F2 < 0.15;
ð134Þ
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ϕ−sðT3Þ ≈ F for T3 > Tc; ð135Þ

Δ3 ≈
0.72ffiffiffiffiffiffi
V3

p : ð136Þ

Further, the background mass parameter VB for single and
double dip cases is defined as follows:

VB ≈

(
c− þ 1

ðTL−T2Þ
	
1063
3072

þ 106793c−
393216cþ



; α < α2;

VB2ðTÞ; α2 < α;
ð137Þ

TB ≈
�
TL; α < α2;

T3 þ Δ3 þ 2
Λ ; α2 < α;

ð138Þ

VB2ðTÞ≡

8>><
>>:
c−; T2<T<T3þΔ3;
Λ
2

R
∞
0

c−cþðcþn4−c−Þð−1þn4Þ
ðcþn4þc−Þ2 dT; T3þΔ3<T<TB;

0 otherwise;

ð139Þ

where

Tc ≈ Tz −
0.7
αF

; ð140Þ

−A≡minðξÞ; ð141Þ

hβ2i ≈ F−2
�
0.138þ :14

1.1þ exp ð11ðα − 0.72ÞÞ
�
; ð142Þ

gsðT ≳ T2Þ ≈ ϕ2
−s −

F4

ϕ2
−s
; ð143Þ

Ω≈2.05Fþ 0.133Fþ0.045F2

1þexpð7.86ðα−0.744þ0.0008FÞÞ ; ð144Þ

n≡ nðTÞ ≈ 1 −
1

3
exp ð−ΛTÞ; ð145Þ

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c−=9

p
; ð146Þ

n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8c−=9

p
; ð147Þ

TL ≈ T2 −
�
3

c−

�
ln

�
2 sin ðπn1Þ22−n1Γð1 − n1Þϕ−minxn1

πð3ϕ−sðT2Þx∂xJn1ðxÞ þ ð3ϕ−sðT2Þ þ 2 _ϕ−sðT2ÞÞJn1ðxÞÞ

�
x¼A

ffiffi
2

p
3Ω̄

for c− ≪ 1; ð148Þ

Λ ≈
3

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−

4c−cþ
c− þ cþ

s
; ð149Þ

3

F
≈
J1ð

ffiffiffi
2

p
A=ð3Ω̄ÞÞffiffiffi

2
p

A=ð3Ω̄Þ

����
α¼α2

; ð150Þ

where ϕ−sðT > T2Þ is given in Eq. (E10), and ϕ−sðT2Þ
and _ϕ−sðT2Þ are given in Eq. (E14), while
ϕ−min ¼ ϕ−ðT∞Þ. Quite noticeably, the analysis turns
very arduous by the addition of a second dip. Precisely
for this reason, in Sec. VII we will give closed form
analytic expressions for the axion isocurvature spectrum
corresponding to single dip cases only. Although we will
sketch the motivation and the details of the derivation in
the Appendixes F–I, here we describe the intuition behind
this map of the approximation parameters to the under-
lying model.
The parameter V0 represents the effective axion mass

before T1. During this time the mass is nearly constant
because the background fields are following a flat direction
such that the potential does not change as the fields change.
The V1 dip at T1 ≈ Tc is the type of frame-dependent
eigenvalue rotation mass effect seen in Eq. (129). It is

characterized by the superposition of the −ð _e1Þ2 and m2
1

dips close to Tc with a phase separation μ between the
lighter eigenvalue and the corresponding eigenvector rota-
tion gradient effects. The phase separation is α dependent.
Fields with small α tend to have an almost coincident
superpositioning of the dips and thus correspond to a
small μ. This α dependence can be understood by referring
to the location of the two dips and their subsequent
superposition. From Eq. (157) and Appendix F, we infer
that the location of the first −ð _e1Þ2 dip corresponds to the
time when the ϕþ field tends to F. Meanwhile Fig. 2
suggests that fields with small α transition close to F and
the m2

1 dip reaches a minimum soon after transition.
Therefore, as α increases, the background fields transition
farther from F such that the separation between the two
dips widens, resulting in an increased phase separation μ.
For smaller α, the two dips are almost coincident, resulting
in a smaller phase separation.
After the V1 dip, at time T2, there is a jump in the

effective mass squared due to the strong nonlinear inter-
actions through ξϕ� Eq. (21). The jump amplitude is
approximately V2, and after the jump, there is an expo-
nential decay (see Fig. 3) which captures the results
of the UV modes that have been integrated out. This
UV mode averaging has the effect of multiplying the
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ETSP A ∼OðF2Þ by the amplitude of the UV mode A
divided by the propagator 1=k2 ∼ 1=F2, resulting in

A2

F2
∼OðF2Þ: ð151Þ

V3 represents the next ð _e1 · _e1Þ dip, whose physics is
similar to the first ð _e1 · _e1Þ dip modified by the Hubble
friction. Meanwhile, the parameter VB for α < α2 is a
constant of Oðc−Þ that represents the average mass squared
functionm2

B over the time interval from ½T2; TB�, as detailed
in Appendix I. The dynamics of the m2

B function is
controlled by the slow-varying IR components of the
background fields. For α ≲ α2 it is effectively positive
and leads to the decay of the mode amplitude, whereas for
α > α2 it is negative and results in mode amplification.
The width of each dip can be evaluated analytically by

taking the ratio of the net area under the peak to its
maximum amplitude. In principle, the width of a ð _e1 · _e1Þ
dip increases for larger i as the amplitude of each dip
decreases. This can be qualitatively understood by the fact
that the velocity of the fields governing the dip widths are
proportional to the amplitude of the fields which is propor-
tional to the square root of

_e1 · _e1 ∼
X
nm

dnmðϕþ;ϕ−Þ
_ϕn

_ϕm

F2
: ð152Þ

Hence, as shown in Appendix F, the dip width can be
parametrized as

Δð _e1Þ2 ≈
0.72ffiffiffiffiffiffiffiffiffiffiffiffi
_e1 · _e1

p : ð153Þ

The fact that the 0.72 appears in the above expression
approximately independently of other parameters is due to
the fact that we are focusing on the parametric region where
the maximum field excursion parametric dependences are
canceled (see Appendix F). Using the analytically obtained
polynomial fit for ð _e1 · _e1Þmax from Appendix F, the width
Δ of the first ð _e1 · _e1Þ dip can be expressed in terms of α as

Δð _e1Þ2max
≈
ð2.93 − 1.86αÞ

F
∀ 0.25 ≲ α ≲ 1; ð154Þ

which highlights that the dip width reduces with an
increasing α or with the incoming velocity of the ϕþ field.
A similar expression for the width T2 − T1 of the V1 dip

is given below:

T2 − T1 ≈
ð3.11 − 1.05αÞ

F
∀ 0.25 ≲ α ≲ 1: ð155Þ

By rewriting the width T2 − T1 in terms of Δð _e1Þ2max
, we

obtain the following relation:

T2 − T1 ≈ Δð _e1Þ2max
þ α

F
: ð156Þ

As expected the width of the V1 dip is broader than the
width of the first ð _e1 · _e1Þ dip. For small α ∼Oð0.1Þ
scenarios, the width of the V1 dip is nearly equivalent to
that of the ð _e1 · _e1Þ. This situation corresponds to a small
phase separation μ such that the −ð _e1 · _e1Þ and m2

1 dips
almost coincide.
Next within our model, the logarithmic functional

dependence of T3 − T1 comes from the exponentially
decaying frequency of _e1 · _e1 oscillations, as explained
in Appendix F.
From the above parameter assignments, we shall now

give expressions for ð _e1 · _e1Þmax and A. These are defined
as follows:

ð _e1 · _e1Þmax ≈
�

_g
5F2

�
2
�
1þ 4

5

�
gþ F2

F2

�
þ 2

25

�
gþ F2

F2

�
2

−
28

125

�
gþ F2

F2

�
3
�����

ϕþ→F
; ð157Þ

g ¼ M̃2
11 − M̃2

22; ð158Þ

M̃2
11 ≡ cþ þ ϕ2

−; ð159Þ

M̃2
22 ≡ c− þ ϕ2þ; ð160Þ

_g ¼ 2 _ϕ−ϕ− − 2 _ϕþϕþ; ð161Þ

where the ϕ� fields are as defined in Eqs. (67) and (68). By
ϕþ → F, we are denoting that functions such as ϕ−ðTÞ are
to be evaluated at the specific time TF when jϕþðTFÞj ¼ F.
Next we estimate the amplitude A of the flat deviation

ξðϕþ;ϕ−Þ. As shown in Appendix D, ξ can be approx-
imately represented via sinusoidal oscillations that drive the
resonant exchange of energy between the ϕþ and ϕ− fields.
For T > Tc, we can express ξ as

ξðϕþ;ϕ−Þ ≈ −Ae−3
2
ðT−TmÞ cos

�Z
T

Tm

ΩðtÞdt
�
; ð162Þ

where Tm ≈ Tc þOð1=FÞ and Ω ∼OðFÞ is an approxi-
mate frequency of oscillations. In order to determine A, we
solve for the ϕ fields post transition using another set of
cubic polynomials with primed coefficients

parameters for T > Tc∶p0
i; q

0
i; ð163Þ

where the primed coefficients are used to distinguish
between the nonprimed ones in Eqs. (67) and (68). The
eight coefficients are evaluated using similar expressions
as in Sec. IV B, where the initial conditions must now
be evaluated at the resonant transition time T1 ¼ Tc
(instead of Ts) and choose instead the interpolation point

ANALYTIC TREATMENT OF UNDERDAMPED AXIONIC BLUE … PHYS. REV. D 105, 123511 (2022)

123511-15



TI ¼ Tc þ ε [where ε is defined in Eq. (88)]. Finally we
evaluate A as

−A≡minðξÞ ð164Þ

¼ minðϕþðTÞϕ−ðTÞ − F2Þ: ð165Þ

For α ≲ 1 cases where the minima of ξ roughly corresponds
to the first minima of ϕþ, we can estimate A by evaluating
the location Tm where _ϕþðTmÞ ¼ 0,

Tm ¼ Tc þ δTm; ð166Þ

δTm ≡ −p0
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02
2 − 3p0

1p
0
3

p
3p0

3

; ð167Þ

which gives us

−A ≈ ξðTmÞ ¼ −
ϕ̈þ
ϕ−

����
T¼Tm

ð168Þ

≈ −
2p0

2 þ 6p0
3δTm

q00 þ q01δTm þ q02δT
2
m þ q03δT

3
m
: ð169Þ

The coefficients turn out to be

q00 ∼ p0
0 ∼OðFÞ; ð170Þ

q01 ∼ p0
1 ∼ q02 ∼ p0

2 ∼OðF2Þ; ð171Þ

q03 ∼ p0
3 ∼OðF3Þ; ð172Þ

and the actual parametric dependence of q03 and p
0
3 with c�

is extremely complicated, as can be seen in Sec. IV B. We
show comparisons with the numerical results for cþ ¼ 2.35
in Figs. 5 and 6.
Remarkably, despite the complicated parametric depend-

ence of Eq. (172) in terms of cþ, the parametric dependence
of A in terms of α is very simple, as can be seen in Fig. 6.
For α ≲ 2, we can give a third order polynomial fit for the
amplitude A,

Aðα;c−¼0.5Þ≈F2ð−0.089þ0.479αþ0.599α2−0.170α3Þ;
0.25≤α≲2; ð173Þ

where all the cþ dependence is contained in αðcþÞ through
Eq. (74). In this expression, α is not bounded from above
by αU ∼ 1 because the determination of A or ð _e1Þ2max is
independent of mode decoupling or ETSP evaluation.

FIG. 6. Equation (169) using an analytic cubic order polynomial expansion is compared with the value of A obtained by putting the
numerically solved ϕ� into Eq. (165). Fiducial parameter set PA of Fig. 5 is used.

FIG. 5. Shown are the polynomial background ϕ�ðTÞ sol-
utions given in Eqs. (67) and (68) with parameters changed
to those of Eq. (163). These solutions accurately track the
numerical solutions over the interval ½Tc; Tm�, where Tm is the
time at which the minimum of the ϕþðTÞ occurs. Shown in the
figure for comparison is the numerical solution with cþ ¼ 2.35
and a standard fiducial set PA of parameters that we will
use throughout this paper: PA ≡ fF ¼ 20.2; c− ¼ 0.5; ε0 ¼ 0;
ϕþð0Þ ¼ 0.1Mp=Hg.
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Instead the above evaluation is valid as long as the ϕ fields
can be successfully expressed via a cubic expansion. As α
gets close to 2, the jϕþj field becomes much larger than F
after crossing zero. Correspondingly the ϕ− field undergoes
rapid oscillations due to the heavy mass coming from
jϕþj > F. These rapid ϕ− oscillations cannot be captured
by the cubic polynomial in T and the analytic method
described above breaks down. Consequently, the analytic
estimation of the minima of ξ soon after Tc is lower than the
one obtained numerically, as shown in Fig. 6.
Note that α depends only on cþ in Eq. (74) because by

definition we are neglecting the backreaction from ϕ− in
considering the initial velocity condition of _ϕþ. This type
of parametrization is natural since _ϕþ is very large [OðF2Þ]
in the resonant scenario where we are giving our analytic
results. Nonetheless, given that the analytic results are
formulaically (as opposed to numerically) fitting the actual
background field solutions to polynomials before and after
Tc that contain c−, our analytic results fully capture the c−
dependence in the resonant cases considered here.
We remark that the presence of the V3 dip is

implicitly dependent upon the strength of the flat-deviation
amplitude A. The V3 dip is associated with a second _e1: _e1
dip which occurs when the two background fields cross
each other again after transition at Tc. This second crossing
after Tc is controlled by the condition given in Eq. (F11)
that is dependent upon A and F. Including the expression
for the amplitude A from above, we find that the second dip
occurs for α≳ α2.
Although the interpolation method used in this analytic

result seems somewhat ad hoc, the results are consistent
with a more systematic expansion around Tc, as described
in Appendix A.

B. The isocurvature spectrum

The axion isocurvature spectrum is given in Eq. (27).
We note that

lim
T→T∞

I− ¼ −rIþ; ð174Þ

where we define r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ=c−

p
and simplify Eq. (27) further

in terms of the y1-mode function,

Δ2
sðkÞ ≈ ω2

a
4K3

π2
jy1ðK; T∞Þj2

rð1þ r4Þ
ð1þ r2Þ3

1

θ2þF2
: ð175Þ

The y1ðK; T∞Þ is solved using the model of Eq. (101), the
approximations of Sec. V B, and its associated model
parameters in Sec. VI A. Let us now sketch the steps
involved in a bit more detail.
First, we set up the approximate BD equivalent

leading adiabatic order boundary condition for the
y1ðK; TÞ-mode equation at time T0 for K modes that
satisfy K2τ20 ≫ cþ − 2:

y1ðK; T0Þ ¼
1

aðT0Þ
ffiffiffiffiffiffiffi
2K

p e−iKτ0 ;

∂Ty1ðK; T0Þ ¼
ðiK − aðT0ÞÞ
ðaðT0ÞÞ2

ffiffiffiffiffiffiffi
2K

p e−iKτ0 ; ð176Þ

where

τ≡ −
1

aðTÞH ð177Þ

is the conformal time with the scale factor aðTÞ ¼ eT, and
evaluate the first scattering matrix SðT1; T0Þ of Eq. (108)
using the solutions of Sec. V B evaluated with Eqs. (110)
and (111). Using the solution from SðT1; T0Þ for the region
½T0; T1� we obtain the initial conditions for y1ðK; TÞ at
T ¼ T1, when the nonadiabatic rotation of the mass
eigenvector becomes strong. Next until T2 when the mass
squared jumps, the solutions used to evaluate SðT2; T1Þ are
again Eqs. (110) and (111), but with a tachyonic constant
mass squared. Afterward, until time T3 when the rotation of
the mass eigenvector becomes strong again, the effective
frequency squared is

V2e−3ðT−T2Þ=2 ð178Þ

(this is what we will call the jump ETSP, which is obtained
after integrating out the UV modes). The solution in this
region to be used in SðT3; T2Þ of Eq. (108) is governed by
the superposition of Eqs. (124) and (125) via the approx-
imations of the UðTÞ in Eq. (118). The initial conditions at
T2 should be modified due to the UV integration (high-
lighted in Appendix C). This is primarily done by scaling
the y1ðT2Þ and its derivative by a Q matrix as follows:

Q ¼
�

1 0

−
ffiffiffiffiffiffi
V2

p
1

�
: ð179Þ

The region ðT2; T3Þ is subdivided into time intervals whose
boundaries are dependent on K and the amplitude of the
jump ETSP through Eq. (119). The gentle time-dependent
changes in UðTÞ exponents are most critical for the
intermediate modes that satisfy the condition Ke−T < 1
slightly after the transition time T1 while the jump ETSP
is still significant. Starting at time T3, the cycle repeats
with the eigenvector rotation becoming strong, although
with a smaller magnitude than at T1. The final y1ðK; T∞Þ is
obtained via Eq. (108), where we select TN ¼ T∞. In our
calculations we set T0 ¼ 0 and T∞ ¼ 35, after which the
background fields oscillations are negligible.
Next we remark that this model has been constructed

using only the lightest mass eigenmodes to keep it
analytically tractable. Even then, we see that the analytic
results are complicated and borders on “intractable.”
Hence, this model is applicable up to a maximum K mode
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before the coupling from the heavier y2 mode becomes
significant: i.e., K ≲ K2,

K2 ≡m2

aðTcÞ
að0Þ ð180Þ

[where m2 ∼OðFÞ]. However, if K becomes sufficiently
large far beyond this heavy-mode coupling values, the
dynamics eventually becomes identical to the usual mass-
less axion dynamics. This usual plateau isocurvature
spectrum exists for K ≳ KP, where

KP≈

8<
:

aðT2Þ
að0Þ expðTL−T2Þ

	
1
3ra


1
Λ; α<α2;

aðT2Þ
að0Þ expð2ðT4−T2ÞÞ

	
1
3ra


1
Λ; α2<α<α3;

ð181Þ

Λ ≈
3

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 −

4c−cþ
c− þ cþ

s
; ð182Þ

corresponding to the wave vector modes that leave the
horizon after the background fields have settled to a
ð1 − raÞ fraction of their respective minima. Therefore,
the only part of the spectrum that we do not have a
prediction for (in this small α case) is the K range ½K2; KP�.
In Fig. 7, we give plots of the axion isocurvature

spectrum generated by the above mass model for cþ values
2.285, 2.348, and 2.35 with distinct initial conditions
corresponding to increasing values of α of 0.52, 0.97,
and 1.13 respectively.8 For comparison, numerically
obtained spectrum is also included. From the plots we
infer that the mass model is successful in generating the
isocurvature spectrum within the parametric region of
applicability. The model generates a blue power spectrum
for small K modes with an approximate spectral index
nI − 1 ≈ 3. The spectrum peaks at the first bump and
subsequently undergoes oscillations that quickly die away.
As we shall see later the location of the first bump and the
frequency of subsequent spectral oscillations (bumps) is
related to the transition time Tc. The discrepancies between
the numerical and analytic computations are noticeable
for K modes beyond the first bump because during the
time these modes exit the horizon, the axion mass is
oscillating with a large amplitude in the resonant scenarios.
As an example, consider in Fig. 7 the case of cþ ¼ 2.35 for
which the discrepancy is the largest for the K region
½5 × 104; 105�.
These discrepancies can be explained through the

limitations of ξ modeling and the integrating out approxi-
mation. More specifically, we noted in Sec. V B that the

analytic approximation of the ETSP UðTÞ in Eq. (118) to
solve the y1-mode function is most critical for these
intermediate K modes as long as the modes leave the
horizon while the jump ETSP is still significant. The jump

FIG. 7. These plots illustrate the analytic spectrum computed
using Eq. (108) for the parameter set PA used in Fig. 5 except
with ε0 also varied [recall ε0 ¼ −3=2 corresponds to a dynami-
cally reasonable initial velocity situation of _ϕþð0Þ¼−3ϕþð0Þ=2]
as denoted in the title of each plot. They are compared with the
Runge-Kutta solution to the mode equation (23). The interesting
feature of the second and the third peaks being higher than the
first peak will be explained in Sec. VII.

8The cþ ¼ 2.35 case has a corresponding α ¼ 1.128 which is
slightly larger than αU defined in Eq. (94), but since this is only at
the cusp of the approximations breaking down, the agreement
with the numerical results are reasonable.
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ETSP V2e−3ðT−T2Þ=2 is obtained after the UV modes have
been integrated out, as shown previously in Fig. 3 and
detailed in Appendix H. In the UV integration procedure,
we have made the assumption that the flat deviation
ξ is purely sinusoidal with a constant amplitude and a
slow-varying time-dependent frequency OðFÞ. Post UV
integration, we averaged out the remaining slow-varying
prefactors to obtain a constant amplitude jump ETSP V2

(see Appendix H for details). These assumptions along with
a pure harmonic approximation can be insufficient to
accurately map the sensitivity of the spectrum to subtle
variations of the mass eigenvalue for the intermediate
modes that leave the horizon around the same time.
One then concludes that background fields with weaker

resonance OðξÞ < F2

2
(since that situation will be less

sensitive to the limitations of ξ modeling in general) will
show a far smaller discrepancy between numerical and
analytical spectra for these intermediate modes, as observed
for cþ ¼ 2.285. Nonetheless, note that the mass model
successfully generates the distinct feature of a larger second
bump and a larger third bump than the first for cþ ¼ 2.348
and cþ ¼ 2.35, respectively. We will discuss this more in
the next section.

VII. EXPLANATION OF THE FEATURES OF
ISOCURVATURE SPECTRUM

Wewill now give analytic expressions for y1ðK; TÞmode
functions for a specific class of simplified mass model. This
will allow us to explain the parametric dependence of the
isocurvature spectrum at different scales and provide closed
form analytic expressions for the isocurvature power
spectrum in a certain restricted region of the underlying
model space.
For the following discussion, we will restrict ourselves to

single dip cases corresponding to α < α2. Under this
condition, our time-dependent piecewise mass model in
Eq. (101) simplifies to the following form:

m2≈

8>><
>>:
V0; T0<T<T1;

−V1; T1<T<T2;

VBsqwðT;T2;TB−T2ÞþV2

2
e−3ðT−T2Þ; T2<T<T∞;

ð183Þ

where the mass model is now limited to a single dip −V1,
an exponentially decaying jump ETSP V2, and an Oðc−Þ
mass squared term VB. As explained in Sec. V B, the above
mass model is used within the corresponding y1 differential
equation of Eq. (109).
Furthermore, as discussed in Sec. V B, the above differ-

ential equation is analytically intractable for certain K
modes where the following two terms are of similar orders
of magnitude at T2

K2e−2T2e−2ðT−T2Þ;
V2

2
e−3ðT−T2Þ:

To solve this system analytically, we subdivided the time
region ½T2; T∞� into regions where either one of the
aforementioned two terms is dominant over the other.
Hence, in order to obtain a simplified closed form analytic

expression for the isocurvature spectrum for α < α2 cases,
wewill utilize the following approach. As a first step, wewill
evaluate the isocurvature power spectrum with the V2 term
neglected. This is clearly applicable to all resonance cases
where V2 < Oðc−Þ. This assumption immensely simplifies
our model and consequently allows us to obtain tractable
analytic expressions. Subsequently, the effect of the V2 jump
ETSP is added in the form of a correction factor fcorrection.
Through this two-step procedure, we give an approximate
analytic expression for the isocurvature power spectrum
which will allow us to discover some important generic
features. If one is only interested in the results, we refer the
reader to Eqs. (222) and (223). We will now give details
regarding the aforementioned approach.

