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First-order phase transitions (FOPTs) are usually described by the nucleation and expansion of new phase
bubbles in the old phase background. While the dynamics of new phase bubbles have been extensively
studied, a comprehensive treatment of the shrinking old phase remnants remained undeveloped. We present
a novel formalism for remnant statistics in FOPTs and perform the first calculations of their distribution. By
shifting to the reverse time description, we identify the shrinking remnants with expanding old phase
bubbles, allowing a quantitative evolution and determination of the population statistics. Our results not only
provide essential input for cosmological FOPT-induced soliton/primordial black hole formation scenarios,
but can also be readily applied to generic FOPTs.
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I. INTRODUCTION

First-order phase transitions (FOPTs) are found across
disciplines as diverse as biology [1,2], condensed matter
physics [3,4], and cosmology [5]. In the cosmological
context, FOPTs are a natural consequence of many beyond
the Standard Model theories, and could play a crucial role in
generating the matter-antimatter asymmetry [6–10], form-
ing dark matter [11–22] and primordial black holes (PBHs)
[23–42], and leave detectable signals in current or near-
future gravitational wave detectors [43–48].
Cosmological FOPTs happen through the nucleation and

growthofnew truevacuum(TV)phasebubbles in theold false
vacuum (FV) phase background. More attention has been
focused on the calculation and estimation of the properties of
TV bubbles, whose statistics are relevant for electroweak
baryogenesis [6–10] and the production of gravitational
waves [49–51]. As a result, analytic methods were developed
to estimate the TV nucleation rate, wall velocity, and bubble
distribution [52–66]. On the other hand, FV remnants are
more relevant for themechanisms involving trappingparticles
in the FV to realize baryogenesis [67], dark matter [15–22],
and PBHs [33–37]. Lacking an equivalent detailed descrip-
tion of the FV remnants, previous studies had to either use
naive estimations of the average remnant size and density
[16,20], or take those observables as free parameters [33,34].
In the existing framework, the FV phase acquires a

decay probability to the energetically favorable TV phase
below the critical temperature. The vacuum pressure

causes the TV bubbles to expand, filling up the space
and leaving shrinking pockets of disconnected FV rem-
nants, see Fig. 1. We extend the TV bubble nucleation
formalism to include FV bubble nucleation by considering
the phase transition in reverse. From this reverse time
description, the centers of the collapsing remnants with
time flowing forward can be viewed as the nucleation sites
of FV bubbles with time flowing backwards. Thus, the
methods used for TV bubbles can be adapted for the
dynamics of FV bubbles. We perform the first calculation
of the properties and evolution of the FV bubbles based on
the reverse time description of the FOPT. Key to the
validity of this method is the projection interpretation, in
which we perform our calculations using the extrapolated
evolution of the FOPT as a mathematical tool. Although
we present our results within a cosmological context, they
can be easily adapted to general FOPTs in other fields.
In this paper, we develop a method for calculating

remnant statistics from first principles. In Sec. II, we
survey the formalism for TV bubble nucleation and connect
it to FV bubbles. In Sec. III, we derive a general expression
for the FV nucleation rate in one, two, and three dimen-
sions. In Sec. IV the FV bubble distribution is explicitly
calculated in the exponential approximation and applied to
PBH formation. In Sec. V, we elaborate on the projection
interpretation and summarize our work. Details of the
angular integration are found in the Appendix.

II. BUBBLE FORMATION

A. True vacuum bubbles

We review the existing TV nucleation formalism for
cosmological phase transitions. We assume thin walls and

*philiplu11@gmail.com
†kawana@snu.ac.kr
‡Corresponding author.

kepan.xie@unl.edu

PHYSICAL REVIEW D 105, 123503 (2022)

2470-0010=2022=105(12)=123503(9) 123503-1 © 2022 American Physical Society

https://orcid.org/0000-0003-3107-4857
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.123503&domain=pdf&date_stamp=2023-06-01
https://doi.org/10.1103/PhysRevD.105.123503
https://doi.org/10.1103/PhysRevD.105.123503
https://doi.org/10.1103/PhysRevD.105.123503
https://doi.org/10.1103/PhysRevD.105.123503


constant velocity vw throughout, which is a good approxi-
mation for a range of moderately strong FOPTs [58].
Consider a universe initially in an FV phase at high
temperatures. Below the critical temperature Tc, the TV
phase becomes energetically favorable, giving a nonzero
probability for the FV space to tunnel to the TV. The TV
nucleation rate per unit volume and unit time is [55]

