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As long-lived quasisolitons from the fragmentation of a scalar condensate, oscillons may dominate the
preheating era after inflation. During this period, stochastic gravitational waves can also be generated. We
quantify the gravitational-wave production in this period with simulations accounting for full general
relativity to capture all possible nonperturbative effects. We compute the gravitational-wave spectra across
a range of choices of the oscillon preheating models and compare our results to a conventional perturbative
approach on a Friedmann-Lemaître-Robertson-Walker (FLRW) background. We clarify the gauge
ambiguities in computing induced gravitational waves from scenarios where dense nonperturbative
objects such as oscillons are being formed. In particular, we find that the synchronous gauge tends to
contain large artificial enhancements in the gravitational-wave spectrum due to gauge modes if gravity
plays an important role in the formation of the oscillons, while other gauge choices, such as the radiation
gauge or a suitably chosen “1+ log” gauge, can efficiently reduce the contributions of gauge modes. The
full general-relativistic simulations indicate that gravitational-wave spectra obtained from the perturbative
approach on the FLRW background are fairly accurate, except when oscillon formation induces strong
gravitational effects, for which case there can be an order unity enhancement.
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I. INTRODUCTION

During the preheating period after inflation, when the
inflaton field still oscillates near the minimum of its
potential, strong parametric resonance can trigger the
exponential growth of fluctuations and quickly push the
Universe into a highly nonlinear state. In such a phase,
fragmentation of the inflaton condensate can generate
copious nonperturbative structures, including oscillons
[1–9]. For a large class of inflationary models, oscillons
may account for the majority of the energy density during
the preheating phase [4], which is referred to as the oscillon
preheating scenario.
During the oscillon preheating phase, ample relics—such

as primordial black holes or stochastic gravitational waves
(GWs)—can be produced [10–22]. While the potential for
observable signatures of these relics makes the studies of
such phenomena extremely fascinating, the high degree of
nonlinearity during this phase makes analytical studies very
challenging. Thus, numerical approaches that perturbatively

solve the Einstein field equations around a Friedmann-
Lemaître-Robertson-Walker (FLRW) background have
been developed and used to quantify the generation of
oscillons and their relics [2–4,10–33]. More recently, non-
perturbative approaches using techniques from numerical
relativity have been applied to preheating scenarios in order
to capture all possible nonlinear physics [20,21,34–36]. It
has been shown that solving the full Einstein equations will
result in an enhancement in the oscillon abundance in
models where oscillons are formed with significant help
from gravitational attraction, and can even lead to the
formation of primordial black holes [20,21].
Recently, an increasing amount of attention has been

devoted to better understanding ambiguities in computing
the GW power spectra in different gauges. These ambi-
guities originate from the fact that the energy content of
GWs is, when working beyond linear order, gauge depen-
dent. This problem was first pointed out in Ref. [37], and
was more recently discussed in Ref. [38], followed by
extensive studies [39–48]. However, the discussions so far
have focused on tensor modes induced by second-order
scalar perturbations around a homogeneous cosmological
background. It remains an open question how gauge choice
can effect the evaluation of the GW spectrum in the early
Universe where large inhomogeneities and nonlinearities
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are present in the form of localized and dense structures
such as oscillons.
In this paper, we analyze the GWs generated during

oscillon preheating with numerical simulations utilizing the
full power of numerical relativity. We will see that a
perturbative approach on an FLRW background turns
out to be a relatively good approximation for the class
of models we consider, except when gravitational effects
strongly impact oscillon formation, which may lead to
enhancements up to about a factor of a few. We will discuss
the gauge ambiguities in extracting the GW spectra from
the simulations with full general relativity (GR), which is
important in the models when oscillons are formed in
strong gravity. Our results suggest that the “1+log” or the
radiation gauge is a more appropriate choice than synchro-
nous gauge when computing GWs beyond linear order, as
large artificial enhancements may arise due to gauge modes
in synchronous gauge.
The paper is organized as follows. In Sec. II, we

introduce the oscillon preheating model we consider and
the methodology we use to numerically solve the system
and compute the GWs generated during oscillon preheat-
ing. In Sec. III, we introduce the gauge conditions we
employ with our numerical GR simulations. The main
results and discussions are presented in Sec. IV, where we
show the spectra of the GWs computed in different gauges
and compare them with the ones calculated with the
perturbative method on an FLRW background. We present
a semiquantitative analysis to explain such discrepancies
between different gauges in Sec. V. We summarize and
conclude in Sec. VI.