A. Step 1: V2 < Oðc −Þ
When V2 < Oðc−Þ, the mass model simplifies to

m2 ≈

8<
:

V0; T0 < T < T1;

−V1; T1 < T < T2;

VBsqwðT; T2; TB − T2Þ; T2 < T < T∞:

ð184Þ

Defining u as

y1 ¼ e−
3
2
Tu; ð185Þ

Eq. (109) becomes

∂2
Tuþ ðK2e−2T þm2 − 9=4Þu ¼ 0; ð186Þ

which has an incoming BD normalized solution

uðK;T < T1Þ≈
ffiffiffi
π

p

2
ffiffiffi
2

p eiðiωπ2 þπ
4
ÞH1

iωðKe−TÞ ∀ Ke−T0 ≫ jωj;

ð187Þ

with ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ − 9=4

p
for V0 ¼ cþ.

For the rest of our discussion, we will use the following
asymptotic forms of the Hankel function H1

iωðzÞ for a real
argument z:

H1
iωðzÞ≈

8<
:

1þicotðiωπÞ
Γðiωþ1Þ ðz

2
Þiω− iΓðiωÞπ ðz

2
Þ−iω; 0<z≪

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ iω

p
;ffiffiffiffi

2
πz

q
eiðz−iωπ

2
−π
4
Þ; z≫

���−ω2−1
4

���: :

ð188Þ
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Next we solve within T1 < T < T2 for a single dip −V1

and express the solution at T ¼ T2 as

�
u

∂Tu

�
T¼T2

¼ cosh½−bΔT�
�

1 − tanh½−bΔT�
b

−b tanh½−bΔT� 1

�

×

�
u

∂Tu

�
T¼T1

; ð189Þ

with ΔT ¼ T2 − T1 and

b2 ≡ V1 þ 9=4 − K2e−ðT2þT1Þ: ð190Þ

Note that Eq. (189) is the simplified result coming from the
average value for the K2e−2T term within the short interval
ΔT, while V1 containing the initial kinetic energy infor-
mation generically satisfies

V1 ∼OðF2Þ ≫ Oð10Þ: ð191Þ

Next we solve within ½T2; T∞�. To further simplify our
evaluations, we consider that for VB ≪ 9=4, the effect
of the model parameter VB can be factored in through
the exponential decay of the final mode amplitude.
Equivalently, consider the differential equation

∂2
Tuþ ðK2e−2T þ VB − 9=4Þu ¼ 0: ð192Þ

Then the mode function uðTÞ has the following asymptotic
solution:

lim
T→T∞

uðT; VB ≠ 0Þ ≈ lim
T→T∞

eð−
3
2
þ
ffiffiffiffiffiffiffiffi
9
4
−VB

p
ÞðT−T̃ÞuðT; VB ¼ 0Þ;

ð193Þ

where uðT; VB ≠ 0Þ is the solution of Eq. (192) withVB ≠ 0,
while uðT; VB ¼ 0Þ is the solution with the VB term equal to
zero.Hence, if we neglect theVB term and solve foru in terms
of Bessel functions of order 3=2 (similar to amassless axion),
we obtain the final mode function as follows:

lim
T3→T∞

�
y1

∂Ty1

�
T¼T3

¼ D
cosh½−bΔT�
K

3
2

ffiffiffiffiffiffiffiffiffiffiffi
−Kτ2

p
"

3 cos½−Kτ2�
2

−
	

3=2
−Kτ2

þ Kτ2


sin½−Kτ2� − cos½−Kτ2� þ sin½−Kτ2�

−Kτ2

0 0

#

×

"
1 − tanh½−bΔT�

b

−b tanh½−bΔT� 1

#�
u

∂Tu

�
T¼T1

; ð194Þ

where τ2 is the conformal time corresponding to the time T2 [see Eq. (177)] and the factor

D≡ eð−
3
2
þ
ffiffiffiffiffiffiffiffi
9
4
−VB

p
ÞðT∞−T̃Þ ð195Þ

accounts for the mode amplitude decay (amplification) through a positive (negative) VB parameter as explained previously.
Using the simplified expression in Eq. (194), we examine the axion isocurvature spectrum for our model for differentK ranges.

1. Modes that leave the horizon early: −Kτ2 ≪ 1

Starting with the above equation, we simplify in terms of −Kτ2 ≪ 1,

lim
T3→T∞

�
y1

∂Ty1

�
T¼T3

≈D
cosh½−bΔT�
K

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke−T2

p
� ðKe−T2 Þ2

2

ðKe−T2 Þ2
3

0 0

��
1 − tanh½−bΔT�

b

−b tanh½−bΔT� 1

��
u

∂Tu

�
T¼T1

≈D cosh½−bΔT�e−3
2
T2

� 1
2

1
3

0 0

��
1 − tanh½−bΔT�

b

−b tanh½−bΔT� 1

��
u

∂Tu

�
T¼T1

; ð196Þ

lim
T→T∞

y1ðK; TÞ ≈ e−
3
2
T2D cosh ½bΔT�

ffiffiffi
π

p

2
ffiffiffi
2

p eiðiωπ2 þπ
4
Þ
��

1

2
−
b
3
tanh ½−bΔT�

�
H1

iωðKe−T1Þ

þ
�
1

3
−
tanh ½−bΔT�

2b

�
∂TH1

iωðKe−T1Þ
�
: ð197Þ

Since b2 ∼ V1 ≫ 1 [(see Eq. (191)], the mode amplitude is dominated by H1
iωðKe−T1Þ rather than its derivative,

lim
T→T∞

y1ðK; TÞ ≈ e−
3
2
T2D cosh ½bΔT�

ffiffiffi
π

p

2
ffiffiffi
2

p eiðiωπ2 þπ
4
Þ
��

1

2
−
b
3
tanh ½−bΔT�

�
H1

iωðKe−T1Þ
�
; ð198Þ
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where ΔT ¼ T2 − T1. Observe that the mode amplitude is
dependent upon the freeze-out Hankel function at T ¼ T1

such that Ke−T1 ≪ 1. At the outset, the isocurvature
spectrum appears to have a blue spectral index nI ≈ 4
for these scales. However for ω < 1, the Hankel function
has K dependence as given in Eq. (188). We apply this to
the Hankel function in our case where Ke−T1 ≪ 1 ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iω

p
to yield the following K dependence for the

power spectrum:

Δ2
sðKÞ∝K3

����1− i
ΓðiωÞΓðiωþ1Þ
πð1þ icotðiωπÞÞe

−2iω lnðKe−T1
2

Þ
����2: ð199Þ

For ω < 1, the term ΓðiωÞΓðiωþ1Þ
πð1þi cot ðiωπÞÞ ∼Oð1Þ, such that the

power spectrum has oscillations in the long wavelength
region with a log-K dependence. Therefore, one observes
deviation of the spectral index from 4 which is sinusoidal in

log-K. These deviations decay as e−π
ffiffiffiffiffiffiffiffiffiffiffiffi
cþ−9=4

p
and become

insignificant for large cþ fields or when ω > 1.

2. Scales near the first bump (−Kτ1 → 1)

Next we consider K modes that approach −1=τ2 such
that the modes leave the horizon after the axion effective
frequency squared undergoes oscillations. We start with
Eq. (194) giving us the mode amplitude y1ðK; TÞ:

lim
T→T∞

y1ðK; TÞ ≈D
cosh½−bΔT�
K

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke−T2

p
��

3

2
cos½−Kτ2� −

�
3=2

Ke−T2
− Ke−T2

�
sin½−Kτ2�

��
u −

tanh½−bΔT�
b

∂Tu

�

þ
�
− cos½−Kτ2� þ

1

Ke−T2
sin½−Kτ2�

�
ð−b tanh½−bΔT�uþ ∂TuÞ

�
: ð200Þ

Since b2 ∼ V1 ≫ 1 [Eq. (191)], the mode amplitude simplifies as

lim
T→T∞

y1ðK; TÞ ≈D
cosh ½bΔT�
K

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke−T2

p
ffiffiffi
π

p

2
ffiffiffi
2

p eiðiωπ2 þπ
4
Þ
��

3

2
þ b tanh ½−bΔT�

�
cos½−Kτ2�

−
1

Ke−T2

�
3

2
þ b tanh ½−bΔT� − ðKe−T2Þ2

�
sin½−Kτ2�

�
H1

iωðKe−T1Þ: ð201Þ

Putting this into Eq. (175), we find the isocurvature amplitude to be proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

sðKÞ
q

∝
jeiðiωπ2 þπ

4
ÞH1

iωðKe−T1Þjffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke−T2

p
��

3

2
þb tanh ½−bΔT�

�
cos½−Kτ2�−

1

Ke−T2

�
3

2
þb tanh ½−bΔT�− ðKe−T2Þ2

�
sin½−Kτ2�

�
:

ð202Þ

The location of the first bump Kfirst-bump is determined by
solving

d
dK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

sðKfirst-bumpÞ
q

¼ 0 ð203Þ

since one can show that there are no small oscillatory
features in the rising part of the spectrum in the region
−Kτ1 < 1. To solve for the peakKfirst-bump, we approximate
T2 ≈ T1 since T2 − T1 ¼ ΔT ∼Oð1=FÞ ≪ 1 to obtain the
following transcendental equation for the small cþ − 2

limiting case Ke−T1 ∼ 1 ≫ jω2 − 1
4
j:

�
1 −

B
z2

�
cotðzÞ ¼ Bðz2 − 2Þ

2z3
; ð204Þ

cot z ¼ 2 − z2

2z
; ð205Þ

where B ¼ 3=2þ b tanh ½−bΔT� and z ¼ Ke−T2 . Since
B ≫ 1, the solution to the above expression is nearly
independent of B or more explicitly the properties such as
the amplitude and velocity of the field oscillations after Tc.
We obtain the solution of

Kfirst-bumpe−T2 ¼ π þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 − 8

p

2
þOðB−1Þ ≈ 2 ð206Þ

analytically by expanding in the limit B ≫ 1.
Calculations in large cþ − 2 limiting case Ke−T1 ∼ 1 ≪

j ffiffiffiffiffiffiffiffiffiffiffiffiffi1þ iw
p j yield similar results by solving an analog of
Eq. (204):
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cotðzÞ ≈
�
1

z
−
2z
3

�
þO

�
1

B

�
ð207Þ

leading to

Kfirst-bumpe−T2 ¼ 1

16

	
9π−6þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81π2−108π−156

p 

≈2.48:

ð208Þ
Thus, we have shown that the isocurvature power has the
first large bump at approximately

Kfirst-bump ¼
k

að0ÞH ≈ 2eT2 ð209Þ

with 25% accuracy. Equation (209) shows that the location
of the first bump is the scale that leaves the horizon at time
T2 near the resonant transition time Tc. Since the transition
Tc is dependent upon the mass cþ and the initial conditions

ϕþð0Þ and ε0 [see Eq. (74)], background fields with smaller
α tend to transition later such that they have a larger Tc.
Under these circumstances the corresponding first-bump
locationKfirst-bump will be pushed to even smaller scales and
become unobservable due to limitations in the experimental
sensitivity of short length scales. This is qualitatively the
same as the situation in which cþ < 9=4, which was the
subject of previous work on this topic [75].

3. Scales that lie within oscillating spectrum:
3 ≲ −Kτ2 < K2

Next we consider K modes satisfying 3 ≲ −Kτ2 < K2

that leave the horizon after the axion effective frequency
squared undergoes oscillations. The upper limit for these K
modes is set by the heavy-mode coupling as elucidated in
Eq. (180). Meanwhile, Eq. (194) gives the mode amplitude
y1ðK; TÞ in the limit Ke−T1 ≫ jω2 − 1=4j to be

y1ðK; T∞Þ ≈D
e−iKτ1

2K3=2

�
cosh ½−bΔT�

��
−ieΔT=2 −

3e−ΔT=2

−2Kτ2

�
cos ½−Kτ2� þ

�
−e−ΔT=2 þ ieΔT=2

−Kτ2

�
sin ½−Kτ2�

�

þ sinh ½−bΔT�
��

i3eΔT=2

2b
þ be−ΔT=2

−Kτ2

�
cos ½−Kτ2�þ

�
−ieΔT=2Kτ2

b
−
be−ΔT=2

K2τ22

�
sin ½−Kτ2�Þ

�
: ð210Þ

Considering that ΔT ∼Oð1=FÞ ≪ 1, we can rewrite this expression as

lim
T→T∞

y1ðK;TÞ≈D
e−iKτ1

2K3=2

�
cosh ½−bΔT�ð−ieiKτ2Þþsinh ½−bΔT�

��
b

−Kτ2

�
cos ½−Kτ2�þ

�
i
−Kτ2
b

�
sin ½−Kτ2�

��
: ð211Þ

We notice from the above expression that the spectrum
oscillates via the cos ½−Kτ2� term for the intermediate K
modes (scales) about a background with an initial decay
envelope proportional to 1=K2. The amplitude of these
oscillations is controlled by the dip amplitude V1 operating
for a short time intervalΔT [see Eq. (129)], which is largely
controlled by the mass squared eigenvalue and eigenvector
rotation. Meanwhile, the K spacing of these oscillations is
approximately

Δk≡ ΔKað0ÞH ≈ πaðT2ÞH ð212Þ
≈Kfirst-bumpað0ÞH: ð213Þ

Therefore, the location of the first bump and the frequency
of the first few spectral oscillations is directly related to the
transition time Tc of the background fields. This can be
understood through the following discussion.
For our simplified model, as the background fields

transition, the mass squared m2 dips to a negative ETSP
−V1 for a time period ΔT ¼ T2 − T1. For all K modes that
are still subhorizon at transition, the incoming mode
amplitude picks up a phase that is dependent upon the
momentum K of the mode sampled at the transition where

Tc ≈ ðT2 þ T1Þ=2. Later when these modes exit the hori-
zon the resulting mode amplitude is oscillatory in K space
with a K spacing that is dependent upon the transition
time Tc. As a result, the power spectrum for these scales
oscillates while the imaginary part of the phase controls the
amplitude of these oscillations. In Fig. 8 we plot the
isocurvature power spectrum for a representative example
highlighting the spectral oscillations.

4. Scales leave the horizon late: K > KP

As remarked near Eq. (181), for the plateau part of the
spectrum (K > KP), the isocurvature perturbation modes
return to the usual massless form. In this case, it is better to
work in the final massless axion basis. Because the axion
field a in Eq. (12) is not normalized canonically, the
canonically normalized axion is A ¼ a=

ffiffiffi
2

p
. This allows us

to write the plateau part of the spectrum as

Δ2
SðKÞ
ω2
a

¼ 4

�
HðtKÞ
2πAðtKÞ

�
2

ð214Þ

¼ 2

ðc−cþÞ1=2 þ ðcþc−Þ1=2
�

h
2πθþð0ÞF

�
2

; ð215Þ
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where K > KP and we have approximated HðtKÞ to be
constant [neglecting corrections of slow roll parameters
OðεÞ which are typically negligible in the physical scenar-
ios of interest in this scenario]. The appearance of h in
Eq. (215) is merely dividing out the scaling of Fa in
Eq. (20). This flat part of the spectrum has also been
numerically confirmed.

B. Step 2: Adding correction for the V2 term

Equation (194) gives the final mode amplitude for
axionic isocurvature perturbation for α < α2 cases consist-
ing of a −V1 single dip and a negligible V2 jump ETSP
where the effect of the VB parameter (average of m2

B) is
included through the exponential decay factor D2 in
Eq. (195). Using the expression for V2 under Eq. (129)
and the expression for A from Eq. (173), we infer that for F
scales greater thanOð20Þ, the amplitude of the resonant UV
oscillations is larger than Oðc−Þ such that the V2=2 term

cannot be neglected. Below we will briefly discuss the
corrections coming from V2.
Since V2 is positive, its inclusion in Eq. (101) for the

y1-mode function leads to a decay of all the modes that are
superhorizon at T2 [see the discussion below Eq. (112)].
Consequently, a significant V2 leads to a reduction in the
isocurvature power spectrum for a range of small K modes.
On the other hand, for all modes that are subhorizon at T2,
the effect is significantly diminished since the ETSP decays
exponentially with a decay factor of 3. Another way to
understand this correction is to note that a large resonant
UVoscillations of the background fields imply a significant
interaction energy compared to the mass energy at tran-
sition. This increases the effective mass for the perturbation
modes, thereby reducing their amplitudes.
We now give approximate analytic expressions to

include the effect of the jump ETSP V2 to the previously
derived isocurvature perturbation mode amplitude. The
effect of V2 ETSP is included as

fcorrectionðKÞ ≈
1þ lðKÞ

2
þ 1 − lðKÞ

2

0
BB@

	
Ke−T2 −

ffiffiffiffi
V2

2

q 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
Ke−T2 −

ffiffiffiffi
V2

2

q 

2

r
1
CCA; ð216Þ

where

lðKÞ ¼

2
64�a1 þ a2

3
þ c−

3a1 þ 2a2
27

�
2 sin ðπn1ÞΓð1 − n1ÞVn1=2

2 2−n1=23−n1

π
	
a1

ffiffiffiffiffiffi
2V2

p
3

∂xJn1ðxÞ
���
x¼
ffiffiffiffiffi
2V2

p
3

þ ða1 þ 2a3=3ÞJn1
	 ffiffiffiffiffiffi

2V2

p
3




3
75
−1

; ð217Þ

with a1;2;3 defined as

a1 ≈ y1ðK; T2Þ; ð218Þ

a2 ≈ ∂Ty1ðK; T2Þ; ð219Þ

a3 ≈ −a1
ffiffiffiffiffiffi
V2

p
þ a2: ð220Þ

Note that the expression lðKÞ is primarily derived for all

superhorizon modes Ke−T2 ≪
ffiffiffiffi
V2

2

q
. Since lðKÞ must tend

to 1 for modes that satisfy Ke−T2 ≫
ffiffiffiffi
V2

2

q
, we have

constructed fcorrectionðKÞ as a smooth function connecting
these two asymptotic values of lðKÞ. Hence, the above
correction factor is an interpolated approximation for the
intermediate modes lying between the two asymptotic
scales. An important consequence of this interpolation is
that it does not show a gradual shift in the location of the
first bump toward smaller K values due to an increasing V2

jump ETSP, as can be observed in Fig. 9. To accurately

model this gradual shift of the first bump, one needs to
evaluate an improved correction factor for the intermediate
modes by solving the scattering matrices of Sec. VA with
the V2 jump ETSP included explicitly. Furthermore, we
remark that lðKÞ is nearly a constant since Eqs. (189)
and (190) suggest that

∂Ty1ðK; T2Þ
y1ðK; T2Þ

≈ −b tanh ½−bðT2 − T1Þ�; ð221Þ

which is independent of K for all modes with Ke−T2 ≪ffiffiffiffiffiffi
V1

p
at T2.

C. Isocurvature power spectrum

In summary, the isocurvature power spectrum for back-
ground fields with αL ≲ α ≲ α2 [where αL and α2 are given
in Eqs. (93) and (150) respectively] corresponding to a
single −V1 dip can be expressed [where α is defined in
Eq. (74)] as follows:
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Δ2
SðKÞ ≈ jfcorrectionðKÞj2 ×

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

C1K3
���1 − i ΓðiωÞΓðiωþ1Þ

πð1þi cot ðiωπÞÞ e
−2iω lnð−Kτ1

2
Þ
���2; −Kτc ≪ 1;

C2D2jH1
iωð−Kτ1Þj2ð−Kτ2Þ

	
sin ð−Kτ2Þ

þð3=2þ b tanh ½−bΔT�Þ
	
cos½−Kτ2�
−Kτ2

− sin½−Kτ2�
ð−Kτ2Þ2




2
; 0.5 ≲ −Kτc < 3;

C3D2cosh2½bΔT�×���ð−ieiKτ2Þ þ tanh ½−bΔT�×	
ð b
−Kτ2

Þ cos ½−Kτ2� þ
	
i −Kτ2b



sin½−Kτ2�


���2; 3 ≲ −Kτc < K2;

C4 × 1; K > KP;

ð222Þ

with coefficients C1;2;3;4 given as

C1 ≈ CD2
π

8
e−ωπ cosh2 ½bΔT� e

−3T2

3

�
3

2
− b tanh ½−bΔT�

�
2
���� 1þ i cot ðiωπÞ

Γðiωþ 1Þ
����2;

C2 ≈ C
π

8
e−ωπ cosh2 ½bΔT�; ð223Þ

C3 ≈ C
1

4
;

C4 ≈ ω2
a

h2

2π2θ2þF2

�
r

1þ r2

�
; ð224Þ

FIG. 9. This figure highlights the effect of jump ETSP V2 on
isocurvature power spectrum derived using the scattering
matrices of Eq. (108). The thick (blue) curve corresponds to
the actual power spectrum, where modification due to the V2

parameter has been accounted for. The thick dashed (red) curve
neglects the effect due to the V2 jump ETSP. The thin dashed
(brown) curve adds the correction factor in Eq. (216) to the
spectrum without the V2 jump ETSP. A positive jump ETSP V2

leads to a decay of all modes superhorizon at T2. This can result
in significant attenuation of spectral power for these modes, as
shown in the plots. The above plots are constructed using the
following parameter set fF¼161.6; cþ¼2.415; c−¼0.5;ε0¼0;
ϕþð0Þ¼0.1Mp=Hg.

×

FIG. 8. Plot of the spectra made using Eq. (108) highlighting
the analytic form of the spectral oscillations on a linear amplitude
scale for k modes for k=ðaðTcÞHÞ > 2 (i.e., modes which
become superhorizon after the nonadiabatic transition) where
aðTcÞ=að0Þ ¼ Oð104Þ. The first peak/bump occurs around
k ∼ 2aðT2ÞH, where aðT2Þ ≈ aðTcÞ. The spectrum oscillates
with a k period πeT2að0ÞH and the initial decay behavior
of the envelope is approximately proportional to k−2. For k≳
eT2að0ÞH ffiffiffiffiffiffi

V1

p
the envelope decay then transitions to k−1 behav-

ior, oscillating about a background spectral amplitude ofOðF−2Þ.
Shown are the results with the same parameters set as Fig. 5,
except with ε0 ¼ −3=2 (sizable initial velocity). Note that the
height of the first bump is ∼Oð10Þ larger than the height of the
final massless axion plateau, which on a linear scale is negligible.
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where

C ¼ ω2
a
4

π2
rð1þ r4Þ
ð1þ r2Þ3

h2

θ2þF2
ð225Þ

for r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ=c−

p
, and

D ≈ exp

��
−
3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
− VB

r �
ðTB − T̃Þ

�
; ð226Þ

which accounts for the mode amplitude decay through the
VB parameter:

VB ≈ c− þ 1

ðTL − T2Þ
�
1063

3072
þ 106793c−
393216cþ

�

for parameters T̃,

T̃ ¼ maxfT2; ln ð2K=3Þg; ð227Þ
and TB ¼ TL given in Eq. (I23) which for c− ≪ 1
reduces to

TL ≈ T2 −
�
3

c−

�
ln

 
2 sin ðπn1Þ22−n1Γð1 − n1Þϕ−minðA

ffiffi
2

p
3Ω̄ Þn1

πð3ϕ−sðT2Þ A
ffiffi
2

p
3Ω̄ ∂xJn1ðxÞjx¼A

ffiffi
2

p
3Ω̄

þ ð3ϕ−sðT2Þ þ 2 _ϕ−sðT2ÞÞJn1ðA
ffiffi
2

p
3Ω̄ ÞÞ

!
; ð228Þ

where ϕ−s and its derivative in Eq. (I23) for TL are given in
Eq. (E14), Ω̄ is given in Eq. (E16), and n1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c−=9

p
.

