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We explore the linearly quantized primordial power spectra associated with palindromic universes.
Extending the results of Lasenby et al. [Phys. Rev. D 105, 083514 (2022)] and Bartlett et al. [Phys. Rev. D
105, 083515 (2022)], we improve the modeling of recombination and include higher orders in the photonic
Boltzmann hierarchy. In so doing, we find that the predicted power spectra become largely consistent with
observational data. The improved recombination modeling involves developing further techniques for
dealing with the future conformal boundary, by integrating the associated perturbation equations both
forwards and backwards in conformal time. The resulting wave vector quantization gives a lowest allowed
wave number k0 ¼ 9.93 × 10−5 Mpc−1 and linear spacing Δk ¼ 1.63 × 10−4 Mpc−1, providing fits
consistent with observational data equivalent in quality to the ΛCDM model.

DOI: 10.1103/PhysRevD.105.123508

I. INTRODUCTION

Astronomical observations [1,2] have indicated that our
current universe is in a state of acceleration, progressing
toward an asymptotically de Sitter future; in conformal
time, such a universe contains a cosmological coordinate
horizon, referred to henceforth as the “future conformal
boundary” (FCB). Given that this so-called “end of the
universe” occurs at a finite conformal time, the question
thus arises as to what happens to physical quantities such as
matter and radiation perturbations at the FCB itself and
whether we can continue their development beyond this
boundary. In fact, doing so has profound implications and
consequences for the observational predictions made by
perturbation theory, as demonstrated in previous work by
several groups (Lasenby et al. [3], Bartlett et al. [4], Boyle
and Turok [5]).
Lasenby et al. [3] have shown that perturbation variables

remain nonsingular at the FCB, and we are able to
unambiguously continue them through this boundary.
The answer as to what happens to perturbations beyond
the FCB lies in considering how they approach the next
genuine singularity, the so-called “big bang 2” (BB2).
Since conformal time forms a “double cover” of the
solutions, we should demand reflecting boundary condi-
tions. Alternatively, since we are working to linear order in
this treatment, we must require that our modes be finite
everywhere. Thus we may only consider modes which are

either symmetric or antisymmetric about the FCB to be
valid, such that at BB2 they match onto the nonsingular
series from the first big bang (BB1). These symmetry
conditions can also be interpreted as a “reflecting boundary
condition” at the FCB, since conformal time forms a double
cover of cosmic time.
From these symmetry conditions, we arrive at having only

a discrete set of comoving wave numbers, k, such that the
allowed modes undergo the correct number of cycles
between BB1 and BB2. This is analogous to an infinite
potential well in which boundary conditions lead to quan-
tized solutions with a particular set of wave numbers. This
allowed set of wave numbers has been analytically explored
in Lasenby et al. [3] for flat-Λ radiation-dominated and
matter-dominated universes and numerically found for a
concordance ΛCDM universe in Bartlett et al. [4].
Working with discrete comoving wave numbers gives

rise to a different cosmic microwave background (CMB)
power spectrum in comparison to the canonical calculation
which uses a continuous set of k. We can, therefore,
compute the predicted power spectra from the allowed
wave numbers and compare these to observational data [6],
as shown in Fig. 1. The specific sets of k derived in
previous work have been shown not to produce quantita-
tively good fits to current cosmological data, due to an
unphysically large lowest allowed wave number, k0; how-
ever, it has been demonstrated that a linearly spaced set of k
has the potential to provide significantly improved fits
compared with the baseline concordance model of cosmol-
ogy (Bartlett et al. [4]). Moreover, they are capable of*wh260@mrao.cam.ac.uk
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qualitatively reproducing some of the interesting low-
multipole features of the CMB power spectrum, which
have generated much discussion and various potential
explanations over the years [7–10]. Consequently, there
are compelling reasons to investigate alternative quantized
models which might predict these superior fits a priori.
In Lasenby et al. [3] and Bartlett et al. [4] postrecombi-

nation photons are treated as a fluid with anisotropic stress

(termed “imperfect fluids”), which can be interpreted as
including the first three terms in a photonic Boltzmann
hierarchy. In this paper we build on this work by including
the full photonic Boltzmann hierarchy. Making this exten-
sion requires a more sophisticated treatment of recombi-
nation modeling, whereby further free parameters are
introduced via the exact values of higher order terms at
the end of recombination; this enables us to have the correct

FIG. 1. CMB power spectrum residuals between the quantized model calculated in this paper and the ΛCDM baseline. The
corresponding curves for the Bartlett solution (Bartlett et al. [4]) are also plotted for reference, as well as Planck residuals. The spectra
produced by this new set of k values appear to be more consistent with the data than the Bartlett solution k values, but we seem to lose the
interesting drop in power at l ≈ 20 produced in the Bartlett solution. This figure was produced using an adapted version of CLASS [11]
used in [4].