II. OSCILLON PREHEATING AND MODELS

As localized quasistationary field configurations, oscil-
lons can emerge due to field dynamics in models containing
a scalar field with a shallow potential. We focus on a

representative class of minimally coupled models given by
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g
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with a class of potentials motivated by inflationary model
constructions in string/M theory [49–51],

VðϕÞ ¼ m2M2
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− 1

�
: ð2Þ

To facilitate our analysis of the parameter space, we
parametrize the potential with the exponent α and the ratio
β≡Mpl=M, where Mpl is the reduced Planck mass. The
range of parameters 0 < α < 1 and 0 < β < 100 is con-
sidered. Within this range, the potential is flatter than the
quadratic mass term at large ϕ and approximates to the
quadratic term at smaller ϕ. This type of potential supports
quasistable oscillon configurations, as the interacting
potential, VðϕÞ − 1

2
m2ϕ2, is negative and thus attractive.

In other words, “particles” under the influence of this kind
of potential prefer to condense to localized objects rather
than propagate to infinity, which allows long-lived oscil-
lons to form from quite generic initial conditions. A
visualization of oscillon formation during the preheating
period is shown in Fig. 1.
The value of the scalar field mass m can be estimated by

matching to the power spectrum of curvature perturbations
from the most recent cosmic microwave background
observations [52] through the relation

As ¼
ð4αN Þ1þα

96π2α3
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2
�

M
Mpl

�
2−2α

≃ 2.1 × 10−9; ð3Þ

FIG. 1. From left to right: oscillon formation in simulations with Model I, Model II, and Model III respectively, which correspond to
different choices of potential parameters α and β (see Sec. IV). Contours of a constant field value are shown in a spatial volume at time
t ¼ 187 m−1. Simulations were run using the “1þ log” gauge choice with η ¼ 0.01.
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where N ≃ 50 is chosen to be the fiducial number of
e-foldings before inflation ends.
Let us first review how to extract the stochastic

GW power spectrum in an FLRW background.
Oscillations of the inflaton field obey the Klein-Gordon
equation. When coupled to a homogeneous and isotropic
cosmological background, the Klein-Gordon equation can
be simplified to

ϕ̈þ 3H _ϕ −
∇2ϕ

a2
þ dVðϕÞ

dϕ
¼ 0; ð4Þ

where H is the Hubble parameter and a is the scale factor.
The GWs generated around the FLRW background can

be quantified by analyzing the transverse-traceless part of
the metric perturbations, the tensor perturbation hTTij ,
sourced by matter fields, that is, by solving the linearized
tensor perturbation equations

ḧTTij þ 3H _hTTij −
1

a2
∇2hTTij ¼ 16πGSTTij ; ð5Þ

STTij ¼ 1

a2
ð∂iϕ∂jϕÞTT: ð6Þ

Numerically calculating STTij ðt;xÞ at every step in the
simulation is unnecessarily expensive. Rather, due to the
linearity of this equation, one can simply evolve hij, which
satisfies

ḧij þ 3H _hij −
1

a2
∇2hij ¼ 16πGSij ð7Þ

and, when needed, project to the physical transverse-
traceless part hTTij ðt;xÞ with

hTTij ðt;xÞ ¼
Z

d3k
ð2πÞ3 e

ik·xΛij;lmðk̂Þhlmðt;kÞ; ð8Þ

where Λij;lmðk̂Þ is a projection operator defined as

Λij;lmðk̂Þ≡ Pilðk̂ÞPjmðk̂Þ −
1

2
Pijðk̂ÞPlmðk̂Þ; ð9Þ

with k̂ ¼ k=k and Pijðk̂Þ ¼ δij − k̂ik̂j. To guarantee trace-
lessness and transversality in the projection, we use the
projector based on nearest-neighbor spatial derivatives
suggested in Ref. [53] after trying different projectors
(see Appendix B for details of tests for different projectors).
The energy density of GWs can be extracted by ensemble
averaging of several wavelengths,

