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1Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France
2Faculty of Natural Sciences and Medicine, Ilia State University, GE-0194 Tbilisi, Georgia
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The NANOGrav, Parkes, European, and International Pulsar Timing Array (PTA) Collaborations have
reported evidence for a common-spectrum process that can potentially correspond to a stochastic
gravitational wave background (SGWB) in the 1–100 nHz frequency range. We consider the scenario
in which this signal is produced by magnetohydrodynamic (MHD) turbulence in the early Universe,
induced by a nonhelical primordial magnetic field at the energy scale corresponding to the quark
confinement phase transition. We perform MHD simulations to study the dynamical evolution of the
magnetic field and compute the resulting SGWB. We show that the SGWB output from the simulations can
be very well approximated by assuming that the magnetic anisotropic stress is constant in time, over a time
interval related to the eddy turnover time. The analytical spectrum that we derive under this assumption
features a change of slope at a frequency corresponding to the GW source duration that we confirm with the
numerical simulations. We compare the SGWB signal with the PTA data to constrain the temperature scale
at which the SGWB is sourced, as well as the amplitude and characteristic scale of the initial magnetic field.
We find that the generation temperature is constrained to be in the 1–200 MeV range, the magnetic field
amplitude must be >1% of the radiation energy density at that time, and the magnetic field characteristic
scale is constrained to be >10% of the horizon scale. We show that the turbulent decay of this magnetic
field will lead to a field at recombination that can help to alleviate the Hubble tension and can be tested by
measurements in the voids of the Large Scale Structure with gamma-ray telescopes like the Cherenkov
Telescope Array.

DOI: 10.1103/PhysRevD.105.123502

I. INTRODUCTION

The magnetic fields observed today in the voids of the
Large Scale Structure (LSS) [1,2] could be of primordial
origin, generated for example during inflation or primordial
phase transitions (for a review, see Ref. [3], and for a recent
update, see Ref. [4]). Once produced, the magnetic field
interacts with the primordial plasma, leading to

magnetohydrodynamic (MHD) turbulence due to the high
conductivity of the early Universe [5,6]. The energy-
momentum tensor of both the magnetic field and the bulk
fluid motions feature a tensor component, which can source
a stochastic gravitational wave background (SGWB) (see
Ref. [7] for a review and references therein). The epoch in
the early Universe at which the gravitational wave (GW)
production occurs sets the typical frequency of the GW
signal. In particular, anisotropic stresses present at the
energy scale of the quantum chromodynamics (QCD)
phase transition can lead to a GW signal around the
nanohertz frequency, in the frequency band of pulsar timing
arrays (PTA) [8–15].
Recently, the North American Nanohertz Observatory

for Gravitational Waves (NANOGrav) [16], followed by
the Parkes Pulsar Timing Array (PPTA) [17], the European
Pulsar Timing Array (EPTA) [18], and the International
Pulsar Timing Array (IPTA) [19] Collaborations, have
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reported the detection of a signal common to all the analyzed
pulsars, with very marginal evidence for a quadrupole
correlation (following the Hellings-Downs curve), character-
istic of a SGWB according to general relativity [20].
Several sources could produce such a signal, in particular

a population of merging supermassive black hole binaries
[21–23]. Cosmological sources have also been proposed,
including inflationary GWs [24–30], cosmic strings and
domain walls [28,31–41], primordial black holes [42–46],
supercooled and dark phase transitions [47–50], and the
QCD phase transition [51–53], as well as primordial
magnetic fields [54–56].
In this work, we study the SGWB generated by MHD

turbulence due to the presence of a nonhelical magnetic field
at the QCD energy scale and compare it with the common
noise measured by NANOGrav, PPTA, EPTA, and IPTA.We
refine and extend the analysis of Ref. [54], where we used an
approximate analytical estimate of the SGWB signal and
compared it qualitatively with the NANOGrav measurement.
Here, we have conducted numerical MHD simulations to
accurately predict the SGWB. We set as initial condition of
the simulations a fully developed MHD spectrum for the
magnetic field, and zero initial bulk velocity. For the
numerical simulations we use the Pencil Code [57], as in similar
numerical works on the SGWB produced by MHD turbu-
lence during the radiation-dominated era [58,59].
We derive a simple analytical formula for the SGWB