FIG. 2. Base variable solutions are plotted for the first few allowed modes. The solutions become more oscillatory as n increases.
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number of degrees of freedom to satisfy the new quantiza-
tion conditions required within this model and obtain a
more accurate set of k values. The first few allowed modes
under this improved modeling of recombination are plotted
for the base and some higher order variables in Figs. 2
and 3.
In Sec. II, we describe the background and perturbation

equations we will be solving and present an overview of the
work begun in Lasenby et al. [3] and Bartlett et al. [4]. We
explain how to extend previous work to derive the new set
of quantization conditions necessary for these higher order
terms and describe the modeling of recombination that has
been used here in Sec. III. In Sec. IV the methods used to
calculate the new set of allowed comoving wave numbers
within this model are described, with the results and its
implications discussed in Sec. V. Finally, conclusions are
presented in Sec. VI.
Throughout this paper we work in units of 8πG ¼ c ¼

ℏ ¼ 1 and all overdots denote differentiation with respect
to conformal time, unless otherwise explicitly stated. There
are many symbols and subscripts used in the following
sections, most of which follow the notation of [12] and
[3,4], so as a guide to the reader, we have summarized the
key ones in Table I.

II. THEORETICAL BACKGROUND

A. Cosmological background equation

For a homogeneous, isotropic and expanding universe,
the most general metric is the Friedmann-Robertson-
Walker (FRW) metric. Substituting this into the Einstein
field equations and working within a perfect fluid approxi-
mation, we arrive at the background equation describing
the evolution of such a universe:

FIG. 3. The first three anisotropic variables are plotted from the end of recombination for the first few allowed modes. We can see that
these allowed modes have nonzero recombination values which are n-dependent.

TABLE I. Summarizing the symbols, subscripts and super-
scripts used throughout this paper.

Symbol Meaning

k Wave number of Fourier mode
a Background scale factor
s Reciprocal scale factor
H0 Present day Hubble parameter value
H∞ Hubble constant at FCB (H0

ffiffiffiffiffiffiffi
ΩΛ

p
)

Ωi ith fluid’s dimensionless density parameter
wi Equation of state parameter for fluid i
η Conformal time
Subscript r Radiation
Subscript m Matter
Subscript Λ Cosmological constant
ϕ Newtonian gauge potential
ψ Newtonian gauge potential
δ Perturbation to background density
v Peculiar velocity of density perturbation
H Conformal Hubble rate ( _aa)
Fl Momentum-averaged Legendre components

of perturbation to photon momentum
distribution function

Gl Photon polarization component
ne Proper mean density of electrons
σT Thomson scattering cross-section
Superscript ∞ Quantity evaluated at FCB
Superscript � Quantity evaluated at recombination
x Vector containing base variables
y2∶4 Vector [Fr2, Fr3]
y4∶ Vector containing all higher

order variables apart from Fr2 and Fr3
om “Reduced matter parameter,” defined as H3

∞
Ωm
ΩΛ

or “Reduced radiation parameter,”
defined as H4

∞
Ωr
ΩΛ

K Dimensionless wave number, kffiffiffi
Λ

p
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_s2 ¼ H2
0

X
i

Ωi;0jsj3ð1þwiÞ; ð1Þ

where s ¼ 1
a is the reciprocal scale factor,H0 is the present-

day Hubble parameter value, Ωi is the ith fluid’s dimen-
sionless density parameter and wi is the equation of state
parameter for a given fluid i [4,13]. Here, the subscripts r,
m and Λ are used to denote radiation, matter and the
cosmological constant respectively. We use modulus signs
in this case as s < 0 when analytically continued beyond
the FCB.

B. Cosmological perturbation equations

1. Perfect fluid approximation

Wemust now include perturbations to this background in
our equations. The notation used in this section and in the
rest of the paper largely follows [4,12], and we work in the
conformal Newtonian gauge.
If we assume that all components behave as perfect fluids,

then it is possible towrite the perturbation equations to linear
order in matrix form, in a manner analogous to [14]:

_x ¼ MðηÞx; ð2Þ

x ¼ ðϕ; δr; δm; vr; vmÞ; ð3Þ

M ¼

0
BBBBBB@

−H 0 0 −2H2
0Ωrs2 − 3

2
H2

0Ωmjsj
−4H 0 0 4

3
k2 − 8H2

0Ωrs2 −6H2
0Ωmjsj

−3H 0 0 −6H2
0Ωrs2 k2 − 9

2
H2

0Ωmjsj
−1 − 1

4
0 0 0

−1 0 0 0 −H

1
CCCCCCA
;

ð4Þ

whereH ¼ _a
a is the conformal Hubble rate, perturbations to

the background densities are denoted by δi, the peculiar
velocities of these perturbations are denoted by vi, and ϕ
represents the Newtonian gauge potential [15].

2. Higher orders

After recombination, given the lack of free electrons
available to scatter and isotropize the radiation, the evo-
lution of the photon distribution can be expressed using
Fγðk⃗; n̂; τÞ, and Gγðk⃗; n̂; τÞ, the sum and difference, respec-
tively, of the phase space density of the two polarization
components of linearly polarized photons [12]. Following
Lasenby et al. [3] and Bartlett et al. [4] we do not consider
the Grl terms further due to these decoupling from the rest
of the equations once our approximation of free-streaming
post-recombination is made, but unlike in Lasenby et al. [3]
and Bartlett et al. [4] we do not assume Frl to be zero
for l > 2.