ρGW ¼ 1

32πG
h _hTTij _hijTTi: ð10Þ

The GWenergy density spectrum per logarithmic interval is
defined as

ρGWðtÞ≡
Z

dρGW
d log k

d log k; ð11Þ

dρGW
d log k

¼ k3

ð4πÞ3GV
Z

dΩk

4π
_hTTij ðk; tÞ _h�TTij ðk; tÞ; ð12Þ

where Ωk represents the solid angle in k space, and the
volume V ¼ L3 in the lattice implementation. It is custom-
ary to normalize the GW energy density spectrum with the
critical density ρc ≡ 3H2

0=8πG, leading to

ΩGWðk; tÞ≡ 1

ρc

dρGW
d log k

ð13Þ

This is the conventional perturbative approach on an
FLRW background, which involves relatively simple dif-
ferential equations and where the nonlinear dynamics of
oscillons and their GW generation can be well resolved
with fairly low computational costs. However, in this
approach, gravitational backreaction is neglected, which
a priori may not be a valid approximation for simulations
when gravitational effects are strong during the oscillon
formation. Indeed, it was found in Ref. [20] that, with the
full GR approach, the abundance of oscillons in preheating
is enhanced for these circumstances.
We shall investigate whether solving the full Einstein

equations might introduce corrections to the relic GW
spectra. To this end, we perform the 3þ 1 decomposition
of the Einstein equations, which decomposes the metric
into the form

gμν ¼
�−N2 þ NkNk Nj

Ni γij

�
; ð14Þ

where N and Ni are the lapse and shift, respectively, and γij
is the 3D metric on the spatial hypersurfaces foliated by N
and Ni. The extrinsic curvature tensor Kij describing the
embedding of the spatial hypersurfaces is defined as the Lie
derivative of γij with respect to the normal vector of the
hypersurfaces, namely,

Kij ¼ Lnγij: ð15Þ

We also cast the Klein-Gordon equation coupled to GR into
the hyperbolic form

_ϕ ¼ Ni
∂iϕ − NΠ; ð16Þ

_Π ¼ Nk
∂kΠ − Nγij∂iψ j þ NγijΓk

ijψk þ NKΠ

− γijψ i∂jN þ NdVðϕÞ=dϕ; ð17Þ

_ψ i ¼ Nj
∂jψ i þ ψ j∂iNj − N∂iΠ − Π∂iN; ð18Þ
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where ψ i is the auxiliary field ψ i ≡ ∂iϕ,K is the trace of the
extrinsic curvature, and Π is the canonical momentum of
the scalar field,

Π≡ −
�
1

N
_ϕ −

1

N
Nk

∂kϕ

�
: ð19Þ

From now on we will refer to this scheme as the GR
scheme, and the scheme relying on Eq. (4) as the FLRW
scheme.
To compute the energy of GWs in full GR and compare

with the FLRW scheme, we need a background expanding
metric. A natural choice is to average the spatial hyper-
surface to get the background, and then subtract the
expanding background from the full metric [54–57].
This allows us to define

ρGW ¼ 1

32πG
hγ̂TTij;0γ̂ijTT;0 i; ð20Þ

where ;0 means a covariant time derivative compatible with
the background metric, and γ̂ij is defined as

γ̂ij ≡ χ−2γ̃ij − a2ðtÞδij; ð21Þ

where χ is the conformal factor and γ̃ij is the conformal
metric defined by decomposing the spatial metric γij as
γ̃ij ≡ χ2γij, with the constraint det γ̃ij ¼ 1. When the metric
is conformally flat (γ̃ij ¼ δij) and χ has no spatial depend-
ence, χ−1 is equivalent to the scale factor a. However, the
inhomogeneous distribution of the scalar field will intro-
duce a small spatial dependence on χ through the Einstein
equations. Its average still has a time evolution that
approximately corresponds to the scale factor in the
FLRW universe, which allows us to use hχ−1i to mimic
the scale factor in Eq. (21). Note that γ̂TTij;0 essentially
reduces to the 2KTT

