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Massive neutrinos suppress the growth of cosmic structure on small, nonlinear scales. It is thus often
proposed that using statistics beyond the power spectrum can tighten constraints on the neutrino mass by
extracting additional information from these nonlinear scales. We study the information content regarding
neutrino mass at the field level, quantifying how much of this information arises from the difference in
nonlinear evolution between a cosmology with one fluid [cold dark matter (CDM)] and two fluids
(CDM þ neutrinos). We do so by running two N-body simulations, one with and one without massive
neutrinos, both with the same phases, and matching their linear power spectrum at a given low redshift.
This effectively isolates the information encoded in the linear initial conditions from the nonlinear cosmic
evolution. We demonstrate that, for k≲ 1 h=Mpc, and for a single redshift, there is negligible difference in
the real-space CDM field between the two simulations. This suggests that all the information regarding
neutrino mass is in the linear power spectrum set by the initial conditions. Thus, any probe based on the
CDM field alone will have negligible constraining power beyond that which exists at the linear level over
the same range of scales. Consequently, any probe based on the halo field will contain little information
beyond the linear power. We find similar results for the matter field responsible for weak lensing. We also
demonstrate that there may be much information beyond the power spectrum in the 3D matter field;
however, this is not observable in modern surveys via dark matter halos or weak lensing. Finally, we show
that there is additional information to be found in redshift space.
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I. INTRODUCTION

Upcoming cosmological missions, such as those by the
Dark Energy Spectroscopic Instrument [1], Euclid [2],
Legacy Survey of Space and Time (LSST) [3], Prime
Focus Spectrograph [4], Square Kilometre Array [5], and
Wide Field Infrared Survey Telescope [6], will probe
progressively smaller scales of cosmic structure. It is hoped
that by probing these small, nonlinear scales one will be
able to detect much information regarding the total neutrino
mass. To fully realize the potential of these surveys, an
urgent task is thus to quantify and optimally extract this
information from the observed cosmological fields.
In a cosmology with massive neutrinos [7], we can

define ρcb as the contribution to the energy density due to
cold dark matter (CDM) and baryons, ρν as the contribution

due to neutrinos, and ρm as the total matter contribution.
Given the lower bound on the sum of the neutrino masses
coming from oscillation experiments is Mν ¼ 60 meV
[8–12], neutrinos are nonrelativistic at low redshift.
Defining ρ̄X as the mean energy density in species X, where
X ¼ fcb; ν; mg, we can further define the relative over-
density of species X at redshift 0 as δX ¼ ðρX − ρ̄XÞ=ρ̄X and
the fraction of the total matter density in species X as
fX ¼ ρ̄X=ρ̄m ¼ ΩX=Ωm. This gives

Ωmδm ¼ Ωcbδcb þ Ωνδν ð1Þ

and the matter overdensity as

δm ¼ ð1 − fνÞδcb þ fνδν: ð2Þ

In practice, we cannot measure δν directly, as we do not
have direct access to fluctuations in the cosmic neutrino
background. We also cannot measure fν ¼ Ων=Ωm directly
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at low redshifts from the redshift-distance relations, since
neutrinos are nonrelativistic and their density has the same
redshift dependence as cold dark matter and baryons. This
leaves density perturbations in the total matter δm and
CDMþ baryon δcb fields as ways to probe neutrino mass at
low redshifts. So the success of upcoming surveys meas-
uring neutrino mass hinges on their ability to measure the
effects of neutrinos on the total matter and CDMþ baryon
perturbations, as well as on their ability to measure Ωm
from the redshift-distance relation (which can also be
extracted from perturbations, such as from baryonic acous-
tic oscillations).
On large scales, neutrinos cluster analogously to CDM,

whereas on small scales they do not cluster. The scale at
which this transition occurs is known as the free streaming
scale and is due to the neutrino thermal velocities erasing
their own perturbations. We can thus divide perturbations
into scales larger than the neutrino free streaming scale,
where δν ∼ δcb, and scales smaller than that, where δν ∼ 0.
One can see that if one could measure δm and δcb on small
scales in the absence of noise, then any difference between
the two would give strong constraints on neutrino mass via
δm ∼ ð1 − fνÞδcb. However, this poses several observatio-
nal difficulties.
A first difficulty is that the matter overdensity field δm is

not directly observable. weak-lensing probes the conver-
gence, given by

κðχ�; n̂Þ ¼
3H2

0Ωm

2c2

Z
χ�

0

dχ
χ

aðχÞ
�
1 −

χ

χ�

�
δmðχn̂Þ; ð3Þ

where χ is the comoving distance, χ� is the comoving
distance to the source, n̂ is the direction on the sky, H0 is
the Hubble constant, c is the speed of light, aðχÞ is the
expansion factor, and we assume zero curvature. Hence, κ
can be viewed as a measurement of Ωmδm averaged over a
radial window along the line of sight between the observer
and the source. This dilutes the information contained in
the total matter field.
A second issue is that we also cannot measure δcb

