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A pseudoscalar “axionlike” field, ϕ, may explain the 3σ hint of cosmic birefringence observed in the EB
power spectrum of the cosmic microwave background polarization data. Is ϕ dark energy or dark matter?
A tomographic approach can answer this question. The effective mass of dark energy field responsible for
the accelerated expansion of the Universe today must be smaller than mϕ ≃ 10−33 eV. If mϕ ≳ 10−32 eV,
ϕ starts evolving before the epoch of reionization and we should observe different amounts of birefringence
from the EB power spectrum at low (l ≲ 10) and high multipoles. Such an observation, which requires a
full-sky satellite mission, would rule out ϕ being dark energy. Ifmϕ ≳ 10−28 eV, ϕ starts oscillating during
the epoch of recombination, leaving a distinct signature in the EB power spectrum at high multipoles,
which can be measured precisely by ground-based cosmic microwave background observations. Our
tomographic approach relies on the shape of the EB power spectrum and is less sensitive to miscalibration
of polarization angles.
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I. INTRODUCTION

A pseudoscalar “axionlike” field is a candidate for dark
matter and dark energy in the Universe [1,2]. Like pion in
the standard model of elementary particles and fields,
a pseudoscalar can couple to the electromagnetic tensor
Fμν and its Hodge dual F̃μν via a Chern-Simons term in the
Lagrangian density, L ⊃ − 1

4
gϕFμνF̃μν [3,4], where g is the

axion-photon coupling constant. This term rotates the plane
of linear polarization of photons as they travel through
space filled with ϕ [5–7].
Such a rotation produces nonzero odd-parity TB and

EB power spectra of the cosmic microwave background
(CMB) polarization fields, which vanish in the standard
cosmological model [8]. This effect is often referred to as
“cosmic birefringence,” as it resembles birefringence in a
material (see Ref. [9] for a review).
The plane of linear polarization of CMB photons rotates

clockwise on the sky by an angle β ¼ 1
2
g
R t0
tLSS dtdϕ=dt,

where dϕ=dt is the total derivative of ϕ along the photon
trajectory, and the subscripts “0” and “LSS” denote the

present day and the last scattering surface of CMB photons,
respectively. The CMB is an ideal target for measuring β, as
it is proportional to the path length of photons when ϕ is
evolving slowly.
Cosmic birefringence can be caused by ϕ of dark energy

[10,11] and dark matter [12,13], as well as by possible
signatures of quantum gravity [14,15]. How can we tell the
origin? The effective mass of ϕ, m2

ϕ ≡ d2V=dϕ2, is the key
parameter, where VðϕÞ is the potential. The field does not
change very much when mϕ ≲HðtÞ, where HðtÞ is the
Hubble expansion rate at a time t; thus, ϕ would be dark
energy today if mϕ ≲H0 ≡Hðt0Þ ≃ 10−33 eV. The ϕ field
with mass greater than this value would constitute a fraction
of dark matter in the Universe today.
A tantalizing hint for β has been found in the EB power

spectrum of the Planck mission with the statistical signifi-
cance exceeding 3σ [16–18]. If confirmed with higher
statistical significance in the future, it would have profound
implications for the fundamental physics behind dark
energy and dark matter, as well as for quantum gravity.
Anticipating such a discovery, in this paper we show how to
determine mϕ using a tomographic approach to cosmic
birefringence.
There are two epochs in which linear polarization of the

CMB was generated: (i) the epoch of recombination of
hydrogen atoms and the subsequent decoupling of photons
from plasma at a redshift of zrec ≃ 1090 [19]; and (ii) the
epoch of reionization of hydrogen atoms at zrei ≃ 7 [20].
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The CMB photons that were last scattered at these epochs
would experience different amounts of cosmic birefrin-
gence [21,22], which changes the relative amplitudes of the
EB power spectrum at low (l ≲ 10) and high multipoles.
We can use this l dependence to infer β from z ≃ zrec to zrei
and that from z ≃ zrei to 0, i.e., tomography. For example, if
mϕ ≳ 10−31 eV, we should not detect the reionization bump
in the EB spectrum at l ≲ 10 [23]. Such an observation
requires a full-sky satellite mission like LiteBIRD [24] and
would rule out ϕ being dark energy.
The formula β ¼ 1