ab of Ref. [57] when the fluctuations in
the field χ are very small, and these small fluctuations can
be initially fixed by solving the constraint equations. Also
note that nonperturbatively defining a GW energy that is
gauge independent and can be implemented in a grid
simulation scheme is highly nontrivial. Indeed, the ρGW
defined above (as we will see later) is gauge dependent. As
we will explain later, we will need to choose gauge
conditions judiciously so as to minimize the gauge effects
from the redundant gauge modes. In particular, despite the
background being in synchronous gauge, we will see later
that the synchronous gauge may not be a good gauge
choice for the perturbations on top of the background.
To solve the metric components together with the scalar

field they couple to, we employ the grid-based numerical
relativity code CosmoGRaPH [58], which makes use of the
popular Baumgarte-Shapiro-Shibata-Nakamura formalism
[59–61] and integrates the adaptive mesh refinement
framework into its spatial grid scheme. However, for

simulations performed in this work, only a uniform grid
configuration is employed.
Different from the FLRW scheme, solving the equations

in the GR scheme requires obtaining exact solutions to the
constraint equations in the initial condition setup. We will
look for solutions that mostly resemble the FLRWmetric to
facilitate our comparisons between the two schemes. To
this end, after splitting the extrinsic curvature into a
traceless part and a trace part, Kij ≡ Aij þ 1

3
γijK, we

choose the initial conditions such that γ̃ij ¼ δij, Aij ¼ 0.
Since K ¼ −3H, the initial homogeneous K is set such that
the corresponding Hubble parameter satisfies the
Friedmann equation. The initial configuration of the scalar
field is chosen to have a standard spectrum of the initial
vacuum fluctuations for ϕ ¼ M and _ϕ ¼ 0, for which the
momentum constraint is trivialized, and the Hamiltonian
constraint equation can be written as

∇2Ψþ πð∂iϕ∂iϕÞΨþ ðπVðϕÞ − K2=12ÞΨ5 ¼ 0; ð22Þ

whereΨ≡ χ−1=2. We then solve this nonlinear Hamiltonian
constraint equation and get the conformal factor χ by
employing the multigrid constraint solver integrated within
CosmoGRaPH. We use a periodic box with a spatial size
L ¼ 50 m−1. To ensure numerical convergence of the
elliptic constraint solver, a cutoff at wave number k ¼
12ð2π=LÞ is implemented.

III. GAUGE CHOICES

Even though the perturbative definition of GW energy
[Eq. (10)] is a gauge-invariant quantity to linear order
(when the box size is larger than the wavelengths of GWs;
see Ref. [62]), it becomes gauge dependent when higher-
order perturbations are included. This gauge dependence is
by construction absent from the FLRW scheme, as the
Klein-Gordon equation is only coupled to the background
cosmology [Eq. (4)]. We will consider multiple gauge
choices in the GR scheme to assess how large the gauge
dependence is for our simulations. By comparing different
gauges, we look for gauge choices that are insensitive to the
gauge modes from higher-order perturbations, which will
allow us to establish discrepancies between the GR and
FLRW schemes.
The simplest gauge condition we consider here is the

synchronous gauge, or geodesic slicing, which simply sets
the lapse N ¼ 1 and has a vanishing Ni. Indeed, our
background is in the synchronous gauge. Despite its
simplicity, the synchronous gauge tends to focus geodesics
and create coordinate singularities very easily. In addition,
it is well known that the synchronous gauge is not a
complete gauge fixing, even to leading order. As we shall
see shortly, we find this gauge generally an unsuitable
choice for extracting GW spectra from oscillon preheating.

KOU, MERTENS, TIAN, and ZHOU PHYS. REV. D 105, 123505 (2022)

123505-4



Another widely used set of gauge conditions in numeri-
cal relativity is the combination of the “1+ log” and the
“Gamma-driver” shift conditions:

∂tN ¼ −2ηNðK − hKiÞ þ Ni
∂iN; ð23Þ

∂tNi ¼ Bi; ∂tBi ¼ 3

4
∂tΓ̃i − Bi; ð24Þ

where η is a constant to be chosen, Bi is only an auxiliary
field, and Γ̃i ≡ γ̃jkΓ̃i

jk, with Γ̃i
jk being the Christoffel

symbols of γ̃ij. We will refer to this gauge condition as
the “1+ log” gauge for simplicity. This gauge condition has
been proven to have a powerful singularity-avoiding
property, and thus is widely used in solving spacetime
evolutions containing black holes.
We also examine a less-used gauge choice, called the

radiation gauge [63]: gijΓρ
ij ¼ 0. This gauge condition

might look like the conventional harmonic gauge
gμνΓρ

μν ¼ 0, but it is rather different in nature. In fact, it
can be proven to be equivalent to the time evolution of the
lapse according to

∂tN ¼ −
2τN2

1þ N2
ðK − hKiÞ; ð25Þ

with a vanishing shift Ni, where τ is chosen to be 0.05 in
this paper. Note that this gauge condition has the late-time
asymptotic solution that K → hKi and ∂tN ¼ 0, which
corresponds to a homogeneous expansion rate.