directly. What we can typically measure from galaxy
observations is a biased version, where at the linear level
we have δg ¼ b1δcb, with galaxy overdensity δg being
modulated by the linear bias b1. The linear bias is constant
on large scales, but has complicated scale dependence on
small scales which cannot be predicted ab initio, and thus
has to be marginalized over to obtain constraints on
cosmological parameters. One way to measure it is using
redshift-space distortions, which at the linear order probe
density-velocity correlations. Velocity can be related to the
matter overdensity via δv ¼ fδm, where f is the linear
growth rate that depends on the matter density Ωm. The
growth rate is also affected by neutrinos, which slow down
the growth of structure on small scales. However, on small
scales, i.e., beyond linear order, this relation also becomes

more complicated due to higher-order velocity-density
correlators (see, e.g., [13]), once again making it difficult
to isolate the effects of neutrino mass.
Multitracer analyses, combining δg from spectroscopic

or photometric surveys, with weak lensing κ from the
cosmic microwave background (CMB) or large-scale
structure (LSS), suggest that LSS surveys have the power
to separate neutrino mass from other parameters and that
sampling variance cancellation is helpful on large scales
[14,15]. Nevertheless, this approach is limited to about
20 meV precision on the sum of neutrino masses for
surveys such as LSST, suggesting it may not be able to give
a neutrino mass detection at more than 3σ for the minimum
theoretical mass of 60 meV.
This limited precision frommultitracer probes has revived

interest in measuring neutrinos from a single tracer using
nonlinear information. By studying the nonlinear effects
of massive neutrinos on structure formation [16–43],
several such statistics have been proposed, including the
bispectrum, halo mass function, void size function, prob-
ability distribution function, and marked power spectrum
[44–55]. The reasoning is that a single tracer may have
access to different types of information in different density
regions. For example, while high density regions may be
mostly sensitive to the CDMþ baryons, which cluster and
gravitationally collapse into virialized objects, low density
regions such as voids may be more sensitive to neutrinos,
which cluster weakly in comparison. Crucially, this implies
that a full description of the system requires a two-fluid
model, that of CDMþ baryons and of neutrinos, which
cannot bemimicked by a singleCDMþ baryon component.
The hope of this approach is that, by effectively combining
information from different density regimes, one might be
able to determine neutrino mass to a much higher precision
than predicted by just the two-point statistics, the power
spectrum.
The goal of this paper is to investigate this single tracer

proposal by comparing a single-fluid CDM simulation to a
two-fluid simulation with CDM and neutrinos (for the
purpose of this paper, we assume baryons trace CDM). We
examine whether the presence of massive neutrinos has a
unique nonlinear effect that differentiates the two at late
times, or if the impact of the massive neutrino component
can be faked by a solitary CDM component. To this end, we
set up the two simulations with a matched linear power
spectrum of the field in question and equal phases, at a
redshift of interest, which we will take to be z ¼ 0. We
compare the two simulations at the field level for three
different fields: (i) δcb, which uniquely defines anything
observable with galaxies, (ii) Ωmδm, which is the corre-
sponding field controlling weak-lensing observables, and
(iii) δm, the 3D total matter field, which is not currently
observable.
If at the field level the two simulations differ in their

phases at z ¼ 0, this would suggest there is information that
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has been created by the nonlinear evolution that is unique to
the presence of massive neutrinos and that cannot be
mimicked by a single CDM fluid. If, on the other hand,
the final phases are matched exactly, then there is no
information associated with the difference in nonlinear
evolution beyond the overall amplitude of the field, i.e., the
power spectrum. If the power spectra at z ¼ 0 are also
identical between the two simulations, then there is no
nonlinear information arising specifically from the pres-
ence of the neutrino component, and any information
regarding neutrino mass must simply arise from the differ-
ing linear physics. A similar analysis was performed in the
context of modified gravity in [56], which studied only the
nonlinear power spectrum. Earlier work in the context of
neutrino mass includes a study of the halo mass function
[57] and the nonlinear matter power spectrum for the Ly-α
forest [58]. We will generalize such analyses by consider-
ing the information at the field level.
The structure of this paper is as follows. In Sec. II, we

outline how to study the information content of cosmo-
logical fields. In Sec. III, we apply this to understand the
amount of neutrino mass information in the various afore-
mentioned cosmological fields. In Sec. IV, we then com-
ment on the benefits of probes beyond the power spectrum
(for example, related to halos and voids). In Sec. V, we
consider a Fisher analysis to compare constraints obtained
from the linear and nonlinear power spectrum. Finally, in
Sec. VI, we conclude and discuss how our findings relate to
constraints on Mν presented in recent works.

II. COSMOLOGICAL INFORMATION

The simplest tool used to quantify the information
content of a field δðkÞ is the (auto)power spectrum
PδδðkÞ, defined via

hδ�ðkÞδðk0Þi ¼ ð2πÞ3PδδðkÞδðDÞðk − k0Þ; ð4Þ

where δðDÞ is the Dirac delta function. PδδðkÞ is the Fourier
transform of the two-point correlation function ξðrÞ; i.e., it
measures the overdensity correlation between two arbitrary
points of space separated by r. For a statistically homo-
geneous, isotropic, and Gaussian field, the power spectrum
contains the entire information of the field. The standard
model of cosmology assumes homogeneity and isotropy
and that the primordial Universe was described by a
Gaussian random field (although we note that there are
some extensions beyond this theory, for example, positing
primordial non-Gaussianity [59–65]). The overdensity field
in Fourier space is, in general, complex; i.e., it can be
written as δðkÞ ¼ jδðkÞjeiϕðkÞ, where jδðkÞj is the magni-
tude and ϕðkÞ is the phase. The phases of a Gaussian
random field have a uniform random distribution in the
range ½0; 2πÞ.
The Universe then evolves and, during the late stages of