spectrum that fits the simulation results and widely
improves the one given in Ref. [54]. We then use this
formula to compare the MHD-generated SGWB spectrum
to the PTA data, including NANOGrav, PPTA, EPTA,
and IPTA.
The results we obtain are broadly consistent with those

of Ref. [54], namely: the PTA observations can be
accounted for by GW production from MHD turbulence
at the QCD scale, provided (i) the temperature is in the
range 1 MeV < T� < 200 MeV, (ii) the magnetic field
characteristic scale is close to the horizon, and it can
correspond to the scale of the largest processed eddies if
2 MeV < T� < 50 MeV, and (iii) the magnetic field
energy density is larger than a few percent of the radiation
energy density at T�. In particular, we show here that the
spectral slope of a SGWB from MHD turbulence at the
QCD scale is fully compatible with the PTA constraints.
As already pointed out in Ref. [54], a primordial

magnetic field with these characteristics has a particularly
interesting phenomenology since, besides accounting for
the PTA common noise, it could also change the sound
horizon at the cosmic microwave background (CMB)
epoch, easing the Hubble tension, and explain the magnetic
fields observed today in matter structures [60–62]. Such a
field is also within the sensitivity range of the next-
generation γ-ray observatory Cherenkov Telescope Array
(CTA) [63].

We stress that our results depend on the particular initial
conditions that we have chosen, namely a fully developed,
nonhelical MHD spectrum for the magnetic field, with no
initial bulk velocity. In Refs. [55,59,64–66], similar sim-
ulations have been performed using the Pencil Code by
inserting an electromotive force to model the initial
magnetic field obtaining SGWB spectra that differ from
ours, especially at large frequencies, which are of less
observational relevance. We have chosen the aforemen-
tioned initial conditions for mainly two reasons. First of all,
they are conservative: whatever the initial generation
mechanism, the magnetic field is expected to enter a phase
of fully developed and freely decaying turbulence [5,6].
Any initial phase of magnetic field growth would increase
the GW production [59,64,66]. Secondly, simple initial
conditions make it easier to build an analytical description
of the simulation outcome. Since we want to model
magnetically driven turbulence, we also neglect the pres-
ence of initial bulk velocity for simplicity.
The paper is organised as follows. In Sec. II, we analyze

GW generation fromMHD turbulence. First, we present the
equations governing the dynamics of the source and the
model for the initial condition (Secs. II A and II B),
followed by a derivation of the general expression for the
SGWB spectrum, cf. Sec. II C. We then derive the SGWB
spectrum obtained under the assumptions of a constant
source (Sec. II D) and from the MHD simulations
(Sec. II E), and we compare the two results (Sec. II F). In
Sec. III, we adopt the analytical form of the SGWB
spectrum, validated with the simulations, and compare it
with the PTA measurements, introduced in Sec. III A, to
constrain the magnetic field parameters (Sec. III B).
Furthermore, we consider the effect the magnetic field
could have on the CMB at recombination and in the cosmic
voids of the LSS (Sec. III C), and compare our results to
those of previous publications, to show the implications of
our initial conditions (Sec. III D). In Sec. IV, we compare
the SGWB produced by MHD turbulence with the one
produced by supermassive black hole binaries. Finally, we
conclude in Sec. V.
We use the ð−þþþÞmetric signature and set c¼kB¼1.