IV. QUANTIFYING THE GW SPECTRA

We select three representative sets of model parameters
to show the influence of the gauge choice and possible
enhancements of GW power spectra compared with the
conventional FLRW-based scheme.

Model I α ¼ 0.18, β ¼ 50
Model II α ¼ 0.50, β ¼ 50
Model III α ¼ 0.18, β ¼ 22

Model I has very strong parametric resonance and
generates a large number of oscillons in the preheating
period, Model II corresponds to the case with slightly
weaker parametric resonance, and Model III corresponds to
the case with very weak parametric resonance from the
scalar self-interaction but with strong self-gravity during
the oscillon formation.1 Note that even though the scalar
parametric resonance in Model III is weak, strong gravi-
tational effects can boost the generation of oscillons (see
Ref. [20] for more details).
For all three sets of parameters of the potential, the

inflaton condensate can efficiently fragment into oscillons;
see Fig. 1 for illustrations of oscillons for the three models
in the GR scheme. During the fragmentation, significant
stochastic GW backgrounds are generated, and their power
spectra keep growing until the oscillons are stabilized. We
compute the power spectra of GWs ρGWðkÞ after oscillons
form and are stabilized, and the growth of the GW spectra
for all three models is shown in Fig. 2. Note that during
earlier stages of the evolution, the high-frequency ends of
the spectra have an approximate k dependence ΩGW ∝ k3,
which results in straight lines in the lower right corner in
this logarithmic plot. This is due to the numerical artifact of
applying the cutoff at higher k: the cutoff results in a small
and flat spectrum of hTTij at higher k, which translates
approximately into the relation ΩGW ∝ k3 according
to Eq. (12).
We depict the evolution of the GW spectra with different

gauges for all three models in Fig. 3. The GWs from Model
I, which gives rise to strong parametric resonance and the
formation of a large number of oscillons in preheating, is
plotted in the left column for three time instances in Fig. 3.
We can see that, for the “1+ log” gauges and the radiation
gauge, the results generally coincide with those of the
FLRW scheme until the wavelengths are significantly
smaller than the box size. The enhancements seen for
these small wavelengths are mostly numerical artifacts due

FIG. 2. Time evolution of GW power spectra in the FLRW scheme, with darker colors representing later times. Models I to III are
presented from left to right.

1Some authors may refer to an oscillon with strong self-gravity
as an oscillaton.
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to the lack of spatial resolution for these modes (see
Appendix A for details of the convergence tests). These
results are consistent with the GW spectra computed in
Ref. [16], which used a pseudospectral method and evolved
the metric perturbatively on an FLRW background. The
multipeak patterns in the spectra are intimately linked to the
fact that oscillons evolve to a spherically symmetric shape
after emerging from the inflaton condensate fragmentation
[16]. We also note that the choice of the synchronous gauge
stands out as an exception, where an order of magnitude of
enhancement is observed before the simulation breaks
down at t ≈ 95 m−1 (see the middle panel in the left
column in Fig. 3). This suggests that there are huge

redundant gauge modes in evaluating the GW production
in oscillon preheating with the synchronous gauge, mean-
ing that the synchronous gauge is a rather inappropriate
choice for calculating the GW production in full numerical
relativity, at least for oscillon preheating.
For Model II, as shown in the middle column in Fig. 3,

similarly as in the Model I: the GW spectra in “1+ log”
gauges and the radiation gauge are also consistent with the
GW spectra from the FLRW scheme, within the wave-
lengths that are numerically well resolved. Synchronous
gauge breaks down at around 156 m−1, where the GW
power spectrum is again significantly enhanced due to large
artificial gauge modes.