ΓðtÞ ¼ AðtÞe−SðtÞ; ð1Þ

where SðtÞ is the smaller of the two instanton-bounce actions
S3=T [68] and S4 [69].
Assuming the bubbles grow spherically outwards, the

radius of a bubble nucleated at time t0 is

Rðt; t0Þ ¼ vw

Z
t

t0
dt00

aðtÞ
aðt00Þ ; ð2Þ

where aðtÞ is the scale factor of the Friedmann-
Lemaître-Robertson-Walker metric. The fraction of space
in the FV is [53,54]

ffvðtÞ ¼ e−IðtÞ; ð3Þ

where

IðtÞ ¼
Z

t

tc

dt0Γðt0Þ a
3ðt0Þ
a3ðtÞ

4π

3
R3ðt; t0Þ; ð4Þ

with tc being the cosmic time corresponding to Tc.
The distribution of TV bubbles at time t with size R

must equal the average nucleation rate at a time t0 at
which Rðt; t0Þ ¼ R (when the scale factor is negligible,
t0 ¼ t − R=vw),

dntv
dR

ðtÞ ¼ 1

vw
ffvðt0ÞΓðt0Þ

a4ðt0Þ
a4ðtÞ ; ð5Þ

where the factor of ffv restricts the nucleation to the false
vacuum. Integrating this equation, the total bubble number
density is given by

ntvðtÞ ¼
Z

t

tc

dt0ffvðt0ÞΓðt0Þ
a3ðt0Þ
a3ðtÞ ; ð6Þ

where we have used Eq. (2).

B. False vacuum bubbles

In the forward evolution of the FOPT, spherical TV
bubbles percolate when the FV volume fraction drops
below ffv ¼ 0.71 [70], forming an infinite connected
cluster. As ffv decreases, FV regions are separated into
shrinking remnants, which eventually tend to be spherical
due to surface tension. When the process is considered in
reverse, roughly spherical FV bubbles nucleate in a TV
background, forming an infinite connected cluster around
ffv ≈ 1 − 0.71 ¼ 0.29. This is the reverse time description
of the FOPT, in which we identify shrinking remnants
forward in time with nucleating bubbles backward in time.
We develop a formalism for FV bubbles in this reverse

time description and calculate a FV bubble nucleation rate.
To do so, the nucleation point of a FV bubble can be
identified as the projected center of a collapsing remnant,
with the nucleation rate equal to the collapse rate. The idea
is illustrated in Fig. 2, where we have plotted and compared
the shapes of two types of FV remnants. The physical FV
remnant, which really exists in a FOPT, as shown with the

FIG. 2. Illustration of the projection interpretation. Due to surface tension, the shape of a physical FV remnant will eventually tend to
be spherical, as shown in red dashed line. In contrast, the projected FV remnant shrinks as if the TV bubbles do not interact with each
other at all, and eventually becomes a triangle/tetrahedron in two/three spatial dimension case, as shown by the white region.

FIG. 1. Progression of the FOPT; with the flow of time from
left to right, the initial FV (white) space is nucleated with TV
(blue) bubbles, which populate and surround the shrinking FV
bubbles. In the reverse time description, FV bubbles nucleate and
grow in a TV dominated space, eventually resulting in shrinking
TV bubbles.
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red dashed line, eventually changes its shape to be more
and more spherical due to surface tension. The projected
FV remnant, which is an imaginary object assuming the TV
bubbles do not interact with each other, eventually shrinks
into a triangle/tetrahedron shape in the two/three spatial
dimensions case when the size of the remnant is much
smaller than the radii of the enveloping TV bubbles. In the
projection interpretation, we analytically calculate the
evolution of the projected FV remnants from the percola-
tion time to the final collapse, in order to describe the state
of the physical FV remnants at the percolation time. This is
the core idea of this article.
The projection interpretation, in which we extrapolate

the wall trajectories to the point of collapse, suggests a
counterpart to the reverse time description. In the reverse
time description, the FV bubbles nucleated at point C and
time t0 > t grow to a size Rrðt; t0Þ at time t. In the alternative
forward time description, the FV remnants of size Rrðt; t0Þ
at time t are those whose walls are projected to collapse at
point C and time t0 > t. These two viewpoints are com-
plementary and fundamentally equivalent.
The probability of remnant collapse per unit volume per