Magnetic fields are expressed in Lorentz-Heaviside units by
setting the vacuum permeability to unity. The Kronecker
delta is indicated by δij, the n-dimensional Dirac delta
function by δnðxÞ, the Gamma function by ΓðxÞ, and the
cosine and sine integral functions by CiðxÞ and SiðxÞ,
respectively. Fields in Fourier space are indicated by a
tilde and we use the Fourier convention B̃ðkÞ ¼R
BðxÞ exp ðix · kÞd3x and BðxÞ ¼ ð2πÞ−3 R B̃ðkÞ×

exp ð−ix · kÞd3k. In Secs. II A–II C, space coordinates, time
coordinate and (inverse) wave vectors are normalized to the
comoving Hubble scale at initial time H−1� ¼ t�, and a
subscript * in general denotes quantities at initial time. In
Sec. II D and following, we restore their dimensions for
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convenience. Energy densities are normalized by the radi-
ation energy density.

II. SGWB SPECTRUM: CONSTANT SOURCE
MODEL AND MHD SIMULATIONS

A. Magnetohydrodynamics

In this work, we perform simulations solving the MHD
equations and the subsequent GW production with the Pencil

Code [57]. A fully developed stochastic magnetic field B is
inserted as initial condition of the simulations, while the
initial velocity field u is zero (though it can be driven by the
primordial magnetic field at later times via Lorentz forc-
ing). The MHD equations for a relativistic fluid with p ¼
ρ=3 in the Friedmann-Lemaître-Robertson-Walker (FLRW)
background metric [aðtÞ is the scale factor],

ds2 ¼ a2ðtÞ½−dt2 þ δijdxidxj�; ð1Þ

are [3,6,67]

∂ ln ρ
∂t ¼ −

4

3
ð∇ · uþ u · ln ρÞ þ 1

ρ
½u · ðJ × BÞ þ ηJ2�; ð2Þ

∂u
∂t ¼ −u · ∇uþ u

3
ð∇ · uþ u · ∇ ln ρÞ

−
u
ρ
½u · ðJ × BÞ þ ηJ2� − 1

4
∇ ln ρ

þ 3

4ρ
J × Bþ 2

ρ
∇ · ðρνSÞ; ð3Þ

∂B
∂t ¼ ∇ × ðu × B − ηJÞ; J ¼ ∇ × B; ð4Þ

where ρ is the energy density, J the current density, Sij ¼
1
2
ðui;j þ uj;iÞ − 1

3
∇ · u the rate-of-strain tensor, ν the kin-

ematic viscosity, and η the magnetic diffusivity. The space
coordinates are comoving with the expansion of the
Universe and normalized by the comoving Hubble radius
H−1� ; t denotes conformal time, also normalized by H−1� .
All MHD fields are comoving and normalized by the
radiation energy density, Erad ¼ 3H2=8πGa2 (where G is
the gravitation constant) [6,58,59,67].

B. Magnetic field

Wemodel the (normalized) magnetic field as a stochastic
nonhelical field, statistically homogeneous, isotropic and
Gaussian. Hence, the two-point autocorrelation function is
sufficient to describe it statistically due to the Isserlis
theorem [68,69]. At unequal times, the autocorrelation
takes the form

hB̃�
i ðk; t1ÞB̃jðk0; t2Þi

¼ ð2πÞ6δ3ðk − k0ÞPijðkÞ
EMðk; t1; t2Þ

4πk2
; ð5Þ

where EMðk; t1; t2Þ is the unequal-time correlator (UETC),
reducing, at equal time t2 ¼ t1, to the normalized magnetic
field energy density spectrum EMðk; t1Þ. Furthermore,
Pij ¼ δij − k̂ik̂j is the projection tensor, with k̂ indicating

the unit wave vector k̂ ¼ k=jkj. The angle brackets indicate
ensemble average over stochastic realizations, which can be
approximated by a volume average in homogeneous
turbulence [69].
At the initial time t�, we assume that the magnetic energy

spectrum EMðk; t�Þ is characterized by a Batchelor spec-
trum at large scales and a Kolmogorov spectrum at small
scales, peaking at the characteristic scale k� ¼ 2π=l�.
Magnetic fields produced by causal processes, e.g., during
cosmological phase transitions, feature a finite correlation
length, which leads to a Batchelor magnetic spectrum in the
limit k → 0 [69,70]. The Kolmogorov-type k−5=3 spectrum
is found and well established in purely hydrodynamic
turbulence [71]. In general MHD, different models have
been proposed, e.g., Iroshnikov-Kraichnan k−3=2 [72,73],
Goldreich-Sridhar k−5=3 [74], weak turbulence k−2 [75],
and Boldyrev k−3=2 [76]. Simulations of MHD turbulence
in this context seem to indicate the development of a
turbulent spectrum with a k−5=3 scaling [67,77–81]. We
therefore adopt the following spectral shape:

EMðk; t�Þ ¼ ð1þDÞ1=αE�
M

×
ðk=k�Þ4

½1þDðk=k�Þαð4þ5=3Þ�1=α ; ð6Þ

where E�
M ¼ EMðk�; t�Þ denotes the magnetic amplitude at

the peak k� and at initial time, the parameter D ¼ 12=5
is tuned1 so that the spectrum peaks at k ¼ k�, and the
parameter α indicates the smoothness of the transition
between the Batchelor (∼k4) and Kolmogorov (∼k−5=3)
scalings around the spectral peak: we set it to α ¼ 2 based
on previous fits of simulated spectra [67]. Note that E�

M is
the maximal value of the magnetic amplitude, since we
consider decaying MHD turbulence.
The simulations are initialized with the magnetic

field [59,66,67]

B̃iðk; t�Þ ¼ PijðkÞgjðkÞg0ðkÞ; ð7Þ

where gjðkÞ is the Fourier transform of a δ-correlated vector
field in three dimensions with Gaussian fluctuations, i.e.,

1The parameter D depends on the slopes in the subinertial and
inertial ranges. Here we set a ¼ 4 in the subinertial range, and
b ¼ 5=3 in the inertial range, which gives D ¼ a=b ¼ 12=5.
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giðxÞgjðx0Þ ¼ δijδ
3ðx − x0Þ, and g0ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EMðk; t�Þ

p
=k

corresponds to the magnetic spectral shape defined in
Eq. (6). We therefore assume that the MHD-processed
magnetic spectrum is already established when the GW
generation starts. The simulations output the GW generation
by the subsequent magnetic turbulent decay, by solving the
full MHD system of Eqs. (2)–(4). The initial amplitude E�

M
and the position of the spectral peak k� are the input
parameters of the numerical simulations in Sec. II E.
The total normalized magnetic energy density is

ΩMðtÞ ¼ EMðtÞ=EradðtÞ ¼ 1
2
hB2ðx; tÞi. Using Eqs. (5)

and (6), at initial time, this becomes

Ω�
M ¼ ΩMðt�Þ ¼

Z
∞

0

EMðk; t�Þdk

¼ k�E�
MAðαÞ; ð8Þ

with

Aðα ¼ 2Þ ¼ 3
19
34Γ½ 1

17
�Γ½15

34
�

5
1
172

32
17

ffiffiffiffiffiffiffiffi
17π

p ≈ 2.064: ð9Þ

The (normalized) magnetic stress tensor components are
Tijðx; tÞ ¼ −Biðx; tÞBjðx; tÞ þ 1

2
δijB2ðx; tÞ, and the trace-

less and transverse (TT) projection of the stress tensor in
Fourier space is Π̃ijðk; tÞ ¼ T̃TT

ij ðk; tÞ ¼ Λijlmðk̂ÞT̃lmðk; tÞ,
with Λijlm ¼ PilPjm − 1

2
PijPlm. The TT-projected stress

Πij sources the GWs. As Biðx; tÞ, Πij is also a random
variable: the GW production can therefore be described
statistically using the UETC of the tensor stress
EΠðk; t1; t2Þ, defined in analogy2 with Eq. (5), as

hΠijðx; t1ÞΠijðx; t2Þi ¼
Z

∞

0

EΠðk; t1; t2Þdk: ð10Þ

For a Gaussian magnetic field (as the one with which we
initialize the simulations), the UETC is [82]