FIG. 3. Time evolution (from top to bottom) of GWs spectra for three sets of models with different gauge choices. (a) Model I—strong
resonance: the top panel is taken at t ≈ 6 m−1; the middle panel, at t ≈ 94 m−1, is when the simulation in the synchronous gauge breaks
down; the bottom panel, at t ≈ 112 m−1, shows the GW spectra in the final stage of preheating. (b) Model II—median resonance: the top
panel is taken at t ≈ 8 m−1; the middle panel, at t ≈ 156 m−1 is when the simulation in the synchronous gauge breaks down; the bottom
panel, at t ≈ 165 m−1, shows the spectrum in the final stage of preheating. (c) Model III—weak resonance and strong self-gravity: the
top panel is taken at t ≈ 15 m−1; the middle panel, at t ≈ 140 m−1 is when the simulation in the synchronous gauge breaks down; the
bottom panel, at t ≈ 172 m−1, shows the spectrum in the final stage of preheating. The insets in the bottom panels depict the ratio
between the GW spectrum in the corresponding gauge condition and that of the FLRW simulation. For Model I, we run the simulation
based on a 1923 grid, but for Models II and III, we utilize 2563 simulations to capture potential self-gravity effects.
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As suggested in Ref. [20], Model III is subjected to
strong gravitational backreaction, which can only be
adequately resolved by the full GR scheme. As shown
in the right column in Fig. 3, apart from similar large gauge
modes in synchronous gauge (red line in the middle panel),
the GW spectra computed in “1þ log” gauges are also
subjected to some gauge dependence for the wavelengths
that are well resolved in our simulations. We find that the
gauge with η ¼ 0.1 is a better choice compared to those
with η ¼ 0.01 and η ¼ 0.5, as it contains relatively fewer
gauge modes. The reason for this is that, when η
approaches 0, the 1+ log gauge choice approaches the
synchronous gauge, which has been shown to have a rather
large gauge redundancy; when η is large, on the other hand,
it overdamps the lapse function. An overdamped lapse
function will make the high-frequency part within γ̃ij less
stable compared with the choice of η ¼ 0.1, and these
unstable high-frequency gauge modes will enter γ̂TTij within
its evolution, as can be seen in the high-frequency peaks for
η ¼ 0.5 in the last panel of Fig. 3.
Also, the GW spectra from “1þ log” gauge with η ¼ 0.1

is consistentwith radiation gaugewith τ¼ 0.05 [cf. Eq. (25)],
which suggests that the GW spectra in these gaugesmight be
taken as a good estimate of the “physical” spectra in this
model. With this interpretation, a small enhancement of a
factor of 3 in the medium wavelengths can be identified.
Similar to thegauge ambiguities of theGWenergy density

we have shown in the full GR simulations, the gauge
dependence of GWs in higher-order cosmological pertur-
bation theory has been widely discussed in the context of
GWs induced by higher-order scalar perturbations
[37,38,40,41,45] (see Ref. [64] for a recent comprehensive
review). In these scenarios, synchronous gauge is often
found to contain more gauge modes and thus is less reliable
in evaluating quantities related toGWs. Similar gauge issues
are also identified here in the oscillon preheating model we
study.We show thatwhen oscillons are in a stably oscillating
mode, somegauges do contain fewer gauge ambiguities, and
are thus more suitable for performing computations and
comparing with observations. On the other hand, as pointed
out recently [43,44,47], the differences between different
gauge choices will eventually decrease and die down when
the sources that induce those GWs decay at a later stage and
gravity becomes weaker. As our observations are always at
much later times, these gauge ambiguities thus may not
present any true difficulties in theory, if we can follow the
evolution for a sufficiently long time. For our current case,
this means the time when oscillons decay, which is techni-
cally challenging, as oscillons in our model are very stable.
We leave this line of investigation for future work.