evolution, structure formation introduces non-Gaussianities

on small scales due to the nonlinear nature of gravitational
collapse. The exact nature of this nonlinear evolution
depends on the cosmological parameters, for example,
the energy density of dark energy ΩΛ, the Hubble constant
H0, and the total neutrino mass Mν. There is thus much
interest in studying higher-order statistics, in the hope that
they contain additional information beyond the power
spectrum. This is particularly true in the case of neutrinos
due their signature on small, nonlinear scales. It is thus
important to understand how much information neutrinos
imprint on different cosmological fields and, furthermore,
how much of this information arises from nonlinear cosmic
evolution.
To set up the problem, let us consider two different

universes at some late redshift zf. We denote some generic
field as δXðk; zfÞ in the first universe with cosmological
parameters λ and δ̃Xðk; zfÞ in the second universe with
cosmological parameters λ̃. A question of interest is, if our
Universe corresponds to δ, how well can we distinguish it
from a universe with field δ̃? Or, in other words, how much
information can we learn about the cosmological para-
meters by studying δðk; zfÞ? While a typical analysis, e.g.,
a Fisher analysis, considers both linear and nonlinear
information as one, we seek to isolate the nonlinear
information. More concretely, while a cosmological field
may be sensitive to a change in cosmological parameters, if
this sensitivity is purely at the linear level, then there will be
no additional information compared to the linear power
spectrum; one could consider nonlinear probes, such as the
halo mass function, void size function, the bispectrum, etc.,
but they will just be expressing the information content of
the linear power spectrum in a different form. So it is
interesting to study how much nonlinear information there
is and thus howmuch benefit one can expect to extract from
nonlinear observables.
To quantify how much nonlinear information an entire

field contains with regard to a change in cosmological
parameters λ − λ̃, we match the linear physics at zf between
the two cosmologies. We then backscale the fields to some
earlier redshift zi using linear theory twice: one time using
the cosmology associated with λ and one time using λ̃.
Finally, we perform an N-body simulation to evolve the
two fields to zf and obtain nonlinear results: here again
we use the appropriate choice of cosmology in each case.
A schematic of these two simulations is as follows:

δð1ÞX ðzfÞ ↪
λ

backscale
δð1ÞX ðziÞ ⇒

λ

N−body δXðzfÞ; ð5Þ

δð1ÞX ðzfÞ ↪
λ̃

backscale
δ̃ð1ÞX ðziÞ ⇒

λ̃

N−body δ̃XðzfÞ; ð6Þ

where δð1ÞX labels the linear power spectrum of componentX.
The key difference between this approach and a typical
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analysis is the use of identical initial conditions for both
universes to ensure the linear physics is the same at zf after
running the simulation. This means that any difference
between δXðzfÞ and δ̃XðzfÞ after theN-body simulation will
be purely due to nonlinear effects caused by using λ̃ instead
of λ.
Having set up the problem, we now review how to

quantify the difference between two fields. Rather than
considering specific observables, we seek to study effects at
the field level. In order to compare the two fields at zf, we
consider the (complex) coherence of the two fields, defined
as

ζðkÞ ¼ Pδδ̃ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PδδðkÞPδ̃ δ̃ðkÞ

p ; ð7Þ

where Pδδ̃ðkÞ is the cross-power spectrum between δ and δ̃,
given by

hδ�ðkÞδ̃ðk0Þi ¼ ð2πÞ3Pδδ̃ðkÞδðDÞðk − k0Þ: ð8Þ

Unlike the autopower spectrum, the cross-power spectrum
can, in general, be complex. Note that statistical isotropy
and homogeneity enforces the coherence to only be a
function of the magnitude k.
Two fields are said to be coherent at scale k if jζðkÞj ¼ 1.

In such a case, the power spectra of the two fields are
linearly related as follows:

Pδ̃ δ̃ðkÞ ¼
����Pδδ̃ðkÞ
PδδðkÞ

����
2

PδδðkÞ; ð9Þ

where the j · j2 term can be thought of as a linear transfer
function between the autospectra of the two fields.
If the real part of the coherence is equal to 1, the phases

of δ and δ̃ are statistically identical. If the phases of the two
cosmologies evolved identically, then the entire difference
between the two fields is captured by any difference in the
amplitude of the individual power spectra. Furthermore, if
two fields are coherent, and the transfer function is identical
to unity, jPδδ̃ðkÞ=PδδðkÞj ¼ 1, this implies that the power
spectra are identical and that there is thus no nonlinear
information in the power spectrum. In such a case, the two
cosmologies are statistically indistinguishable in terms of
nonlinear effects, and there will be no information beyond
the linear power spectrum. By this we mean that, for a given
set of scales, the information content of any nonlinear
statistic cannot exceed the information content of the linear
power spectrum over those same scales. While the linear
power spectrum is not something one can generally observe
for a particular field, it is useful to know whether or not
there is information that exists beyond linear theory.