As noted near Eq. (181), there is a gap in the analytic
spectrum in the region ½K2; KP�. The correction factor
fcorrectionðKÞ is defined in Eq. (216).
The coefficients Cn have been defined such as to be

approximately scale independent. Since V1 ≫ 1, the term
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ 9=4 − K2e2Tc

p
in C1;2 is approximately K

independent. Similarly, D2 is independent of K for long
wavelengths and hence it is absorbed into C1. Meanwhile −
Kτc ∼ 2 gives us the approximate location of the first
bump. If V2 is neglected, the D2 term has the following
approximate form for A

ffiffiffi
2

p
=ð3ΩÞ ≲ 1,

D2 ≈ e
2
3
ðc−ðT̃−T2Þ−1063

3072
Þ 1

F2
16

ffiffiffiffiffiffi
cþ
c−

r
ð1 − 4c−=9Þ

×

�
1

α=2þ 1=5þ 4=F

�
2

; K ≲ K2; ð229Þ

where we remark that D2 eventually tends to 1 for
extremely small scales that correspond to the massless
axion. To evaluate the expressions given in Eqs. (222)
and (223) into a numerical amplitude, the parameters
fT1; T2; Tc; V1;ΔT ¼ T2 − T1g can be computed through

T1 ≈ Tc −
�
3.11 − 1.05α

2F

�
; ð230Þ

T2 ≈ Tc þ
�
3.11 − 1.05α

2F

�
; ð231Þ

Tc ≈ Tz −
0.7
αF

; ð232Þ

V1 ¼ jmin ðm2
1 − _e1 · _e1Þj; ð233Þ

obtained from Sec. VI A. The definition of Tz can be found
in Eq. (71), and the variables τ1;2;c are the conformal times
corresponding to T1;2;c obtained through Eq. (177). In turn,
to evaluate α in Eq. (230), use Eqs. (73) and (75). To
evaluate V1 of Eq. (233), put Eqs. (67) and (68) into
Eqs. (G1) and (F3) and minimize by varying time T.
For cases with α > α2 where a second dip is also

significant, the shape of the isocurvature spectrum is
modified as the parameter C3 becomes a K-dependent
function. The modes now carry additional phases that are
dependent upon the dynamics of the V3 dip. This situation
is similar to the explanation provided in Sec. VI B. These
cases are solved using the scattering matrices of Eq. (108)
with the full set of model parameters. Equation (222) and
the more general computational procedure presented in
Sec. VI are the main results of this paper.

D. Discussion

By substituting Eqs. (223) and (229) into Eq. (222)
we obtain an approximate order of magnitude estimate
for the amplitude of the first bump corresponding to
−Kfirst-bumpτ2 ∼ 2 for c− ≪ 1:

Δ2ðcþ>9=4Þ
S ðKfirst-bumpÞ

C
∼Oð1Þπðe−ωπjH1

iωð2Þj2Þð1 − 4c−=9Þ

×
ffiffiffiffiffiffi
cþ
c−

r
V1

F2

�
:5

1=F þ :12

�
2

;

ð234Þ

where

e−ωπjH1
iωð2Þj2 ≈ 0.31þOðω2Þ ð235Þ

near ω → 0þ and varies slowly (fractional power of ω)
for ω ∼Oð1Þ. The above expression is an approximation
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and higher order corrections such as the presence of
additional dips (for instance the −V3 dip due to the second
crossing after Tc) can lead to a further increase in the
amplitude.
Next, we compare the above expression to a corre-

sponding one for the overdamped scenario. In a previous
work [77], numerical fitting functions were developed to
estimate the isocurvature power spectrum for over-
damped cases. It was found that the bump amplitude
was maximally approximately a factor of 3 compared to
the massless axion plateau. However, those fitting func-
tions were evaluated in a corner of parametric region
with 0.5 < c− < 1 such that they were largely indepen-
dent of c− up to the required accuracy. In order to include
the c− parametric dependence, we note that within the
framework of our mass model, the overdamped scenario
can be studied by considering a single dip followed by the
VB parameter in Eq. (184). Using the cubic-polynomial
expressions in Eqs. (67) and (68), it is easy to show
that for the overdamped scenario V1 ≈ 1.5 ∼Oð1Þ and

ΔT ∼Oð1Þ. Using these estimates, we evaluate the
amplitude at first bump as

Δ2ðcþ<9=4Þ
S ðKfirst-bumpÞ

C
∼Oð0.08Þπ

�
cþ
c−

�
0.5
; ð236Þ

where it is worth noting that the residual ðcþ=c−Þ0.5
dependence is obtained by fitting the mode amplification
due to the slow-varying m2

B function. To understand this,
note that for the overdamped scenario, the background fields
settle to their respective minima along a trajectory where
ϕ−s < ϕmin. Hence, the associated m2

B function is negative
and can lead to amplification of the mode function (see
Appendix I for further details). Also, note that unlike the
underdamped scenario, there is no large kinetic energy at
transition and thus the absence of any OðFÞ amplitude
enhancing corrections for the overdamped case.
We now compare the isocurvature spectral amplitude

between the two cases and obtain

Δ2ðcþ>9=4Þ
s ðKfirst-bumpÞ

Δ2ðcþ<9=4Þ
s ðKfirst-bumpÞ

∼Oð10Þðe−ωπjH1
iωð2Þj2Þð1 − 4c−=9Þ

�
:5

1=F þ :12

�
2 V1

F2
: ð237Þ

For V1 > Oð10Þ, the α dependence is

V1

F2
∼ 0.67α − 0.05þ 1

F
∀ α≳ 0.1; ð238Þ

which is an approximate numerical value [Oð10%Þ accurate] resulting from evaluating V1 as explained below Eq. (233).
Thus, the ratio of the isocurvature power spectrum between the overdamped (cþ < 9=4) and underdamped (cþ > 9=4)
scenarios is approximately

Δ2ðcþ>9=4Þ
s ðKÞ

Δ2ðcþ<9=4Þ
s ðKÞ

�����
Kfirst-bump

∼Oð10Þe−ωπjH1
iωð2Þj2

�
0.5

1=F þ 0.12

�
2
�
0.67α − 0.05þ 1

F

�
∀ α≳ 0.1: ð239Þ

At α ∼ 0.1, the above ratio is approximately≳1 and hence as cþ → 9=4 and V1 → Oð1Þ, Eq. (239) tends to unity, giving us a
check of the formulas based on the consistency with the results of [77]. Also, Eq. (239) becomes F independent for large F.
Furthermore, the ratio of the amplitude of first bump to the massless axion plateau is

Δ2ðcþ>9=4Þ
S ðKfirst-bumpÞ
Δ2

SðK > KPÞ
≈ 8

rð1þ r4Þ
ð1þ r2Þ2 Oð1Þπe−ωπjH1

iωð2Þj2
V1

F2

�
1

2=F þ 0.24

�
2

: ð240Þ

Note that as cþ≫Oð10Þ, ðe−ωπjH1
iωð2Þj2Þ∼1=ω∼1=

ffiffiffiffiffiffi
cþ

p
,

canceling the r enhancement factor. Therefore the ratio of
the bump amplitudes saturates to a constant for large cþ
values. For cþ ∼Oð1Þ in the resonant case of our interest,
Eq. (233) can be approximated as

Δ2ðcþ>9=4Þ
S ðKfirst-bumpÞ
Δ2

SðK > KPÞ
≈Oð30Þα

�
4=3

8=F þ 1

�
2

; ð241Þ

which shows how the underdamped scenarios enhance the
bump amplitude. This large Oð30Þ number ultimately can
be traced to the combination of two coincident effects:
(a) enhancement of the kinetic energy due to a time phase
accident in the context of oscillatory background solutions
which exists only in the underdamped cases, and (b) ξ-
involving interaction energy dominating the mass energy.
For instance, consider the ratio of the kinetic energy ðKEÞ
to the net potential energy (massþ interaction energy
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MEþ IE) at transition for the two cases. Using Eq. (89),
we can approximate this ratio for α > αL for the resonant
underdamped case as follows:

�
KE

MEþ IE

�
cþ>9=4

¼
_ϕ2
þ þ _ϕ2

−

ξ2 þ cþϕ2þ þ c−ϕ2
−

ð242Þ

∼
α2F4

F4ðð1−0.2αÞ2−1Þ2þOðF2Þ ð243Þ

∼Oð8Þ; ð244Þ

where we note that for underdamped resonant cases, the
interaction energy ξ2 is OðF4Þ. Remarkably, the parametric
dependences have canceled out in Eq. (244).
A similar evaluation for the overdamped situation where

the interaction energy ξ2 is Oð1Þ yields
�

KE
IEþME

�
cþ≲9=4

¼
_ϕ2
þ þ _ϕ2

−

ξ2 þ cþϕ2þ þ c−ϕ2
−

ð245Þ

∼
F2

9=4F2
ð246Þ

∼Oð0.5Þ; ð247Þ

where we note ξ being insignificant in both the numerator
and the denominator. Thus, we observe an approximate
Oð10Þ enhancement in the spectral power for the under-
damped cases compared to those of the overdamped. Since,
the first bump in overdamped cases is maximally approx-
imately a factor of 3 compared to the massless axion plateau,
we obtain an effective enhancement factor of Oð30Þ for the
underdamped scenario as observed in Eq. (241).
As highlighted previously in Sec. VII B, a large V2 jump

ETSP leads to an attenuation of spectral power for all
modes superhorizon at T2 while having a decreasingly
small effect on the subhorizon modes. An interesting
consequence of this is that for large enough V2, the
amplitude of a subsequent bump (second or higher) can
appear much greater than the first bump. This can be
understood as follows. From Eq. (222), we infer that the
amplitude of the spectral bumps (oscillations) in the
absence of the V2 jump ETSP can be expressed as

Δ2
S;V2¼0ðKÞ≈A0

�
Kfirst-bump

K

�
2 ∀Kfirst-bump≤K≲τ−1c

ffiffiffiffiffiffi
V1

p
;

ð248Þ

where A0 is the amplitude of the first bump and is
independent of V2.
With the inclusion of V2, the spectral power for all

superhorizon modes at T2 is attenuated due to a V2-
dependent correction factor jfcorrectionj < 1 as shown in

Sec. VII B. For V2 ≫ 1, the corrected spectral amplitude of
the first bump can be written as

Δ2
S;V2≫1ðKfirst-bumpÞ ≈ jfcorrectionðKfirst-bumpÞj2A0; ð249Þ

where the K dependence of fcorrection is approximately a
constant for all superhorizon modes. On the other hand, the
spectral power in Eq. (222) for the subhorizon modes have
the property jfcorrectionðKÞj ∼ 1:

Δ2
S;V2≫1ðKÞ ≈ jfcorrectionðKÞj2A0

�
Kfirst-bump

K

�
2

∀ KV ≲ K ≲ τ−1c
ffiffiffiffiffiffi
V1

p
; ð250Þ

where KV ≡ τ−1c
ffiffiffiffiffiffi
V2

p
and defines the mode when the

jfcorrectionðKÞj ∼ 1. The jfcorrectionðKÞj smoothly interpo-
lates between 1 and jfcorrectionðKfirst-bumpÞj in the spectral
region [Kfirst-bump; KV �.
Comparing Eqs. (249) and (250), we conclude that it is

possible for certain high K modes to have a larger spectral
power than the first bump. Quantitatively, this is true for the
following approximate range of K modes

KV ≲ K ≲
���� Kfirst-bump

fcorrectionðKfirst-bumpÞ
����≡ Kf : ð251Þ

This is generically observed as a larger second or third
bump than the first [see Eq. (222)]. The amount of this
relative enhancement can be evaluated as

Δ2
SðKÞ

Δ2
SðKfirst-bumpÞ

∼OðV1=2
2 Þ
�
KV

K

�
2 ∀ KV ≲ K ≲ Kf ;

ð252Þ

where the factor of V−3=2
2 comes from jfcorrectionðKÞj2 ≈

jlðKÞj2 in Eq. (217) for V2 ≫ 1. Hence, the enhancement is
approximately proportional to

ffiffiffiffiffiffi
V2

p
and increases with the

F scale. Thus, we remark that largeOðF2Þ resonant effects,
together with any additional dips (−Vi for i ≥ 3) corre-
sponding to higher order corrections, can result in spectral
power enhancement by a factor greater than the Oð30Þ as
derived previously for the resonant underdamped cases.
Unlike the Oð30Þ factor whose origin was discussed in
Eq. (244), this high K mode enhancement is dependent on
the parameter F.

VIII. PARAMETRIC DEPENDENCES OF THE
ISOCURVATURE SPECTRUM

One qualitative predictability difference between the
overdamped and underdamped axionic scenarios where
the PQ symmetry is broken before the end of inflation
stems from the fact that there is an attractor solution for the
background fields as well as for the linear perturbations in
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the overdamped scenarios. This means that given a
Lagrangian in overdamped scenarios, the cosmological
predictions have less dependence on the initial conditions.
As an analogy, in the case of slow roll single field inflation,
one only needs to specify the initial field value and not its
time derivative to specify a prediction for the observables.
For the usual cosmological axion scenarios, the radial field
associated with PQ symmetry breaking is considered to be
sitting at the minimum of its potential. This means that the
only initial condition dependence of the axion isocurvature
during inflation is θifa. In the case of the current under-
damped scenario of interest, there is an additional phase
space dependence of the PQ symmetry-breaking radial field
directions as well. Because of the nonattractor behavior
for the underdamped dynamics along the flat direction, the
dominant additional phase space degree of freedom is the
initial field ϕþð0Þ value and the kinetic energy of the radial
field along the flat direction parametrized by ε0.
In this section we will study the dependence of the axion

isocurvature spectrum on the model parameters fcþ; c−; Fg
and the initial conditions fε0;ϕþð0Þg. The effect of
each parameter variation is discussed keeping all of the
others fixed.

A. c+
The numerical model presented in this paper and the

associated axion isocurvature spectrum have been derived
for background fields within the parametric region given
by αL ≲ α ≲min ðα3; αUÞ. Above the upper bound αU, the
analytic methods utilized in this paper break down due to
the significant heavy-mode mixing from Eq. (48) at Tc, and
at around the same upper bound, the adiabatic approxima-
tion technique also breaks down.9 For α less than the lower
bound, the cubic-polynomial expansion of the background
fields is insufficient and higher order terms become
significant. The parameter α can be computed as a function
of underlying Lagrangian model parameters and the initial
conditions from Eq. (73).
In Fig. 10 we plot the cþ dependence of α within the

range of Eq. (95) close to cþ ¼ 9=4 corresponding to the
range of cþ values where Tc is close to (but before) the first

zero crossing of the ϕð0Þ
þ field.10 The monotonic increase in

α is captured through the following expression:

α ∝ exp

�
−
3

2

�
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ − 9=4
p ��

: ð253Þ

Next, in Fig. 11, we present isocurvature spectra for three
different cþ values. We remark that as cþ is increased,

the ϕð0Þ
þ field rolls down faster11 owing to the frequency

ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ − 9=4

p
. Consequently, the first zero crossing of

the ϕð0Þ
þ field occurs earlier with an increasing cþ [see

Eq. (71)]. This in turn increases the exp ð−3Tc=2Þ factor
controlling _ϕþ leading to a larger kinetic energy at Tc. The
larger kinetic energy is later converted into the interaction

×

FIG. 11. Plot of spectra made using Eq. (108) for increasing
values of cþ at transition. Note that other parameters are set at the
fiducial parameter set PA used in Fig. 5.

×

FIG. 10. Plot Eq. (74) showing regions of cþ with correspond-
ing value of α within the range of Eq. (95). The other parameters
are set to the fiducial set PA of Fig. 5.

9Beyond α > α3, the background fields will cross at least twice
after transition. For large F, these crossings can occur close
enough such that effective heavy mixing from the superposition
of each crossing becomes significant. Moreover, as α → 1, the
background field dynamics turns highly chaotic after transition
and a closed form prediction of the mode amplitude in terms of α
is not feasible. Field configurations with large cþ tend to fall
under this category. These configurations associated with α≳ 1
and the accompanying isocurvature spectrum are a subject of
interest and will be explored in a separate companion paper [80].

10Recall ϕþðTÞ is approximately equal to ϕð0Þ
þ ðTÞ before Tc.

11The exact dependence of the velocity on ω is dependent on
whether the system is in the resonant, nonresonant, overdamped,
underdamped situations. Here, we will here be focusing only on
the resonant cases, which is the main focus of our work.
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energy at transition whose larger value is responsible for the
growth of the isocurvature amplitude through the resonant
effects. Hence, increasing cþ results in an amplification of
first bump in the isocurvature spectrum12. Moreover, an
increasing height of the isocurvature spectrum is accom-
panied by a receding location of the first bump Kfirst-bump

toward lower values. This is again explained by decreasing
Tc as cþ is increased because Eq. (209) implies

Kfirst-bump ≈Oð1ÞeTc: ð254Þ

When one compares the first-bump amplitude to the
plateau amplitude in the cþ ¼ 2.348 case of Fig. 11, one
sees that the ratio can be about 30. This is already explained
in Eq. (241) of Sec. VII D, where we evaluated an
enhancement factor of

Oð30Þα
�

4=3
8=F þ 1

�
2

ð255Þ

for modes lying within the range 0.5 ≲ −Kτc < 3 com-
pared to the modes in the massless axion plateau region of
the spectrum (K > KP).
To understand this qualitatively, one first notes that there

is the possibility in the underdamped scenarios of a large
kinetic energy in the falling ϕþ when the ϕ− interaction
with ϕþ becomes strong. This large kinetic energy leads
to nonadiabatic effects post Tc such that the axion mode
amplitude obtains an Oð10Þ enhancement compared to an
overdamped scenario.
Note in Fig. 11 that the frequency of the K-space

oscillations also increase with cþ. This has already been
explained quantitatively in Eq. (213). To understand this
another way qualitatively, note that the temporarily negative
lightest mass squared eigenvalue and the nonadiabatic
rotation of the lightest eigenvector pump the mode amplitude
thereby increasing its magnitude [See Eq. (26)]. Therefore,
the k-space oscillation frequency is reflective of the non-
adiabaticity producing mode dynamics at time ∼Tc, where
the modes have the characteristic phase exp ð−ik expð−TcÞÞ,
giving a k-space oscillation period ofOðexpðTcÞÞ, as can be
seen explicitly in Eq. (213).
The examples presented in this paper are limited to a

range of cþ values where the transition occurs close to the
first zero crossing. One might then worry that the mass
model is no longer applicable for higher cþ values because
according to Fig. 10, the α value naively seems to increase
to violate the approximation methods used. However, as we
will discuss in a separate paper [80], α is a discontinuous
function of cþ. As we will show there, the present mass
model is still applicable for a range of larger cþ values
(although the cþ regions where the model is applicable are
not continuously connected).

B. F

The F dependence of the isocurvature spectrum is
multifaceted. The C term in Eq. (225), which is mostly
about the normalization of the axion field, suggests a
1=F2 proportionality of the power spectrum. This is an
expected result since the time-dependent massive axion
isocurvature spectrum has a 1=ϕ2þ dependence within the
long wavelength region (as well as in both the plateau
regions). Thus, the variation of the power spectrum in the
massless plateau region has a 1=F2 proportionality similar
to the overdamped scenario.
For scales that lie within the oscillating part of the

spectrum, additional F dependences arise from the D2

and b2 terms of Eq. (222). As shown in Sec. VII D, the
spectrum in this region has the following proportionality:

Δ2
SðKÞ
C

∝
V1

F2

�
:5

1=F þ :12

�
2

: ð256Þ

Using the analytic expressions derived previously, the ratio
V1=F2 has the following polynomial form within the
parametric region given by Eq. (95),

V1

F2
≈ c1 þ c2α; ð257Þ

where c1 ∼Oð0.1Þ and c2 ∼Oð1Þ. With all other param-
eters fixed, we have the relationship α ∝ 1=F2. Including
the C term, the power spectrum has the following effective
F dependence in the oscillating region:

Δ2
SðKÞ
ω2
a

∼
�
c1
F2

þ c3
F4

��
:5F

1þ :12F

�
2

; ð258Þ

where

c3 ¼ ωϕþð0Þ secφe−3=2Tz ≫ c1: ð259Þ

As F becomes large, the power spectrum tends to the
expected 1=F2 proportionality. One can understand this by
noting that for all other parameters fixed, an increase in F
results in a rapid reduction in α such that c2α can
subsequently become smaller than c1. This is an interesting
behavior which can be explained more clearly by noting
that for resonant underdamped fields, Tc occurs close to the

ϕð0Þ
þ zero crossing:

_ϕþðTcÞ ≈ _ϕð0Þ
þ ðTzÞ −

Z
Tc

Ts

dTξϕ−: ð260Þ

At Tc, the ϕ− field is OðFÞ and the strong coupling force
ξϕ− < 0 and _ϕþðTzÞ<0 resulting in j _ϕþðTcÞj < j _ϕþðTzÞj.
Using Eq. (72) and V1 ∼ j _ϕþðTcÞj, we deduce that the c2
parameter in Eq. (257) is associated with j _ϕð0Þ

þ ðTzÞj ¼ αF2,12See below regarding how much one can increase cþ.
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whereas c1 is related to the integral of the coupling term
ξϕ−. Figure 12 shows plots of power spectra for a fixed cþ
value with different F scales highlighting a ∼1=Fn reduc-
tion of the power spectrum for n ∼ 3 − 4.

C. c−
Next we consider the c− dependence of the power

spectrum. We will consider two situations here. In the
first, we discuss fields with α ≲ α2 such that the fields
evolve after the transition without any crossings. This
situation gives rise to a slowly varyingm2

B > 0. The second
case is where the fields have large resonant amplitude such
that the fields cross each other at least once after Tc. As
explained in Appendix I, such a crossing results in a
situation where the ϕ− field settles to its minimum from
below (ϕ− < ϕ−min). Due to this unique alignment, the m2

B
function now becomes negative as the fields settle to their
minima asymptotically. In both cases we shall see that the
spectrum increases for smaller c− values with the essential
dynamics dictated by the settling of m2

B during different
temporal phases. The discussion is limited to c− < 9=4.
Let us now consider the first case. The m2

B function
results in an approximate exponential decay of the mode
amplitude through the

y1ðT∞Þ ∝ exp

�
−
1

3

Z
T∞

T̃
m2

BdT

�
ð261Þ

factor where the integral is evaluated through Eq. (I30). The
integral can be divided into two temporal phases. During
the first phase, the dominant ϕ− field rolls down from its
peak amplitude with a decay constant equal to c−=3. Later
as the fields get closer to their minima during the second
phase, the decay constant increases by nearly a factor of 4
to ≈ 4c−cþ=ðc− þ cþÞ. Since m2

B starts out close to c− and

eventually settles to zero, the integral is dominated by the
first phase. In this first phase, m2

B behaves as the flat
direction mass which decreases with a decrease in c−,
resulting in y1ðT∞Þ ∝ ðcþ=c−Þ1=4: i.e., a smaller c− results
in a larger effective mode amplitude.
In the second case, the ϕ− field approaches its minimum

from below. Unlike the previous case, the first temporal
phase is insignificant due to the oscillating IR fields and a
dominant V2 ETSP. Hence, the effective mode amplifica-
tion due to the negative m2

B is brought about during the
second phase through Eq. (261). As c− decreases, m2

B
decreases much more slowly due to the ∼4c−=3 exponen-
tial decay rate of ϕ−. Moreover, a smaller c− results in a
larger value of jm2

Bj. As a result of these two effects, we see
from Eq. (261) that the mode function undergoes larger
amplification. This is shown in Fig. 13.