V. GAUGE DEPENDENCE OF GW ENERGY
DENSITY

In Fig. 3, we can observe at least 1 order of magnitude
enhancement of GW power spectra in the synchronous

gauge before the simulation breaks down, compared with
properly chosen “1+ log” gauges and radiation gauge. In
this section, we will show how such big gauge dependence
may arise by performing a semiquantitative analysis of
higher-order perturbations in the GW content.
We want to compare the GW energy density

[cf. Eq. (10)] between the two different gauges, i.e.,
between two different coordinate systems. Consider a
small coordinate transformation xα → x̃α ¼ xα þ ϵξα

which induces the gauge transformation

h̃ij ≃ hij − ∂jξi − ∂iξj − hik∂jξk − hjk∂iξk þOðϵ3Þ; ð26Þ

where we have neglected terms of order ϵ3 and terms that,
by integrating by parts, lead to divergences when evalu-
ating the GW energy density. In the x̃α coordinates, the
terms ∂jξi þ ∂iξj do not contribute to the GW energy
density, thanks to the transverse-traceless projection on hij,
which means that the GW spectrum is gauge invariant to
leading order. However, in the full GR scheme, higher-
order terms like hik∂jξk do give rise to nonvanishing
contributions to the GW energy density in the x̃α coor-
dinates, which lead to gauge dependence in the GWenergy
density for higher-order perturbations. Because the GW
energy density is represented schematically as ρGW ∼ ∂h∂h,
the contributions from the higher-order terms in the GW
energy content representing the gauge modes can be
estimated by

ρGW;2 ∼ ∂h∂ðh∂ξÞ þOðh4Þ
∼ ð∂2hÞhð∂ξÞ ∼ Thδh; ð27Þ

where we have used the leading-order equation of
motion of hij to replace ∂

2h with the matter stress-energy
tensor Tij, and also approximated ∂ξ with h − h̃.
As a simple estimate of the GW energy density from the
gauge modes, we simply approximate ρGW;g as
ρSGW;2 ¼ ðPTÞðP hÞðP δhÞ, where

P
T stands forP

ij Tij=6, and so on. We compare this estimation with
the difference in the GW energy density between the
synchronous gauge and the radiation gauge in Fig. 4,
where the green arrows representing the second-order
estimations for gauge modes approximately match the
difference between the two gauges. It is also worth noting
that Eq. (27) implies that the gauge modes decay when the
source T is suppressed.

VI. SUMMARY

In this paper, we have studied the production of
stochastic GWs during the oscillon preheating scenario
by numerically solving the full Einstein equations under
different gauge conditions. The results show that in the
models where gravitational backreaction is negligible
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during oscillon preheating, the GWs extracted from full GR
simulations coincide with the results given by the conven-
tional simulations in an FLRW background, except for the
spectrum computed in the synchronous gauge. In the
synchronous gauge, the computed GW power spectrum
is typically 1–2 orders of magnitude higher than that of the
FLRW simulation or GR simulation with the “1þ log” or
the radiation gauge, which means that significant redundant
gauge effects are present in this gauge, making it an
unsuitable gauge condition to be used in oscillon preheat-
ing. On the other hand, for models where gravitational
backreaction is significant, the stochastic GW power
spectra are enhanced by up to a factor of 3 in the full
GR simulations under proper gauge choices.
The GWs generated by the particular single-field infla-

tionary models considered in this paper have a frequency
band beyond the current and next generation of GW
detectors. However, once the role of the inflaton—which
should correctly generate the power spectrum of the
observed cosmic microwave background—is released by
the scalar field that generates oscillons, an oscillon pre-
heating-like scenario can occur at lower energy scales, and
the frequencies of the generalized GW background can be
in the bands detectable in the GW detectors. Potential
detection of GW signals for such models can be used to test
general relativity and probe new physics at high energy
scales and in the early Universe.
Our study suggests that it is important to choose

appropriate gauge conditions to evaluate GW power spectra
in full GR preheating simulations, and the synchronous
gauge appears to be a very unreliable gauge condition for
extracting GW spectra in full GR simulations, at least when
dense objects such as oscillons are being formed.