The matrix representation of the perturbation equations
within this Boltzmann hierarchy is given below, where we
now redefine x and MðηÞ to include ψ , another conformal
Newtonian gauge potential:

�
_x

_y

�
¼

�
M N

O P

��
x

y

�
; ð5Þ

x ¼ ðϕ;ψ ; δr; δm; vr; vmÞ; ð6Þ

y ¼ ðFr2; Fr3; � � �Þ; ð7Þ

M¼

0
BBBBBBBBBB@

0 −H 0 0 −2H2
0Ωrs2 −3

2
H2

0Ωmjsj
0 −H 0 0 −2

5
H2

0Ωrs2 −3
2
H2

0Ωmjsj
0 −4H 0 0 −8H2

0Ωrs2þ4
3
k2 −6H2

0Ωmjsj
0 −3H 0 0 −6H2

0Ωrs2 −9
2
H2

0Ωmjsjþk2

0 −1 −1
4
0 0 0

0 −1 0 0 0 −H

1
CCCCCCCCCCA
;

ð8Þ

N ¼

0
BBBBBBBB@

0 0 � � �
6H2

0
ΩrHs2

k2
9
5

H2
0
Ωrs2

k � � �
0 0 � � �
0 0 � � �
1
2

0 � � �
0 0 � � �

1
CCCCCCCCA
; ð9Þ

O ¼

0
BB@

0 0 0 0 − 8
15
k2 0

0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

1
CCA; ð10Þ

P ¼

0
BB@

− 9
10

neσT
s − 3

5
k � � �

3k
7

− neσT
s � � �

..

. ..
. . .

.

1
CCA; ð11Þ

where ne is the proper mean density of electrons and σT is
the Thomson scattering cross section.
In general, the higher order derivative terms may be

written as

_Frl ¼
k

2lþ1
½lFrðl−1Þ− ðlþ1ÞFrðlþ1Þ�−

neσT
jsj Frl; ð12Þ

where, following [12], when we truncate the equations at
some lmax we set
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_Frlmax
¼ kFrðlmax−1Þ −

�
lmax þ 1

η
þ neσT

jsj
�
Frlmax

: ð13Þ

The Newtonian gauge potentials can also be written
explicitly in terms of the other variables, which will be of
use when calculating power series expansions about the
future conformal boundary later:

ϕ¼ −
3H2

0

2k2

�
Ωmjsj

�
δm þ 3

_s
s
vm

�
þΩrs2

�
δr þ 4

_s
s
vr

��
;

ð14Þ

ψ ¼ ϕ −
3H2

0Ωr

k2
s2Fr2: ð15Þ

In this paper we do not solve for ϕ and ψ explicitly, but
this will be discussed further in Sec. IVA.

C. Imposing symmetry for Bartlett case

Below we summarize the argument first discussed in
Lasenby et al. [3] and then reformulated in Bartlett et al. [4]
for imposing the quantization condition v∞r ¼ 0, where the
superscript denotes that vr is evaluated at the FCB.
In order to prevent divergence of our solutions at BB2,

the first genuine singularity after η ¼ 0, we must impose
either symmetry or antisymmetry about the FCB on all of
the perturbations. We can see the consequences of this more
clearly if we write out the power series expansion of ϕ
about the FCB, to linear order:

ϕ ¼ −
3

2k2

�
signðΔηÞ ×H3

∞
Ωm

ΩΛ
ðδ∞m þ 3_v∞m Þ

þ 4H4
∞
Ωr

ΩΛ
v∞r

�
ðΔηÞ þOðΔη3Þ; ð16Þ

where H∞ ¼ H0

ffiffiffiffiffiffiffi
ΩΛ

p
is the Hubble constant evaluated at

the FCB and Δη is the conformal time difference to the
actual FCB, defined to be positive before the FCB.
If v∞r is non-zero, then in order to impose either

symmetry or antisymmetry on the above expression we
must require that the term depending on the sign of Δη is
the same either side of the FCB. However, it can be shown
that this means we are unable to apply the symmetry
condition to vm and a contradiction is reached. As such, all
valid solutions within this scheme must obey v∞r ¼ 0 (such
that ϕ is always symmetric about the FCB). This is only
satisfied for a discrete set of k values.

III. THEORY

In the following section we calculate the new quantiza-
tion conditions at the future conformal boundary which
need to be satisfied by the perturbation variables. The key
result is given in Sec. III A.

A. Deriving FCB quantization conditions

We may extend the above argument by considering the
power series expansion of ϕ up to third order about the
FCB when we include higher order terms of the Boltzmann
hierarchy. This may be written as

ϕ ¼ −
3

2k2

��
signðΔηÞ ×H3

∞
Ωm

ΩΛ
ðδ∞m þ 3_v∞m Þ

þ 4H4
∞
Ωr

ΩΛ
v∞r

�
Δηþ

�
2H4

∞
Ωr

ΩΛ
F∞
r2

�
Δη2

þ
�
signðΔηÞ × 1

2
H3

∞
Ωm

ΩΛ
k2 _v∞m

þH4
∞
Ωr

ΩΛ

�
2

15
k2v∞r −

3

5
kF∞

r3

�
Δη3

�
þOðΔη4Þ: ð17Þ

The key thing here is that if a variable is to be symmetric
about the FCB, then the coefficients of odd powers of Δη in
its power series must swap sign either side of the FCB, such
that the product of the coefficient and Δηn (where n is odd)
keeps the same sign on both sides of the boundary.
Similarly, its coefficients of even powers of Δη must be
sign-independent either side of the FCB. The converse
must be true for antisymmetric variables.
Let us consider the third term in the ϕ series; in general