unit time, d2Pr=dVdt, at a point C can be found by
integrating along the past wall cone (similar to the light
cone but with wall velocity vw) and finding the four points
of TV nucleation, so that the four resulting walls would
meet at point C and time t. We order the TV walls by their
proximity in time to t, with wall 1 being the most recently
nucleated wall and thereby avoid unnecessary combina-
toric factors. The nucleation point of wall 1 is only
constrained to lie on the past wall cone of point C, but
subsequent walls have to obey angular restrictions to form
a closed remnant. As the nucleations lie on the wall cone
surface, assuming constant velocity, the walls are always
equidistant from the center point. Due to this symmetry,
the radial/temporal and angular factors are independent.
We first introduce the formalism in one and two spatial
dimensions before developing the more complicated three
spatial dimensions case.

III. WALL CONE INTEGRATION

A. One spatial dimension

As an illustration of the main idea, let us first consider
the one spatial dimension case shown in Fig. 3, where the
TV bubbles that nucleate on surfaces of wall cone 1 (blue
line) and 2 (yellow line) collapse at point C (red dot). The
key point here is that all TV bubbles that can reach C from
the −x̂ (þx̂) direction must nucleate on the surface of wall
cone 1 (2). Therefore, integrating along the wall cones
provides the probabilities of walls collapsing at C.
The physical event “two walls collapse at the same point

Cðt; xÞ” can be decomposed into three independent sub-
events. The first one is wall 1 from the −x̂ direction
approaching at the space region ½x; xþ dx� at time t. The

corresponding probability can be derived by integrating
along the wall cone,

dP1 ¼ dx
Z

t

tc

dt1Γðt1Þ; ð7Þ

where the scale factor is omitted in this subsection for
simplicity. Similarly, the second subevent is wall 2 from the
þx̂ direction approaching at point x but within the time
region ½t; tþ dt�, and the probability is

dP2 ¼ vwdt
Z

t

tc

dt2Γðt2Þ: ð8Þ

There is, however, an important third subevent, which is
no TV bubble reaches space point x before t, or equiv-
alently, no TV bubble nucleates in the region below wall
cones 1 and 2 (or say, inside the wall cone) in Fig. 3. This is
actually the probability of C lying in the FV region, i.e.,
ffvðtÞ given in Eq. (3). Combining the probabilities of the
three subevents, we eventually reach the collapsing prob-
ability density

d2P
dxdt

¼ vwffvðtÞ
Z

t

tc

dt1Γðt1Þ
Z

t1

tc

dt2Γðt2Þ: ð9Þ

This can be defined as the nucleation probability of the FV
bubbles, i.e., Γ1d

r ðtÞ.

B. Two spatial dimensions

For simplicity, we omit scale factors in this exposition
and restore them in the full three-dimensional expression
Eq. (12). In its final stage, the infinitesimal shrinking FV
remnant is a triangle collapsing towards its incenter
surrounded by three TV walls. The collapse probability
per unit area per unit time, d2Pr=dAdt can be found by
integrating along the past wall cone of the collapse point C.
The radial and angular integrations can be separated, and
the radial part is

FIG. 3. Sketch of two walls collapsing at point C in the 1þ 1
spacetime case.
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vwffvðtÞ
Z

t

tc

dt1vwðt − t1ÞΓðt1Þ
Z

t1

tc

dt2vwðt − t2ÞΓðt2Þ

×
Z

t2

tc

dt3vwðt − t3ÞΓðt3Þ; ð10Þ

with the integration times ordered as tc < t3 < t2 < t1 < t,
corresponding to the nucleation time of each successive
wall. The factors of Γ gives the TV nucleation rate of each
wall, and the factor of the FV fraction, ffv, is required since
only FV points are eligible to collapse to TV. Since we are
integrating along the past wall cone, the integration space
of the walls is in the FV and no additional factors of ffv
show up inside the integrals. Otherwise, there would need
to be a TV nucleation inside the within the past wall cone
which would have already spread the TV point C before
time t. This would contradict the overall factor of ffv
imposed on point C.
For the angular factor, we denote the normal vector of

wall i by r̂i, i.e., the unit vector pointing from the TV
nucleation point towards C, the incenter of the triangle. For
the three walls to form a closed triangle, −r̂3 must lie
within the angular range bounded by r̂1 and r̂2, as
illustrated in the left panel of Fig. 4. Integration over this
restricted angular parameter space yields an additional
factor of 2π3 (see Appendix for a derivation).