D. ε0 and ϕ+ ð0Þ
Here we discuss the parameters ε0 and ϕþð0Þ that define

the initial conditions for the underdamped rolling fields.
Varying these initial conditions directly alters Tc and the
value of α. Hence, the effect of these two parameters is best
understood by studying the α expression from Eq. (74). We
consider the minimal case with ε0 ¼ 0 and expand α to
quadratic order in ε0 in Eq. (74):

α≈
ϕþð0Þ
F2

ffiffiffiffiffiffi
cþ

p
e
−3
2
½ 1ffiffiffiffiffiffiffiffiffi

cþ−9=4
p ðπ

2
þarctan 3=2ffiffiffiffiffiffiffiffiffi

cþ−9=4
p Þ�

�
1þ ε20

2cþ

�
þOðε30Þ:

ð262Þ

We discover that α has a local minimum at ε0 ¼ 0 evinced
by the absence of the linear term in ε0. This is expected
since an increase in the initial kinetic energy leads to a
larger _ϕþ at the zero crossing. As seen in Fig. 14, the
dependence of α on ε0 in Eq. (74) is nonlinear beyond the

×

FIG. 12. Illustrated is how the spectra [made using Eq. (108)]
varies as F increases. The other parameters are fixed at approx-
imately the set PA as in Fig. 5. The value of α in this plot varies as
f0.38; 0.51; 0.71g as F is reduced.

×

FIG. 13. This plot shows the c− dependence of the spectra.
The other parameters are fixed at approximately the set
PA as in Fig. 5.
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quadratic nonlinearities in Eq. (262). As seen in Eq. (262),
the parameter ϕþð0Þ leads to a monotonic increase in the
value of α within the range of Eq. (95) with the intuition
that the initial energy is increased as in the intuition for the
ε0 increase. A representative set of α values as a function of
ϕþð0Þ is shown in Fig. 14.
As jε0j is continually increased, Tc becomes nearer to the

next higher ϕð0Þ
þ ðTÞ zero-crossing time, thereby reducing

the overall spectral power. Similarly, if ϕþð0Þ is continually
increased then the transition time Tc moves to the next
higher zero-crossing time. The subsequent height of the
power spectrum can be analyzed by evaluating the value of
α at the new transition. Due to the length of this paper and
the natural parametric scope of small cþ in this paper, we
discuss the isocurvature spectra reflecting the higher zero

crossing of ϕð0Þ
þ in a separate companion paper [80].

IX. SUMMARY

In this paper, we provided an analytic expression for the
blue axionic isocurvature spectrum in the underdamped

nonequilibrium axion scenarios for a particular parametric
region corresponding to a mild amplitude (α ∈ ½αL; α2�) of
resonantly oscillating PQ symmetry-breaking radial fields.
The main expression given by Eq. (222) exhibits an
amplitude of Eq. (223) and an oscillating spectrum whose
k-space oscillation period is of the order the value of the
first k-break location Kfirst-bump in the spectrum [Eq. (209)].
Remarkably, the first-bump amplitude of the spectrum is
enhanced by a factor of Oð30Þ compared to the plateau
amplitude of the spectrum associated with the massless
axions as explained near Eq. (244). Furthermore, in some
cases with large OðF2) resonant effects, the spectral power
can receive larger than the Oð30Þ enhancement of the first
peak as explained near Eq. (252).13 In contrast, for the
overdamped nonequilibrium axion scenarios (see [75]), the
relative amplitude ratio is only a factor of a few (maximally
approximately a factor of 3). The k-oscillation spacing is
reflective of the mode amplitude-setting dynamics at time
∼Tc whose phase is exp ð−ik expð−TcÞÞ, giving a k-space
oscillation period of OðexpðTcÞÞ.
Technically, the computation was carried out using a

combination of a parametric restriction where the heavy
modes are decoupled (Appendix J), perturbation theory
(Sec. IVA), analytic fitting to polynomials in the non-
perturbative region (Sec. IV B), piecewise ETSP modeling
[Eq. (101)], and the technique of integrating out fast
oscillations (Appendix C). This allowed us to compute a
transfer matrix solution to the isocurvature mode equations
[Eq. (108)]. Overall, based on comparisons to sample
numerical calculations, the accuracy of the computation
is about 20%–50%, with ra set to 0.2. Most of the
uncertainty is coming from the technique of integrating
out the fast oscillations (for example, estimation of V2) and
the approximations made regarding the IR components of
the ϕ� fields after the transition at Tc. Even though the
analytic formula is complicated, compared to the pure
numerical solver, the speedup factor14 is about Oð100Þ.
In this paper, we focused on presenting analytic spectral

results in the resonant oscillatory k range for moderate α
values, where α characterizes the velocity of the falling ϕþ
field near the transition time Tc [see Eq. (72)]. This would
be helpful even if a purely numerical approach to the
problem were to be used in data fitting since this will serve
as a solvable check on the system. In a companion paper
[80], we will present results for larger α situations in the
high cþ limit to complete the understanding of the possibly
observable blue isocurvature spectra. In such cases, there
are no purely analytic results, but there will appear a novel
stochastic model that parametrizes the small k range

×

FIG. 14. Plots highlighting the dependence of α on the initial
conditions [see Eq. (74)]. Keeping all other parameters fixed,
a larger initial energy density results in a larger isocurvature
amplitude of the initial bump.

13Here we have scaled the PQ symmetry-breaking parameter
Fa as F≡ hFa=H, where h is a quartic coupling and H is the
Hubble expansion rate during inflation.

14A Mathematica package to evaluate the spectrum using the
analytic methods can be accessed from https://pages.physics.wisc
.edu/∼stadepalli/Blue-Axion-IsoCurvSpec-Underdamped.nb.
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amplitude variation with α. In that paper, we will also
exploit various symmetries to obtain relationships between
parameters, which is useful more as a transferable tech-
nique than quantitative predictions. Finally, we will also
defer to that paper a discussion of general fitting functions
for this underdamped blue axionic isocurvature class
of models that do not refer to underlying Lagrangian
parameters fc�; Fg.
There are many interesting possible follow-up topics

to be investigated. Recent Planck results [76] show that
axionlike curvaton models with an uncorrelated blue-tilted
spectrum is the most favored of the isocurvature models.
The fits also indicate a possibility of measuring a spectral
index of 1.55 < nI < 3.67 at 95% C.L. consistently with
the recent findings of [77]. It would be interesting to study
whether there are hints of resonant isocurvature spectra
presented in this paper in the existing and future data.
Another possible usage of this enhanced oscillatory peaks
presented in this paper would be to investigate the
formation of primordial black holes similar to the inves-
tigation of the curvaton models in [6,81–89]. Similarly it is
equally appealing to study second order gravitational waves
and non-Gaussianities through either a QCD axion or a
curvaton isocurvature mode as in [58,73,81,82,85,90–94].
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APPENDIX A: TAYLOR EXPANSION
CONSISTENCY CHECK

In Sec. IV B, we gave a solution to T1 using an analytic
fit to the cubic polynomial, utilizing the information from
the differential equation and perturbative solution. In this

section, as a check, we give an alternate derivation of T1

assuming T1 ¼ Tc, where Tc satisfies

ϕþðTcÞ ¼ ϕ−ðTcÞ ¼ rF; ðA1Þ

where

0.1 ≪ r < 1: ðA2Þ

We restrict ourselves to solving the case of the resonant
case (see Sec. IV C) in which

cos ½ωTc − φ� ≪ 1 ðA3Þ

[see Eq. (58) for the definition of φ and Eq. (31) for the
initial conditions on ϕ�]. The reason why we dwell on the
accuracy of the value of Tc is because the numerical results
in the resonant situations are very sensitive to the value
of Tc due to the large _ϕþðTcÞ ∼OðF2Þ ≫ HϕþðTcÞ ∼HF
and the fact that the complex mode amplitude is sensitive to
the time phase of the real background field ϕþðTÞ. The
solution method presented here involves a combination
of perturbation theory, Taylor expansion, and successive
linearization approximations. The most difficult aspect of
the computation is in estimating the errors associated with
the approximation, and it is this feature that the present
section’s approach is an advantage over that of Sec. IV B.
However, the formalism here is cumbersome compared to
that of Sec. IV B, and the differential equation solution for
ξ ¼ ðϕþϕ− − F2Þ used below has limited parametric appli-
cability. The results nonetheless serve as a check on
Sec. IV B and provides an error estimate.
Since the computation is long, we first give the results:

Tc ¼ Tz −ϒF−1; ðA4Þ

ϒ ≈ϒ1 þϒ2 ≲ 1; ðA5Þ

ϒ1 ≡ −
j1 × ð3 F4

ϕþð0Þ2 e
3Tzð8F2 þ 8Fj1 þ 3j21Þcos2ðφÞ þ j41ω

2ð4ω2 − 9Þe3j1
F Þ

j21ω
2e

3j1
F ð−8F2 þ 12Fj1 þ j21ð4ω2 − 9ÞÞ − 1

ϕþð0Þ2 ϒ212

; ðA6Þ

ϒ2 ≡
ϒ21 −

ϒ221ðϒ2221þϒ2222þϒ2223Þ
ϒ223

ϒ231ðϒ2321þϒ2322þϒ2323Þ
ϒ233

þϒ24

; ðA7Þ

ϒ21 ≡ −
3e

3j1
F Fj1ωϒ211ϕþð0Þ cosðφÞ

4ðϒ212 þ e
3j1
F j12ϕ2þð0Þω2ð8F2 − 12j1F þ j12ð9 − 4ω2ÞÞÞ

; ðA8Þ

ϒ211 ≡ ð32F4 − 16j1F3 þ 24j12ð3 − 2ω2ÞF2 − 8j13ð5ω2 − 9ÞF þ 3j14ð9 − 4ω2ÞÞ; ðA9Þ

ϒ212 ≡ 3e3Tzð16F2 þ 12j1F þ 3j12Þ cos2ðφÞF4; ðA10Þ
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ϒ221 ≡ cosðφÞ
	
ϒ2211 þ e

3j1
F j12ϕ2þð0Þω2ð8F2 − 12j1F þ j12ð9 − 4ω2ÞÞ



; ðA11Þ

ϒ2211 ≡ 3e3Tzð16F2 þ 12j1F þ 3j12Þ cos2ðφÞF4; ðA12Þ

ϒ2221 ≡ 9e6Tzð8F2 þ 8j1F þ 3j12Þ2ð38F2 þ 30j1F þ 9j12Þ cos4ðφÞF6; ðA13Þ

ϒ2222 ≡ 6e3ð
j1
FþTzÞj12ϕ2þð0Þω2 cos2ðφÞF3ð960F5 þ 384j1F4 − 16j12ð14ω2 þ 45ÞF3

− 8j13ð40ω2 þ 117ÞF2 − 24j14ð7ω2 þ 18ÞF − 9j15ð4ω2 þ 9ÞÞ; ðA14Þ

ϒ2223 ≡ 2e
6j1
F j14ϕ4þð0Þω4ð192F4 − 384j1F3 − 48j12ð2ω2 − 3ÞF2 þ 96j13ω2F þ j14ð16ω4 þ 81ÞÞ; ðA15Þ

ϒ223 ≡ 16j1ωϕþð0Þð−3e3Tzð12F2 þ 10j1F þ 3j12Þ cos2ðφÞF3−2e
3j1
F j12ð2F − 3j1Þϕ2þð0Þω2Þ3; ðA16Þ

ϒ231 ≡ cosðφÞ
	
ϒ212 þ e

3j1
F j12ϕ2þð0Þω2ð8F2 − 12j1F þ j12ð9 − 4ω2ÞÞ



2
; ðA17Þ

ϒ2321 ≡ 9e6Tzð4224F6 þ 10688j1F5 þ 12272j12F4 þ 8112j13F3 þ 3258j14F2 þ 756j15F þ 81j16Þ cos4ðφÞF6; ðA18Þ

ϒ2322 ≡ 12e3ð
j1
FþTzÞj12ϕ2þð0Þω2 cos2ðφÞF3ð896F5 þ 128j1F4 − 48j12ð6ω2 þ 11ÞF3

− 8j13ð46ω2 þ 45ÞF2 − 9j14ð20ω2 þ 9ÞF − 36j15ω2Þ; ðA19Þ

ϒ2323 ≡ 2e
6j1
F j14ϕ4þð0Þω4ð384F4 − 864j1F3 − 8j12ð32ω2 − 81ÞF2 þ 72j13ð4ω2 − 3ÞF þ 3j14ð16ω4 − 24ω2 þ 27ÞÞ;

ðA20Þ

ϒ233 ≡ 32Fj12ωϕþð0Þð3e3Tzð12F2 þ 10j1F þ 3j12Þ cos2ðφÞF3þ2e
3j1
F j12ð2F − 3j1Þϕ2þð0Þω2Þ4; ðA21Þ

ϒ24 ≡ e
3j1
F −3Tzϕþð0Þωð8F2 − 12j1F þ j12ð9 − 4ω2ÞÞ secðφÞ

8F3
; ðA22Þ

where Tz is given by Eq. (71) and

j1 ≈ 2: ðA23Þ

This j1 is very insensitive to the parametric details because
of the 1=6 power in

j1 ≈

 
4ϒ3R1

j 4ð3ϒ−2ÞF
ϒðϒþ2Þ3 þ

18ðϒ−2Þ
ðϒþ2Þ3 j

!
1=6

; ðA24Þ

where

R1 ≡A1F
2

þ 3

2
A2 þ

1

4F
A3 þ

81ð4c− þ 27Þj21
32F3

þ 9j1ð3ð4c− þ 45Þj1τðj1Þ þ 4c− − 4ω2 þ 27Þ
8F2

ðA25Þ

and An are functions of j1 themselves given in Eqs. (A56),
(A57), and (A58). With the fiducial value of j1 ¼ 2without
solving for j1 self-consistently, the estimated error on j1 is
around 30% for an Oð2Þ variation in cþ around 2.35. Note
that j1 here is the analog of the ð2nÞ1=4=

ffiffiffi
α

p
in Eq. (75), and

j1 ¼ 2 for cþ ¼ 2.35 is consistent with taking n ¼ 10. This
is one of the main consistency checks of this Appendix
on Sec. IV. The cþ parametric dependences of Tc values
of this appendix section for cþ near 2.35 agree with the
presentation of Sec. IV providing another independent
consistency check. If one wants better accuracy, it is
straightforward (but tedious) to iterate using Eqs. (A5),
(A81), (A79), and (A72). One of the most interesting
aspects of this is Eq. (A100), which shows that j1 ≈ 2 and
shows 0.5 ≲ϒ ≲ 1 to be a generic prediction in the
resonant case. These results can also be viewed as an
alternate method of computing Tc that can be combined
with Eq. (222) to evaluate the isocurvature spectrum.
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The improvement in the ϕ−ðTcÞ solution can be seen by
comparing the solid line and the long-dashed line in
Fig. 16. In the parametric case of

fcþ¼2.35;c−¼0.5;F¼20.2;ε0¼0;ϕþð0Þ¼3.32×108g
ðA26Þ

the agreement with numerics is about 6% in ϒ ≈ 0.6
[or equivalently about 0.06 × ð0.6=FÞ=Tc ≈ 0.02% in
Tc ≈ 9.248, which illustrates that a very high precision
in Tc is required to get the ϕ−ðTcÞ to be accurate to 6%].
For the more general case, we estimate an error forϒ of less
than about 35% assuming that the error in the prediction for
ϕ− dominates. Theϒ1=ϒ2 ratio for this case of Eq. (A26) is
about 5. The reason why the ϕ−ðTcÞ computation is very
sensitive to Tc is because small changes in ΔTc lead to
large changes in Δϕ−ðTcÞ since Eq. (A1) implies

Δϕ−ðTcÞ ≈ ½∂TϕþðTcÞ − ∂Tϕ−ðTcÞ�ΔTc; ðA27Þ

where ∂TϕþðTcÞ ≫ ϕ−.
In the rest of this section, we derive these results.

Readers not interested in the details can skip most of the
rest of this section.

1. ϕ� behavior in resonant scenarios

Here, we construct the ϕ� solution in the region near Tc,
where the perturbative expansion equations (50) and (51)
break down. The tools we will use to construct this solution

are (1) different derivative approximations ∂n
Tϕ�ðTÞ ≈

∂n
Tϕ

ð0Þ
� ðTÞ for different n break down at different times

T; (2) an expansion of a different differential equation of
composite operators that restricts the functional space of
ϕ� about a special point where _ϕþ ¼ 0. Note that the
Taylor expansion method of (1) is nonperturbative although
very limited in its time-range extension of analytic com-
putation. For sudden transitions that are being studied here,
even this limited method yields nearly an order of magni-
tude improvement in accuracy in the estimate.

a. Region ½Tc − j1=F;Tc�
As noted when discussing ϕð1Þ

− in Eq. (60), the ϕð0Þ
−

solution becomes a bad solution exponentially fast near
T ¼ Tc. Hence, we will define below a time period
½Tc − j1=F; Tc� just before Tc to match the known equa-
tion (59) to a finite order polynomial in this time region.
The reason why the finite order polynomial will turn out to
be a better approximation than the original perturbative

solutions will be due to the fact that different Taylor

expansion derivative approximation ∂n
Tϕ�ðTc − j1=FÞ ≈

∂n
Tϕ

ð0Þ
� ðTc − j1=FÞ for different n break down at different

times T. We will choose j1 from the condition that the finite

order polynomial and ∂n
Tϕ�ðTc − j1=FÞ ≈ ∂n

Tϕ
ð0Þ
� ðTc −

j1=FÞ be a good approximation at the same time.
Start with a quadratic Taylor expansion of ϕ−ðTÞ about

T ¼ Tc,

ϕ−ðTÞ ¼ ϕ−

�
Tc−

j1
F

�
þ _ϕ−

�
Tc−

j1
F

��
T −Tcþ

j1
F

�

þ 1

2
ϕ̈−

�
Tc−

j1
F

��
T −Tcþ

j1
F

�
2

þ…: ðA28Þ

We truncate this at the quadratic order and replace the
coefficients with the leading perturbative solution:

ϕ−ðTÞ ≈ ϕð0Þ
−

�
Tc −

j1
F

�
þ _ϕð0Þ

−

�
Tc −

j1
F

��
T − Tc þ

j1
F

�

þ 1

2
ϕ̈ð0Þ
−

�
Tc −

j1
F

��
T − Tc þ

j1
F

�
2

þ E1ðTÞ þ E2ðTÞ; ðA29Þ

where the error estimate E1 is for the error incurred in
matching the Taylor expansion coefficients to ϕð0Þ

− deriv-
atives and E2 is the error incurred for the quadratic Taylor
expansion truncation to the exact solution. It is important
to keep in mind that the left-hand side of Eq. (A29) is not
the approximate ϕð0Þ

− ðTÞ but meant to be the exact solution
that is valid even at Tc. If one forgets that, then this
equation seems like an approximation of ϕð0Þ

− ðTÞ as a
quadratic function instead of the exact solution in a small
neighborhood.
How can a Taylor expansion of ϕð0Þ

− do better than
keeping the original ϕð0Þ

− itself? After all, why stop at just
quadratic order in a ϕð0Þ

− Taylor expansion if one can get
higher derivatives using ϕð0Þ

− ? The answer is that each
successive derivative Taylor expansion coefficient evalu-
ated at Tc − j1=F becomes an increasingly poor approxi-
mation of the exact solution’s derivative ∂n

Tϕ− ≠ ∂n
Tϕ

ð0Þ
− .

We will demonstrate this explicitly.
In matching the exact solution to ϕð0Þ

− at T ¼ Tc − j1=F,
the error incurred for the zeroth order Taylor expansion
can be estimated using the perturbative solution equa-
tion (60) since at Tc − j1=F, the λ perturbation of Eq. (60)
is still valid,
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E10 ¼
����ϕð1Þ

−

ϕð0Þ
−

����
T¼Tc−

j1
F

ðA30Þ

¼
�27

4
þ c− þ ω2 sec2½ωT − φ� þ ω tan ½ωT − φ�ð6þ ω tan ½ωT − φ�Þ

½ϕð0Þ
þ ðTÞ�2

�
T¼Tc−

j1
F

; ðA31Þ

E11 ¼
���� ∂Tϕ

ð1Þ
−

∂Tϕ
ð0Þ
−

����
T¼Tc−

j1
F

ðA32Þ

¼
�
81þ 12c− þ 4ωð10ωsec2½ωT − φ� þ 18 tan ½ωT − φ� − 3ωÞ

4½ϕð0Þ
þ ðTÞ�2

�
T¼Tc−

j1
F

; ðA33Þ

E12 ¼
���� ∂2

Tϕ
ð1Þ
−

∂2
Tϕ

ð0Þ
−

����
T¼Tc−

j1
F

ðA34Þ

¼
�

1

4½ϕð0Þ
þ ðTÞ�2

�
112ω4 sec4ðωT − φÞ þ 4T 1ðTÞ þ 4T 2ðTÞ
4ω2 sec2ðωT − φÞ þ ð3þ 2ω tanðωT − φÞÞ2

��
T¼Tc−

j1
F

; ðA35Þ

T 1ðTÞ≡ 9½3þ 2ω tanðωT − φÞ�2
�
27

4
þ c− þ ð6þ ω tanðωT − φÞÞω tanðωT − φÞ

�
; ðA36Þ

T 2ðTÞ≡ 2ω2 sec2ðωT − φÞ½189þ 6c− þ 2ω tanðωT − φÞð129þ 44ω tanðωT − φÞÞ�; ðA37Þ

where

ϕ−

�
Tc −

j1
F

�
¼ ϕð0Þ

−

�
Tc −

j1
F

�
ð1þ E10Þ; ðA38Þ

∂Tϕ−

�
Tc −

j1
F

�
¼ ∂Tϕ

ð0Þ
−

�
Tc −

j1
F

�
ð1þ E11Þ; ðA39Þ

∂2
Tϕ−

�
Tc −

j1
F

�
¼ ∂2

Tϕ
ð0Þ
−

�
Tc −

j1
F

�
ð1þ E12Þ: ðA40Þ

In the resonant cases in which j1=F is not large enough
to destroy the small cosine approximation cosðωTc − φÞ≈
ωðTz − TcÞ, we can use the following relationship:

cos2
�
ω

�
Tc −

j1
F

�
− φ

�
≈ ω2

�
j1 þϒ

F

�
2

≪ 1; ðA41Þ

where we have defined

ϒ≡ ðTz − TcÞF: ðA42Þ

This can be used to rewrite these errors as

E10 ¼
e−3j1=F

r21ðj1ϒ−1 þ 1Þ2

2
6427

4
þ c−
F2

þ 1

ðj1 þϒÞ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ðj1þϒ

F Þ2
q

j1 þϒ

0
B@6

F
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ðj1þϒ

F Þ2
q

j1 þϒ

1
CA
3
75; ðA43Þ

where

r1F≡ ϕþð0Þe−3Tc=2 secðφÞωϒ=F ðA44Þ

has been defined to suggest the appropriate scale to understand this expression in the resonant case. Note that although it
looks dimensionally wrong, it is actually consistent since we have divided out theH scale here. Our final value of computed
ϒ will determine r1. Similarly, the errors for the higher derivative coefficients are
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E11 ¼
e−3j1=F

r21ðj1ϒ−1 þ 1Þ2

2
6481

4
þ 3c−
F2

þ 10

ðj1 þϒÞ2 þ
18

F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ðj1þϒ

F Þ2
q

j1 þϒ
−
3ω2

F2

3
75; ðA45Þ

E12 ¼
e−3j1=F

r21ðj1ϒ−1 þ 1Þ2

2
64 7
ðj1þϒÞ2 þ ðj1 þϒÞ2 T 1ðTc−

j1
F ÞþT 2ðTc−

j1
F Þ

4F4

1þ ðj1þϒÞ2
4F2

�
3þ 2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ω2ðj1þϒ

F Þ2
p

j1þϒ

�
2

3
75; ðA46Þ

T 1

�
Tc −

j1
F

�
≈ 9

2
643þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ðj1þϒ

F Þ2
q

ðj1þϒ
F Þ

3
75
2
2
6427
4
þ c− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ðj1þϒ

F Þ2
q

ðj1þϒ
F Þ

0
B@6þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ðj1þϒ

F Þ2
q

ðj1þϒ
F Þ

1
CA
3
75; ðA47Þ

T 2

�
Tc −

j1
F

�
≈ 2

1

ðj1þϒ
F Þ2

2
64189þ 6c− þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ðj1þϒ

F Þ2
q

ðj1þϒ
F Þ

0
B@129þ 44

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ðj1þϒ

F Þ2
q

ðj1þϒ
F Þ

1
CA
3
75: ðA48Þ

One can see from Fig. 15 (in which we plot E10, E11, E12) how the higher order Taylor expansion coefficients become more
uncertain earlier before reaching Tc. In this numerical example case, we see that to keep the second order Taylor expansion
coefficient accurate to about 20%, we need to Taylor expand at about Tc − 2=F ≈ 9.15. The actual error E1 at Tc can be
better than 20% depending on which Taylor expansion term contributes the most.
Hence, we conclude based on coefficient errors alone