we will not have _v∞m equal to zero. But it is shown in
Bartlett et al. [4] that enforcing v∞r ¼ 0 results in _v∞m being
continuous across the FCB and thus keeping the same sign.
Hence, this first term of the third-order coefficient keeps ϕ
symmetric about the FCB, as required. In order to continue
this symmetry we must therefore enforce that the sign-
independent term in this expression be zero at the FCB.
Since we already have the condition that v∞r ¼ 0 from
above, this is equivalent to requiring that F∞

r3 ¼ 0. We note
here that considering the ϕ expansion alone leads to no
constraints being placed on F∞

r2 since the sign-dependent
term cancels in the coefficient of Δη2.
After we have enforced the conditions v∞r ¼ F∞

r3 ¼ 0,
we may write the power series expansion of Fr2 as

Fr2 ¼ F∞
r2 þ k2

�
1

15
δ∞r −

11

42
F∞
r2 þ

6

35
F∞
r4

�
Δη2 þOðΔη3Þ:

ð18Þ

Remembering that we require all the variables to be
continuous across the FCB, we can see that the effect of δ∞r
being in general nonzero is that Fr2 is forced to be
symmetric about the FCB. In fact, it can be shown (see
Appendix A) that for every Frl the value of δ∞r appears in
the coefficient of Δηl in the power series. This forces all
variables with odd l to be antisymmetric and those with
even l to be symmetric about the FCB.
This has profound consequences for the quantization

conditions. If all even modes are required to be symmetric,
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their first-order derivatives at the FCB must vanish so that
the coefficient of Δη in their power series will be zero. This
is because the first order coefficients can be written entirely
in terms of FCB values of higher order variables, which, if
not equal to zero at the FCB, are required by continuity to
keep the same sign either side of it. But if they keep the
same sign, then the overall first-order term will swap sign
either side of the FCB, breaking the symmetry requirement.
Because of the way the odd and even modes are coupled in
the equations, the condition of the first order derivative of
even modes disappearing is equivalent to requiring that
F∞
rl ¼ 0 for all odd l (see Appendix B for further detail).
Finally, let us consider the coefficient of Δη3 in Fr2’s

power series. The third order term is where we start to
include the Thomson scattering term in the power series.
Since ne refers to the proper electron density, it is propor-
tional to jsj3. Thus the whole Thomson scattering term from
Eq. (12) is proportional to s2 and for clarity we shall write it
as Bs2Frl, where the constant B encompasses both the
electron density and the Thomson scattering cross section.
In this case the third-order coefficient of Fr2 ’s series can
now be expressed in the form

Fð3Þ
r2 ¼ 8

45
k2ϕð1Þ −

3

15
kFð2Þ

r3 − BH2
∞F∞

r2; ð19Þ

where ϕð1Þ refers to the coefficient ofΔη in ϕ’s power series
and Fð2Þ

r3 refers to the coefficient of Δη2 in Fr3’s power
series.
Since Fr3 is antisymmetric about the FCB, it follows that

Fð2Þ
r3 at the FCB must either be zero or depend on the sign of

Δη (in fact, it is zero since all odd F∞
rl are zero). We recall

from Sec. III A that ϕð1Þ also depends on the sign of Δη.
These both therefore keep Fr2 symmetric about the FCB, as
required by the arguments above. However, it can be seen
that F∞

r2 must be set to zero if we are to keep this symmetry,
since otherwise this term is multiplied by Δη3, which
changes sign either side of the FCB.
The third order terms for any even mode, n, may be

written similarly to above, purely in terms of second order
odd Frl terms and a term proportional to F∞

rn, which can be
seen from Eq. (12). Following the same argument we are
forced to set all F∞

rl ¼ 0 for even l.
We thus arrive at our final set of quantization conditions

which are required to enforce the correct symmetry on our
equations:

v∞r ¼ 0;

F∞
rl ¼ 0 for l ≥ 2: ð20Þ

Conversely Lasenby et al. [3] and Bartlett et al. [4] assume
that v∞r ¼ 0, F�

rl ¼ 0, where � refers to the time of
recombination—a quite different set of boundary
conditions!

B. Modeling of recombination

Until recombination we work within the perfect fluid
approximation. This means that all higher order terms are
set to zero and thus are equal to zero at the start of
recombination. In Lasenby et al. [3] and Bartlett et al. [4],
recombination was assumed to be instantaneous: i.e., since
we require the variables to be continuous at all conformal
times, the higher order terms must be zero at the end of
recombination too, at which point we begin solving our
Boltzmann hierarchy. If all the higher order terms are
initialized to zero at the end of recombination, there will
only be one free parameter, the wave number, k, in our set
of equations and there is no guarantee of a solution to
Sec. III A.
If, instead of assuming that recombination occurs

instantaneously, we consider that it happens over a small
finite time so that the higher order modes have time to grow
from zero at the start of recombination to some finite value
by the end of recombination, then this introduces additional
free parameters into our equations in the form of the exact
recombination values of the higher order terms. We will
further assume that the effect of this growth on the base
variables is negligible, such that the base variables values
do not change significantly during recombination.
With this more sophisticated modeling of recombination,

we have the same number of free parameters as quantiza-
tion conditions, where the final free parameter is k. Thus we
will arrive at a discrete set of k values for which the
quantization conditions are satisfied, as in Lasenby et al.
[3] and Bartlett et al. [4].