III. MASSIVE NEUTRINO INFORMATION

Using the notation of the previous section, we use λ to
denote a universe with massive neutrinos, Mν ¼ 0.15 eV,
and λ̃ to denote a universe without massive neutrinos,
Mν ¼ 0. We start by using a Boltzmann solver to compute
the linear power spectrum for a cosmology with Mν ¼
0.15 eV at zf ¼ 0. We then backscale this power spectrum
to zi ¼ 99 twice, one time using the linear physics
associated with massive neutrinos (using the REPS package
[66]), giving PXðk; ziÞ, and the other time using the linear
physics associated with massless neutrinos, giving
P̃Xðk; ziÞ. We generate realizations of the two fields at
z ¼ 99 with matched phases. Note that the massless
neutrino cosmology is thus initialized with a power
spectrum whose shape encodes the linear suppression of
growth due to the presence of massive neutrinos in the other
cosmology. Then we evolve PXðk; ziÞ through to zf using
the GADGET N-body simulation [67] with massive neutri-
nos, yielding δXðk; zfÞ, and we similarly evolve P̃Xðk; ziÞ
through to zf using the N-body simulation without massive
neutrinos, yielding δ̃ðk; zfÞ. Since the linear predictions of
the two cosmologies have been matched as closely as
possible, we can determine how much nonlinear evolution
is special to the presence of massive neutrinos by compar-
ing the fields at zf: δðk; zfÞ and δ̃ðk; zfÞ. Furthermore, by
comparing the power spectra of the fields Pδδðk; zfÞ and
Pδ̃ δ̃ðk; zfÞ, we can assess the information in the power
spectrum. We refer to the Mν > 0 simulation as the “real”
simulation and the Mν ¼ 0 simulation as the “fake”
simulation, because the purpose of the Mν ¼ 0 simulation
is to fake the effects of massive neutrinos by using a single-
fluid CDM simulation with initial conditions associated
with a massive neutrino cosmology. Note that, for each
considered field δX, a different fake N-body simulation is
run with matched linear physics for that particular field. We
consider a box of volume 1 ðGpc=hÞ3 and a grid of
dimension 10243 for both CDM and neutrinos.
In the case of lensing, the field δm is not directly

measured. Instead, lensing measures Ωmδm averaged over
a window function integrated over the line of sight, as
described in Eq. (3). We are therefore free to define the
effective lensing field by rescaling by a constant factor,
which we choose to be ð1 − fνÞ as follows:

κ ∼Ωmδm ¼ Ωmð1 − fνÞ
δm

ð1 − fνÞ
¼ Ωc

δm
ð1 − fνÞ

: ð10Þ

Assuming no a priori information regarding Ωm, we can
evaluate the lensing information by considering the infor-
mation in the field defined by

δΩm ≡ δm
ð1 − fνÞ

: ð11Þ
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While we are free to choose any normalization, the reason
for this choice is that we seek the option that most closely
matches the real and fake cosmologies. From Eq. (2) it is
clear that δΩm ∼ δcb on small scales, thus this choice is
inspired such that neutrino effects should be negligible on
small scales (note that in the case of δΩm linear matching
cannot be achieved at large scales, but rather on small
scales).
In Fig. 1 we plot the real part of the coherence for each

of the fields between the real and fake simulations.
Specifically, when we match PX at z ¼ 0, we plot the
coherence for the X overdensity field. It can first be seen
that, in the case of X ¼ cb, the coherence is unity up to
k ¼ 1 h=Mpc to≲0.01%. This implies that the final phases
of the cb field are equivalent regardless of whether massive
neutrinos are included in the simulation. This is to say that
the nonlinear evolution of the cb field is identical in both
the one-fluid (CDM) and two-fluid (CDMþ ν) description.
Thus, there is negligible nonlinear information in the cb
field that goes beyond the power spectrum within scales of
experimental interest. On the other hand, the coherence for
δm begins to differ from 1 at a lower value of k, implying
there is nonlinear information beyond the power spectrum
for the 3D matter field. However, one cannot measure the
matter field directly, and one instead measures lensing that
is related to δΩm, as in Eq. (11). In this case, the picture is
identical to δcb, with a coherence of 1 up to k ¼ 1 h=Mpc

to ≲0.01%, implying negligible nonlinear information
beyond the power spectrum in this field at these scales.
Having established that, for scales of interest, the

information in the case of δcb and δΩm is all in the power
spectrum, we now consider how much information the
power spectrum contains. In Fig. 2 we plot the ratio
between the power spectra for the various fields at redshift
zf. We see that for Pcb the ratio is always one, implying that
there is negligible nonlinear information regarding neutri-
nos in the cb power spectrum. (We note that the ≲0.1%
upturn for scales smaller than k ≈ 0.5 h=Mpc is a numeri-
cal artifact caused by a slight discrepancy between the
growth factor implemented in backscaling and that effec-
tively implemented by the N-body simulation. The magni-
tude of this discrepancy depends on Mν, leading to this
small effect.) Given the coherence of the cb field is one, this
means there is negligible nonlinear information about
neutrino mass in the entire cb field. On the other hand,
there is a deviation of order 1% in PΩm for k≲ 0.1 h=Mpc.
This implies there is some information on neutrino mass in
the lensed matter power spectrum. This is the typical shape
information associated with neutrinos; however, it mostly
appears on large, linear scales and will thus be sample
variance limited. Finally, we see that the ratio for Pm differs
from one on small scales, implying the presence of non-
linear information about neutrinos beyond the linear power
spectrum of the 3D total matter field.
To summarize, whenever we consider the single-fluid