EΠðk; t1; t2Þ ¼
k2

4π

Z
d3p

p2jk − pj2 EMðp; t1; t2Þ

× EMðjk − pj; t1; t2Þð1þ ðk̂ · p̂Þ2Þ
× ð1þ ðk̂ · dk − pÞ2Þ: ð11Þ

C. Gravitational wave production

GWs are defined as the metric tensor perturbations h̄ij
over the FLRW metric, defined in Eq. (1),

ds2 ¼ a2ðtÞ½−dt2 þ ðδij þ h̄ijÞdxidxj�: ð12Þ

We restrict to the radiation era and, as previously, space and
time are normalized with H−1� . We assume that the scale
factor evolves linearly with conformal time during the GW
sourcing and normalize it such that a ¼ t with a� ¼ 1 [58].
The wave equation in the radiation era for the scaled
variable hij ¼ ah̄ij [83], following the normalization of
Refs. [58,59], becomes

ð∂2
t þ k2Þh̃ijðk; tÞ ¼

6Π̃ijðk; tÞ
t

; ð13Þ

where k is the wave number normalized with H� and the
tensor stress sourcing the GWs is defined above Eq. (10).
Assuming that the source is acting until a finite time3 tfin,
the solution to Eq. (13) with initial conditions h̃ijðk; t�Þ ¼
∂th̃ijðk; t�Þ ¼ 0, matched with the homogeneous solution
at tfin, describes a freely propagating wave at times t > tfin:

h̃ijðk; tÞ ¼
6

k

Z
tfin

t�

Π̃ijðk; t1Þ
t1

sin kðt − t1Þdt1: ð14Þ

The GW energy density, normalized to the radiation
energy density Erad, is

ΩGWðtÞ ¼
1

12
hð∂thijðx; tÞ − hijðx; tÞ=tÞ2i

¼
Z

∞

−∞
ΩGWðk; tÞd ln k; ð15Þ

where ΩGWðk; tÞ denotes the normalized logarithmic GW
energy density spectrum. Fourier transforming Eq. (15) and
inserting solution (14), it becomes, at times t > tfin,

ΩGWðk; tÞ ¼ 3k
Z

tfin

t�

dt1
t1

Z
tfin

t�

dt2
t2

× EΠðk; t1; t2ÞSðk; t; t1; t2Þ; ð16Þ

3Note that the parameter tfin is a mathematical artifact, inserted
to separate the sourced phase from the phase of free propagation.
In the simulations, the source evolves via turbulent MHD decay
and, as in previous numerical works [55,59,64–66], we run them
until all GW wave numbers in the simulation box have reached a
stationary state, i.e., are oscillating around a fixed amplitude.
Hence, the simulations indeed output spectra in the free propa-
gation phase.

2The UETC EΠðk; t1; t2Þ satisfies

hΠ̃�
ijðk; t1ÞΠ̃ijðk0; t2Þi ¼ ð2πÞ6δ3ðk − k0ÞEΠðk; t1; t2Þ

4πk2
:
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with

Sðk; t; t1; t2Þ ≈ cos kðt − t1Þ cos kðt − t2Þ: ð17Þ

In the above equation, we have omitted the terms propor-
tional to 1=ðktÞ that appear due to the hij=t term in Eq. (15)
since, at present time, all relevant wave numbers of signals
produced in the early Universe are inside the horizon
kt ≫ 1.