IV. METHODS

Throughout this paper we use the perfect fluid equations
from Sec. II B 1 before recombination and then assume
free-streaming (ne ¼ 0) afterwards; in reality, the Thomson
scattering term will be small, hence why we neglect it in
this section and assume free-streaming, but it is not actually
zero and so must be included when considering boundary
conditions. We may calculate the recombination values of
base variables by integrating the perfect fluid perturbation
equations from η ¼ 0 to recombination, using adiabatic
initial conditions [3,4].

A. General approach

Since the perturbations can be described by a system of
linear differential equations, as in Eq. (5), their solutions
form a vector space [16]. This means we are able to encode
a linear mapping between solutions at times η0 and η1 using
a transfer matrix:

xðη1Þ ¼ Uðη1; η0Þxðη0Þ: ð21Þ

For the case of cosmological perturbations, we may only
solve for this transfer matrix numerically, by integrating the
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perturbation equations between η0 and η1 with initial
conditions ½1; 0; 0;…�, ½0; 1; 0;…� etc., to find each
column.
In this case, we are in the somewhat unusual situation of

solving a differential equation where some of the variables
are specified at one boundary, the time of recombination,
and some at the FCB. Since the system is linear, we can
solve this without “shooting” methods but, in theory, we
still have to integrate either one way or the other in all of the
variables in order to obtain the transfer matrix. It makes
sense to start the integration at the FCB since we know
much more of the variables at this boundary.
So if we now take η1 ¼ η� to be the conformal time at

recombination and η0 ¼ η∞ to be at the FCB, we can relate
the perturbations at these times similarly using a matrix.
Using the same notation for base and anisotropic variables
as in Eqs. (6) and (7), we may write this explicitly as

�
x�

y�

�
¼

�
A B

C D

��
x∞

y∞

�
; ð22Þ

where the superscript, �, refers to values at recombination
and A, B, C, D are submatrices within the transformation
matrix. The values of x� are known from integrating the
perfect fluid equations from η ¼ 0 to recombination, in the
same manner as in Lasenby et al. [3] and Bartlett et al. [4].
Our modeling of recombination means that the values y�
are treated as free parameters and are unknown. On the
right-hand side we know what values y∞ should take for the
allowed modes, from Sec. III A, but, apart from v∞r , ϕ∞ and
ψ∞, the values of x∞ are unknowns.
This last point is worth examining more closely: when

considering the simultaneous equations produced by the
base variables, we see that there will be six equations (from
six base variables). But it has also been shown, for example
in Sec. III A, that ϕ∞ and ψ∞ are always equal to zero
regardless of k. This means that there are really only four
unknown variables within these six equations. The key
thing to note here is Eqs. (14) and (15), which show that
both ϕ and ψ can be determined entirely by the higher order
and other base variables and are hence not truly indepen-
dent variables themselves. So upon closer inspection we
see that there is no issue with having six equations
describing four unknowns; we may simply discard the
top two superfluous equations when solving for the FCB
values of the other variables, and we can use Eqs. (14) and
(15) to check for consistency.
Going back to Eq. (22), let us explicitly write out the top

row:

x� ¼ Ax∞ þ By∞: ð23Þ

Given that we know we want y∞ ¼ 0 in the allowed
modes and we know x�, for each k we can solve for x∞ and
then choose the k values for which v∞r ¼ 0. This is the

general approach we will use to find the allowed wave
numbers. At this stage, we are not interested in the bottom
row of Eq. (22) as this does not help to solve for v∞r but can
be later used to find the recombination values of higher
order terms.

B. Integrating backwards from the FCB

In order to obtain the transfer matrix between FCB and
recombination values, we must integrate backwards from
the FCB using initial conditions of ½1; 0; 0;…�, ½0; 1; 0;…�,
½0; 0; 1;…� etc., to find each column of the matrix. This is
possible in theory but in practice starting our integration at
the exact FCB is highly numerically unstable. Fortunately,
it becomes markedly more stable when we start at small
deviations from the FCB. Here we have chosen to begin the
integration at Δη ¼ 10−3 before the FCB as this keeps the
error in v∞r relatively small while still being close enough to
the FCB that we can make efficient use of power series
expansions to initialize the variables.
In order to maintain reasonable errors in v∞r , we must

specify the initial conditions up to at least third order in
their power series. We must calculate the expansions
explicitly for all variables in the hierarchy up to l ¼ 3:
for higher order variables we may set the initial condition to
zero, where we have used the fact that enforcing the FCB
quantization condition leads to the first nonzero term in the
power series of Frl being proportional to Δηl.
In order to distinguish those higher order variables which

need to be specified at the FCB using power series
expansions and those which can simply be set to zero,
we now split y so that y2∶4 denotes the vector ½Fr2; Fr3�, and
the l ≥ 4 terms are contained within y4∶. Using the
superscript 0 to denote the values of variables at our chosen
start point, η0 ¼ ηFCB − Δη, we may now rewrite Eq. (22) as

0
B@

x�

y�2∶4
y�4∶

1
CA ¼

�
A B2∶4;2∶4 B4∶;4∶

C D2∶4;2∶4 D4∶;4∶

�0B@
x0

y02∶4
y04∶

1
CA; ð24Þ

where y04∶ is 0 and

�
x0

y02∶4

�
¼

�
X1

X2

�
X∞: ð25Þ

In the above, X∞ represents the vector ½δ∞r ; δ∞m ; v∞r ; _v∞m �.
The submatrices X1 and X2 are given by
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X1¼