2
g
R t0
tLSS dtdϕ=dt assumes an instanta-

neous last scattering at tLSS, but a finite duration of last
scattering leaves unique signatures in the CMB power
spectrum [12]. Ifmϕ ≳ 10−28 eV, ϕ starts oscillating during
or earlier than the recombination epoch, modifying the EB
power spectrum at high l. This effect can be measured
precisely by ground-based CMB observations such as
Simons Observatory [25], South Pole Observatory [26],
and CMB-S4 [27], which opens up new scientific oppor-
tunities for CMB experiments.
In this paper, we solve the Boltzmann equation coupled

with the equation of motion (EOM) for ϕ, assuming that ϕ is
either a dark energy field or a “spectator” field with
negligible energy density. The energy density of ϕ therefore
does not enter the Friedmann equation explicitly. We show
how the shape of the EB power spectrum depends on mϕ,
and provide a forecast for future constraints on mϕ and gϕ.
The tomographic approach can also mitigate partially the

artificial rotation angle, α, by miscalibration of polarization
angles of detectors and other instrumental effects [28–32].
The artificial rotation affects the EB power spectrum at all
multipoles equally, whereas the tomographic approach relies
on the l-dependent effect. For example, the Galactic fore-
ground emission experiences only a negligible amount of
birefringence, and we can use the different l dependence of
the foreground and CMB power spectra to determine α and β
simultaneously [33]. As we show in this paper, the difference
between recombination and reionization signals can probe
10−32 eV ≲mϕ ≲ 10−31 eV (see Ref. [23] for an earlier,
more qualitative study), and details of the shape of the high-l
EB power spectrum can probe mϕ ≳ 10−28 eV.
The rest of the paper is organized as follows. In Sec. II,

we present the Boltzmann equation and the EOM for ϕ
[12,21,34,35]. Our approach is different from Ref. [36],
which did not solve the EOM. In Sec. III, we solve these
equations to calculate the EB power spectrum, and show
new features that are important for cosmic birefringence
tomography. In Sec. IV, we forecast expected constraints on
the axion parameters for experiments similar to LiteBIRD
[24], Simons Observatory [25], and CMB-S4 [27]. We
discuss possible improvements for our calculation in Sec. V
and conclude in Sec. VI.
We use the Friedmann-Lemaître-Robertson-Walker

spacetime with a metric tensor given by a2ðηÞdiagð−1;1Þ,

where aðηÞ is the scale factor of the expansion of the
Universe. We use the conformal time, η, as time coordinates
unless noted otherwise. We focus on the homogeneous axion
background, ϕðηÞ, and ignore inhomogeneity in ϕ.

II. BOLTZMANN EQUATION FOR ISOTROPIC
COSMIC BIREFRINGENCE

A. Setup

We work with the Lagrangian density of axion electro-
dynamics given by [3,4]

L ¼ −
1

2
ð∂μϕÞ2 − VðϕÞ − 1

4
FμνFμν −

1

4
gϕFμνF̃μν: ð1Þ

The dispersion relation of photons is given by ω2
� ¼

k2ð1 ∓ gϕ0=kÞ, where ω� is the angular frequency of
� helicity states [5–7]. The þ and − states correspond
to the right and left circular-polarization modes, respec-
tively, in right-handed coordinates with the z axis taken in
the direction of the propagation of photons. The prime
denotes the derivative with respect to η.
In the WKB limit where ϕ varies slowly so that ω�

is much larger than the time evolution of ϕ, i.e.,
jω0

�j=ω2
� ≪ 1, the rotation of the plane of linear polariza-

tion from η to the present time is written as [5–7]

βðηÞ≡ −
Z

η0

η
dη1

ωþ − ω−

2
¼ g

2
½ϕðη0Þ − ϕðηÞ�; ð2Þ

where η0 is the conformal time today. Here, we use the
CMB convention for the position angle of linear polariza-
tion, i.e., β > 0 is a clockwise rotation in the sky in right-
handed coordinates with the z axis taken in the direction of
the observer’s lines of sight. The EOM for ϕ is

ϕ00 þ 2
a0

a
ϕ0 þ a2m2

ϕϕ ¼ 0; ð3Þ

for VðϕÞ ¼ m2
ϕϕ

2=2. We did not include a2gϕFμνF̃μν in the
EOM, which is quadratic in cosmological perturbation and
can be ignored safely.
The field does not evolve very much when HðηÞ ¼

a0=a2 ≫ mϕ. We choose the initial conditions at ηin such
that HðηinÞ ≫ mϕ, ϕ0ðηinÞ ¼ 0, and ϕðηinÞ ¼ ϕin. We do
not include the energy density of ϕ in the Friedmann
equation explicitly, but use HðηÞ derived from a flat Λ cold
dark matter (ΛCDM) model. This approximation is valid
when the energy density of ϕ is negligible (e.g., a tiny
fraction of dark matter) or the axion mass is so small
(mϕ ≲ 10−33 eV) that it behaves as dark energy. The axion
field with a tiny energy fraction can still induce a sizable
amount of birefringence [37].
The EOM is a linear equation for ϕ. We therefore

introduce a function, fðηÞ≡ ϕðηÞ=ϕin, which satisfies
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the same EOM as in Eq. (3) with the initial condition
fðηinÞ ¼ 1. The birefringence angle is given by