CDM field, we find that there is no difference between the

FIG. 1. The real part of the coherence between fields from the
real and fake simulations. If we match δX at z ¼ 0, we plot the
coherence for δX. It can be seen that the coherence in the case of
δcb and δΩm is one up to k ¼ 1 h=Mpc to ≲0.01%. This implies
that there is negligible nonlinear information in the cb field or the
lensed matter field at these scales that goes beyond the power
spectrum. On the other hand, the coherence for δm begins to differ
from one at a lower value of k, implying nonlinear information
beyond the power spectrum for the 3D matter field.

FIG. 2. The ratio of the power spectra between the real and fake
simulations. If we match δX at z ¼ 0, we plot the corresponding
power spectrum PX. It can be seen that the ratio is 1 for cb, while
there is an approximately 1% deviation for PΩm on large scales.
Only Pm differs from 1 on nonlinear scales, implying information
beyond the power spectrum in for the matter field. In the cases
of cb and Ωm, the ≲0.1% upturn on scales smaller than
k ≈ 0.5 h=Mpc is a numerical artifact due to discrepancy between
the backscaling and forward model; a similar effect can be seen in
the case of m for which a downturn begins at k ≈ 0.5 h=Mpc.
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real and fake simulations. On the other hand, whenever we
consider fields that explicitly depend on both fluids
(CDMþ ν) in the real simulations, we generally find that
a single fake simulation cannot reproduce the statistics on
all scales: either they remain matched on large scales, or
they remain matched on small scales. The two choices we
explore, m and Ωm, illustrate this clearly. For m, the small
scales have a different nonlinear behavior even though the
linear statistics are exactly matched. For Ωm, the large
scales are not matched even at the linear level, but crucially,
the small-scale matching is maintained both at the linear
and nonlinear level. Since for Ωm only the linear scales are
not matched well, most of the information should be
contained in the linear power spectrum.

IV. HIGHER-ORDER STATISTICS

We now illustrate the effect of the results of the previous
section on various statistics beyond the power spectrum.
While the results of the previous section are sufficient in
determining the presence of information regarding Mν in
any nonlinear statistic beyond the power spectrum, we now
show this explicitly for various examples in the interest of
clarity.
We start with the void size function (VSF), a commonly

proposed source of information regarding neutrino mass
[44]. We use the spherical void finder of [29] with a
threshold of δth ¼ −0.7 and look for voids in the three
considered fields: cb, Ωm, and m. In Fig. 3 we find that
there is no difference in the VSF between the real and fake
simulations for both the cb and Ωm fields, but there is
potentially some difference for the 3D matter field. Note
that we find similar results regardless of the value of δth.

Next, in Fig. 4, we consider the marked power spectrum.
We use the optimal choice of mark parameters found in
[53], which uses the smoothed overdensity field with
10 Mpc=h smoothing window; thus small-scale informa-
tion is mixed into large scales. We again find little differ-
ence in the cb field. The Ωm field differs only on large,
linear scales. For the m field, there is a difference on all
scales. Again, this fits with our findings in the previous
section.
A corollary of there being negligible information in the

cb field is that there will also be negligible information in
the halo field. The halo field is a function of the cb field
and the bias parameters; hence, without knowledge of the
bias, the information content of the halo field is just a
reexpression of the information contained in the cb field.
We illustrate this in Fig. 5, which shows the difference in
the power spectrum, void size function, and marked power
spectrum, for the halo field between the real and fake (cb-
matched) simulations. We identify halos using the friends-
of-friends algorithm and apply a fixed number density cut.
We find that there is no significant difference in any of the
halo statistics between the real and fake simulations.
Having shown there to be little information in the real-

space halo field, we now consider redshift-space distortions
(RSDs), which include the effects of the peculiar velocities
of halos along the line of sight (LOS). The peculiar velocity
field is sourced by the clustering of the total matter field,
which includes neutrinos. The halo power spectrum in
redshift space can, therefore, provide additional informa-
tion on the total neutrino mass. In the left panel of Fig. 6,
we show a bin-by-bin comparison of the redshift-space halo
power spectrum from the real and fake (with matched cb
field) simulations in the ðkk; k⊥Þ plane, where parallel/

FIG. 3. The ratio of the void size function between the real and
fake simulations. If we match δX at z ¼ 0, we plot the corre-
sponding VSF in the X field. Bands represent Poisson errors. It
can be seen that the ratio is 1 for cb and Ωm within the Poisson
errors. Only the VSF in the 3D matter field shows a ratio that is
not unity, although it is still close to the Poisson error.