0
BBBBBBBBBBBBBBBBBBB@

0 − 3
2k2omΔη or

�
6
k2Δηþ 1

5
Δη3

�
om

�
− 9

2k2Δη−
3
4
Δη3

�

0 − 3
2k2omΔη or

�
6
k2Δηþ 1

5
Δη3

�
om

�
− 9

2k2Δη−
3
4
Δη3

�

1− 1
6
k2Δη2 om

�
− 6

k2Δηþ 2
3
Δη3

�
− 4

3k2 ðk4−18orÞΔη−
�
28
15
or− 2

15
k4
�
Δη3 om

�
−18

k2Δη−Δη3
�

0 1þom
�
− 9

2k2Δηþ 1
2
Δη3

�
or
�
18
k2Δη−

7
5
Δη3

�
1
2
k2Δη2−om

�
27
2k2Δηþ 3

4
Δη3

�
1
4
Δη− 1

40
k2Δη3 − 3

2k2omΔη
2 1þ 1

k2

�
6or− 3

10
k4Δη2 − 9

2k2omΔη
2

0 − 3
2k2omΔη

2 6
k2orΔη

2 −Δη− 9
2k2omΔη

2

1
CCCCCCCCCCCCCCCCCCCA

;

ð26Þ

X2 ¼

0
B@

1
15
k2Δη2 − 4

15
omΔη3 8

15
k2Δη − 16

15

�
1
14
k4 − or

�
Δη3 − 4

5
omΔη3

− 1
105

k3Δη3 0 − 4
35
k3Δη2 0

1
CA; ð27Þ

where om ¼ H3
∞

Ωm
ΩΛ

and or ¼ H4
∞

Ωr
ΩΛ

are reduced matter
and radiation parameters, and simply contain the coeffi-
cients of the power series expansions for the base, Fr2 and
Fr3 variables.
Writing out the top row of Eq. (24) as

x� ¼ ðAX1 þ B2∶4;2∶4X2ÞX∞ þ B4∶;4∶0; ð28Þ

we see a major simplification to the problem: given that the
matrix B4∶;4∶ is always going to be multiplied by the zero
vector, there is no need to find its components explicitly.
We are thus able to greatly reduce our computation time by
only having to perform eight integrations to determine the
first eight columns of each transfer matrix (six for the base
variables and two more for Fr2 and Fr3), and we can set the
remaining columns to zero. This is especially useful given
that we are unable to use traditional time-saving approx-
imations used in Boltzmann codes, such as estimating the
higher order terms using spherical Bessel functions [11],
when we get close to the FCB.

C. Implementation of code

Throughout the code we work with dimensionless units
for the comoving wave number by writing k ¼ K

ffiffiffiffi
Λ

p
. We

also choose units such that
ffiffiffiffi
Λ

p
is unity, so we may write the

present-day Hubble value asH0 ¼ 1
3ΩΛ

. All relevant ΛCDM
parameters are taken from the Planck best-fit values, given
in the posterior samples TTþ lowE [2]. The re-scaled
values are given in Table II.
For each value of K between 0 and 20, the background

and perturbation equations were integrated, using the
necessary initial conditions, from the FCB to recombina-
tion using LSODA from scipy.integrate.sol-
ve_ivp. Once the transfer matrix was obtained in this
way, Eq. (28) was set up and solved using numpy.li-
nalg.solve to find the value of v∞r . This was then
plotted against K and the allowed modes were determined
by finding where this curve intersected the x-axis.

V. RESULTS AND DISCUSSION

A. Final allowed modes

The final, converged, graph of v∞r against K is presented
in Fig. 4, with lmax ¼ 70, a choice which will be justified in
the following section; the corresponding curve for the
Bartlett solution is included for a direct comparison.
Qualitatively, we can see that the allowed modes, when
higher order terms of the Boltzmann hierarchy are
included, are more closely spaced than in the Bartlett
solution. As in Lasenby et al. [3] and Bartlett et al. [4],
although the spacing of the modes is initially non-linear, it
settles down to linear fairly quickly, as shown in Fig. 5.

TABLE II. Planck best-fit values from [2], after being rescaled
to new units of 8πG ¼ c ¼ ℏ ¼ Λ ¼ 1.

Parameter TTþ lowE 68% limits

ΩΛ 0.679
Ωm 0.321
Ωr 9.24 × 10−5

H0 0.701
z� 1090.30
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This linear spacing, as well as the lowest allowed wave
number, is

k0 ¼ 0.309
ffiffiffiffi
Λ

p
¼ 9.93 × 10−5 Mpc−1 ð29Þ

k1 ¼ 1.328
ffiffiffiffi
Λ

p
¼ 4.27 × 10−3 Mpc−1 ð30Þ

Δk ¼ 0.507
ffiffiffiffi
Λ

p
¼ 1.63 × 10−4 Mpc−1: ð31Þ

For reference, the equivalent values for the Bartlett imper-
fect fluids solution are [4]:

kBartlett0 ¼ 0.042
ffiffiffiffi
Λ

p
¼ 1.34 × 10−5 Mpc−1 ð32Þ

kBartlett1 ¼ 5.39
ffiffiffiffi
Λ

p
¼ 1.73 × 10−3 Mpc−1 ð33Þ

ΔkBartlett ¼ 0.657
ffiffiffiffi
Λ

p
¼ 2.11 × 10−4 Mpc−1: ð34Þ

A key difference between the two curves in Fig. 4 is that
the second allowed mode occurs at a much smaller K value
(K ¼ 1.33, as opposed to 5.39) and the “missing modes”
from the Bartlett solution are reintroduced. In fact, these
modes are reintroduced even for the case where we consider
the l ¼ 2 terms, if we take Fr2 as a free parameter. The
other difference is that the new spacing between the
allowed modes is smaller. The first few allowed modes
are plotted in Figs. 2 and 3.