βðηÞ ¼ gϕin

2
½fðη0Þ − fðηÞ�: ð4Þ

B. Boltzmann equation

We work with parity eigenstates of CMB polarization, E
and B modes, which have even and odd parity, respectively
[38,39]. In the standard cosmological model, the E and B
modes are uncorrelated due to parity symmetry. Cosmic
birefringence violates parity symmetry and leads to a
correlation between E and B modes [8].
In this paper, we consider only scalar-mode perturba-

tions and ignore tensor modes. The evolution of linear
polarization of CMB photons follows the Boltzmann
equation [19]. We expand Stokes parameters of linear
polarization, Q and U, in Fourier space with the wave
vector q. We define the cosine between q and the photon
propagation direction as μ≡ q · k=ðqkÞ. We then write the
Boltzmann equation for the Fourier coefficients of Q� iU,

�2ΔPðη; q; μÞ, as [9]

�2Δ0
P þ iqμ�2ΔP ¼ τ0

�
−�2ΔP þ

ffiffiffiffiffiffi
6π

5

r
�2Y

0
l ðμÞΠ

�
� 2iβ0�2ΔP; ð5Þ

where �2Y
m
l is the spin-2 spherical harmonics, Πðη; qÞ

is the polarization source term [38], β0 ≡ gϕ0=2 gives
βðηÞ ¼ R

η0
η dη1β0ðη1Þ in Eq. (2), and τ0 ≡ aðηÞneðηÞσT is

the differential optical depth with the Thomson scattering
cross section σT and the number density of electrons ne.
With the μ dependence of �2ΔP expanded in spin-2

spherical harmonics,

�2ΔPðη; q; μÞ ¼
X
l

i−l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
�2ΔP;lðη; qÞ�2Y

0
l ðμÞ;

ð6Þ

the formal solution for the Boltzmann equation is [21]

�2ΔP;lðη0; qÞ ¼ −
3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
η0

0

dητ0e−τðηÞΠ
jlðxÞ
x2

× exp ½�2iβðηÞ�; ð7Þ

where jlðxÞ is the spherical Bessel function with x ¼
qðη0 − ηÞ and τðηÞ ¼ R

η0
η dη1τ0ðη1Þ.

Cosmic birefringence induces an imaginary part of

�2ΔP;lðη0; qÞ, which leads to B modes. We write the
coefficients of E and B modes as [38]

ΔE;lðqÞ � iΔB;lðqÞ≡ −�2ΔP;lðη0; qÞ: ð8Þ

Using Eqs. (7) and (8), the CMB polarization power
spectrum is given by

CXY
l ¼ 4π

Z
dðln qÞPsðqÞΔX;lðqÞΔY;lðqÞ; ð9Þ

where PsðqÞ is the primordial scalar curvature power
spectrum and X; Y ¼ E or B. While cosmic birefringence
modifies all polarization modes, we focus on the EB power
spectrum since it is more sensitive than TB for the current
and future generations of CMB experiments with low
polarization noise.
We implement Eq. (7) in the CLASS code [40,41] and

calculate CEB
l with the best-fitting Planck 2018 cosmo-

logical parameters for a flat ΛCDM model [42]. One
significant change made to the code is the treatment of
B modes induced by scalar perturbations. Cosmic birefrin-
gence transfers a part of scalar E modes into B modes,
and we need to compute ΔB;l which vanishes otherwise.
Specifically, we solve Eq. (3) outside CLASS, compute
βðηÞ from Eq. (4), and insert it into Eq. (7) by modifying
the relevant part in CLASS.

C. Axion mass and the visibility function

Cosmic birefringence tomography relies on two epochs
in which CMB polarization was generated. In Fig. 1,
we show the visibility function, the probability density
of photons being last scattered, defined by gvisðηÞ≡
σTaðηÞneðηÞe−τðηÞ, as a function of redshift with the thermal
history obtained from the RECFAST code [43–45]. As
expected, the visibility function has the largest value at the
recombination and photon decoupling epoch, zrec ≃ 1090.
The second peak appears at zrei ≃ 7.
In Fig. 2, we compare the evolution of ϕ with the

epochs of recombination and reionization. The axion with
mϕ ¼ 10−28.0 eV (green line) starts evolving significantly
before recombination, which experiences a reduction in the
amount of birefringence [12,13].

FIG. 1. The visibility function as a function of redshift z. The
orange and blue regions show the recombination and reionization
epochs, respectively. The reionization is included using the tanh
model with zrei ¼ 7.82 [42,46].
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The axion with mϕ ¼ 10−30.3 eV (blue line) starts
evolving after recombination but has decayed before
reionization; thus, very little cosmic birefringence would
occur after reionization. The axion with mϕ ¼ 10−31.2 eV
(red line) starts oscillating during reionization, and that
with mϕ ¼ 10−32.3 eV (black line) evolves only after
reionization. The amplitude of the reionization bump in
CEB
l is therefore sensitive to 10−32 eV ≲mϕ ≲ 10−31 eV.
For mϕ ≲ 10−32 eV we expect CEB

l to be scaled by a
single β at all l. The polarization modes [Eq. (8)] are simply
given by ΔE;l � iΔB;l ¼ e�2iβðΔ̃E;l � iΔ̃B;lÞ, where the
tildes denote the values before cosmic birefringence.
Then, the polarization power spectra after birefringence
are given by [21,47]