FIG. 4. The ratio of the marked power spectrum (M) between
the real and fake simulations. If we match δX at z ¼ 0, we plot the
correspondingM in the X field. It can be seen that the ratio is 1 for
cb, while for the Ωm it deviates from 1 on large scales, and for m
is deviates from 1 on all scales.
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perpendicular is in reference to the LOS. It can be seen that
some bins along the LOS have a relatively large difference
between the two simulations, but even small deviations

from the LOS direction bring the size of the effect down to
≲1%, in line with the results obtained in real space. To
better visualize the dependence on magnitude k and
projection onto the LOS, μ ¼ kk=k, we bin the data into
three bins of k and four bins of μ. The right panel shows the
difference between the real and fake simulation increases
with k and μ, signifying the information present at small
scales due to RSDs as one approaches the LOS. Therefore,
we conclude that there is indeed additional nonlinear
information about neutrino mass that can be obtained by
studying clustering of biased tracers in redshift space.
While this clustering can be difficult to model accurately,
it may be a key source of information in upcoming
surveys [68].

V. FISHER ANALYSIS

As shown the previous two sections, without RSDs, the
cb field is statistically indistinguishable between the one-
fluid (CDM) and two-fluid (CDM+ν) simulations. The
same is also approximately true for the Ωm field, respon-
sible for weak lensing, for which there is only a difference
in the power spectrum on large scales. If there is negligible
difference between the one-fluid and the two-fluid non-
linear dynamics, the total information content is essentially
maximized by that which arises from the linear physics.
Nevertheless, as the linear power spectrum is not observ-
able, it is instructive to compare the information content of
the linear power spectrum to the nonlinear power spectrum.
We perform a Fisher analysis in the fΩm;Ωb; h; ns;

σ8;Mνg plane. We use a fiducial cosmology with
Ωm ¼ 0.3175, Ωb ¼ 0.049, h ¼ 0.6711, ns ¼ 0.9624,
σ8 ¼ 0.834, and Mν ¼ 0.05 eV. To compute derivatives,
we use a central difference scheme at �δθ for each
cosmological parameter. Specifically, we use δΩm ¼ 0.01,
δΩb ¼ 0.002, δh ¼ 0.02, δns ¼ 0.02, δσ8 ¼ 0.015, and
δMν ¼ 0.025 eV. For the linear covariance between probes
x and y, we use CX ¼ 2P2

X=Nk, where Nk ¼ 4πk2kF=k3F,
and kF ¼ 2π=L is the fundamental wave number, which we
take for a box of volume 1 ðGpc=hÞ3. For the nonlinear
results, we use the QUIJOTE simulations [69], and for the
linear results we use CAMB [70], using the same derivative
computation method and binning as QUIJOTE.
Figure 7 shows the marginal error onMν as a function of

kmax for the various linear and nonlinear power spectra. As
expected,there is good agreement between the linear and
nonlinear results on large scales, where cosmic evolution is
approximately linear. Moving to smaller scales, we see that
the nonlinear power spectra for cb and Ωm have a factor 2
times lower constraining power compared to their linear
counterparts. Note that the nonlinear power has worse
constraints because its covariance has positive off-diagonal
elements due to mode coupling, which in turn degrades the
information content after marginalizing [54]. This means
that there is still potential room for improvement upon the
constraints from the nonlinear power spectrum, and one

FIG. 5. The ratio of the halo-traced power spectrum, void size
function, and marked power spectrum (from top to bottom)
between the real and fake (cb-matched) simulations. It can be
seen that the ratio is close to unity in all cases.
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may benefit from around a factor 2 by using statistics
beyond the power spectrum. Thus, on their own, the cb and
Ωm fields give a marginal error on the neutrino mass of just
under 1 eV in a 1 ðGpc=hÞ3 volume.
On the other hand, the linear and nonlinear marginal

error on Pm match well all the way to kmax ¼ 0.5 h=Mpc.
But, regardless of this, it was shown in the previous section
that there is additional information in the phases of the 3D
matter field that is not fully captured by the power
spectrum, and there is thus additional information to be
found in higher-order statistics.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have investigated how much nonlinear
information regarding neutrino mass one can expect to
find in various cosmological fields by comparing one-
fluid (CDM) to two-fluid (CDMþ ν) simulations with
matched initial conditions. In real space, we found that the
cb field and Ωm (lensing) field do not contain additional
information regarding neutrino mass that is unique to the
two-fluid dynamics up to k≲ 1 h=Mpc. Essentially, the
evolutionary effect of including a massive neutrino fluid
can be faked by a solitary CDM fluid. This implies that the
cb field and derived quantities (e.g., the halo field) and
weak-lensing convergence, contain little information
regarding neutrino mass beyond that which exists in the
linear power spectrum over the same scales. We have also
shown that there is much nonlinear information regarding
neutrino mass in the 3D matter overdensity field; however,
this is not currently experimentally detectable. The fun-
damental quantities we considered are the coherence and
power spectrum ratio between the two simulations,
summarized in Table I, which alone quantify the amount

FIG. 6. The ratio of the redshift-space halo power spectrum between the real and fake (cb-matched) simulations. Left: bin-by-bin
comparison in the ðkk; k⊥Þ plane, where parallel/perpendicular is in reference to the LOS. Right: binning the data into three bins of
magnitude k and four bins of LOS projection, μ ¼ kk=k. Both plots show a deviation of the ratio from unity when moving closer to the
LOS and to smaller scales, but negligible deviation in the perpendicular direction, suggesting that the additional information on neutrino
mass comes from the modified velocity field, or growth rate, which is sourced by the matter overdensity.