B. Convergence of allowed modes

We can examine the degree of convergence of solutions
by taking several different values of lmax, the order at
which the Boltzmann hierarchy is truncated, and plot the
curves of v∞r against K for each of these to see how
changing lmax shifts the allowed modes. This is demon-
strated in Fig. 6, which will be discussed further in the
following section.
In fact, the results show a remarkable convergence of the

curves, even at relatively low values of lmax, indicating that
the transition from the Bartlett case is due to just a few
critical low-l modes.

C. Truncation and artificial reflection

Wemust truncate our Boltzmann hierarchy at some lmax,
and a smaller lmax leads to a less computationally-expen-
sive code. However, truncating too early leads to some
unexpected behavior of our graphs, and the regular oscil-
lating behavior of v∞r in K-space is lost. This is likely due
to artificial reflection of power from lmax back to lower
multipoles, as suggested in [11]. Although the alternative
truncation scheme quoted in Eq. (13), proposed in [12], is
designed to minimize this, significant levels of unphysical

FIG. 4. Converged values of v∞r , solved using the method
described in Sec. IV, are plotted as a function of the dimension-
less comoving wave number K. The equivalent curve for the
Bartlett solution [4] is also plotted for reference.

FIG. 5. The first 38 allowed wave numbers have been explicitly
calculated and plotted. It is clear from the excellent agreement of
the linear fit that the spacing between the allowed K values
quickly settles down to a constant.

FIG. 6. v∞r is plotted as a function of K for various values of
lmax, the order at which our Boltzmann hierarchy is truncated.
For values of lmax=K ≲ 4, the curves begin to misbehave,
potentially due to unphysical reflection as warned in [11].
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reflection cannot be avoided for late times. The value of
lmax should thus scale with kη.
In order to demonstrate the effect of truncation, graphs of

v∞r against K have been plotted for lmax ¼ 20, 30, 40 and
50. As can be seen in Fig. 6, the graphs begin to deviate
from their regular structure at lmax=K ≈ 4. It is interesting
to note, however, that before the graphs begin to diverge,
they still give the same allowed modes; this again reinforces
that the transition to these new allowed modes is likely due
to just a few critical low-l modes.

D. The choice of root finding variable

It should be noted that, although in this paper we have
chosen to search for zeros in v∞r to determine the allowed
modes, this decision is largely arbitrary. Since it does not
matter in which order we solve the quantization conditions,
we could in theory set v∞r to zero initially and then search
for zeros in any of the other higher order multipoles. These
will all lead to the same allowed modes, and all have the
same issue of artificial reflection of power for too small
lmax so, numerically speaking, there is no clear advantage
to any. One advantage of looking for zeros in v∞r is that it is
more directly comparable to the work in Lasenby et al. [3]
and Bartlett et al. [4].
We could also start by setting v∞r to zero as well, use

three of the four base variable equations to solve for the
remaining three FCB values and then use the fourth
equation to match onto the recombination value of the
fourth variable. Again, this is of a similar stability to the
other methods provided we do not truncate the equations
too early.

E. Discussion of k0 and Δk
We may use the calculated values of k0 and Δk from

Sec. VA to compute aCl power spectrum and compare this
with observational data. However, in Bartlett et al. [4] the
general class of linearly quantized models was assessed so
we may use these for an initial comparison of our values.
In Figs. 5 and 8 of Bartlett et al. [4], likelihood plots

showing the difference in quality of fit between the linearly
quantized models and ΛCDM models are given, as func-
tions of k0 and Δk. Qualitatively, it appears that the linearly
quantized model calculated in this project gives roughly the
same quality of fit as the ΛCDM model. However, it is
important to note that the models in Bartlett et al. [4] were
examined using a profile likelihood analysis. Gessey-Jones
and Handley [17] have shown that the conclusions may
change if investigated using a Bayesian approach, although
more work is required to test the full suite of predictions
against matter power spectrum constraints.
Figure 1 shows the CMB power spectrum residuals

between the quantized model found in this project and the
ΛCDM baseline, produced using the code from Bartlett
et al. [4] which is an adapted version of CLASS [11]. It can
be seen that the resulting spectra in this case appear to be

more consistent with cosmological data than the Bartlett
solution, but it is interesting to see that we lose some of the
noteworthy low-l features of the latter, such as the dip in
power at 20≲ l≲ 30. The spectra shown in Fig. 1 should
be interpreted with some caveats as for a fair comparison
we ought to explicitly calculate within a discrete model the
Cl power spectrum arising from this quantization; indeed,
this leaves the possibility that the quantized model may
even provide a better fit to the data than the ΛCDM
baseline.