CEE
l ¼ cos2ð2βÞC̃EE

l þ sin2ð2βÞC̃BB
l ; ð10Þ

CBB
l ¼ cos2ð2βÞC̃BB

l þ sin2ð2βÞC̃EE
l ; ð11Þ

CEB
l ¼ 1

2
sinð4βÞðC̃EE

l − C̃BB
l Þ: ð12Þ

In this case, CEB
l ∝ CEE

l when we ignore the primordial B
modes, and β is degenerate with the instrumental miscali-
bration angle α [29,30]. The tomography approach breaks
this degeneracy by using the change in shape of CEB

l
induced by either mϕ ≳ 10−32 eV [23] or the Galactic
foreground [33]. The primordial tensor modes add small
contributions to C̃EE

l and C̃BB
l in the above equations, which

can be safely ignored for the purpose of this paper.

III. COSMIC BIREFRINGENCE FROM
RECOMBINATION AND REIONIZATION

A. Toy example

To build an intuitive understanding of the full numerical
result for CEB

l due to evolving ϕ, we first study a toy
example in which βðzÞ integrated from z to the present time
[Eq. (2)] changes abruptly:

βðzÞ ¼

8>><
>>:

0 for z ¼ 0

βrei for 0 < z ≤ 10

βrec for 10 < z

; ð13Þ

where βrei and βrec are piecewise constant angles integrated
out to z ¼ 10 and recombination, respectively.
In the top panel of Fig. 3 we show CEB

l for fβrei½deg�;
βrec½deg�g ¼ f1; 1g (red), f0.5; 1g (green), and f0; 1g
(blue). All lines coincide at l ≳ 20 because βrec is the
same. As βrei decreases, the reionization bump of CEB

l also
decreases. However, the reionization bump does not dis-
appear even for βrei ¼ 0.
The shape of CEB

l can be understood as follows. The E
and B modes are written as

ΔE;l � iΔB;l ¼
X

x¼rei;rec

e�2iβxðΔ̃ðxÞ
E;l � iΔ̃ðxÞ

B;lÞ: ð14Þ

Ignoring the primordial B modes, CEB
l is given by

CEB
l ¼ 1

2
sinð4βrecÞC̃Erec;Erec

l þ 1

2
sinð4βreiÞC̃Erei;Erei

l

þ sin ½2ðβrei þ βrecÞ�C̃Erei;Erec
l ; ð15Þ

where C̃Ex;Ey
l is the cross power spectrum of Δ̃ðxÞ

E;l and Δ̃ðyÞ
E;l

with x; y ¼ rei; rec. The first term dominates at l ≳ 20.

FIG. 2. Evolution of ϕ for mϕ ¼ 10−28.0 (green), 10−30.3 (blue),
10−31.2 (red), and 10−32.3 eV (black). The shaded regions show
recombination and reionization epochs as in Fig. 1.

FIG. 3. The EB power spectrum from piecewise constant
angles given in Eq. (13): β ¼ βrec for z > 10 and β ¼ βrei for
z ≤ 10. The top and bottom panels show lðlþ 1ÞCEB

l =ð2πÞ and
the effective angles given in Eq. (16), respectively.
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The second term produces the reionization bump at l ≲ 10.
The third term was overlooked in Ref. [23]. The cross
correlation of reionization and recombination E modes
induces a small reionization bump even when the rotation
angle is zero at reionization. This effect appears in the blue
line of Fig. 3 where a small bump is seen at l ≲ 10.
Therefore, there is always some CEB

l at low l.
When the rotation angle depends on time, CEB

l is no
longer given by Eq. (12). We thus define an effective angle
at each l as

βðeffÞl ≡ 1

4
arcsin

�
2xl

1þ x2l

�
with xl ¼

CEB
l

CEE
l

; ð16Þ

which is defined so as to reproduce Eq. (12) for the simplest

case. Note that βðeffÞl ≃ CEB
l =ð2CEE

l Þ for CEB
l =CEE

l ≪ 1. In
the bottom panel of Fig. 3, we show effective angles for the
piecewise constant angles given in Eq. (13). The effective

angle reproduces βðeffÞl ¼ βrec for l ≫ 20, where the recom-
bination contribution dominates. It converges to βrei for
l ≪ 20, where the reionization contribution dominates.

B. EB power spectrum from axion dynamics

In the left panel of Fig. 4 we present the full Boltzmann
solution for CEB

l with axion dynamics shown in Fig. 2. In

the right panel we show the corresponding βðeffÞl . We use
gϕin=2 ¼ −1° ≃ −0.01745, which determines the overall
amplitude of β via Eq. (4).