FIG. 7. Marginal error onMν for Pcb (blue), PΩm (red), and Pm
(green), in both the linear (solid) and nonlinear (dashed) regime,
for a volume of 1 ðGpc=hÞ3.

TABLE I. Summary of key results. The coherence and power
spectrum ratio between the real and fake simulations for the cb,
Ωm, and m fields, for k ≤ 1 h=Mpc. Note that, while the power
spectrum ratio for the Ωm field differs from unity at the 1% level,
this is only at low k, which is sample variance limited.

Field ζ − 1 Preal=Pfake − 1

cb ≲0.01% ≲0.1%
Ωm ≲0.01% ≲1% (low k)
m ≲0.1% ≲1%
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of nonlinear information at the field level. We then
explicitly verified these findings for various higher-order
statistics, including the void size function and marked
power spectrum.
Consequently, one can expect constraints on neutrino

mass a little lower than 1 eV in a volume of 1 ðGpc=hÞ3
when using the cb or lensing fields alone at a single
redshift. Hence, using only this information, a very large
volume of 104 ðGpc=hÞ3 would be needed to reach an error
of 0.01 eV (corresponding to a ∼5σ detection), which
exceeds the available volume of currently realistic surveys.
We note that, even in the face of these findings, there is

still motivation to consider statistics beyond the power
spectrum to detect neutrino mass. A first consideration is
the choice of redshift(s). In our analysis, we have matched
the linear physics at a single redshift, z ¼ 0. Similarly, [58]
used hydrodynamical simulations to find that one can fake
the effects of massive neutrinos in the nonlinear power
spectrum up to k≲ 10=Mpc for the Ly-α forest (z ¼ 3).
While the effects of massive neutrinos can be faked at a
single redshift, the real and fake universes have, in
principle, different evolution. Therefore, combining the
fields at multiple redshifts should help discriminate
between the two and improve constraints on Mν. It will
thus be imperative to combine multiple redshifts (from
CMB redshift of 1100 to today) and tracers (CMB,
galaxies, and weak lensing) to obtain tight constraints on
neutrino mass in upcoming surveys. For example, combin-
ing weak lensing and galaxy clustering, can reach 0.02 eV
with Rubin (LSST) and stage IV CMB [14].
Second, the late-time linear power spectrum is not an

observable quantity, as cosmic evolution is indeed non-
linear. Hence, even though the linear power spectrum may
provide a bound for the error in the case of cb and lensing,
the nonlinear power spectrum does not quite reach this
bound. We have shown this effect corresponds to around a
factor of 2, thus a different nonlinear statistic may be able to
obtain slightly better constraints than the nonlinear power
spectrum. This factor of 2 can also be recovered by
reconstructing the linear field from the nonlinear field [71].
Third, we consider lensing measurements to be directly

sensitive to the product Ωmδm. This is exact if the sources
are at low redshift. However, the comoving distance in
Eq. (3) implicitly depends on Ωm as well, so for sources at
higher redshift the relation is more complicated. Thus, all
possible combinations of Ωm and δm that keep Ωmδm fixed
may not be compatible with the observed lensing signal
because they will modify the comoving distances. If one
could obtain strong constraints on Ωm from the redshift-
distance relation, then combining it with lensing measure-
ments may be able to probe δm directly, rather than the
product Ωmδm. We also note that neutrinos are nonrelativ-
istic at low redshift and thus will not induce a significant
geometric effect on lensing observables that is known to
arise in the context of dark energy [72,73].

Fourth, we have motivated that RSDs may provide
nonlinear information regarding neutrino mass, thus con-
sidering higher-order statistics in redshift space is a
worthwhile pursuit. RSDs add new information because
velocities are determined by the growth factor f, which is
sensitive to matter density Ωm and neutrino density Ων.
While RSDs can be difficult to model, it could be a key
source of information in upcoming surveys [68]. For
example, [74] illustrates how halo velocities can aid in
constraining neutrino mass. A further improvement on f
may be possible from redshift dependence, which we did
not consider in this paper.
Fifth, it might be argued that even for the cb orΩm fields

one could find information regarding Mν beyond the linear
power spectrum, as there may be a nonlinear statistic with
more favorable parameter degeneracies. For example, a
particular nonlinear statistic might constrain some other
cosmological parameter much better than the linear power
spectrum, and thus after marginalizing over this parameter,
the constraints on Mν will outperform the linear power
spectrum. However, the other parameters of key relevance
in the case of neutrino mass are Ωm and As, for which
nonlinear cosmic evolution does not induce additional
information beyond that which exists in the linear initial
conditions. We illustrate this in the Appendix. Thus, it is
not expected that degeneracies will cause a big improve-
ment in the constraints on Mν. One could also consider
nonstandard cosmological parameters, for example, related
to primordial non-Gaussianity or exotic neutrino inter-
actions [75]. For the latter to have an effect there would
likely need to be a mechanism that couples the nonlinear
evolutions of the cb and neutrino perturbations much more
strongly than what happens through the Poisson equation.
In principle, this is possible given a sufficiently strong
neutrino-baryon or neutrino-neutrino interaction, and this
could help break degeneracies with neutrino mass if one
had a means to measure this nonstandard effect.
Numerous recent works have proposed that one can