D. Analytical GW spectrum for constant-in-time stress

The characteristic time of the magnetic field decay in a
turbulent MHD cascade is the eddy turnover time δte ¼
te − t� ¼ ðvAk�Þ−1, where vA ¼

ffiffiffiffiffiffiffiffiffiffi
3
2
Ω�

M

q
is the Alfvén

speed at initial time4 and k� the initial characteristic
wave number.
The GW sourcing, on the other hand, occurs on a

characteristic time interval δt ¼ t − t� ∼ 1=k for a given
GW wave number k, as can be inferred from the Green
function of the wave equation (14), which has period 2π=k.
Indeed, recent simulations of GW production by MHD
turbulence have shown that each mode k of the GW
spectrum in the simulation box reached a stationary
amplitude after an initial growth period lasting δt ∼ 1=k
[59,66]. Since the GW spectrum is expected to peak around
k�, the GW sourcing is faster than the magnetic field decay
for all wave numbers satisfying k > vAk�, i.e., around and
above the GW spectrum peak. Correspondingly, the sim-
ulations have also shown that the total GW energy density,
which is dominated by the spectral amplitude at the peak,
enters a stationary regime shortly after the time interval
δtGW ≈ 1=k� [59,66]. Comparing the latter to the eddy
turnover time gives, by causality, δtGW=δte ¼ vA ≲ 1.
More precisely, one has vA ≲ 0.4, since big bang nucleo-
synthesis (BBN) limits5 Ω�

M ≲ 0.1 [84–86].
Since the dynamical evolution of GW production is

faster than that of the magnetic field for all relevant
wave numbers, we can assume, as a first approximation,
that the magnetic stresses in Eq. (16) are constant in time.
The role of tfin in Eq. (16) becomes then to cut off the
constant source, inserting an effective source duration
δtfin ¼ tfin − t�. The latter is expected to be related to
the characteristic time of the magnetic field decay,
δtfin ≳ δte. As we shall see, the effective source duration
δtfin introduces a feature in the SGWB spectrum, i.e., a
change of spectral slope between the wave numbers for

which the GW production is faster than the source decay
k≳ 1=δte ≳ 1=δtfin and those for which the GW production
is slower k < 1=δtfin.
In the following, we first present the analytic calculation

of the GW spectrum under the assumption that the
magnetic stress is constant in time up to tfin. We then
revise the qualitative analysis of Ref. [54] using the more
accurate prediction for the GW spectrum derived previ-
ously. In the next subsection (Sec. II E), we discuss the
results of the simulations. We then show, in Sec. II F, that
the constant source model approximates very well the GW
spectra output from the simulations and use the latter to
compute the specific value of the parameter δtfin and infer
empirically its relation to δte.

1. Analytical GW spectrum

If we assume that the stress is constant in time, Eq. (16)
can be easily integrated to find (note that from this section
on, dimensions in wave numbers and time are restored for
clarity)

ΩGWðk; tÞ ¼ 3kE�
ΠðkÞfcos kt½CiðktfinÞ − Ciðkt�Þ�

þ sin kt½SiðktfinÞ − Siðkt�Þ�g2; ð18Þ

where t ≥ tfin and E�
ΠðkÞ ¼ EΠðk; t1 ¼ t�; t2 ¼ t�Þ is the

autocorrelation function of the magnetic stresses at time
t� ¼ H−1� , defined in Eq. (10).
The GW spectrum oscillates in time and wave number.

Fixing the time to6 t ¼ tfin, we can approximate the
envelope of the oscillations over k as [88]

ΩGWðk; tfinÞ≈ 3kE�
ΠðkÞ

×

�
ln2½1þH�δtfin� if kδtfin < 1;

ln2½1þ ðk=H�Þ−1� if kδtfin ≥ 1.
ð19Þ

Let us first investigate the proportionality to kE�
ΠðkÞ. The

UETC of the anisotropic stress energy tensor is given in
Eq. (11) for a Gaussian magnetic field. In general, the
MHD evolution can yield non-Gaussianities in the stat-
istical distribution of the magnetic field, such that
EΠðk; t1; t2Þ might deviate from the expression given in
Eq. (11). However, here we assume that the initial magnetic
field is Gaussian and that the magnetic anisotropic stress is
constant in time: Eq. (11) is therefore appropriate. In terms
of the anisotropic stress power spectral density
P�
ΠðkÞ ¼ 2π2E�

ΠðkÞ=k2, we can write
4The Alfvén speed is v2A ¼ hB2i=hpþ ρi, such that in the

radiation-dominated era, with p ¼ 1
3
ρ, it becomes v2A ¼ hB2i=

hρi ¼ 3
2
ΩM.