1. Reionization bump as a probe of mϕ ≲ 10− 31 eV

We first study mϕ ≲ 10−30 eV. As ϕ starts evolving well
after the recombination epoch, the only difference appears
in the reionization bump. We find the largest amplitude for
mϕ ≃ 10−32 eV, for which ϕ starts evolving only after
reionization. The amplitude decreases as mϕ increases;
however, the reionization bump does not disappear even
for mϕ ¼ 10−30.3 eV, as explained in Sec. III A. We can
therefore probe mϕ that falls between the black and blue
lines in the left panel of Fig. 4.

To make this statement more quantitative, we define the
ratio of the effective angles for low and high l as

P
10
l¼2 β

ðeffÞ
l =9P

500
l¼11 β

ðeffÞ
l =490

: ð17Þ

In Fig. 5 we find that the ratio is sensitive to the change in
mass over 10−32 eV ≲mϕ ≲ 10−31 eV. We thus conclude
that this is the range of mϕ we can probe using the relative
amplitudes of the reionization bump and the high-l EB
power spectrum.

2. High-l features as a probe of mϕ ≳ 10− 28 eV

The axion starts oscillating during recombination for
mϕ ≳ 10−28 eV. Photons last scattered at different times
experience different amounts of rotation of the plane of
linear polarization, which can lead to partial cancellation
of cosmic birefringence [12,13,48] as well as to complex
features in CEB

l at high l that can be used to probe
mϕ ≳ 10−28 eV in a completely new way.
In the left panel of Fig. 6 we show CEB

l for axion
dynamics shown in the right panel. There are two effects
on CEB

l : the overall amplitude and shape.

FIG. 4. Same as Fig. 3, but for axion dynamics shown in Fig. 2.

FIG. 5. Ratio of the effective cosmic birefringence angles from
reionization and recombination defined in Eq. (17). The ratio is
sensitive to the change in the axion mass over 10−32 eV ≲mϕ≲
10−31 eV.

IS COSMIC BIREFRINGENCE DUE TO DARK ENERGY OR … PHYS. REV. D 105, 123509 (2022)

123509-5



We first discuss the amplitude, which changes dramati-
cally depending on the value of ϕ during recombination.
For mϕ ¼ 10−28.8 eV, ϕ is nearly constant, which results
in CEB

l ∝ CEE
l except for the reionization bump. For

mϕ ¼ 10−27.9 eV, ϕ starts evolving during recombination,
resulting in a smaller CEB

l . For mϕ ¼ 10−27.8 eV, ϕ aver-
aged over recombination is tiny, resulting in a highly
suppressed CEB

l . For mϕ ¼ 10−27.7 eV, ϕ averaged over
recombination is negative, hence CEB

l < 0.
In the previous work that did not solve the Boltzmann

equation, the amplitude of CEB
l has been calculated by

averaging ϕ over the visibility function [13,37,48]:

hβi≡ g
2
½ϕðη0Þ − hϕiLSS�; ð18Þ

where

hϕiLSS ≡
R ηz¼10

0 dηgvisðηÞϕðηÞR ηz¼10

0 dηgvisðηÞ
; ð19Þ

with ηz¼10 being a conformal time at z ¼ 10. Since we
focus on the rotation angle from recombination, the average
is limited to z > 10 with

R ηz¼10

0 dηgvisðηÞ ≃ 0.95. We use
gvisðηÞ computed with CLASS as shown in Fig. 1.

In Fig. 7 we compare βðeffÞl computed from the
Boltzmann equation and Eq. (18) for mϕ ¼ 10−27.9 eV
(top panel) and mϕ ¼ 10−27.8 eV (bottom). It is clear that

βðeffÞl shows much more complex features than just the
average value hβi shown by the horizontal lines.
How can we understand such complex dependence of

βðeffÞl (hence CEB
l ) on mϕ? We find that the location of the

acoustic peaks in CEB
l for mϕ ¼ 10−27.9 eV shifts to higher

l compared to that for mϕ ¼ 10−28.8 eV (see the vertical
dotted lines in Fig. 6). This peak shift is the origin of the

oscillating behavior of βðeffÞl at l > 100.
The peak location is determined by DA=rs, where rs and

DA are the sound horizon and angular diameter distance at

last scattering, respectively. In our fiducial cosmological
model, DA=rs ≃ ð1þ zLSSÞ1=2 where zLSS is the redshift of
last scattering. For mϕ ¼ 10−27.9 eV, ϕ starts evolving
before recombination, and the B modes are mainly gen-
erated in the early stage of recombination. In such case,
DA=rs for the induced B modes becomes effectively large
and the peaks shift to higher l. Ifmϕ ¼ 10−27.7 eV, the time
when polarization is mostly produced is close to that for
mϕ ¼ 10−28.8 eV and the peak locations are almost iden-
tical to those of the black line while the amplitude is
negative.

FIG. 6. The EB power spectrum for large mϕ. The left panel shows lðlþ 1ÞCEB
l =ð2πÞ for mϕ ¼ 10−28.8 (black), 10−27.9 (red), 10−27.8

(blue), and 10−27.7 eV (green). The dotted vertical lines show the positions of the third peak. The right panel shows axion dynamics for
each mϕ. The shaded region shows the recombination epoch as in Fig. 1.