In the reverse time description, the FV bubble nucleation
rate is defined as the remnant collapse probability per unit
area per unit time, Γ2d

r ðtÞ ¼ d2Pr=dAdt. Combining
Eq. (10) and the angular contribution, the FV bubble
nucleation rate in two dimensions is

Γ2d
r ðtÞ ¼ 2π3v4wffvðtÞ

Z
t

tc

dt1ðt− t1ÞΓðt1Þ

×
Z

t1

tc

dt2ðt− t2ÞΓðt2Þ
Z

t2

tc

dt3ðt− t3ÞΓðt3Þ: ð11Þ

C. Three spatial dimensions

Next, we build on our two-dimensional results and apply
the method to three dimensions. Integrating over the past
wall cone, the radial factor is similar, but the angular factor
is more complicated, as the three-dimensional remnant is
now tetrahedral with four collapsing walls. Ordering the
walls temporally and labeling the normal vectors as before,
the condition that the four walls form a tetrahedron is that
−r̂4 should lie in the solid angle delimited by r̂1, r̂2, and r̂3,
as illustrated in the right panel of Fig. 4. This leads to an
overall angular factor of 32π4 (see the Appendix for a
derivation). The FV bubble nucleation rate at time t is then

ΓrðtÞ≡ d2Pr

dVdt
¼ 32π4v9wffvðtÞ

Z
t

tc

dt1

�Z
t

t1

dt01
aðt1Þ
aðt01Þ

�
2

Γðt1Þ
aðt1Þ
aðtÞ

Z
t1

tc

dt2

�Z
t

t2

dt02
aðt2Þ
aðt02Þ

�
2

Γðt2Þ
aðt2Þ
aðtÞ

×
Z

t2

tc

dt3

�Z
t

t3

dt03
aðt3Þ
aðt03Þ

�
2

Γðt3Þ
aðt3Þ
aðtÞ

Z
t3

tc

dt4

�Z
t

t4

dt04
aðt4Þ
aðt04Þ

�
2

Γðt4Þ
aðt4Þ
aðtÞ ; ð12Þ

where the integrals over the scale factors come from the
integration element of the radial direction in spherical
coordinates. Equation (12) is a general formula for the
FV nucleation rate for arbitrary TV nucleation rate Γ and
expansion history. The integral simplifies to

�Z
t

ti

dt0i
aðtiÞ
aðt0iÞ

�
2

→ ðt − tiÞ2; ð13Þ

when the scale factors can be taken as constant.

IV. FALSE VACUUM BUBBLE DISTRIBUTION

In the reverse time description, we can use the FV bubble
nucleation rate, Eq. (12), to find the FV bubble distribution.
Analogously to the TV bubble case, a FV bubble which
nucleates at t0 > t has a radius

Rrðt; t0Þ ¼ vw

Z
t0

t
dt00

aðtÞ
aðt00Þ ; ð14Þ

at time t.
The FV bubble size distribution is then

nfv
dRr

ðtÞ ¼ 1

vw
ð1 − ffvðt0ÞÞΓrðt0Þ

a4ðt0Þ
a4ðtÞ ; ð15Þ

FIG. 4. Geometry of a collapsing FV remnant. Left: In two-
dimensional space, to form a closed triangle, −r̂3 must lie in the
angular range bounded by r̂1 and r̂2. Right: In three-dimensional
space, to form a closed tetrahedron,−r̂4 must lie in the solid angle
delimited by r̂1, r̂2, and r̂3 (the four walls are omitted for clarity).
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where t0 is resolved using Eq. (14), reducing to t0 ¼ tþ
Rr=vw in the limit of constant scale factor. Integrating
Eq. (15) over Rr yields the overall FV bubble number
density

nfvðtÞ ¼
Z

te

t
dt0ð1 − ffvðt0ÞÞΓrðt0Þ

a3ðt0Þ
a3ðtÞ ; ð16Þ

where te is the ending time of the FOPT, which can be
effectively taken as þ∞ and ffvðteÞ ¼ 0.