VI. CONCLUSION

We have extended the results of Lasenby et al. [3] and
Bartlett et al. [4] to include higher order terms of the
Boltzmann hierarchy in calculating the quantized spectrum
of comoving wave numbers for a palindromic universe
containing radiation, dark matter and a cosmological
constant. We derived a new set of quantization conditions
needed to impose the correct symmetry on the solutions to
the cosmological perturbation equations, such that they do
not diverge at the singularity after the future conformal
boundary. A more sophisticated modelling of the evolution
of perturbations through recombination has been employed
to enable a consistent set of solutions to these quantization
conditions. Using this, the discrete set of comoving wave
numbers satisfying these conditions were calculated by
exploiting the linear nature of the equations.
The lowest permissible wave number within this

model was calculated to be k0 ¼ 9.93 × 10−5 Mpc−1 and
allowed modes are separated by a linear spacing of
Δk ¼ 1.63 × 10−4 Mpc−1. An initial comparison of these
values to the general class of linearly quantized models
considered in Bartlett et al. [4] indicate that the spectra
produced from this quantization are fairly consistent with
observational data. However, theCl power spectrummust be
explicitly calculated within a discretemodel in order to fairly
assess the quality of agreement of this model with
observed data.
The spacing of these allowed modes ceases to change

upon addition of further higher order terms at a relatively
low value of lmax, indicating that the transition from the
Bartlett solution occurs due to just a few critical low-
l modes.
In addition to computing the Cl spectrum, further work

could explore a more detailed modeling of recombination,
as well as including the Thomson scattering term in the
integration of variables. A Bayesian analysis could also be
performed on the general class of linearly quantized models
in order to obtain updated fits for ðk0;ΔkÞ values. One of
the main limitations of the methods described in this paper
is the long run-time of the code to solve the Boltzmann
hierarchy at large k values, due to the highly oscillatory
nature of the solutions. More efficient methods have
recently been developed to solve differential equations
with rapidly oscillating solutions, such as the RKWKB
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method for one-dimensional systems [18] and Magnus
expansion based methods for higher-dimensional ones
[14], but more work needs to be done before the use of
these can be extended up to high l values. A recent paper
[19] has explored an alternative formulation of the pertur-
bation equations, whereby the Boltzmann hierarchy is
replaced by just two integral equations describing the
photon intensity quadrupole and the linear-polarization
quadrupole, and such techniques could prove more numeri-
cally suitable when executing a full pipeline confronting
these models of the Universe against the latest cosmologi-
cal data.
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APPENDIX A: SYMMETRY OF HIGHER ORDER
VARIABLES

Below we argue that δ∞r always appears in the coefficient
of Δηl in the power series expansions of higher order
variables about the FCB. This is used in Sec. III A to argue
that all variables with odd l are forced to be antisymmetric
about the FCB, and all variables with even l are forced to
be symmetric.
The power series expansion about the FCB for a higher

order variable may be written in general as:

Frl ¼ F∞
rl þ _F∞

rlΔηþ
1

2
F̈∞
rlΔη2 þ…

þ 1

n!
FðnÞ∞
rl Δηn þ… ðA1Þ

Now, _Frl will depend on Frðl−1Þ, Frl and Frðlþ1Þ only
[from Eq. (12)]. Let us consider the coefficient ofΔηl in the
above power series:

FðlÞ
rl will depend on Fðl−1Þ

rðl−1Þ, F
ðl−1Þ
rðlÞ and Fðl−1Þ

rðlþ1Þ only. But,

for example, Fðl−1Þ
rðl−1Þ will depend on Fðl−2Þ

rðl−2Þ, F
ðl−2Þ
rðl−1Þ and

Fðl−2Þ
rðlÞ . If we keep following this through until we express

the coefficient in terms of just the higher order variables
themselves (as opposed to derivatives of them), then
eventually _v∞r will be used, which depends on δ∞r . This
is the smallest coefficient for which δ∞r appears as for the
coefficient of Δηðl−1Þ, if we express this just in terms of the
higher order variables, the first term will be proportional to
v∞r , and for the coefficient of Δηðl−2Þ the first term will be
proportional to F∞

r2 and so on.

APPENDIX B: SHOWING ODD HIGHER ORDER
TERMS ARE ZERO AT THE FCB

Here we show that requiring the first order derivatives of
even l terms to disappear is equivalent to requiring that
Frl ¼ 0 for all odd l. The first order derivative of an even l
variable may be written as:

_Frl ¼
k

2lþ1
½lFrðl−1Þ− ðlþ1ÞFrðlþ1Þ�−Bs2Frl; ðB1Þ

from Eq (12) and from Sec. III A where we write the
Thomson term as being proportional to s2. However, in the
power series solution, s must be written as a power
series expansion about the FCB too; s can be written as
H∞Δηþ… so in the first order power series term, _FrlΔη,
the Thomson term is in fact proportional to Δη3 and is thus
not first order. So to first order in Δη, we only have
k

2lþ1
½lFrðl−1Þ − ðlþ 1ÞFrðlþ1Þ� as the coefficient to Δη.

So requiring that this coefficient disappears is equivalent to
requiring that lFrðl−1Þ ¼ ðlþ 1ÞFrðlþ1Þ for all even l.
Let us start from l ¼ 4: since we have already enforced

F∞
r3 ¼ 0 earlier on in the argument in Sec. III A, this means

that F∞
r5 is now also forced to be zero. Similarly, for l ¼ 6,

since F∞
r5 has been forced to be zero, F

∞
r7 is now also forced

to be zero, and so on. Thus, for all odd lwe require that F∞
rl

be zero.
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