FIG. 7. The effective rotation angles from the Boltzmann
equation (wiggly lines) and hβi given in Eq. (18) (horizontal
lines) for mϕ ¼ 10−27.9 (top) and 10−27.8 eV (bottom).
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These features are important: we can use this complex
dependence of CEB

l to determine mϕ in a completely new
manner. While the overall amplitude hβi is degenerate with
the miscalibration angle α (unless we have access to
l ≲ 10), the l dependence is not. This is relevant for
ground-based CMB experiments (Sec. IV B).

IV. FORECAST

A. Simultaneous determination of α and cosmic
birefringence with the reionization signal

We first consider the case in which we simultaneously
constrain cosmic birefringence and miscalibration angles,
α, using the reionization bump in CEB

l [23]. As explained in
Sec. III B 1, the axion withmϕ ≳ 10−32 eV changes relative
amplitudes of CEB

l at low and high l, which cannot be
mimicked fully by α because it affects all multipoles
equally via Eq. (12) with β → α.
In Ref. [23], CEB

l was modeled as the sum of the
reionization and recombination contributions:

CEB
l ¼

X
x¼rei;rec

2βxðCEE;x;lens
l − CBB;x;lens

l Þ; ð20Þ

where CEE;x;lens
l and CBB;x;lens

l are the lensed E- and B-mode
power spectra, respectively. As shown in Eq (15), however,
we cannot decompose CEB

l in this way. Therefore, we
constrain the axion parameters instead of βx.
Assuming that the observed E and B modes obey a

multivariate Gaussian distribution with zero mean, the
Fisher information matrix is given by [49]

Fij ¼ fsky
Xlmax

l¼2

2lþ 1

2
Tr
�
C−1

l
∂Cl

∂pi
C−1

l
∂Cl

∂pj

�����
pi¼pi;fid

; ð21Þ

where lmax is the maximum multipole included in the
analysis, fsky is a sky fraction used for the analysis, pi

are the parameters to be constrained, pi;fid are the fiducial
parameter values, and the covariance matrix of the observed
E and B modes is given by

Cl ≡
�
ĈEE
l ĈEB

l

ĈEB
l ĈBB

l

�
: ð22Þ

The covariance matrix contains the total power spectra,
ĈEE, ĈEB, and ĈBB, including the lensed CMB, noise, and
Galactic foregrounds after component separation. The 1σ
constraint on pi is given by σðpiÞ ¼ ðfF−1giiÞ1=2.
We consider two parameters, p1 ≡ gϕin=2 and p2 ≡ α,

and set their fiducial values to be pi;fid ≡ 0. As the
E- and B-mode spectra do not have a linear term of pi
and their derivatives with respect to pi at pi;fid ¼ 0

vanish, ∂Cl=∂pijpi¼0 contains only off-diagonal elements,
∂CEB

l =∂pijpi¼0. The Fisher matrix simplifies to [23]

Fij ¼ fsky
Xlmax

l¼2

2lþ 1

ĈEE
l ĈBB

l

∂ĈEB
l

∂pi

∂ĈEB
l

∂pj

����
pi¼0

: ð23Þ

We assume a LiteBIRD-like white noise (2 μK−arcmin),
angular resolution (30 arcmin), fsky ¼ 0.7, and the residual
Galactic foregrounds obtained by Ref. [50]. We set
lmax ¼ 500 because of the angular resolution.
The impact of gravitational lensing on CEB

l would be
negligible in the Fisher matrix. Lensing does not create CEB

l
but only distorts small-scale polarization anisotropies.
To see this, we first note that CEB

l is approximately given
by Eq. (15). As discussed in Ref. [51], the two operators,
lensing and birefringence, commute, and lensing replaces
CEE
l in Eq. (15) with CEE;lens

l − CBB;lens
l . As CBB;lens

l ≪
CEE;lens
l at l ≪ 5000 and CEE

l is modified by lensing only at
high l, we ignore the gravitational lensing effect on CEB

l .
Figure 8 shows the expected error contours in the two-

dimensional parameter space, gϕin=2 and α, for a givenmϕ.
For mϕ ¼ 10−32 eV the reionization bump in CEB

l is close
to its maximum amplitude as explained in Sec. III B 1. In
this case CEB

l becomes close to that of the miscalibration
angle, and gϕin=2 and α are strongly degenerate. For mϕ ¼
10−30 eV the reionization bump is suppressed and the
degeneracy is reduced. We thus confirm and make more
precise the result of Ref. [23].