5The upper bound Ω�
M ≲ 0.1 is reported in Refs. [84–86].

However, the constraint from nucleosynthesis has been recently
revisited in Ref. [87], taking into account the MHD turbulent
decay from the time when the magnetic field is generated to BBN,
allowing larger values of Ω�

M.

6We choose t ¼ tfin here since, as shown in Sec. II F,
ΩGWðk; tfinÞ approximates very well the envelope of the SGWB
that we obtain via the simulations. The evolution after tfin in
the constant-in-time model yields an enhancement of the
SGWB at high frequency as a consequence of the abrupt
switching off of the source. We investigate this feature in a
separate publication [88].
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kE�
ΠðkÞ ¼

k3

2π2
P�
Πð0ÞpΠ

�
k
k�

�
; ð20Þ

where P�
Πð0Þ can be computed using Eqs. (6), (8), and (11)

(see Ref. [88] for a detailed derivation):

P�
Πð0Þ ¼ 2π2Ω�

M
2CðαÞA−2ðαÞk−3� ; ð21Þ

with

Cðα ¼ 2Þ ¼ 7Γ½21
34
�Γ½13

34
�

2
4
173

21
345

47
34

≈ 1.0987; ð22Þ

and

pΠ

�
k
k�

�
≡ P�

ΠðkÞ
P�
Πð0Þ

∈ ð0; 1Þ ð23Þ

is a monotonically decreasing function that is computed
numerically using Eq. (11). At small wave numbers, pΠ is
constant by causality [89] and equal to one, while at large
wave numbers k≳ 2k�, pΠðk=k�Þ ∝ k−2EMðkÞ ∼ k−11=3 for
a Kolmogorov magnetic spectrum EMðkÞ ∼ k−5=3 [82].
We can now proceed to investigate the residual k

dependence of the SGWB spectrum. In terms of
pΠðk=k�Þ, combining Eqs. (19)–(21), the SGWB takes
the form

ΩGWðk; tfinÞ≈ 3

�
k
k�

�
3

Ω�
M
2
CðαÞ
A2ðαÞpΠ

�
k
k�

�
×

�
ln2½1þH�δtfin� if kδtfin < 1;

ln2½1þ ðk=H�Þ−1� if kδtfin ≥ 1.
ð24Þ

The hierarchy of scales appearing in the above equation is
as follows. The source duration is δtfin ≳ δte ≥ 1=k�, since
vA ≤ 1. Furthermore, while δtfin can be longer (long
source) or shorter (short source) than one Hubble time
H−1� , one always has k�H−1� ≥ 2π, since the Hubble scale
corresponds to kHH−1� ¼ 2π and for causally generated
turbulent sources k� ≥ kH.
At wave numbers below 1=δtfin, the spectrum is decorre-

lated from the source, leading to the usual cubic increase
with wave number: ΩGW ∝ ðk=k�Þ3Ω�

M
2 ln2½1þH�δtfin�.

For a short source satisfying δtfin < H−1� , the prefactor
becomes ln2½1þH�δtfin� ≃ ðH�δtfinÞ2, further suppressing
the spectrum amplitude, as indicated in Ref. [82]. The
quadratic increase with time of ΩGWðk; tÞ ∝ δt2 at early
times has also been observed in the simulations of Ref. [59].
The spectral k dependence changes at wave numbers

k>1=δtfin, turning into ΩGW∝ðk=k�Þ3Ω�
M
2 ln2½1þ

ðk=H�Þ−1� in the range k ∈ ð1=δtfin; k�Þ. For a short
source satisfying δtfin < H−1� , one can approximate

ln2½1þ ðk=H�Þ−1� ≃ ðH�=kÞ2, such that the spectrum is
nearly linear in k ∈ ð1=δtfin; k�Þ: ΩGW ∝ ðk=k�Þ×
Ω�

M
2ðH�=k�Þ2. If, on the other hand, the source is long,

δtfin > H−1� , the transition to the nearly linear spectrum is
smoother, preceded by the logarithmic dependence ΩGW ∝
ðk=k�Þ3Ω�

M
2 ln2½H�=k� in the region k ∈ ð1=δtfin;H�Þ.