Incidentally, the authors of Ref. [35] found an order-of-
magnitude enhancement for the stochastic GW spectrum in
a hybrid inflation model, using the full GR simulations with
the synchronous gauge. Of course, in that model no
oscillons or other nonperturbative objects form during
the preheating. Nevertheless, it would be interesting to
revisit it and exclude any possible gauge redundancies,
which is left for future work.
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APPENDIX A: CONVERGENCE TESTS

In this work, we compute GWs spectra in a periodic box
with a spatial size L ¼ 50=m. For Model I, we run the
simulations using a 1923 grid, since self-gravity effects are
not strong when the parametric resonance is significant,
and the resolution of 1923 is enough to capture essential
physics. For Models II and III, we utilize 2563 simulations
to capture potential self-gravity effects, as fully general-
relativistic corrections are often important when the para-
metric resonance is weak [20]. The validity of these choices
of resolutions is also examined by the convergence tests.
Here we show the convergence tests for the most

demanding case, Model III, which is the model that needs
the most simulation steps and converges the slowest. The
convergence tests for the FLRW, the “1+ log” GR gauge,

FIG. 4. Time evolution of GWenergy densities for Model I with
the synchronous and radiation gauges. The inset depicts the
estimate of the second-order gauge dependence ρGW;2 ∼ Thδh as
well as the difference of the GW energy density between the
synchronous and radiation gauges. Both energy densities are
extracted from the full GR simulation of Model I and normalized
to the critical density at the time when the simulation with the
synchronous gauge breaks down.

FIG. 5. GW power spectra in the FLRW scheme under different
resolutions.
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and radiation GR gauge are shown in Figs. 5, 6, and 7,
respectively. We see that, generally, our simulations are
sufficiently convergent for the lower part of the GW
spectrum with the 1923 resolution. The conservation of
the Hamiltonian constraint is also kept well under control

for the entire duration of the simulations, and roughly a
third order of convergence is achieved; see Fig. 8.

APPENDIX B: GWs ON THE LATTICE

We now discuss the approach to obtain the GW spectra
on the lattice applied to both the FLRWand GR schemes. In
order to derive a discrete expression for Eq. (12) in a lattice
of volume V ¼ L3, we need to first specify our convention
for the discrete Fourier transform:

fðnÞ ¼ 1

N3

X
ñ

e−
2πi
N ñnf̃ðñÞ; ðB1Þ

f̃ðñÞ ¼
X
n

eþ
2πi
N ñnfðnÞ; ðB2Þ

where n ¼ ðn1; n2; n3Þ and ñ ¼ ðñ1; ñ2; ñ3Þ label the lattice
sites in configuration space and momentum space, respec-
tively. It was shown in Ref. [53] that
�
dρGW
d log k

�
ðñÞ≡ dx6k3ðjñjÞ

ð4πÞ3GL3
h _hijðjñj; tÞ _h�ijðjñj; tÞiRðñÞ;

ðB3Þ
where h _hijðjñj; tÞ _h�ijðjñj; tÞiRðñÞ is an average over con-

figurations with lattice momenta ñ0 ∈ ½jñj; jñj þ δñ�. As
mentioned in the main text, the TT part of the tensor
perturbation hij is obtained in Fourier space via the
projector Λij;lmðk̂Þ given in Eq. (9). On the lattice, we
want to construct a projector Λij;lm that satisfies the
“transversality” and “tracelessness” conditions, which
may come in different forms [53]. Nevertheless, for our
case, the differences caused by choosing different projec-
tors are very small—less than the percent level prior to the
Nyquist frequency band—as we show in Fig. 9. Thus, we
choose the more stable projectors

FIG. 6. GW power spectra in the “1þ log” gauge with η ¼ 0.1
under different resolutions.

FIG. 7. GW power spectra in the radiation gauge under
different resolutions.

FIG. 8. L2 norms of the Hamiltonian constraint under different
resolutions in the radiation gauge. The model parameters are
chosen as α ¼ 0.18 and β ¼ 22.

FIG. 9. GW spectra in the FLRW scheme for Model III at t ≈
172 m−1 for three projectors: a projector based on the central
finite difference, a conventional projector based on k, and a
projector based on the symmetric nearest-neighbor derivatives.
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ΛðLÞ
ij;lmðñÞ≡PðLÞ

il ðñÞPðLÞ
jm ðñÞ−1

2
PðLÞ
ij ðñÞPðLÞ

lm ðñÞ;

PðLÞ
ij ðñÞ¼ δij−

kðLÞi kðLÞj

jkðLÞj2 ; kðLÞi ¼ 2
sinðπñi=NÞ

dx
; ðB4Þ

which are based on the nearest-neighbor spatial derivatives
[53] and fit well with the finite difference scheme in
our code.
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