B. Constraining the axion mass

Next, we consider joint constraints onmϕ, gϕin=2, and α.
Since CEB

l depends on mϕ nonlinearly, the Fisher matrix
formalism, in which the errors are estimated from curvature
of the posterior distribution around the fiducial value, does
not provide accurate results. We thus use the likelihood
analysis. We define χ2 as

χ2ðpÞ ¼ fsky
Xlmax

l¼lmin

ð2lþ 1Þ ½Ĉ
EB
l − CEB;th

l ðpÞ�2
ĈEE
l ĈBB

l

; ð24Þ

where CEB;th
l is a theoretical model for the EB power

spectrum and is given as the sum of the contributions from
cosmic birefringence and α. For a given observed ĈEB

l we
compute χ2 for each parameter set, p ¼ ðmϕ; gϕin=2; αÞ,
and obtain the posterior distribution, PðpjĈEBÞ ∝
exp ½−χ2ðpÞ=2�.
We consider specifications similar to LiteBIRD [24],

Simons Observatory (SO; [25]), and CMB-S4 [27]. For SO
we assume lmin ¼ 100, lmax ¼ 2500, 6 μK-arcmin white
noise, 1 arcmin Gaussian beam, fsky ¼ 0.4, and no fore-
grounds. We also assume 30% residual lensing-induced B
modes after delensing [52]. For CMB-S4 we assume the
same beam, lmin, lmax, and fsky, but with 1 μK-arcmin noise
and 10% residual lensed B modes [53].
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Figure 9 shows the expected 1σ and 2σ contours on
log10mϕ and gϕin=2. We consider the LiteBIRD-like
experiment with specifications given in Sec. IVA. The
fiducial axion mass is mϕ;fid ¼ 10−30 eV and gϕin=2 is
obtained from βrec ¼ 0.35° [16–18] via Eq. (18). The
fiducial value of α is set to zero. We marginalize the
posterior distribution over α using a prior distribution
obtained from calibration of instruments. Specifically, we
use a Gaussian prior, exp½−α2=ð2σ2αÞ�, with σα ¼ 0.5° (top)
and 0.1° (bottom). The former precision is achieved already
for calibration of the current generation of CMB experi-
ments [54–56], whereas the latter can be achieved by
employing a new calibration strategy [57–60].
The black dashed lines show the values of jgϕin=2j

giving βrec ¼ 0.35° for each mϕ. The spikes in mϕ >
10−28 eV occur when CEB

l at high l becomes highly

suppressed (see the blue line in Fig. 6). That is to say,
we need a larger value of jgϕin=2j to compensate for
suppression of CEB

l by a small value of hϕiLSS [Eq. (19)].
We find that the prior on α tightens the constraint on the

overall amplitude parameter (gϕin) significantly, butmϕ can
be constrained almost independently of the prior. We also
find the same trend when removing the prior on α entirely.
This is because the information on mϕ comes from the
shape of CEB

l . Formϕ;fid ¼ 10−30 eV the reionization bump
is already at its minimum (see the blue line in Fig. 4).
Therefore, the shape of CEB

l can tell us that mϕ is greater
than 10−32 eV, but cannot tell how large it is until mϕ is so
large that it affects the shape at high l. This explains an
upper bound, mϕ ≲ 10−28 eV.
The “islands” of parameter space seen inmϕ > 10−28 eV

are allowed because the peak locations of CEB
l for the

respective mϕ in the islands happen to coincide with those
for the fiducial mass of 10−30 eV, while the amplitudes are
adjusted by varying gϕin. The islands shrink when gϕin is
constrained by a tighter prior on α.
For mϕ;fid ¼ 10−28 eV the shape of CEB

l at high l
becomes quite different from that of α, which enables us

FIG. 9. The expected 1σ and 2σ error contours on log10 mϕ and
jgϕin=2j (in units of degrees) for mϕ;fid ¼ 10−30 eV. The mis-
calibration angle is marginalized over using a Gaussian prior with
σα ¼ 0.5° (top) and 0.1° (bottom). The fiducial value of gϕin=2 is
chosen to give βrec ¼ 0.35° (red dots). The black dashed lines
show jgϕin=2j for βrec ¼ 0.35° at each mϕ. We assume a Lite-
BIRD-like experiment.FIG. 8. The expected 1σ error contours in the two-dimensional

parameter space (α and gϕin=2 in units of degrees). The axion
masses are mϕ ¼ 10−32 (top) and 10−30 eV (bottom). We show
the results from the full l range (black), reionization bump
(2 ≤ l ≤ 20; orange dashed), and high multipoles (21 ≤ l ≤ 500;
green dot-dashed). We assume a LiteBIRD-like experiment
without delensing. The black and green contours overlap in
the top panel.
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to determine mϕ. However, the LiteBIRD-like experiment
cannot determine such a large mϕ accurately because of the
limited angular resolution, giving only discrete islands of
constraints (Fig. 10). Therefore, it gives effectively a lower
bound for mϕ almost independently of σα.
Ground-based experiments such as SO- and S4-like

experiments have better sensitivity to large mϕ. In Fig. 11
we show the expected constraints for SO (mϕ;fid ¼
10−28 eV). The constraints tighten significantly compared
to the LiteBIRD-like case. Some degeneracy between gϕin
and mϕ still exist for σα ¼ 0.5° (top panel): the shift of peak
locations can be absorbed partially by a combination of the
rescaled CEB

l and α. The degeneracy is eliminated when a
tighter prior is used (bottom panel). With CMB-S4 we can
determine mϕ precisely, independent of α (see Fig. 12).
As SO and CMB-S4 cannot measure the reionization

bump, they can only place an upper bound on mϕ if the
fiducial mass is 10−30 eV. Thus, LiteBIRD and ground-
based experiments are highly complementary.