A. Exponential nucleation

So far, our results are rather general and apply to any
FOPT scenario as long as the TV nucleation rate ΓðtÞ is
available. We now evaluate our results in the exponential
nucleation rate approximation,

ΓðtÞ ¼ Γ�eβðt−t�Þ; ð17Þ

expanded around an arbitrary time t� ∈ ðtc; teÞ, where
β ¼ −dSðtÞ=dtjt� can be treated as the inverse of the
FOPT duration. This exponential approximation is accu-
rate if the FOPT proceeds rapidly compared to the Hubble
time scale, i.e., β=Hðt�Þ ≫ 1 [58,71].1 Hence, the scale
factor aðtÞ is approximately constant over the transition
and can be neglected. This treatment will be adopted for
the rest of this article.
The exponential approximation fits numerical simu-

lations the best when t� is chosen to be the time at which
the bubble statistics are computed. For the remnant
distribution, we choose t� to be the FV bubble percolation
time, which we approximate as ffvðt�Þ ¼ 0.29 and I� ¼
− lnð0.29Þ ¼ 1.238.
We explicitly solve for the FV filling fraction, Eq. (3)

with

IðtÞ ¼ 8πv3wΓ�
β4

eβðt−t�Þ ≡ I�eβðt−t�Þ; ð18Þ

using βðt� − tcÞ ≫ 1. Integrating Eq. (12), the FV bubble
nucleation rate is

ΓrðtÞ ≈
I4�β4

192v3w
e4βðt−t�Þe−IðtÞ: ð19Þ

Using Eq. (15), the FV bubble distribution in the constant
velocity, constant scale factor exponential approximation is

dnfv
dRr

ðt�Þ ≈
I4�β4

192v3w
e4βRr=vwe−I�e

βRr=vw

× ð1 − e−I�e
βRr=vw Þ; ð20Þ

where the factor of 1 − ffvðtÞ comes from FV bubbles
nucleating only within the TV.

B. Normalization

We determine the approximate shape of the FV bubbles
by normalizing the total volume contained in the FV
bubbles to the filling fraction ffv at the remnant percolation
time t�. The initially tetrahedral FV bubble is expected to
becomemore rounded as additional TVwalls partially cover
the bubble, mimicking the effects of tension neglected in
this treatment. We expect FV bubbles at the percolation
threshold to be roughly spherical with some abnormality, as
depicted in Fig. 1. We therefore parametrize the volume
formula as Að4π=3ÞR3. Here R is the minimum distance
between the central point C and the remnant walls so A ¼ 1
implies a spherical volume and (A − 1) measures the
departure from sphericality. Normalizing to the FV fraction,

Z
dRrA

4πR3
r

3

dnfv
dRr

ðt�Þ ¼ 0.29; ð21Þ

yields A ¼ 1.15. This suggests that the FV bubbles/
remnants are somewhat spherical. From another point of
view, the factor A ¼ 1.15 is the required normalization for
the formalism to be self-consistent. Although overlap
between adjacent FV bubbles is ignored here, the volume
V ≈ 1.15ð4π=3ÞR3 is the average volume that effectively
“belongs” to each collapsing remnant of size R at the
percolation time.
Since the value of the FV percolation chosen here,

ffv ¼ 0.29, is strictly valid only for spherical bubbles of
equal size, the exact percolation threshold would have to
be determined by numerical simulation. The volume factor
A is reasonably close to 1, so we do not expect the true
percolation threshold to significantly deviate from the
approximate value used.

C. Primordial black holes

As a concrete example, we apply our method to the Fermi-
ball/PBH formation scenario proposed in Refs. [20,35] and
subsequently studied in Refs. [22,36,37]. During the FOPT,
an asymmetric population of dark fermions χ − χ̄ is trapped
between the expanding TV bubble walls into the collapsing
FV remnants due to a large mass differential for χ in the two
phases. As the remnants shrink, the fermions and antifer-
mions annihilate, leaving only the asymmetrical portion
supported by degeneracy pressure. The total number of χ
fermions trapped in a remnant with size R� at the FV
percolation time t� is [20,35]

QFB ¼ ηχsðt�Þ
ffvðt�Þ

A
4πR3�
3

; ð22Þ1For a long-duration FOPT, the Gaussian nucleation rate
approximation is more suitable [58].
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where ηχ ¼ ðnχ − nχ̄Þ=s is the χ-asymmetry with s the
entropy density.
Since the Fermi-ball/PBH mass MPBH ∝ QFB [20], the

distribution of R� is key to deriving the Fermi-ball/PBH
mass profile. Lacking methods to compute the R� distri-
bution, Refs. [20,35] estimated the average size to be