E1ðTcÞ ≈
����ϕð1Þ

−

�
Tc −

j1
F

�
þ _ϕð1Þ

−

�
Tc −

j1
F

�
j1
F
þ 1

2
ϕ̈ð1Þ
−

�
Tc −

j1
F

��
j1
F

�
2
����; ðA49Þ

ϕð1Þ
−

�
Tc −

j1
F

�
¼ e

9
2
TcF2cos3φsec3ðωT − φÞ

ϕ3þð0Þ
�
27

4
þ c− þ ω2 sec2½ωT − φ� þ ω tan ½ωT − φ�ð6þ ω tan ½ωT − φ�Þ

�
Tc−

j1
F

;

ðA50Þ

_ϕð1Þ
−

�
Tc −

j1
F

�
¼ e

9
2
TcF2cos3φsec3ðωT − φÞ

ϕ3þð0Þ
�
3

2
þ ω tan ½ωT − φ�

�

×

�
81

4
þ 3c− þ ωð10ωsec2½ωT − φ� þ 18 tan ½ωT − φ� − 3ωÞ

�
Tc−

j1
F

; ðA51Þ

ϕ̈ð1Þ
−

�
Tc −

j1
F

�
¼ e

9
2
TcF2cos3φsec3ðωT − φÞ

ϕ3þð0Þ
½7ω4 sec4ðωT − φÞ þ T̃ 1 þ T̃ 2�Tc−

j1
F
; ðA52Þ

T̃ 1 ¼
ω2

2
sec2ðωT − φÞ½189þ 6c− þ 2ω tanðωT − φÞð129þ 44ω tanðωT − φÞ�Tc−

j1
F
; ðA53Þ

T̃ 2 ¼
9

4
½3þ 2ω tanðωT − φÞ�2

�
27

4
þ c− þ ω tanðωT − φÞð6þ tanðωT − φÞÞ

�
Tc−

j1
F

: ðA54Þ

In the resonant case, we can expand as before about T ¼ Tc:

E1ðTcÞ ≈
ϒ3e−

9j1
2F

	
A1F
2

þ 3
2
A2 þ 1

4FA3 þ 81ð4c−þ27Þj2
1

32F3 þ 9j1ð3ð4c−þ45Þj1τðj1Þþ4c−−4ω2þ27Þ
8F2



r31ðj1 þϒÞ3 ; ðA55Þ
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A1ðj1Þ≡ τ2ðj1Þð2þ 9j12τ2ðj1ÞÞ þ
7j12

ðj1 þϒÞ4

þ 2þ 4j1τðj1Þð5þ 11j1τðj1ÞÞ
ðj1 þϒÞ2 ; ðA56Þ

A2ðj1Þ≡ τðj1Þð4þ 3j1τðj1Þð4þ 9j1τðj1ÞÞÞ

þ j1ð10þ 43j1τðj1ÞÞ
ðj1 þϒÞ2 ; ðA57Þ

A3ðj1Þ≡ 27ð1þ 7j1τðj1ÞÞ þ 4c− þ 18j12τ2ðj1Þð27þ c−Þ

þ 12j1τðj1Þðc− − ω2Þ þ 3j12ð63þ 2c−Þ
ðj1 þϒÞ2 ;

ðA58Þ

τðj1Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ðj1þϒÞ2

F2

q
j1 þϒ

≈
1

j1 þϒ
; ðA59Þ

where one should keep in mind that ϒ and r1 are of order
unity in the resonant scenarios where the expansion
involving ϒ about the zero crossing of cosðωT − φÞ has
been made. Since we are evaluating at Tc − j1=F, which is
farther away from the zero crossing of cosðωT − φÞ, this
expression is only about 25% accurate. Typically, the
A1F=2 term dominates and this large coefficient pushes
the error toward larger than unity at Tc. Therefore j1 needs
to be made as large as possible to induce the ðj1 þϒÞ−3 in
Eq. (A55) to reduce E1. This is a motivation for having a
quadratic Taylor expansion compared to a linear Taylor

expansion since generically a Taylor expansion has a larger
degree of accuracy for higher order polynomials.15

Let us discuss the competing error E2 incurred from
Taylor expanding the exact solution to quadratic order
(which is always possible for any analytic solution in a
sufficiently small neighborhood):

E2ðTÞ ¼
���� 16 max

u∈½Tc−1
F;Tc�

∂3
Tϕ−ðuÞ

�
T − Tc þ

j1
F

�
3
����: ðA60Þ

According to the equation of motion for ϕ− [Eq. (18)]:

∂3
Tϕ−ðuÞ ¼ −½−3ð3 _ϕ−ðuÞ þ c−ϕ− þ ðϕþϕ− − F2ÞϕþÞ

þ c− _ϕ−ðuÞ þ ð2ϕþðuÞϕ−ðuÞ − F2Þ _ϕþðuÞ
þ ϕ2þðuÞ _ϕ−ðuÞ�: ðA61Þ

Let us first see why it is a bit delicate to estimate the rhs. We
know that the largest contribution to the rhs of Eq. (A61)
are from the potential terms near its maximum since
F2 _ϕþ ≳ F4:

∂3
Tϕ−ðuÞ ∼ −½ð2ϕþðuÞϕ−ðuÞ − F2Þ _ϕþðuÞ þ ϕ2þðuÞ _ϕ−ðuÞ�:

ðA62Þ

There is a partial cancellation in this expression since at
least at Tc − j1=F, we have by construction

ϕþϕ− ∼ F2 → _ϕþϕ− ∼ − _ϕ−ϕþ; ðA63Þ

making

∂3
uϕ−ðuÞ ≈ −½ðϕþðuÞϕ−ðuÞ − F2Þ _ϕþðuÞ�: ðA64Þ

This cancellation fails more and more as ϕþϕ− becomes
smaller and smaller compared to F2 as u approaches Tc.
This means we expect ∂3

uϕ−ðuÞ to be maximized near Tc.
On the other hand, since ð2ϕþðuÞϕ−ðuÞ − F2Þ _ϕþðuÞ < 0

near Tc − j1=F (since that is where ϕþϕ− ∼ F2), whereas
ϕ2þðuÞ _ϕ−ðuÞ > 0 in this region, there is a cancellation
which could increase near Tc, making the exact location of
the maximum of ∂3

uϕ− uncertain. Nonetheless, as long as
Tc does not exactly represent the zero of ∂3

uϕ−ðuÞ, we
expect from these arguments that

FIG. 15. Uncertainty in the Taylor expansion coefficients as a
function of matching time T for the same parameters as in Fig. 1
for which Tc ¼ 9.248 (the rightmost T is about Tc − 1=F and the
leftmost T is about Tc − 2=F). Note that as expected, the higher
derivatives become nonperturbative faster as T approaches Tc,
which is consistent with the notion that truncated Taylor
expansions are better approximations over a longer time period
as Tc is approached. This shows that we want to match the Taylor
expansion coefficients to the zeroth order perturbative solution at
an earlier time as much as possible.

15One might ask, why not then go to even higher orders in
Taylor expansion? That is because of Fig. 15, which tells us that
the higher order polynomial coefficients are not approximated
well for a given expansion point T ¼ Tc − j1=F. To rigorously
optimize, one would have to minimize the error in the ðn; j1Þ
plane where n is the degree of polynomial with which one is
expanding. However, we will be content with setting n ¼ 2 and
maximizing j1 to approximately minimize the error.
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j∂3
uϕ−ðTcÞj ∼O

�
max

u∈½Tc−1
F;Tc�

∂3
Tϕ−ðuÞ

�
; ðA65Þ

which is what we will evaluate now.
Since the rhs of Eq. (A62) only involves first derivatives

and lower, we can use the assumed solution to evaluate
these derivatives:

ϕ−ðTÞ ≈ ϕð0Þ
−

�
Tc −

j1
F

�
þ _ϕð0Þ

−

�
Tc −

j1
F

��
T − Tc þ

j1
F

�

þ 1

2
ϕ̈ð0Þ
−

�
Tc −

j1
F

��
T − Tc þ

j1
F

�
2

; ðA66Þ

which when evaluated at Tc is

ϕ−ðTcÞ ≈ ϕð0Þ
−

�
Tc −

j1
F

�
þ _ϕð0Þ

−

�
Tc −

j1
F

��
j1
F

�

þ 1

2
ϕ̈ð0Þ
−

�
Tc −

j1
F

��
j1
F

�
2

: ðA67Þ

The derivative can also be evaluated at Tc:

_ϕ−ðTcÞ≈ _ϕð0Þ
−

�
Tc−

j1
F

�
þ1

2
ϕ̈ð0Þ
−

�
Tc−

j1
F

��
j1
F

�
2

: ðA68Þ

After using Eq. (A44), the largest number in ∂3
Tϕ− is F.

Hence, we expand in powers of F to obtain

∂3
Tϕ−ðTcÞ ≈

4r1ð3ϒ − 2ÞF4

ϒðϒþ 2Þ3 þ 18r1ðϒ − 2ÞF3

ðϒþ 2Þ3 ; ðA69Þ

where r1 is defined in Eq. (A44) and ϒ is defined as

ϒ≡ ðTz − TcÞF ∼Oð1Þ; ðA70Þ

where Tz is given by Eq. (71). Note the mass matrix
becomes strongly off diagonal at Tz: i.e.,

F2

ϕþð0Þe−3
2
Tz secðφÞ ≈OðFÞ: ðA71Þ

Because ðϒþ 2Þ3 can easily be of order F (because of the
cubic power) and because 18 can be of order F, these two
terms can compete. Also, 3ϒ − 2 can easily be negative.
Hence we arrive at the Taylor expansion error estimate

E2ðTcÞ ¼
���� 16
�
4r1ð3ϒ − 2ÞF
ϒðϒþ 2Þ3 þ 18r1ðϒ − 2Þ

ðϒþ 2Þ3
�
j31

���� ðA72Þ

at Tc. The equivalent fractional error of Taylor expansion is���� E2ðTcÞ
ϕ−ðTcÞ

���� ≈
���� r1r
� ð2ϒ − 4

3
Þ

ϒðϒþ 2Þ3 þ
3ðϒ − 2Þ
ðϒþ 2Þ3F

�
j31

����; ðA73Þ

where

r1
r
¼ ϕð0Þ

þ ðTcÞ
ϕþðTcÞ

≈ 1; ðA74Þ

r and r1 were defined in Eqs. (A2) and (A44). This error
pushes the choice of j1 toward smaller values (i.e., in the
opposite direction of the push by E1). To evaluate this error,
we need a value of ϒ (or equivalently Tc) which is
calculated with j1 fixed. Hence, ϒ itself is a function of j1.
Ideally, we want to compute

d
dj1

½E1ðTcðj1ÞÞ þ E2ðTcðj1ÞÞ� ¼ 0 ðA75Þ

to minimize the errors. Because ϒ itself depends on j1, the
derivative is tedious to obtain.
The combined error (in absolute values added instead of

quadrature) is plotted in Fig. 16.16 We see that the minimum
error occurs when the Taylor expansion point of Eq. (A29)
is T ≈ Tc − 2=F. The expected error for the value of the
function is at most around 35%. However, to get the plots
[or equivalently, to use Eqs. (A55) and (A72)], we need to
compute ϒ for a given model, i.e., Tc ¼ Tz −ϒF−1 using
Eqs. (A1), (A29), and the analogous equation for ϕþ
approximation:

ϕþðTÞ ≈ ϕð0Þ
þ

�
Tc −

j1
F

�
þ _ϕð0Þ

þ

�
Tc −

j1
F

��
T − Tc þ

j1
F

�

þ 1

2
ϕ̈ð0Þ
þ

�
Tc −

j1
F

��
T − Tc þ

j1
F

�
2

: ðA76Þ

However, in practice this does not need to be done. That is
because the minimum error generating j1 is not sensitive to
the exact value of Tc. This is illustrated in Fig. 17 where the
errors are evaluated with two different estimates of Tc. The
Taylor approximation curve is generated by solving for Tc
self-consistently by solving

ϕTaylor
þ ðTcÞjj1 ¼ ϕTaylor

− ðTcÞjj1 ðA77Þ

for Tc ¼ Tcðj1Þ, which is now a function of j1 and
evaluating E1ðj1; TÞ þ E2ðj1; TÞ evaluated at T ¼ Tcðj1Þ.
The “naive Tc” curve is generated by solving

jϕð0Þ
− ðTðnaiveÞ

c Þj ¼ F ðA78Þ

and Eq. (A71) is satisfied. Hence, we see j1 ≈ 2 gives the
minimum error in the parametric case of Fig. 1.

16Although we could add in quadrature to tighten the error
estimates, we here stay conservative both because we do not
really know the distribution shape of the errors and because we
want to keep the algebra simpler.
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Let us analyze the sensitivity of j1 to the parameters
more generally. Start by rewriting Eq. (A55) as

E1ðTcÞ ≈
ϒ3e−

9j1
2FR1

r31ðj1 þϒÞ3 ; ðA79Þ

R1 ≡A1F
2

þ 3

2
A2 þ

1

4F
A3 þ

81ð4c− þ 27Þj21
32F3

þ 9j1ð3ð4c− þ 45Þj1τðj1Þ þ 4c− − 4ω2 þ 27Þ
8F2

:

ðA80Þ

The solution to Eq. (A75) is thus

�
−9
2F

þ −3ð1þ ∂j1ϒÞ
ðj1 þϒÞ þ 3∂j1ϒ

ϒ
þ ∂j1R1

R1

þ ∂j1ϒ∂ϒR1

R1

�
E1

þ 3

j1
E2 ¼ 0: ðA81Þ

To get an approximation for the solution, we approximate
R1 as a smooth polynomial in j1, note

−9
2F is unimportant,

and assume that we are close to the solution of Eq. (A75)
such that j∂j1ϒ=ϒj ≪ 1:

d
dj1

½E1ðTcÞ þ E2ðTcÞ� ≈
�

−3
ðj1 þϒÞ þ

Oð1Þ
j1

�
E1 þ

3

j1
E2:

ðA82Þ

Setting this to zero gives

E2 ¼
�

j1
ðj1 þϒÞ −

Oð1Þ
3

�
E1 ðA83Þ

or equivalently

���� 16
�
4r1ð3ϒ − 2ÞF
ϒðϒþ 2Þ3 þ 18r1ðϒ − 2Þ

ðϒþ 2Þ3
�
j31

����
¼
�

j1
ðj1 þϒÞ −

Oð1Þ
3

�
ϒ3e−

9j1
2FR1

r31ðj1 þϒÞ3 : ðA84Þ

Hence, for j1 ≳ 2ϒ we can approximate

j1 ≈

 
4ϒ3R1

j 4ð3ϒ−2ÞF
ϒðϒþ2Þ3 þ

18ðϒ−2Þ
ðϒþ2Þ3 j

!
1=6

: ðA85Þ

Since ϒ stays near unity for different cþ and R1 ∼OðFÞ,
we see that this j1 varies slowly with different parameters of
cþ owing to the 1=6 power dependence. Hence, we will use
the result of Fig. 17 and use

j1 ¼ 2

for the resonant cases. This should be a good approxima-
tion to about 30% accuracy since 1=6 power reduces Oð1Þ
uncertainties to about this level. The j1 variable is the
analog of the ð2nÞ1=4= ffiffiffi

α
p

in Eq. (75), and j1 ¼ 2 for cþ ¼
2.35 is consistent with taking n ¼ 10. This Appendix has
thus provided a consistency check as well as an error
estimate of Sec. IV.

2. Solving for Tc

Although the value of j1 that minimizes the error is not
very sensitive to the value of Tc, we see from the second
figure of Fig. 17 that ϕþðTcÞ is sensitive to Tc. We defined
Tc to be the solution of Eq. (A1), which is approximately

FIG. 16. Left panel: combined error for the case of the fiducial parameters of Fig. 1 (e.g., Tc ¼ 9.248). The value of ϒ ≈ 0.6
corresponding to the approximate location of Tc has been fixed by hand and not varied with j1. The minimum error for the value of
ϕ−ðTcÞ using Eq. (A29) occurs at around j1 ¼ 2 corresponding to a Taylor expansion at T ¼ Tc − 2=F. The denominator ϕTaylorj1− ðTcÞ
used for this comparison plot has been made using Eq. (A29) instead. Right panel: the right plot shows the approximate ϕTaylorj1¼2

− of
Eq. (A29) matches the numerical solution ϕ− very well compared to the approximation obtained with j1 ¼ 1. It is clear that the solution
where the Taylor expansion is done about j1 ¼ 2 works much better than the approximation made through expanding about j1 ¼ 1 or
j1 ¼ 3 as predicted by the left plot. Also, as expected and noted before, all the Taylor expansion approximations in the j1 ∈ ½1; 3� are
much better than the zeroth λ order solution ϕð0Þ

− .
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ϕð0Þ
þ

�
Tc −

j1
F

�
þ _ϕð0Þ

þ

�
Tc −

j1
F

��
j1
F

�
þ 1

2
ϕ̈ð0Þ
þ

�
Tc −

j1
F

��
j1
F

�
2

¼ ϕð0Þ
−

�
Tc −

j1
F

�
þ _ϕð0Þ

−

�
Tc −

j1
F

��
j1
F

�
þ 1

2
ϕ̈ð0Þ
−

�
Tc −

j1
F

��
j1
F

�
2

: ðA86Þ

This equation and Eq. (A75) together determine j1 and ϒ [where ϒ is a parametrization of Tc through Eq. (A70)].
Use resonant condition

cos

�
ω

�
Tc −

j1
F

�
− φ

�
≈ ω

j1 þϒ
F

ðA87Þ

to turn the trigonometric functions in this expression into polynomials:

0 ¼ ϕþð0Þω secðφÞe3ð−FTzþj1þϒÞ
F ð8F2ϒþ j1ð−12Fϒ − j1ð4ω2 − 9Þðj1 þϒÞÞÞ

8F3

−
F cosðφÞð8F2ð3j21 þ 3j1ϒþϒ2Þ þ 12Fj1ðj1 þϒÞð2j1 þϒÞ þ 9j21ðj1 þϒÞ2Þ

8ϕþð0Þωðj1 þϒÞ3 : ðA88Þ

Although this equation can be linearized successively to obtain an accurate solution, the algebra becomes significantly
simpler with only about an Oð3ϒ=ðFTzÞÞ loss of precision if we drop the ϒ dependence on arising from the exponent

e
3ð−FTzþj1þϒÞ

F ¼ exp

�
−3Tz þ

3j1
F

þ 3ϒF−1
�

ðA89Þ

≈ exp

�
−3Tz þ

3j1
F

�
: ðA90Þ

Use successive linearization (effective Newton’s method) to obtain a solution to the simplified nonlinear equation:

Tc ¼ Tz −ϒF−1; ðA91Þ

ϒ ≈ϒ1 þϒ2; ðA92Þ

ϒ1 ≡ −
j1ð3 F4

ϕþð0Þ2 e
3Tzð8F2 þ 8Fj1 þ 3j21Þcos2ðφÞ þ j41ω

2ð4ω2 − 9Þe3j1
F Þ

j21ω
2e

3j1
F ð−8F2 þ 12Fj1 þ j21ð4ω2 − 9ÞÞ − 3 F4

ϕþð0Þ2 e
3Tzð16F2 þ 12Fj1 þ 3j21Þcos2ðφÞ

; ðA93Þ

FIG. 17. Here, we again consider the parametric point of Fig. 1. Errors with less accurate Tc (the dashed curve) gives about the same j1
location of the minimum error as the errors evaluated with the more accurate Tc (the solid curve). The exact definition of the more
accurate versus less accurate value of Tc is explained in the text. This insensitivity is expected to occur because of the steepness of the
slope of ϕþ in the resonant case as seen the second figure, where we put on top of Fig. 16 various ϕþ approximations. Note unlike in the

case of ϕð0Þ
− , the leading perturbative ϕð0Þ

þ solution accurately describes the numerical solution at Tc ≈ 9.248.
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where the definition of the rest of the ϒX objects are given
in Eqs. (A7)–(A22). These expressions indicate that
ϒ ∼Oð1Þ since for example in the ϒ1 contribution we
have contributions such as

3
F4

ϕþð0Þ2
e3Tzð8F2 þ 8Fj1 þ 3j21Þcos2ðφÞ ∼

F4

F4
OðF2Þ

ðA94Þ

in the numerator17 with anOðF2Þ in the denominator. Also,
note that even though ϒ looks like it is sensitive to j1, one
can check that there are cancellations when the j1 derivative
ofϒ is computed. This cancellation occurs because if the j1
is chosen in the region where the error E1 þ E2 of Eq. (A29)
is minimized, the sensitivity on j1 by construction is
minimized.
For example, consider

∂ϒ
∂j1 ∼

∂ϒ1

∂j1 ¼ ∂
∂j1
�
N ϒ1

Dϒ2

�
; ðA95Þ

where N ϒ1 is the numerator and Dϒ1 is the denominator
of Eq. (A93). The derivative receives contributions from
the numerator and denominator (after combining over a
common denominator)

�∂N ϒ1

∂j1
�
Dϒ2 ¼ K

�
6F4

ϕ2þð0Þe−3Tzsec2φ
þ e

3j1
F j21ω

2 þ…

�
;

ðA96Þ

−N ϒ1

�∂Dϒ2

∂j1
�

¼ Kð−2e3j1
F j21ω

2 þ…Þ; ðA97Þ

where K is a common factor and we have displayed the
leading terms.18 To see the cancellation between these two
terms, Eq. (A96) can be rewritten using Eq. (A70):

K

�
6F4

ϕ2þð0Þe−3Tzsec2φ
þ e

3j1
F j21ω

2 þ…

�

¼ K

�
6F4

ϕ2þð0Þe−3ðTz−ϒ=FÞe−3ϒ=Fsec2φ
þ e

3j1
F j21ω

2 þ…

�

ðA98Þ

¼ K

��
ϒ26

e−3ϒ=F e
−3j1
F þ j21

�
e
3j1
F ω2 þ…

�
: ðA99Þ

Comparing with Eq. (A97), we see that the cancellation
occurs because

����
�

ϒ26

e−3ϒ=F e
−3j1

F þ j21

�
− 2j21

����≪ 2j21: ðA100Þ

One of the merits of this exercise is to see that this
cancellation is independent of cþ in the resonant region
considered here. This also allows one to see ϒ has to be in
the approximate region of the zero of the left-hand side of
Eq. (A100).
In the case of cþ ¼ 2.35 considered in the plots such

as 1, ϒ1 dominates over ϒ2 by about a factor of 5.
However, since the entire point of this messy exercise
was to obtain a good numerical estimate of Tc, we keepϒ2.
In this parametric point example, we find Eq. (A92)
evaluates to

ϒ ≈ 0.64 ðA101Þ

with Tz ¼ 9.278, while the numerical solution for this
case is

ϒnumerical ≈ 0.61; ðA102Þ

attesting to a good approximation (about 5% error). Note
this also allows us to compute for example

ϕþðTcÞ ≈ ϕþð0Þ exp
�
−3
2

�
Tz −

ϒ
F

��
secðφÞωϒ=F

ðA103Þ

≈15.294; ðA104Þ

giving

r1 ≈ 0.76 ðA105Þ

[defined in Eq. (A44)] very close to the numerical value
of rnumerical

1 ¼ 0.78. In evaluating this, we made use of
Eqs. (71) and (32) as well.
The error in the more general case can be estimated as

follows. To account for the u ¼ 35% type of error Δϕ− in
the ϕ−ðTcÞ field value, note

ΔTc ≈
Δϕ−

∂TϕþðTcÞ − ∂Tϕ−ðTcÞ
ðA106Þ

≈
uF

∂TϕþðTcÞ
ðA107Þ

∼
u
F
; ðA108Þ

which means that the error in ϕ− shifts ϒ by u. This is why
Tc has to be very accurately determined to obtain Δϕ−.