V. DISCUSSION

We have made some simplifying assumptions in our
calculation of CEB

l . First, we did not include the energy
density of ϕ in the Friedmann equation explicitly. This
assumption can be justified to some extent. For
mϕ ≲ 10−33 eV, ϕ acts as dark energy and its energy

density is included approximately as a cosmological con-
stant in the Friedmann equation for ΛCDM cosmology. For
10−32 eV ≲mϕ ≲ 10−25.5 eV, ϕ acts as a small fraction of
dark matter today with the density parameter Ωϕh2 ≲ 0.006
[61], which may be ignored for the current study. However,
the change in shape of CEB

l at high l is a subtle effect, which
can be influenced quantitatively when Ωϕ is included in
the Friedmann equation. We leave the full treatment for
future work.
Second, we did not vary cosmological parameters when

calculating the expected future constraints on the axion
parameters. This assumption can also be justified, as the

FIG. 10. Same as Fig. 9 but for mϕ;fid ¼ 10−28 eV. FIG. 11. Same as Fig. 10 but for an SO-like experiment.

FIG. 12. Same as the top panel of Fig. 11 but for a CMB-S4-
like experiment. The result for σα ¼ 0.1° is similar.
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effect of ϕ on CEB
l is distinct from the cosmological

parameter dependence of the parity-even temperature and
polarization power spectra. Nevertheless, there may still be
some subtle correlation between the cosmological param-
eters and the axion parameters, which should be accounted
for when the axion energy density is included in the
Friedmann equation.
We now discuss possible future extensions of the

calculation. We did not include inhomogeneity in ϕ,
which causes anisotropic polarization rotation [62–64].
While there is no evidence for anisotropic birefringence
[65–68], it seems natural to expect discovery of anisotropy
if the 3σ hint of isotropic birefringence [16–18] is con-
firmed with higher statistical significance in future. Thus,
incorporating anisotropic birefringence in the Boltzmann
equation [35,48] would be a natural next step.
We ignored the gravitational lensing effect on CEB

l . The
lensing would smear the acoustic peaks of CEB

l and
enhance the small-scale power, but these effects would
not be degenerate with cosmic birefringence. Nevertheless,
for completeness, the impact of the lensing effect will be
included in future work.
We have so far focused on cosmic birefringence by a

single axion field, but it is entirely possible that cosmic
birefringence is induced by multiple fields [15,69]. In this
case, the time evolution of βðηÞ becomes more interesting,
which can be constrained by the tomographic approach. In
this paper we considered two epochs, reionization and
recombination, during which the polarization is efficiently
generated. Other sources of polarization include the polar-
ized Sunyaev-Zeldovich effect in clusters of galaxies, the
so-called remote quadrupole [70–73]. The polarization is
generated after the epoch of reionization, and we can in
principle use such large-scale polarization signals to probe
βðηÞ in a late-time universe.

VI. CONCLUSION

In this paper, we solved the Boltzmann equation coupled
with the EOM for an axionlike field ϕ to calculate the
detailed shape of the EB power spectrum of the CMB due
to cosmic birefringence. There are two critical axion
masses: (i) mϕ ≳ 10−32 eV, for which relative amplitudes

of the reionization bump (l ≲ 10) and the high-l power
spectrum are modified; and (ii) mϕ ≳ 10−28 eV, for which
the evolution of ϕ during recombination yields complex
features (such as a shift in the locations of acoustic peaks) at
high l. Such a change in shape cannot be mimicked fully by
the miscalibration angle α, offering a powerful probe ofmϕ.
In Ref. [23], this phenomenon was called “cosmic bire-
fringence tomography,” as it allows us to measure the time
evolution of ϕ.
Probing the first critical mass requires a full-sky

coverage by a satellite mission such as LiteBIRD [24],
whereas the second one can be probed by ground-based
experiments [25–27]. The important application of
tomography is to distinguish whether ϕ is dark energy
or (a fraction of) dark matter today. A convincing
detection of the relative amplitude change of the low-
and high-l power spectrum by LiteBIRD would rule out ϕ
being dark energy. Ground-based experiments can con-
strain the value of mϕ, especially at ≳10−28 eV, almost
independently of α. Together they can discover new
physics and provide new scientific opportunities for
CMB experiments [9].
Finally, the EB data at high l from on-going ground-

based CMB experiments such as Polarbear [74], Atacama
Cosmology Telescope [75], and South Pole Telescope [76]
may already set interesting constraints on mϕ.
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