R� ∼
�

3vw
4πAΓ�

�
1=4

¼ 1.43
vw
β
; ð23Þ

resulting in a monochromatic Fermi-ball/PBH mass distri-
bution. With the technique developed in this work, we
compute the average R� using Eq. (20),

hRi� ¼
Z

dRrRr
dnfv
dRr

ðt�Þ ¼ 1.12
vw
β
: ð24Þ

Although the difference is minor, a continuous R� distri-
bution results in an extended Fermi-ball/PBH mass profile,
which greatly impacts experimental constraints [72,73]. In
Fig. 5, we display an example PBH distribution at present
time which comprises all of dark matter within the PBH
mass window, 1017 g < M < 1023 g [74].

V. DISCUSSION

In our derivation of the FV bubble nucleation rate
Eq. (12), we made a few simplifying assumptions. First,
the walls were assumed to be infinitesimally thin and the
wall velocity constant. TV bubble mergers can alter the
effective location of the TV wall nucleation. Furthermore,
surface tension tends to shape the collapsing remnants to be
more spherical, whereas the collapsing remnant is treated as
tetrahedral. All of these effects are exacerbated near the end

of the phase transition when TV bubbles inevitably merge,
surface tension becomes more prominent as the surface area
to volume ratio increases, and particle trapping may stop or
slow the collapse.
We resolve these issues by interpreting the formalism for

computing ΓrðtÞ as a projected description of the FOPT
rather than a physical description. In other words, beyond
the remnant percolation time t� at which we evaluate
Eq. (20), the future evolution of the FOPT is irrelevant to
the remnant statistics evaluated at t�. Causally, the remnant
size distribution and number density at t� cannot be affected
by events at later times t > t�. Thus, the remnant statistics at
the remnant percolation time depend only on the past
history of the FOPT, during which these four assumptions
are only mildly violated. The observables will be the same
whether, in the later stages of the transition, our idealized
collapse scenario or a more physical scenario with surface
tension effects is applied. Hence, the projection interpreta-
tion is that our method traces the walls of the collapsing
remnants forward beyond time t� to find the collapse point,
in order to then trace the collapse backwards in the reverse
time description and infer the size of the remnant at time t�.
We offer an analogy; the shadow of a falling apple can be

used to infer its instantaneous position. Whether or not the
apple eventually lands directly on its shadow, is perturbed
by a gust of wind, or drops on an unwitting head, is
immaterial to the determination of its instantaneous posi-
tion. Likewise, whether the remnant eventually collapses
spherically or is stopped by degeneracy pressure is irrel-
evant to its size distribution at remnant percolation.
Therefore, in the derivation of the remnant distribution,
our tetrahedral collapse model is more appropriate than a
physically realistic spherical-collapse model because the
shadow (or projection) of the collapsing walls is tetrahedral
and not spherical.
In summary, we have performed the first calculation of

the FV remnant distribution and evolution in FOPTs. By
identifying the center of a collapsing remnant as a FV
bubble nucleation in reverse, the established TV bubble
nucleation formalism can be adapted to derive remnant
statistics. Our results provide a more sophisticated treatment
of FOPT remnants than previously available, and are
directly applicable to many new physics mechanisms
involving trapped particles [15–22,33–37,67]. The novel
formalism developed in this paper can be readily general-
ized and applied outside the cosmological context.
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FIG. 5. A benchmark fðMPBHÞ distribution (red curve) for the
Fermi-ball/PBH formation scenario of Ref. [35] calculated with
an exponential nucleation rate at constant scale factor, where f is
the PBH mass distribution probability function with the FOPT
parameters shown in the figure. We compare hMPBHi (black solid
line) from this work and the estimate of MPBH (blue dashed line)
from Ref. [35].
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APPENDIX: ANGULAR CONTRIBUTION

For the two-dimensional angular factor, we denote the
normal vector of wall i by r̂i, i.e., the unit vector pointing
from the TV nucleation point towards C. For the three walls
to form a closed triangle, −r̂3 must lie in the angular range
bounded by r̂1 and r̂2, as illustrated in the left panel of
Fig. 2 of the main text. To integrate over all the allowed TV
bubble configurations, we first choose r̂1 along the x̂ axis
and parametrize the other two normal vectors as

r̂2 ¼ ðcosϕ2; sinϕ2Þ; r̂3 ¼ ð− cosϕ3;− sinϕ3Þ: ðA1Þ

Then for 0 < ϕ2 < π, the closure of the FV triangle
requires 0 < ϕ3 < ϕ2; while the case π < ϕ2 < 2π is just
a reflection of the case 0 < ϕ2 < π across the x̂ axis.
Therefore, the angular integral reads