17Recall that ϕþð0Þe−3TZ=2 ∼OðF2Þ in the resonant scenarios.
18Leading terms at least for cþ near the 2.35 parametric region.
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APPENDIX B: SMALL α

For field configuration where α < αL [where αL is
defined in Eq. (93)] at transition, the resonant conditions
in Sec. IV C are not satisfied. In such cases, the mass
eigenvalue and the rotated eigenvector gradient effects are
less than OðFÞ post transition. As a result, the axion mass
transitions smoothly from cþ to a massless state. In these
cases, the separation between the transition Tc and the
zero crossing Tz is usually Oð1Þ. However, by evaluating
Eq. (60) at Tc, one finds that the leading order correction
ϕð1Þ
− ∼ 2α2F. Hence, we see that the perturbative solution is

still valid for α < αL and the cumbersome nonperturbative
computation is no longer necessary for computing the value
of the fields at Tc. However, to compute the spectrum, −V1

still needs to be computed, and this requires an accurate
computation of Tc using the nonperturbative computation
that we have presented in Sec. IV. Using this −V1 and a
slowly time-dependent mass squared function m2

B, the final
mode amplitude can be computed. The absence of reso-
nance and a weak V1 dip less than OðFÞ results in a power
spectrum with the long wavelength region plateauing after
the first bump without any further noticeable bumps similar
to an overdamped scenario.

APPENDIX C: ADIABATIC APPROXIMATION
FOR AN OSCILLATING TIME-SPACE

POTENTIAL

Consider the following second order ODE with an
oscillating time space potential:

ÿþ AβðtÞ cosðftÞy ¼ 0;

where βðtÞ is a slow-varying envelope function with
amplitude A, while the harmonic oscillations are rapidly
varying (large frequency f). The solution yðtÞ of the
aforementioned ODE can be approximated by separating
into the IR and UV components. As long as this hierarchy
can be maintained we can approximate y as

y ¼ ys þ yf; ðC1Þ
whereby ys represents the slow-varying (IR) adiabatic
behavior superimposed with a fast high-frequency (UV)
noise yf. Next, we substitute this into our original equation
to get

ÿs þ ÿf þ AβðtÞ cosðftÞðys þ yfÞ ¼ 0:

We now apply the initial conditions. Assuming that the
incoming function is y ¼ y0 at some t ¼ t0 and has no
UV behavior, the slow-varying component ys will match
appropriately with the y0. The fast-varying yf will then be
matched with 0 or be negligible. Accordingly, over a small
timescale Δt, the UV component will be initially sourced
by the incoming IR component

ÿf þ AβðtÞ cosðftÞys ∼ 0

and by assuming a slow-varying envelope function βðtÞ we
obtain up to a leading order

yf ∼
A
Ω2

βðtÞ cosðftÞys:

Note that jyf=ysj ∼OðA=f2Þ and sets the scale of the UV
component compared to IR. Next, we substitute the UV
solution into our original differential equation and integrate
out the UV scale over one time period,

ÿs þ
A2

2f2
β2ðtÞys ∼ 0: ðC2Þ

The above differential equation governs the dynamics
of the IR component subject to the initial conditions
ysðt0Þ ¼ yðt0Þ and _ysðt0Þ ¼ _yðt0Þ − _yfðt0Þ. By defining
δ ¼ A=f2, we note that if δ ≪ 1, then the above UV
and IR treatment is also valid up to OðδÞ. Figure 18 gives
plots of yðxÞ and ysðxÞ obtained by solving the exact ODE
ÿþ 3 _yþ 200 sinð30xÞe−3

2
xy ¼ 0, yð0Þ ¼ 1, _yð0Þ ¼ 0, and

its adiabatically reduced form respectively.

APPENDIX D: FLAT DEVIATION ξ

The quantity ξ ¼ ϕþϕ− − F2 defines a deviation from
the flat direction. This is a crucial measure as it controls the
strongly coupled dynamics of the two fields. To obtain a
differential equation for ξ we start with the background
field equation (18). We multiply the two equations by ϕ−
and ϕþ respectively and add them together to obtain

FIG. 18. Comparison of exact and adiabatic solution for the
equation ÿþ 3 _yþ 200 sinð30xÞe−3

2
xy ¼ 0, yð0Þ ¼ 1, _yð0Þ ¼ 0.

Using the adiabatic or IR approximation, we solved the reduced
equation ÿþ 3 _yþ ð200=30Þ2e−3xy=2 ¼ 0, yð0Þ ¼ 1, _yð0Þ ¼
−200=30. Note that the initial conditions are modified.
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− 2 _ϕþ _ϕ− þ ∂2
Tðϕþϕ−Þ þ 3∂Tðϕþϕ−Þ

þ ðcþ þ c− þ ϕ2
− þ ϕ2þÞϕþϕ− − F2ðϕ2

− þ ϕ2þÞ ¼ 0;

which yields an effective equation for the flat deviation

ξ̈þ3_ξþðM̃2
11þM̃2

22Þξ¼−ðcþþc−ÞF2þ2 _ϕþ _ϕ−; ðD1Þ

where M̃2
ij are the elements of the M̃2 matrix. This is an

interesting equation in that apart from the kinetic mixing
terms on the rhs, the equation for ξ has been made to “look”
linear, although it certainly is not because of M̃2

11 þ M̃2
22.

Consider an expansion about a neighborhood of Tm defined
to be the zero of _ϕþ:

_ϕþðTmÞ ¼ 0: ðD2Þ

In that neighborhood, the solution must behave as

ϕþðTÞ ¼ ϕþðTmÞ þ
1

2
ϕ̈þðTmÞðT − TmÞ2 þ…: ðD3Þ

Since Tm comes Oð1=FÞ time after Tc while ϕ− has been
increasing beyond F while ϕþ has been decreasing toward

ϕþðTmÞ, we can approximate that ϕ− has a Taylor
expansion in time:

ϕ−ðTÞ ¼ ϕ−ðTmÞ þ _ϕ−ðTmÞðT − TmÞ

þ 1

2
ϕ̈−ðTmÞðT − TmÞ2 þ…: ðD4Þ

We then find

_ϕþðTÞ ¼ ϕ̈þðTmÞðT − TmÞ þ
1

2
ϕ
…

þðTmÞðT − TmÞ2 þ…;

ðD5Þ

_ϕ−ðTÞ ¼ _ϕ−ðTmÞ þ ϕ̈−ðTmÞðT − TmÞ

þ 1

2
ϕ
…

−ðTmÞðT − TmÞ2 þ…; ðD6Þ

yielding

_ϕþ _ϕ− ¼ ϕ̈þðTmÞ _ϕ−ðTmÞðT − TmÞ þO½ðT − TmÞ2�: ðD7Þ

We also know

M̃2
11 þ M̃2

22 ¼ cþ þ c− þ ½ϕ−ðTmÞ þ _ϕ−ðTmÞðT − TmÞ þ…�2 þ
�
ϕþðTmÞ þ

1

2
ϕ̈þðTmÞðT − TmÞ2 þ…

�
2

ðD8Þ

¼ cþ þ c− þ ϕ2
−ðTmÞ þ ϕ2þðTmÞ þ 2ϕ−ðTmÞ _ϕ−ðTmÞðT − TmÞ þO½ðT − TmÞ2�: ðD9Þ

Keeping to zeroth order in T − Tm, we put into Eq. (D1) the zeroth order terms in Eqs. (D7) and (D9). The resulting
equation (D1) has a solution in the vicinity of Tm,

ξ ¼ −Ae−3
2
ðT−TmÞ cosðΩðTmÞðT − TmÞÞ −

ðcþ þ c−ÞF2

ΩðTmÞ2
þOððT − TmÞ3ϕ̈þðTmÞ _ϕ−ðTmÞÞ; ðD10Þ

ΩðTmÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̃2

11ðTmÞ þ M̃2
22ðTmÞ −

9

4

r
: ðD11Þ

For the remainder of our discussion, we will consider the
following approximate expression for the flat deviation
with a constant amplitude A and a slow-varying time-
dependent frequency

ξ¼−Ae−3
2
ðT−TmÞcos

�Z
T

Tm

ΩðtÞdt
�
−
ðcþþc−ÞF2

ΩðTÞ2 : ðD12Þ

Flat deviations of OðF2Þ occur close to a zero crossing
of ϕþ characterized by a strong nonlinear interaction
between the two background fields. After transition, when

the background fields are settling to their minima, the
frequency of flat deviation is ∼OðFÞ. As the fields initially
start out along the flat direction, ξ ≈ 2 _ϕþ _ϕ−=ϕ2þ ∼
Oðϕ−=ϕþÞ < 1 is negligible since ϕþ ≫ ϕ−. When the
fields reach close to the transition, the 2 _ϕþ _ϕ− term causes
the fields to deviate away from the flat direction. Later
when the fields have settled to their minima, the flat
deviation tends to

−
ðcþ þ c−ÞF2

M̃2
11 þ M̃2

22

≈ − ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p
: ðD13Þ

The kind of dynamic behavior described above can lead to
resonance which is characterized by a significant flat
deviation ≳Oð0.1F2Þ, as shown in Fig. 19.
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APPENDIX E: UV AND IR DECOMPOSITION OF
THE BACKGROUND FIELDS

Post transition, the background fields are strongly coupled
through the interaction term ξϕ� as shown in the equations

ϕ̈þ þ 3 _ϕþ þ cþϕþ þ ξϕ− ¼ 0; ðE1Þ

ϕ̈− þ 3 _ϕ− þ c−ϕ− þ ξϕþ ¼ 0; ðE2Þ

where ξ is an oscillating function given in Eq. (D12). The
dynamics of the coupled system post transition can be
understood in terms of a UVand IR decomposition detailed
in Appendix C. If the frequency of the oscillating function ξ
is much larger than the root of its amplitude, the system
exhibits a hierarchy between the UV and IR states. We may
then integrate out the UV degree of freedom and retain the IR
components to describe the adiabatic behavior of the coupled
system. In principle we can write

ϕ� ≈ ϕ�s þ ϕ�f; ðE3Þ

where the subscripts s, f represent the slow (IR) and fast
(UV) components of the fields.
From Appendix C and assuming A=Ω2

s ≪ 1 (which we
will justify below), we can write down an approximate
solution for the UV component of the ϕ� fields as

ϕþf ≈ −
A
Ω2

e−
3
2
ðT−T 0Þ sinðfðTÞÞϕ−s;

ϕ−f ≈ −
A
Ω2

e−
3
2
ðT−T 0Þ sinðfðTÞÞϕþs; ðE4Þ

where we have used Eq. (D12) in place of ξ [with a time-
dependent frequency term fðTÞ¼R TT 0ΩðtÞdt] and switched
the cosine function in Eq. (D12) to a sine for convenience.
In terms of the UVand IR components we can write the flat
deviation as

ξ ¼ ϕþϕ− − F2 ðE5Þ

≈ ϕþsϕ−s þ ϕþfϕ−s þ ϕþsϕ−f þ ϕþfϕ−f − F2: ðE6Þ

Meanwhile from Eq. (E4) we infer that

ξ ≈ −Ae−3
2
ðT−T 0Þ sinðfðTÞÞ ≈ ϕþfϕ−s þ ϕþsϕ−f; ðE7Þ

subject to the approximation Ω2 ≈ ϕ2þs þ ϕ2
−s ≡Ω2

s . Thus,
we will approximately take the frequency squared of the ξ
function as the sum of the squares of the IR components
of the background fields. Since the UV components are
smaller in amplitude compared to IR, we obtain an
approximate relationship between the IR components of
the background fields,

ϕþsϕ−s ≈ F2 −Oðϕþfϕ−fÞ: ðE8Þ

This is an important result which indicates that if the
background fields can be factorized into UV and IR
components, then the IR components continue to follow
the flat direction.
Post transition, jϕ−j begins to increase due to a positive

velocity of OðF2Þ and becomes dominant compared to a
decreasing jϕþj. During this time, the UV integrated
equation of motion for the IR component of the dominant
ϕ− field is given below,

ϕ̈−sþ3 _ϕ−sþc−ϕ−sþ
A2

2Ω2
s
e−3ðT−T2Þϕ−sþ ffiffiffiffiffiffiffiffiffiffiffi

cþc−
p

ϕþs≈0;

ðE9Þ

while the smaller ϕþs field is obtained through the flat
direction condition ϕþsϕ−s≈F2. Note thatΩ2

s ≈ ϕ2þs þ ϕ2
−s

is a function of the background fields highlighting the
nonlinearity of the above equation. However, to obtain an
analytic solution we will consider an average value for the

× ×

FIG. 19. Comparison of numerical solutions to flat deviation ξðTÞ after transition for cþ ¼ 2.285, ε0 ¼ −3=2 (left panel) and
cþ ¼ 2.35, ε0 ¼ 0 (right panel) highlighting the resonant cases. All other parameters were set at their fiducial values PA of Fig. 5.
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parameter Ωs over a half-oscillation of ϕ−s (since ϕ−s
increases up to a maximum and then falls back toward F)
such that a general solution to the above damped oscillator
equation for a constant average Ω is given as (during the
time when the term

ffiffiffiffiffiffiffiffiffiffiffi
c−cþ

p
ϕþs is not appreciable)

ϕ−s ¼ e−
3
2
ðT−T2Þ

�
c1Jn1

�
A
ffiffiffi
2

p

3Ω̄
e−

3
2
ðT−T2Þ

�

þ c2J−n1

�
A
ffiffiffi
2

p

3Ω̄
e−

3
2
ðT−T2Þ

��
; ðE10Þ

where

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c−=9

p
; ðE11Þ

c1;2 ¼
∓π

2 sin ðπn1Þ
�
ϕ−sðT2Þ

A
ffiffiffi
2

p

3Ω̄
J0∓n1

�
A
ffiffiffi
2

p

3Ω̄

�

þ ðϕ−sðT2Þ þ 2 _ϕ−sðT2Þ=3ÞJ∓n1

�
A
ffiffiffi
2

p

3Ω̄

��
ðE12Þ

for

ϕ−sðT2Þ ≈ ϕ−ðT2Þ; ðE13Þ

_ϕ−sðT2Þ ≈ _ϕ−ðT2Þ −
ξϕþ
ϕ−

����
T2

; ðE14Þ

where ϕ−ðTÞ properties near T2 can be obtained from
Eq. (163). Meanwhile, the ϕþs field is given by the flat
direction

ϕþs ≈
F2

ϕ−s
: ðE15Þ

Since Ω is a time-dependent function of the background
fields, we apply a seminumeric approach to estimate an
average value of Ω between T2 and the time T� when
ϕ−sðT�Þ ≈ 4=3ϕ−min for cþ > c−. This choice of T� allows
us to consider both the situations where the two back-
ground fields may either cross each other again after Tc or
not. The procedure involves matching the analytical sol-
ution in Eq. (E10) to the numerical results for the fit
parameter Ω̄. Through this procedure we obtain an empiri-
cal fit expression for Ω̄ as a function of α and F:

Ω̄ ≈ 2.05F þ 0.1327F þ 0.0454F2

1þ exp ð7.86ðα − α0ÞÞ
; ðE16Þ

where

α0 ≡ 0.7442 − 0.0008F: ðE17Þ

When
ffiffiffi
2

p
A=ð3Ω̄Þe−3=2ðT−T2Þ ≫ j3=4 − 4c−=9j, the above

solution has an oscillating behavior with a maximum
frequency fIR,

fIR ≈
ffiffiffi
2

p

3

A
Ω̄
: ðE18Þ

Within our parametric region of interest, the amplitude
satisfies A < F2 from Eq. (173) imposed by α ≲ αU. Since
the transition occurs close to F, the two fields oscillate over
the equilibrium scale F such that Ωs ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2þs þ ϕ2

−s
p

≥ffiffiffi
2

p
F with an average value of approximately Oð2FÞ at T2.

Therefore, we see the self-consistency of the assumption
that A=Ω2

s ≪ 1 for T ≥ T2. Between Tc and T2, the system
of background fields can be given by the cubic-polynomial
solution. Also, the IR fields can oscillate momentarily
with a frequency fIR ∼Oð0.1FÞ, while the UV scales
oscillate with frequency Ωs ∼OðFÞ. Therefore, the hier-
archy between the two scales is clearly established.
In summary, prior to transition the fields are best

described via primary frequency ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ − 9=4

p
. After

FIG. 20. Plots showing UV and IR components of the back-
ground fields ϕ� for cþ ¼ 2.35 where the curves for ϕ� have
been computed numerically by solving Eqs. (17) and (18). The IR
components ϕ�s have been computed by subtracting ϕ�f of
Eq. (E4) from the numerically computed ϕ�. On the right, the
trajectory of the background fields clearly highlights the devia-
tions away from the flat direction. All the parameters have been
set to the PA set used in Fig. 5.
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transition, we can separate the fields into UV and IR
components as long as A=Ω2

s ≪ 1. As T → T∞, the UV
component decays away and the IR components settle to
the minima. Figure 20 highlights the above conclusions by
showing UV and IR components of the background fields
ϕ� for cþ ¼ 2.35with all the other parameters set to the PA
set used in Fig. 5.

APPENDIX F: LIGHTEST EIGENVECTOR

We will now study the lightest mass eigenvector e1
corresponding to the lightest mass eigenvalue and derive an
analytical expression for ð∂Te1Þ2. We begin by defining the
lightest mass eigenvector,

e1 ¼
�
e11
e21

�
; ðF1Þ

where the column matrix elements are

e11 ¼
effiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 1
p ≈

−ϕþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2þ þ ϕ2

−
p ;

e21 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 1
p ≈

ϕ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2þ þ ϕ2

−
p ; ðF2Þ

with the definition

e ¼ 1

2F2

	
M̃2

11 − M̃2
22 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM̃2

22 − M̃2
11Þ2 þ 4F4

q 

:

We would like to evaluate the derivative squared term
ð∂Te1Þ2 ¼ ð∂Te11Þ2 þ ð∂Te21Þ2. Using the definitions from
above, we note that ∂Te11¼ð∂TeÞ=ðe2þ1Þ3=2 and ∂Te21 ¼
∂Teð−e=ðe2 þ 1Þ3=2Þ so that _e1 · _e1 ¼ _e2=ðe2 þ 1Þ2. By
defining g ¼ M̃2

11 − M̃2
22 we expand _e1 · _e1,

_e1 · _e1 ¼ _g2
�

e2

ðe2 þ 1Þ2
1

g2 þ 4F4

�
; ðF3Þ

with

_g ¼ 2 _ϕ−ϕ− − 2 _ϕþϕþ: ðF4Þ

Thus, the _e1 · _e1 peak amplitude is related to the relative
velocity of the two fields as they cross each other. The peak
is maximized if the two fields approach from opposite
directions, thus maximizing the relative velocity. Upon
substituting the analytical form of _g into Eq. (F3) and
solving we obtain that the first maxima close to Tc occurs
when the jϕþj field is approximately F. The maximum
amplitude is given as

ð _e1 · _e1Þmax ≈ _g2
�

e2

ðe2 þ 1Þ2
1

g2 þ 4F4

�����
ϕþ→F

:

As jϕþj → F, we have −F2 ≤ g < 0 so that we can expand
in terms of ðgþ F2Þ=F2 ≪ 1, which simplifies ð _e1 · _e1Þmax,

ð _e1 · _e1Þmax ≈
�

_g
5F2

�
2
�
1þ 4

5

�
gþ F2

F2

�
þ 2

25

�
gþ F2

F2

�
2

−
28

125

�
gþ F2

F2

�
3
�����

ϕþ→F
; ðF5Þ

which has a limiting case

lim
α≫1

ð _e1 · _e1Þmax →
4

25
F2α2: ðF6Þ

Using the above analytical expressions, we present a
second order polynomial fit in terms of parameter α for
the Eq. (F5) in the range [0.25, 1.5]:

ð _e1 · _e1Þmax ≈ F2ð−0.0030þ 0.2156αþ 0.1779α2Þ;
α ∈ ½0.25; 1.5�: ðF7Þ

As the ϕþ field rapidly rolls down from the Plank scale, the
first peak ð _e1 · _e1Þ peak occurs slightly before transition
and is characterized by the dominant ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ − 9=4
p

frequency. After transition, the ϕ� fields can be divided
into the UV and IR components. When the jump ETSP
in Eq. (E9) is significant at T2, it leads to an Oð0.1FÞ
frequency oscillations of the IR fields (see Appendix E) such
that the fields cross again after transition (also characterized
by the zeros of g ≈ ϕ2

− − ϕ2þ). Quantitatively, this is equiv-
alent to ϕ−s → F since ϕþs ≈ F2=ϕ−s. Thus, we can obtain
the approximate location of the second crossing of the
background fields by solving Eq. (E10) for the time T3 when
ϕ−sðT3Þ ¼ F.
Since additional crossings require a significant jump

ETSP, we begin with the Eq. (E10) for the ϕ−s background
field and evaluate an approximate condition for the back-
ground fields to cross after transition. As we are interested
in cases where the crossings are caused by the jump ETSP,
we will neglect the c− term in Eq. (E9). Hence, we consider
the following equation:

ϕ̈−s þ 3 _ϕ−s þ
A2

2Ω̄2
e−3ðT−T2Þϕ−s ≈ 0; ðF8Þ

which has the general solution

ϕ−sðT ≥ T2Þ ≈ e−
3
2
ðT−T2Þ½c01J1ðme−

3
2
ðT−T2ÞÞ

þ c02Y1ðme−
3
2
ðT−T2ÞÞ�; ðF9Þ

where the primed coefficients c01;2 are obtained similar to

the c1;2 below Eq. (E10) and m ¼ ffiffiffi
2

p
A=ð3Ω̄Þ is a function

of α.
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As T → T∞, we look for the minimum value of m such
that ϕ−sðT > T2Þ ¼ F. Hence, we equate

lim
T→T∞

ϕ−sðT≥T2Þ≈ϕ−sðT2ÞJ01ðmÞ

þðϕ−sðT2Þþ2 _ϕ−sðT2Þ=3Þ
m

J1ðmÞ¼F:

ðF10Þ

Since _ϕ−sðT2Þ∼Oð:5F2Þ≫ϕ−sðT2Þ∼OðFÞ, we reduce
the above expression to

3

F
≈
J1ðmÞ
m

: ðF11Þ

Equation (F11) gives us an approximate minimum value
of m such that the two background fields cross each other
after Tc. For c− ≪ 1 and F ≫ 1, we find that the minimum
value of m saturates to about

m ¼ z1 ≈ 3.8; ðF12Þ

where J1ðz1Þ ¼ 0. The term A in Eq. (F11) can be
evaluated using the nonperturbative cubic-polynomial
expansion for the background fields from Eqs. (67) and
(68) around Tc. The minimum value of α that satisfies
the conditional equality in Eq. (F11) is defined as α2. It
corresponds to a parametric cutoff such that for α≳ α2,
the background fields cross each other again after Tc. For
F ¼ 20.2 (corresponding to the fiducial parameter set PA),
we obtain α2 ≈ 0.87. Similarly, for a much larger value of
F ¼ 100, we obtain α2 ≈ 0.6, highlighting that α2 reduces
with F. If the resonance amplitude A is large enough,
the background fields can cross each other more than once
after Tc. This corresponds to the situation where

m≳ z2; ðF13Þ

where z2 corresponds to the second zero of J1ðzÞ. Further,
we remind the reader that each crossing of the background
fields corresponds to a ð _e1Þ2 peak which is modeled as a
−Vi dip within our numerical mass model in Eq. (101).
Since we limit ourselves to just two dips in this paper, we
will consider only those cases where α ≲ α3.
For α ≳ α2 cases, the−V3 dip within our mass model can

be evaluated using Eq. (F3) wherein the peak amplitude of
the _e1 · _e1 function around T3 is evaluated by substituting
ϕ�s into g ≈ ϕ2

− − ϕ2þ using the solution provided in
Eqs. (E10) and (E15). Meanwhile, the maximum amplitude
of these peaks located close to the zeros of g requires an
evaluation of _g as observed in Eq. (F3). In terms of the IR
and UV components, we rewrite _g as

_g ≈ _gs þ _gsf þ _gfs þ _gf; ðF14Þ

where we identify _gs ≈ 2ðϕ−s _ϕ−s − ϕþs
_ϕþsÞ, _gf ≈

2ðϕ−f _ϕ−f − ϕþf
_ϕþfÞ, _gfs ≈ 2ðϕ−f _ϕ−s − ϕþf

_ϕþsÞ, and

_gsf ≈ 2ðϕ−s _ϕ−f − ϕþs
_ϕþfÞ. Using Eqs. (E4), one can show

that the mixed terms _gfs and _gsf cancel out due to an
accidental symmetry ϕ� → −ϕ� that exists in the potential
governing ϕ�, while the amplitude of the first derivative of
the UV component is given as

_gfjT∼T3
≈ ∂Tðϕ2

−f − ϕ2
þfÞjT∼T3

≈
�
A2e−3ðT3−TcÞ

Ω3
s

�
gs þ

�
Ae−3=2ðT3−TcÞ

Ω2
s

�
2

_gs: ðF15Þ

Up to a linear order in the Taylor expansion, we can
approximate gs in the vicinity of T3 as

gsðTÞ ≈ _gsðT3ÞðT − T3Þ: ðF16Þ

Therefore, including the additional contributions from the
UV term gf, we can approximate the ð _e21ÞT∼T3

peak in the
vicinity of T3 using

_gðT ∼ T3Þ ≈ _gsðT3Þ
�
1þ A2e−3ðT3−TcÞ

Ω4
s

ð1þ ΩsðT − T3ÞÞ
�

ðF17Þ

within Eq. (F3). Through fitting, we find that up to a 20%
error, the above evaluation procedure can be approximated
by the following simplified expression:

ð _e21ÞT¼Tj
≈

8<
:

ð _e21Þmaxe
−3ðTj−TcÞ; Ae−3=2ðTj−TcÞ

2F2 > 0.15;

ð _e21Þmax

	
_gsðTjÞ
_gsðTcÞ



2
; Ae−3=2ðTj−TcÞ

2F2 < 0.15;

ðF18Þ

where Tj refers to the time when the two background fields
cross each other again after Tc and _gsðTcÞ are evaluated
from the cubic-polynomial solution for the background
fields in Eqs. (67) and (68). These peaks are lower in
magnitude due to the Hubble friction, as shown in Fig. 21.
Next we note that Eq. (F5) can be qualitatively under-

stood by the following factorization:

_e1 · _e1 ∼
X
nm

dnmðϕþ;ϕ−Þ
_ϕn

_ϕm

F2
; ðF19Þ

where the coefficients dnm are dimensionless and order
Oð1Þ. The width Δ of a _e1 · _e1 peak is characterized by

Δ ∝
Δϕmax

_ϕmax

; ðF20Þ
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where ϕmax is the field at the maximum of _e1 · _e1 which
gives us

Δϕmax

_ϕmax

∼
Δϕmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
larger eigenvaluednmðϕþ;ϕ−Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 _e1 · _e1

p : ðF21Þ

We shall therefore consider the following repatriation for
the width Δ:

Δ ≈
rΔffiffiffiffiffiffiffiffiffiffiffiffi
_e1 · _e1

p ; ðF22Þ

where rΔ takes the following form:

rΔ ≈
Δϕmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
larger eigenvaluednmðϕþ;ϕ−Þ

p
F

: ðF23Þ

Therefore, rΔ has parametric dependence on Δϕmax

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
larger eigenvaluednmðϕþ;ϕ−Þ

p
. As α increases,

Δϕmax must also increase due to increasing resonance
amplitude. On the other hand, the corresponding value
of ϕ− at the location of the peak reduces monotonically
with an increasing α, which results in a smallerffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
larger eigenvaluednmðϕþ;ϕ−Þ

p
. Within the parametric

region (0.25 ≲ α ≲ 1), the two competing behaviors are
equally important and tend to cancel each other out such

that within the region of our interest we can approximate
rΔ ≈ 0.72 so that the width of the _e1 · _e1 peaks are
approximately given as Δ ≈ 0.72=

ffiffiffiffiffiffiffiffiffiffiffiffi
_e1 · _e1

p
within 10%

accuracy. Using Eq. (F7) for the ð _e1: _e1Þmax into Eq. (F22),
we obtain the following linear expression in α for the
width of the first ð _e1 · _e1Þ dip:

Δð _e1Þ2max
≈
ð2.93 − 1.86αÞ

F
: ðF24Þ

In general, the width of these Gaussian-like peaks can also
be evaluated by taking the ratio of the total area under the
peak to its maximum amplitude.

APPENDIX G: LIGHTER MASS EIGENVALUE m2
1

In this section, we will study the variation of lightest
mass eigenvalue over time. The lightest eigenvalue of the
mass matrix M̃2 is given by the expression

m2
1 ¼

M̃2
11 þ M̃2

22

2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

F4 − M̃2
11M̃

2
22

ðM̃2
22 þ M̃2

11Þ2

s !
: ðG1Þ

In terms of Ω2 ¼ M̃2
11 þ M̃2

22 and ξ ¼ ϕþϕ− − F2 we
rewrite Eq. (G1) as

m2
1 ¼

Ω2

2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

�
ξ

Ω2

�
2

− 8
F2

Ω2

�
ξ

Ω2

�
− 4

cþϕ2þ þ c−ϕ2
− þ c−cþ

Ω4

s !
:

During the early phase when jϕþj ≫ F and any transient oscillations ϕtransient
− of ϕ− are negligible i.e., ϕtransient

− ≪ ϕð0Þ
− , m2

1

reduces to

× ×

FIG. 21. Plots depicting peaks of _e1 · _e1 [Eq. (F3)] for cþ ¼ 2.35; ε0 ¼ 0 (left panel) and cþ ¼ 2.285; ε0 ¼ −3=2 (right panel). All the
parameters have been set to the PA set used in Fig. 5.
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m2
1 ∼

1

2

�
M̃2

11 þ M̃2
22 − ðM̃2

22 − M̃2
11Þ −

2F4

M̃2
22 − M̃2

11

�
;

∼ cþ þO
�
F2

ϕtransient
−

ϕþ

�
: ðG2Þ

As the fields then approach transition, the zero order

approximate perturbative solution ϕð0Þ
� is no longer valid.

The lighter mass eigenvalue transitions from cþ to a
negative dip. Post this dip, m2

1 oscillates due to the
resonance before settling down to zero. As explained in
Appendix E, the background fields post −V1 dip can be
factorized in terms of the UV and IR components. Using
these components we can write Ω2 as

Ω2 ≈ ϕ2þ þ ϕ2
−

≈ ϕ2þs þ ϕ2
−s þ ϕ2

þf þ ϕ2
−f þ 2ϕþsϕþf þ 2ϕ−sϕ−f

≈Ω2
s þ

4F2

Ω2
s
ξþOðΩ2

fÞ ðG3Þ

such that we can factor out the resonant UV oscillations
over the slow-varying Ω2

s background.
Next we substitute the above factorization for Ω2 into

Eq. (G2) and expand m2
1 in powers of δ ¼ ξ=Ω2

s ,

m2
1 ≈

c−ϕ2
− þ cþϕ2þ
Ω2

s
þ 2F2

�
δþ

�
Ω2

s

2F2
−
2F2

Ω2
s

�
δ2

þ 1

2

�
Ωs

F
−
4F3

Ω3
s

�
2

δ4 þOðδ6Þ
�
:

Within the parametric region of interest where jδj ≪ 1, we
drop all terms of Oðδ3Þ and higher such that

m2
1ðTÞ ≈ 2F2

�
δþ

�
Ω2

s

2F2
−
2F2

Ω2
s

�
δ2
�
þ c−ϕ2

− þ cþϕ2þ
Ω2

s
:

ðG4Þ

The above expression highlights that the mass eigenvalue
thus oscillates in tandem with the flat-deviation oscillations
before settling down to zero. The expansion leading to
Eq. (G4) is appropriate as long as the term
ξ=ðϕ2

−s þ ϕ2þsÞ ≲Oð0.2Þ. From Eq. (173) we infer that
jξj ≲ F2 for α ≤ 1, meanwhile ϕ−ðT2Þ ≈ 2F and hence the
expansion term ξ=ðϕ2

−s þ ϕ2þsÞ tends to ∼0.2 as
α → 1≡ αU. To the contrary, if the two fields tend to
Oð1Þ momentarily, the above expansion breaks down.
However, the lighter mass eigenvalue in those conditions
tends to −F2. This situation arises when the trajectory of
the two fields tends to be chaotic and unstable, which is
outside the scope of our parametric region.

APPENDIX H: BUILDING THE NUMERICAL
MODEL

In Appendix G we obtained an approximate expression
for the lighter mass eigenvalue in the limit ξ=Ω2

s ≪ 1. Next
we substitute for the flat deviation ξ from Eq. (D12) into
Eq. (G4),

m2
1ðTÞ ≈ 2F2

�
ξ

Ω2
s
þ
�
Ω2

s

2F2
−
2F2

Ω2
s

��
ξ

Ω2
s

�
2
�
þm2

BðTÞ

∀ ξ

Ω2
≪ 1; ðH1Þ

where the slow-varying background term −ðcþþc−ÞF2=Ω2
s

of ξ from Eq. (D12) has been absorbed within m2
BðTÞ

such that

m2
BðTÞ ≈

c−ϕ2
−s þ cþϕ2þs

ϕ2
−s þ ϕ2þs

−
2F4ðcþ þ c−Þ
ðϕ2

−s þ ϕ2þsÞ2
; ðH2Þ

where ϕ�s are the IR components of the ϕ� fields as given
in Appendix E. We identify m2

BðTÞ as a low-frequency
axion mass of order Oðc−Þ that eventually tends to
zero when the background fields settle to their respective
minima. In this context, the effective axion mass post
transition comes from physics at two different frequency/
energy scales. In order to obtain an analytically solvable
model, it is convenient to integrate out the high-frequency
terms and obtain an effective low-frequency model in terms
of the IR components. We begin by redefining ξ after the first
dip as follows:

ξ ≈ Ae−
3
2
ðT−T 0Þ sin

�Z
T

T 0
ΩsðtÞdt

�
; ðH3Þ

where T 0 ≈ Tc þOð1=FÞ is the approximate time when the
flat deviation ξ first crosses zero after the initialOð−F2Þ dip.
Thus, up to a quadratic expansion in ξ=Ω2

s , m2
1 in Eq. (H1)

has the following harmonic expansion:

m2
1 ∼OðsinðfÞÞ þOðsin2ðfÞÞ ðH4Þ

∼OðsinðfÞÞ þOð1 − cos ð2fÞÞ; ðH5Þ

where f ¼ R TT 0 ΩsðtÞdt. Applying the adiabatic approxima-
tion method elucidated in Appendix C we integrate out the
UV degree of freedom in m2

1 to yield

m2
1 ≈
�
2F2

Ω2
s

�
2 1

2Ω2
s
A2e−3ðT−T 0Þ

þ 1

Ω2
s

�
1 −

4F4

Ω4
s

�
A2

2
e−3ðT−T 0Þ þm2

BðTÞ ∀ α ≲ 1;

ðH6Þ
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where the first term in the above expression comes from the
IR reduction of the term linear in ξ in Eq. (H1), while the
second term is a positive offset due to the Oðsin2ðfÞÞ term
from the ξ2 quadratic term in Eq. (H1). Moreover, while the
first term in Eq. (H6) results in a modification of the initial
conditions at T 0, the second term does not. An important
consequence of the IR reduction in Eq. (H6) is that the
contribution from the linear term cancels out. This cancel-
lation of the first order UV contribution is similar to the
one we observed and explained in Appendix F. Thus, the
adiabatic reduction approximates the oscillating time-space
potential in m2

1 to a nonoscillating exponentially decaying
positive time-space potential,

m2
1 ≈ e−3ðT−T 0Þβ2

A2

2
þm2

BðTÞ ∀ α ≲ 1; ðH7Þ

where the prefactor

β2 ≈
1

Ω2
s
: ðH8Þ

Since Ω2
s is a time-varying function, we evaluate an average

value for β2 within a half oscillation of the background
fields using e−3ðT−T 0Þ as the weighing function.19 Using the
analytic solutions for the background fields in Appendix E,
we obtain the following approximate empirical fit expression
for average hβ2i:

hβ2i ≈ F−2
�
0.139þ :14

1.08þ exp ð11ðα − 0.72ÞÞ
�
: ðH9Þ

Note that the above estimation is approximate and hence one
of the sources of uncertainty for all superhorizon modes
at T2. With this approximation, the system is now analyti-
cally solvable where the reduced low-frequency mass model
has a jump ETSP V2 defined as

e−3ðT−T 0Þ V2

2
≡ e−3ðT−T 0Þhβ2iA

2

2
ðH10Þ

at T ¼ T 0 ≈ T2. Within the framework of this adiabatic
reduction, the y1 axion mode function is expressed in terms
of its slow (IR) and fast (UV) components,

y1 ¼ y1s þ y1f ðH11Þ

where we will neglect the y1f component since ξ=Ω2
s ≪ 1

(within the scope of the adiabatic reduction). The effective
mass squared (m2

1 − _e1 · _e1) for the y1s-mode function is
now generalized in terms of a low-frequency mass modelm2

with a reduced mass eigenvalue in Eq. (H7) and the − _e1 · _e1
dips (explained in Appendix F) modeled as negative square
wells/dips.
The first dip at the transition Tc is obtained through a

superposition of the first _e1 · _e1 dip and a corresponding dip
due to the evolution of the mass eigenvalue from cþ to an
oscillating function (due to a strong resonance between
the ϕ� fields). This explains the first V1 dip of our model
given in Eqs. (101) and (129). After this first negative dip
of OðF2Þ, the effective mass squared is governed by the
exponentially decaying positive function e−3ðT−T2ÞV2=2 of
OðF2=20Þ. Once the V2 mass squared function decays
away, the parameter VB of Oðc−Þ evaluated as an average
of the m2

BðTÞ defines the asymptotic behavior of the y1s-
mode amplitude. The dynamics of the m2

B function and its
effect on the mode amplitude is covered in Appendix I.

APPENDIX I: EFFECTIVE MASS SQUARED
FUNCTION m2

B

The effective axion mass after IR averaged m2
y1 makes a

positive jump transition at time T2 (see Fig. 4) is derived
from physics at two different frequency/energy scales.
These are specified by underdamped OðFÞ oscillation of
the lightest mass eigenvalue and slowly varying part of the
lightest mass squared eigenvalue function m2

B given by
Eq. (H2). In this Appendix, we will discuss the functionm2

B
in detail and evaluate its effect on the y1-mode amplitude.
From Eq. (H2) we note that dynamics of m2

B is charac-
terized by the motion of IR components of the fields ϕ�
along the flat direction toward the minimum of the potential.
Along this direction, the fields can move toward the
minimum either from above (ϕ−s > ϕ−min) or below
(ϕ−s < ϕ−min), as shown in Fig. 23. When the fields have
settled to their respective minimum, m2

B goes to zero.
Interestingly then, if the ϕ− field settles from above the
minimum then the condition m2

B > 0 is satisfied, while if it
moves from below, thenm2

B < 0 subject to a few conditions.
We shall now study this behavior starting from the

expression for m2
B of Eq. (H2), which can be rearranged

to get

m2
B ≈

ð ffiffiffiffiffi
c−

p
ϕ2
−s þ ffiffiffiffiffiffi

cþ
p

ϕ2þsÞ2 − F4ð ffiffiffiffiffiffi
cþ

p þ ffiffiffiffiffi
c−

p Þ2
ðϕ2

−s þ ϕ2þsÞ2
: ðI1Þ

Next we parametrize

ϕ−sðTÞ ¼ nðTÞϕ−min; ðI2Þ

where nðTÞ > 1 for ϕ− moving from above and nðTÞ < 1
when ϕ− moves from below. In terms of the function nðTÞ,
Eq. (I1) becomes

m2
B ∝

	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ=c−

p
n2 þ n−2



2
−
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ=c−
p

þ 1


2
: ðI3Þ

19Note that this averaging of β2 is different from the procedure
we carried out in Appendix E since there we were concerned with
a nonlinear differential equation of the background fields.
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Hence, we find the following conditional expression for the
m2

B sign for cþ > 9=4 ≥ c−:

sgnðm2
BÞ ¼

�−1 if ðc−cþÞ1=4 <
ϕ−s
ϕ−min

< 1;

1 otherwise;
ðI4Þ

as mapped in Fig. 22.
Therefore, dependent on the trajectory of ϕ−s, a pro-

longed exponential decay or amplification of the super-
horizon axion modes behaves as

y1 ∝ exp

�Z
dT

�
−3
2

þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9
m2

B

r ��

≈ exp

�
−
1

3

Z
dTm2

B

�
; ðI5Þ

where the integral in the exponent is cut off when m2
B

decays faster than 1=T. The lower limit of this integral
corresponds to when the exponentially decaying term
proportional to V2 in Eq. (101) can be neglected.
In situations where c− ≪ 9=4 < cþ, the magnitude

of the gradient of the potential is much smaller when
ϕ−s > ϕ−min than when ϕ−s < ϕ−min. Therefore, the fields
evolve slowly [Oð1Þ timescale in T-dependent evolution] in
the former scenario and fall toward the minimum rapidly in
the latter (see Fig. 23). Accordingly, the axion background
mass is significant in the latter case only when the fields are
close to the minimum.20

When the jump ETSP is significant at T2, it leads to
an Oð0.1FÞ frequency oscillation of the IR fields (see
Appendix E). These oscillations cause the fields to cross
each other at least twice after the transition. To see this, first

note that the resonant conditions force ϕþs to cross ϕ−s
(first crossing) to make ϕþs > ϕ−s. Next, the asymptotic
values of these fields are ϕ�min, where ϕ−min > ϕþmin
for cþ > c−, and this fact requires a second crossing.
These crossings give rise to second and third _e1 · _e1
peaks (the first one being at Tc). Since the crossings
occur at approximately F [due to the initial conditions
making ϕ�sðTcÞ ∼OðFÞ], we know ϕ−s < ϕ−min ∼
ðcþ=c−Þ1=4F > F at the second crossing. For α < 1, the
interaction energy now decays away due to the Hubble
friction while ϕ−s < ϕ−min before ϕ−s crosses ϕ−min
again. Without the interactions mediated by the flat
deviation ξ, the ϕ−s settles toward the minimum from
below (ϕ−s < ϕ−min) and m2

B can become significant.

Rolling from above

Rolling from below

FIG. 23. In the first plot we show the two directions from which
the fields can settle to the minimum of the potential while moving
along the flat direction. In the second plot, the normalized
potential Vðϕ�Þ is parametrized along the flat direction via
parameter x for some fiducial c� such that c− ≪ 9=4 < cþ.
The minimum of the potential occurs at x ¼ 0, where x > 0
corresponds to movement of the fields from above. We note that
the potential has a large gradient when moving from below and
falls to the minimum rapidly.

FIG. 22. Plot highlighting regions in f ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ=c−

p
;ϕ−s=ϕ−ming

parametric space where m2
B > 0 or m2

B < 0 corresponding to the
expression in Eq. (I4).

20If c− > 9=4, then there is no appreciable m2
B since the mass

squared function time dependence due to the fast rolling fields
rapidly diminishes the magnitude of this function.
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The parametric boundary of when the IR components
of the ϕ� fields cross each other at least once after T2 is set
by the following condition provided in Appendix F

3

F
≈
J1ð

ffiffiffi
2

p
A=ð3Ω̄ÞÞffiffiffi

2
p

A=ð3Ω̄Þ :

The above provides an approximate minimum value offfiffiffi
2

p
A=ð3Ω̄Þ for the background fields to cross again

after Tc. Substituting for A using Eq. (173) and Ω̄ using
Eq. (E16), we obtain a cutoff (boundary) in terms of α
defined to be α2. Therefore, we will consider the α < α2
and α > α2 cases separately.