obtain information regarding neutrino mass beyond the
power spectrum [45–55,76,77]. Some forecast Oð0.1 eVÞ
constraints by employing tomography, which is in good
agreement with our results. On the other hand, some works
find constraints that are over an order of magnitude smaller
than linear theory. Given our findings we are able to explain
exactly where this information comes from. In the case of
[50,51], the information arises from working in redshift
space, while for [52–54] it comes from working with the
3D matter field. Regarding [55], which considers the real-
space halo field, the information comes from assuming
knowledge of the bias model as a function of cosmology.
The bias model can be thought to transfer information on
small scales in the cb field to larger scales in the halo field,
thus information at k > 1 h=Mpc in the cb field could
move to scales of k < 1 h=Mpc in the halo field. Hence, if
one knew the bias model, one could obtain tight constraints
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on the neutrino mass with modern measurements of the
halo field. However, the bias model parameters can have
strong degeneracies with the cosmological parameters; for
example, the linear bias b1 is essentially degenerate with
σ8. It is thus important to marginalize over bias and apply
halo mass or number density cuts to obtain realistic
constraints.
Many of the works that compute constraints on Mν are

based on Fisher forecasts, for which one must take great
care to avoid inaccurate results [78–80]. Additionally, a
Fisher analysis employs asymptotic limits using the Taylor
expansion of the log likelihood, which may not be justified
in a realistic data analysis where the posteriors are often
non-Gaussian. Thus, while some practitioners do go to
great lengths to show that their Fisher matrices have
converged, it is unclear how credible such forecasts are
for higher-order statistics. There is a growing trend in
modern statistical inference and machine learning to use
cross-validation as a golden standard for validation of
results. The same standard should be adopted in cosmology
as well. This means setting aside some fraction of simu-
lations that are not used for training (i.e., not used to
evaluate the covariance or derivatives of summary statis-
tics) and performing an end-to-end analysis on these
validation simulations all the way to the cosmological
parameters of interest, where the result can be compared to
the truth in terms of bias and variance. Such an analysis is
expensive, even more so if the validation simulations are
chosen to be produced by an independent simulation code,
but this could be a worthwhile standard validation pro-
cedure. Another worthwhile verification strategy is to use
null tests, in which one explicitly performs the analysis on
setups where the signal is known to be null. An example is
running non-Gaussian statistical analysis on Gaussian data
to demonstrate that the Fisher analysis does not give more
information than what is available in the Gaussian field.
Thus, a useful piece of future work would be to train a
neural network to learn the effects of massive neutrinos on
the various cosmological fields and perform all of these
tests. In the absence of such work, we intend for our results
to give a useful rule of thumb when proposing new statistics
to measure the nonlinear effects of massive neutrinos.
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APPENDIX: OTHER PARAMETERS (Ωm AND As)

In this paper, we have studied the effect of neutrino mass
Mν on nonlinear cosmic evolution. We now briefly discuss
the effects of two other cosmological parameters relevant
for disentangling the effects of neutrino mass from large-
scale structures: Ωm and As.
We first perform the real-versus-fake analysis on the

cosmological parameter Ωm. We seek to test if nonlinear
evolution leaves an imprint at the field level. To do so, we
match the linear PðkÞ of twoMν ¼ 0 simulations, but differ
the value of Ωm by 10% between the two, during both
backscaling and the forward N-body simulation. Figure 8
shows the coherence between these two simulations, which
is shown to be≲0.01% for k≲ 1h=Mpc. This suggests there
is negligible additional information regarding Ωm coming
from the nonlinear evolution thatwould be present in higher-
order statistics, since the agreement is exact at the field level.
Interestingly, this is about the same value as the coherence

FIG. 8. The real part of the coherence between the cb fields
from twoMν ¼ 0 simulations with matched linear PðkÞ at z ¼ 0,
but withΩm differing by 10%. It can be seen that the coherence is
one up to k ¼ 1 h=Mpc to ≲0.01%. This implies that there is
negligible nonlinear information regarding Ωm in the cb field.
The vertical range is identical to Fig. 1 to enable comparison.
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found for the real-versus-fakeMν coherence found in Fig. 1.
Note that this analysis does not take into account any change
in the shape of PðkÞ due to a change in Ωm, which is
information contained in the initial conditions.
The other parameter of relevance when it comes to

neutrino mass is the amplitude of linear fluctuations As.
As this is the amplitude of the initial linear power spectrum,
it is a property of the initial conditions. Thus, late-time

nonlinear evolution cannot produce additional information
on As.
We thus conclude that there is little information regard-

ing Mν, Ωm, or As coming from nonlinear cosmic evolu-
tion. Hence, for k≲ 1 h=Mpc in the cb or Ωm fields, there
is no nonlinear statistic that will constrain these parameters
significantly better than the linear power spectrum, even
after marginalizing.
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