2π

Z
π

0

2dϕ2

Z
ϕ2

0

dϕ3 ¼ 2π3; ðA2Þ

where the first “2π” factor represents the integral over the
arbitrary r̂1 angle, while the “2” factor in ϕ2 integral
accounts for the π < ϕ2 < 2π region.
Similarly, in three dimensions, with the collapse point C

at the origin, we set the ẑ axis in the direction of r̂1 and ŷ
axis along the r̂1 × r̂2 direction, defining our spherical
coordinate system. The normal vectors can then be para-
metrized as

r̂2 ¼ ðsin θ2; 0; cos θ2Þ;
r̂3 ¼ ðsin θ3 cosϕ3; sin θ3 sinϕ3; cos θ3Þ;
r̂4 ¼ ð− sin θ4 cosϕ4;− sin θ4 sinϕ4;− cos θ4Þ: ðA3Þ

When 0 < ϕ3 < π, the closure condition requires 0 < ϕ4 <
ϕ3 and 0 < θ4 < θ̄ðϕ4Þ, where

θ̄ðϕ4Þ ¼ arccot

�
cotθ2 cosϕ4þ

cotθ3 − cotθ2 cosϕ3

sinϕ3

sinϕ4

�

ðA4Þ

is determined by the intersection of plane Cr̂4ẑ
[ðsinϕ4Þx − ðcosϕ4Þy ¼ 0] and plane Cr̂2r̂3 [ðcot θ2Þxþ
ðsinϕ3Þ−1ðcot θ3 − cot θ2 cosϕ3Þy − z ¼ 0]. Here the range
of the arccotangent function is limited to ð0; πÞ. As the case
π < ϕ3 < 2π is just a reflection of the case 0 < ϕ3 < π over
the Cx̂ ẑ plane. Therefore, the angular integral reads

4π

Z
π

0

dθ2

Z
π

0

dθ3

Z
θ̄ðϕ4Þ

0

dθ4

Z
2π

0

dϕ2

Z
π

0

2dϕ3

×
Z

ϕ3

0

dϕ4 sin θ2 sin θ3 sin θ4 ¼ 32π4; ðA5Þ

where the first “4π” factor represents the integral over the
arbitrary r̂1, while the factor of “2” in the ϕ3 integral accounts
for the π < ϕ3 < 2π region.
Alternatively, we can derive Eq. (A5) in a more intuitive

manner. Requiring −r̂4 to be in the solid angle established
by r̂1, r̂2, and r̂3 results in the two conditions

π ≤ ϕ4 ≤ π þ ϕ3; ðA6Þ

and

maxðθ2; θ3; θ4Þ ≥ π −minðθ2; θ3; θ4Þ: ðA7Þ

The ϕ condition can be understood as the requirement that
walls 2, 3, and 4 form a triangle in the plane of wall 1, and so
is analogous to the two-dimensional case Eq. (A2). The θ
condition can be interpreted as the need to form a closed
tetrahedron in the ẑ direction. To understand this condition,
first sort the angles θ2; θ3; θ4 → θl ≤ θm ≤ θh. Take the
limiting case where wall h is arranged opposite of wall l, so
that the corresponding azimuthal angles satisfy ϕh ¼
π þ ϕl. We see that the closure requirement is satisfied if
π − θl ≤ θh ≤ π, where at the lower bound wall h lies
directly opposite of wall l and at the upper bound, wall h is
directly opposite wall 1. Therefore, the ϕ contribution to the
three-dimension probability integral is

Z
2π

0

dϕ1

Z
2π

0

dϕ2

Z
π

0

2dϕ3

Z
πþϕ3

π
dϕ4 ¼ 4π4; ðA8Þ

and the θ contribution is

Z
π

0

dθ1 sin θ13!
Z

π

0

dθl sin θl

Z
π

maxðπ−θl;θlÞ
dθh sin θh

×
Z

θh

θl

dθm sin θm ¼ 8: ðA9Þ

The combinatoric factor of 3! comes from the sorting of θ2,
θ3, and θ4 into the low, medium, and high angles. As in
Eq. (A5), the combined angular contribution is 32π4.
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