1. α < α2

For the parametric region α < α2, the fields will not cross
again for T > T2. To solve for this system, it is convenient
to divide the time regions based on whether or not theffiffiffiffiffiffiffiffiffiffiffi
c−cþ

p
ϕþs term is appreciable compared to the c−ϕ−s term

in Eq. (E9). We will call the region ½T2; TL� the period
when

ffiffiffiffiffiffiffiffiffiffiffi
c−cþ

p
ϕþs is negligible and T > TL the period whenffiffiffiffiffiffiffiffiffiffiffi

c−cþ
p

ϕþs is important.
Consider the equation of the ϕ−s field in the region

½T2; TL�∶

ϕ̈−s þ 3 _ϕ−s þ c−ϕ−s þ
A2

2Ω̄2
e−3ðT−T2Þϕ−s ≈ 0; ðI6Þ

where we can safely neglect the effect from the asymptotic
term

ffiffiffiffiffiffiffiffiffiffiffi
c−cþ

p
ϕþ. The solution to the above equation is given

in Eq. (E10) in Appendix E, while ϕþs is given by the flat
direction condition in Eq. (E15).
Due to a large positive velocity at T2, the ϕ−s reaches a

maximum and then moves slowly toward the minimum
with an initial exponential decay rate equal to

3

2

	
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c−=9

p 

≈
c−
3
þOðc2−Þ: ðI7Þ

During this period when ϕþs=ϕ−s ≪ 1 we can expand m2
B

using Eq. (H2):

m2
B ≈ c− −

2F4ðcþ þ c−Þ
ϕ4
−s

þ
�
cþ − c− þ 4F4ðcþ þ c−Þ

ϕ4
−s

��
ϕþs

ϕ−s

�
2

ðI8Þ

≈ c− þ δm2
B: ðI9Þ

Note that as T → T∞, the ratio ϕ−s=ϕþs gradually
decreases. As the two fields then approach closer to their
respective minima, the interaction term ξϕþs∼−

ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p
ϕþs

becomes important starting at time TL, and the decay
rate changes. Therefore, the integral corresponding to the

exponential decay of the superhorizon mode amplitude
during the first temporal phase where the ϕ−s field has an
exponential decay factor given by Eq. (I7) is

Z
TL

T̃
m2

BdT ≈ c−ðTL − T̃Þ þ
Z

TL

T̃
δm2

BdT; ðI10Þ

where

T̃ ¼ maxfT2; TV; T Kg ðI11Þ

and T K is the timewhen theK mode becomes superhorizon
i.e., KaðT KÞ ¼ 3=2. Thus, modes that exit the horizon
before transition (T K < T2) have a K-independent decay
factor. The time TV is when the V2 jump ETSP has decayed
and becomes negligible compared to m2

BðTÞ.
Next, we consider the time period T ∈ ½TL; T∞�, where

the
ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p
ϕþs term is non-negligible compared to c−ϕ−s.

By comparing the two terms and using the flat direction
ϕþs ≈ F2=ϕ−s, we make an approximate choice of TL as
when

ϕ−sðTLÞ ≈
4

3
ϕ−min ðI12Þ

such that

ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p
ϕþsðTLÞ ≈ 0.5c−ϕ−sðTLÞ; ðI13Þ

where additionally we note that at T∞

ffiffiffiffiffiffiffiffiffiffiffi
cþc−

p
ϕþsðT∞Þ ¼ c−ϕ−sðT∞Þ: ðI14Þ

To derive the field equations, we consider the field
displacements δϕ� as

δϕ�s ¼ ϕ�s − ϕ�min; ðI15Þ

which implies

δϕ−sðTLÞ ≈
ϕ−min

3
; ðI16Þ

in which case the terms quadratic in δϕ�s can be neglected
compared to ϕ�min with the minima of the fields located at

ϕ�min ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c∓ þ F2

ffiffiffiffiffiffi
c∓
c�

rs
: ðI17Þ

Expand the expressions c�ϕ�s þ ξϕ∓s in equations of
motion (17) and (18) in terms of δϕ�s to yield

CHUNG and TADEPALLI PHYS. REV. D 105, 123511 (2022)

123511-52



cþϕþs þ ξϕ−s ≈ ðcþ þ ϕ2
−minÞδϕþs

þ ð2ϕþminϕ−min − F2Þδϕ−s;

c−ϕ−s þ ξϕþs ≈ ðc− þ ϕ2
þminÞδϕ−s

þ ð2ϕþminϕ−min − F2Þδϕþs;

where all terms quadratic in δϕ�s within ½TL; T∞� have
been neglected. Hence, the effective mass matrix in
Eqs. (17) and (18) has the following T → T∞ asymptotic
form:

lim
T→T∞

M̃2 →

"
cþ þ ϕ2

−min 2ϕþminϕ−min − F2

2ϕþminϕ−min − F2 c− þ ϕ2
þmin

#

ðI18Þ

with the smallest eigenvalue

λmin ¼
4c−cþ
c− þ cþ

þO

�
1

F2

�
: ðI19Þ

The field motion is overdamped if λmin < 9=4, which
provides an upper bound on c−,

c− <
9

16

�
1 −

9

16cþ

�
−1
: ðI20Þ

We will assume that the c− lies within this bound because
that ensures that there will be no second crossing of ϕ�
for T > TL. In terms of the smallest eigenvalue, the δϕ�
field displacements along the approximate flat direction
(ξ ≈ − ffiffiffiffiffiffiffiffiffiffiffi

c−cþ
p

) can be expressed in the following general
asymptotic form:

δϕ�s ≈ C�e−ΛT; ðI21Þ

where

Λ ≈
3

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − λmin

p
ðI22Þ

and the constants Cþ and C− have opposite signs such that
the fields follow the flat direction. Using Eq. (E10), we can
solve Eq. (I16) to obtain

TL ≈ T2 −
2=3

ð1 − n1Þ
ln

�
22−n1Γð1 − n1Þϕ−min

3c2

�
A
ffiffiffi
2

p

3Ω̄

�n1
�

ðI23Þ

and C− of Eq. (I21). In the limit c− ≪ 1, TL in Eq. (I23)
reduces to

TL ≈ T2 −
�
3

c−

�
ln

�
2 sin ðπn1Þ22−n1Γð1 − n1Þϕ−minxn1

πð3ϕ−sðT2Þx∂xJn1ðxÞ þ ð3ϕ−sðT2Þ þ 2 _ϕ−sðT2ÞÞJn1ðxÞÞ

�
x¼A

ffiffi
2

p
3Ω̄

: ðI24Þ

In situations where A
ffiffi
2

p
3Ω̄ ≪ 1,

TL ≈ T2 −
�
3

c−

�
ln

�
4ϕ−minn1

3ϕ−sðT2Þ þ _ϕ−sðT2Þ

�
; ðI25Þ

and thus is independent of resonance term A. Combining with Eq. (I15), the ϕ−s field solution is given as

ϕ−sðTÞ ≈ ϕ−min

�
1þ 1

3
e−ΛðT−TLÞ

�
; TL ≤ T < T∞; ðI26Þ

which together with Eq. (E15) can be used to compute the second term of Eq. (I10):

Z
TL

T̃
δm2

BdT ≈ −
243

1024
−

73629c−
131072cþ

þ
�
243 − 72cþ þ 81c−=cþ þ 8c−ð2cþ − 27Þ

4=3

�
F4

_ϕ4
−sðT2Þ

e
4c−
3
ðT̃−T2Þ þOðc2−Þ: ðI27Þ

Next, we extend Eq. (I10) integral to T∞:Z
T∞

T̃
m2

BdT ≈ c−ðTL − T̃Þ þ
Z

TL

T̃
δm2

BdT þ
Z

T∞

TL

m2
BdT: ðI28Þ

In terms of the ϕ−s field equations derived above, the last term is
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Z
T∞

TL

δm2
BdT ≈

7

12
þ ð45 − 14cþÞc−

54cþ
þOðc2−Þ; ðI29Þ

and substituting these, Eq. (I28) becomes

Z
T∞

T̃
m2

BdT≈
1063

3072
þ106793c−
393216cþ

þc−ðTL− T̃Þþ
�
243−72cþþ81c−=cþþ8c−ð2cþ−27Þ

4=3

�
F4

_ϕ4
−sðT2Þ

e
4c−
3
ðT̃−T2Þ; ðI30Þ

where T̃ is defined in Eq. (I11). In Fig. 24, we give sample
plots of ϕ�s and m2

B for α ∼ 0.51, where the curves have
been computed numerically by solving Eqs. (17) and (18).
The above expression in Eq. (I30) is utilized in Sec. VII

to give an approximate decay of the superhorizon mode
amplitude for cases where α < α2. Alternatively, we define
a constant mass-model parameter VB in Eq. (101) as an
average value for the time-varying m2

B function. Since
m2

B ∼Oðc−Þ is much larger during the first time period
T ∈ ½T2; TL� than the second period T ∈ ½TL; T∞� and also
since TL − T2 ≫ T∞ − TL, we can approximate them2

BðTÞ
function by a mode-independent constant parameter VB
during the entire time interval from T ∈ ½T2; TL� as follows,

VB ≈
1

ðTL − T2Þ
Z

T∞

T2

m2
BdT ðI31Þ

≈ c− þ 1

ðTL − T2Þ
�
1063

3072
þ 106793c−
393216cþ

�
: ðI32Þ

Therefore, during the time interval from T2 to TL, the y1-
mode equation has the following form for single dip cases:

ÿ1 þ 3 _y1 þ
�
K2e−2T þ VB þ V2

2
e−3ðT−T2Þ

�
y1 ≈ 0; ðI33Þ

with the general solution given in Eqs. (124) and (125) of
Sec. V B.

2. α > α2

For fields with α > α2, the m2
B function during the first

temporal region is Oðc−Þ and mostly insignificant due to
the oscillating IR fields. Within the second region, the IR
fields are overdamped and are moving asymptotically
toward their respective minima. Using the solution derived
in the previous subsection, the ϕ−s field can be expressed as

ϕ−sðTÞ≈ϕ−min

�
1−

1

3
e−ΛðT−TLÞ

�
TL≤T <T∞; ðI34Þ

where the negative 1=3 factor indicates that the ϕ−s field is
settling from below as explained previously. Hence, them2

B
function is positive and can lead to mode amplification.
In terms of

nðTÞ ¼
�
1 −

1

3
e−ΛðT−TLÞ

�
; ðI35Þ

the m2
B function can be expressed as

m2
BðTÞ ≈

c−cþðcþn4 − c−Þð−1þ n4Þ
ðcþn4 þ c−Þ2

; ðI36Þ

FIG. 24. Plots of ϕ�s and m2
B for α ∼ 0.51 where the curves

have been computed numerically by solving Eqs. (17) and (18).
Notice the slow roll of the fields past the ϕ−s maximum. This
slow roll results in an effective decay of the mode amplitude
through the Oðc−Þ axion mass squared function m2

B, as explained
in the text. In this instance, the approximate mode amplitude
decay through the exp½− 1

3

R
m2

BdT� factor is 1=2.
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which can be used to evaluate the m2
B integral from TL

to T∞. Note that the integral is independent of the location
of TL. Similar to Eq. (I31), we average out the m2

B integral
during the second temporal region within a time interval
from T4 ≈ T3 þOð1=FÞ to 2=Λ, where T3 is defined
within the model equation (101) and is the time when
the background fields cross each other again after Tc since
α > α2. Meanwhile, 2

Λ is an approximate time at which the
m2

B integral is naturally cut off where Λ is the smallest
eigenvalue of the asymptotic M̃2 effective mass squared
matrix.

APPENDIX J: DECOUPLING OF HEAVY MODES

In this section, we will estimate the effect of heavy mode
mixing and show that the scalar modes y1;2 are effectively
decoupled at transition within the parametric region α ≲ 1
such that the heavier mode y2 can be completely neglected
within a 20% error margin. We begin with the y1;2 mode
mixing equations from Eqs. (36) and (37) with the mode-
mixing term Sns in the rhs defined in Eq. (39),

ÿ1 þ γ21y1 ¼ S12y2; ðJ1Þ
ÿ2 þ γ22y2 ¼ S21y1; ðJ2Þ

with

SnsðTÞ ¼ −en · ës − 2en · _es∂T ðJ3Þ
and

γ2i ¼ m2
i − _ei · _ei þ k2=a2; ðJ4Þ

where we define γ2n as the effective frequency squared. Note
the Hubble friction term has been removed by rescaling the
mode functions.
Let us assume that the eigenvector gradient term _e1 · _e1

peaks at a time T� when the background fields tend to cross
each other such that the kinetic energy corresponding to
the relative velocity of the two fields is maximized and the
eigenvector gradient _e1;2 is larger than OðFÞ. Thus, the
mode-mixing operator Sns is significant in a small neigh-
borhoodOð1=FÞ around T�. We begin with the normalized
eigenstates and rewrite the gradient terms in Sns through an
approximate Lorentzian function LnsðT − T�Þ with a peak
at T� such that

en · ∂Tes ≈ LnsðT − T�Þ; ðJ5Þ
en · ∂2

Tes ≈ ∂TLnsðT − T�Þ: ðJ6Þ
Note that the en · _es term is symmetric around T�, while
en · ës is antisymmetric. The second term −3 _es · en in Sns is
due to Hubble friction and can be removed by scaling the
mode functions without affecting our discussion.

During the early phase when jϕþj ≫ jϕ−j, the heavier
mode y2 is forced driven by the lighter mode y1. This is
similar to the perturbed solution for the ϕ� background
fields where the ϕ− field is effectively forced driven by ϕþ.
Accordingly, the y2 mode has the following solution:

y2 ≈
S21y1
γ22

; ðJ7Þ

where y1;2 satisfies the condition

���� y2y1
����≪ 1: ðJ8Þ

Meanwhile, the right-hand side term S12y2 in the y1-mode
equation is negligible and thus

O1y1 ≈ 0: ðJ9Þ

Therefore, the lighter mode is decoupled from the heavier
during the early phase since γ22 ∼Oðϕ2þÞ ≫ OðF2Þ.
Later at T ≈ T� the eigenvector gradient terms in Sns

become significant OðF2Þ. At the same time, the effective
frequency squared γ21;2 approach a local minima at T ≈ T�.
Consequently, the y2 amplitude reaches a local maximum
close to T� such that the heavy mode-mixing effect due to
the term S12y2 on the rhs of Eq. (36) cannot be neglected.
Post T�, the heavier mode y2 behaves like an underdamped
harmonic oscillator and undergoes rapid oscillations with a
large frequency

ffiffiffiffiffi
γ22

p
due to the heavier mass eigenvalue.

To evaluate the heavy mode-mixing effect, we will
approximate the function LnsðT − T�Þ as a rectangular
ETSP21 of amplitude E and width ΔT≈1=E, where
E∼OðFÞ:

jen · ∂Tesj ≈
�
E T1 < T < T2;

0 otherwise:
ðJ10Þ

Using this approximation, the en · ës term peaks at the
boundaries T1;2 and remains 0 within the interval ½T1; T2�.

1. y1 solution

The general solution for the lighter mode y1 from
Eq. (J1) can be expressed as

y1 ¼
�
c1 −

Z
f2

S12y2
W

dT

�
f1ðTÞ

þ
�
c2 þ

Z
f1

S12y2
W

dT

�
f2ðTÞ; ðJ11Þ

21The following assumption can be verified using the analyti-
cal form of the background fields from Sec. IV B.
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where f1;2ðTÞ are the linearly independent functions that
solve the homogeneous equation ÿ1 þ γ21y1 ¼ 0. The coef-
ficients c1;2 are obtained from the initial conditions at
T ¼ T1 and the integral terms correspond to the inhomo-
geneous part on the rhs of Eq. (J1). W is the associated
Wronskian of f1;2. Within the interval ½T1; T2�, 0 < _e1 · _e1∼
OðF2Þ, whilem2

1 < 0 due to the deviation of the background
fields away from the flat direction. Therefore, the effective
lighter frequency squared γ21¼m2

1− _e1 · _e1þk2=aðT�Þ2<0

for k2=aðT�Þ2 ≪ m2
1 − _e1 · _e1. Therefore, the lighter mode

y1 has the homogeneous solution

yh1ðTÞ ≈ y1ðT1Þ cosh
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9=4 − γ21

q
ðT − T1Þ

i
; ðJ12Þ

where

f1ðTÞ ¼ e
ffiffiffiffiffiffi
−γ2

1

p
T; f2ðTÞ ¼ e−

ffiffiffiffiffiffi
−γ2

1

p
T; ðJ13Þ

and ∂Ty1ðT1Þ=y1ðT1Þ ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − γ21

p
∼OðFÞ so that c1;2 ≈

y1ðT1Þ=2. Note that a positive value of the
R
dTf2S12y2=W

integral accounts for a decrease in the power of the lighter
mode [dominated by the f1 mode if k2=aðT�Þ2 ≪ m2

1 − _e1 ·
_e1 such that γ21 < 0] due to the heavy mode coupling.
As we will show later, the integral term is indeed positive
such that a finite fraction of the power is removed by the
heavier mode.

2. y2 solution

To solve for the heavier mode y2 within the interval
½T1; T2�, we rewrite Eq. (J2) as

ÿ2 þ γ22y2 ¼ −2L21ðT�Þ∂Ty1: ðJ14Þ

Assuming decoupling of the modes22, we will substitute y1 with yh1 . The y2 is then given by

y2 ≈
−2L21ðT�Þy1ðT1Þ
γ22 þ ð9=4 − γ21Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − γ21

q
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − γ21

q
ðT − T1Þ

�
þ −∂TL21ðT1Þy1ðT1Þ

γ22ðT1Þ
cos ½γ2ðT − T1Þ�; ðJ15Þ

where the first term is via the forced component on the rhs, while the second term is the homogeneous component that
oscillates with frequency γ2 with initial conditions set at T1. Using the above solution for y2, the rhs term S12y2 ¼
−2L12ðT�Þ∂Ty2 is evaluated as

S12y2 ≈ −2
�
−2L12ðT�ÞL21ðT�Þy1ðT1Þ

γ22 − γ21
ð−γ21Þ cosh

� ffiffiffiffiffiffiffiffi
−γ21

q
ðT − T1Þ

�
−
−L12ðT�Þ∂TL21ðT1Þy1ðT1Þ

γ2ðT1Þ
sin ½γ2ðT − T1Þ�

�
:

ðJ16Þ
Using the equations for the background fields in Sec. IV B, L12ðT�ÞL21ðT�Þ ≈ −E2 and L12ðT�Þ∂TL21 ≈ −nE3 for n ≈ 4=3.
Hence we have

S12y2 ≈ 4y1ðT1ÞE2

�
γ21

γ22 − γ21
cosh

� ffiffiffiffiffiffiffiffi
−γ21

q
ðT − T1Þ

�
þ nE=2
γ2ðT1Þ

sin ½γ2ðT − T1Þ�
�
: ðJ17Þ

3. Heavy mixing coefficient χHM

We are now in a position to complete the y1 solution in Eq. (J11) by solving the integral terms. Since the homogeneous
function f1 dominates over f2 we will only solve

R
dTf2S12y2=W within the interval ½T1; T2� when the Sns operator is

significant. Using the Wronskian W ¼ −2
ffiffiffiffiffiffiffiffi
−γ21

p
,

Z
f2

S12y2
W

dT¼4y1ðT1Þ
γ21E

2

γ22−γ21

Z
T2

T1

e−
ffiffiffiffiffiffi
−γ2

1

p
T cosh½

ffiffiffiffiffiffiffiffi
−γ21

p
ðT−T1Þ�

−2
ffiffiffiffiffiffiffiffi
−γ21

p dTþ4y1ðT1Þ
nE3=2
γ2ðT1Þ

Z
T2

T1

e−
ffiffiffiffiffiffi
−γ2

1

p
T

−2
ffiffiffiffiffiffiffiffi
−γ21

p sin ½γ2ðT−T1Þ�dT

ðJ18Þ

≈4y1ðT1Þ
γ21E

2

γ22−γ21

�
1þ2

ffiffiffiffiffiffiffiffi
−γ21

p
ΔT−e−2

ffiffiffiffiffiffi
−γ2

1

p
ΔT

−8ð−γ21Þ
�
þ4y1ðT1Þ

nE3=2
γ2ðT1Þ

�
−γ2þe−

ffiffiffiffiffiffi
−γ2

1

p
ΔTð

ffiffiffiffiffiffiffiffi
−γ21

p
sin ½γ2ΔT�þγ2cos ½γ2ΔT�Þ

2
ffiffiffiffiffiffiffiffi
−γ21

p
ðγ22−γ21Þ

�
:

ðJ19Þ

22Although this is a cyclic argument, we prove this by self-consistency at the end.
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The above can be further simplified as

Z
f2

S12y2
W

dT ≈ 4y1ðT1Þ
E2

γ22 − γ21

�
1þ 2

ffiffiffiffiffiffiffiffi
−γ21

p
ΔT

8
þ nE=4ffiffiffiffiffiffiffiffi

−γ21
p ð−1þ e−

ffiffiffiffiffiffi
−γ2

1

p
ΔT cos ½γ2ΔT�Þ

�
: ðJ20Þ

We now define the heavy mixing coefficient χHM as

χHM ¼
R
f2

S12y2
W dT

c1
: ðJ21Þ

Using c1 ≈ y1ðT1Þ=2 and EΔT ≈ 1, we obtain

χHMðl21; l22ÞjT¼T� ≈
1

l22 − l21

�
1þ 2

ffiffiffiffiffiffiffi
−l21

q
þ 2nffiffiffiffiffiffiffi

−l21
p ð−1þ e−

ffiffiffiffiffi
−l2

1

p
cos½l2�Þ

�
; ðJ22Þ

where l2i ¼ γ2i =E
2 for E2 ¼ maxð _e21Þ and we approximate

n ≈ 4=3. Since m2
i and E2 are OðF2Þ, the parameters l2i are

almost F independent for F ≫ 1.
From Eq. (J11), we infer that the two modes shall remain

decoupled as long as maxðχHMÞ ≪ 1, where we define
maxðχHMÞ as a local maxima in the vicinity of T� within a
neighborhood ofOð1=FÞ. Note that a positive value of χHM
accounts for a decrease in the power of the lighter mode due
to the heavy mode coupling. The mixing between the two
modes thus results in a significant proportion of power
transfer from the lighter mode to the heavier and as a result
the isocurvature power spectrum reduces. Figure 25 gives
an analytical plot of χHM evaluated at T� ≈ Tc in the limit
k2=aðT�Þ2 → 0 using Eq. (J22) plotted with respect to the

parameter α defined in Eq. (74). By considering a reason-
able decoupling between the two modes for χHM ≲ 0.2, we
obtain an upper bound of αU ∼ 1 for fields crossing each
other close to T�. If we consider F ≫ 1 cases, then the
upper bound αU is almost F independent. For α > α2, every
subsequent crossing of the two background fields post
transition will give rise to similar _e1 · _e1 peaks. The
effective heavy mixing is then a sum of the contributions
from each of these peaks. Since the peaks are exponentially
suppressed by Hubble friction, their contribution is sig-
nificantly low. However, for large F, the subsequent peaks
can get closer to each other and hence the net heavy mixing
contribution can become significant.
From Eq. (J22), we infer that as k increases from zero, l21

begins to reduce in magnitude such that χHM initially
reduces until k=aðT�Þ ∼

ffiffiffiffiffiffiffiffiffi
−m2

1

p
. Thereafter, χHM turns

imaginary and begins to increase in magnitude. The above
analytical estimate is primarily valid as long as χHM
remains much less than unity since in order to estimate
χHM we have approximated S21y1 as S21yh1 by substituting
with the homogeneous yh1 solution. As jy1j ≤ jyh1j, one
expects that the χHM evaluated using the exact y1 solution
should be lower than the above estimate as long as Eq. (J22)
is valid. If k eventually becomes large enough that the
k2=aðT�Þ2 term dominates over the remaining mass
squared terms, we obtain γ21 ¼ γ22 at T� and the modes
are strongly coupled such that jy2j → jy1j. Similar strong
coupling is possible if E ≫ m2

2 ∼ F2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ=c−

p
. However, in

such cases, the corresponding value of ΔT ≪ 1=F. Since
the coupled system of y1;2 has only one dominant time scale
of Oð1=FÞ, the two modes momentarily tend to jy2j ∼ jy1j
at T� before y1 returns back to the attractor solution yh1 .
Hence, whenever E ≫ m2

2, the coupling between the two
modes can be neglected.

FIG. 25. Analytical plot of the fractional reduction in the
amplitude of the lighter mode y1 due to heavy mode mixing
evaluated at T� ≈ Tc using Eq. (J22) in the limit k2=aðT�Þ2 → 0
plotted with respect to the parameter α defined in Eq. (74).
Numerical results suggest that the estimation given in Eq. (J22) is
an approximate upper bound, as explained in the text.
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