This spectral shape is in accordance with what was
previously found in Ref. [89] in the context of a coherent
and instantaneous GW source, of which our approximation
can be seen as a special case: we assume in fact that the
source is constant in time, but that it turns on and off
instantaneously, with a discontinuity in time.
Note that, when vA ∼ 1 and the eddy turnover time δte is

very short, δtfin ∼ δte ∼ 1=k� and the quick magnetic field
evolution does not allow the linear regime ΩGW ∼ k to
form. Since we set vA ≲ 0.4 because of nucleosynthesis
constraints, the linear increase regime is present in all the
spectra output by the simulations (cf. Sec. II E), in agree-
ment with earlier numerical results [55,59,64–66].
Finally, at wave numbers k≳ k�, the function pΠðk=k�Þ

changes slope, slowly transitioning from constant to k−11=3

at large wave numbers. As pointed out in Ref. [89],
for a coherent and discontinuous source the peak of the
GW spectrum is determined by the behavior of pΠðk=k�Þ:
in the present case, the pΠðk=k�Þ slope combines with the
previously derived linear increase to give ΩGW ∼ k−8=3.
The peak kGW of the logarithmic GW energy density

is located where ðk=k�Þ3 ln2½1þ ðk=H�Þ−1�pΠðk=k�Þ ≃
ðk=k�ÞðH�=k�Þ2pΠðk=k�Þ is maximum (the approximation
is justified since, as previously mentioned, k�H−1� ≥ 2π).
This occurs at kGW ≃ 1.6k�, where pΠðkGW=k�Þ ≃ 0.5, as
can be computed by solving Eq. (11) numerically with
α ¼ 2 [88]. Note that previous numerical works reported a
peak at kGW ≈ 2k� [58,59,65,66]. This can be explained
by the fact that they investigated the linear GW energy
density EGWðkÞ ¼ ΩGWðkÞ=k, which becomes flat: since
the transition from constant to k−11=3 of pΠðk=k�Þ is slow,
different characteristic GWwave numbers can be picked up
by different functions.
We find that the value of the GW spectrum at the peak

always scales as Ω�
M
2ðH�=k�Þ2. Approximating ln2½1þ

ðk=H�Þ−1� ≃ ðH�=kÞ2, one gets, in fact, from Eq. (24),

ΩGWðkGW; tfinÞ ≃ AΩΩ�
M
2

�
H�
k�

�
2

; ð25Þ

where the amplitude AΩ is

AΩðαÞ ¼ 3
kGW
k�

CðαÞ
A2ðαÞpΠ

�
kGW
k�

�
; ð26Þ

which gives AΩðα ¼ 2Þ ≃ 0.6 [88].
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To summarize, the main properties of the GW spectrum
ΩGWðkÞ derived in the approximation of a constant source
operating over a time interval δtfin are the following:

(i) There is a nearly linear increase in the region
maxðH�; 1=δtfinÞ < k≲ kGW, which sharply transi-
tions to the causal k3 slope at k < kbr ≡ 1=δtfin if
the source is short (δtfin < H−1� ). If the source is
long, the transition is smoother, logarithmic in
the region kbr < k < H�. As we shall see, the
transition toward the linear regime in the spectrum
characterizing the GW signal from MHD can occur
in the PTA frequency range; notably, it can occur
at HQCD.

(ii) The GW signal peaks at kGW≃1.6k�, and the scaling
of the GW spectrum amplitude at the peak is
ΩGW ∝ Ω�

M
2ðH�=k�Þ2, regardless of whether the

source is long or short.
The first property is in agreement with what was theoreti-
cally derived in Ref. [89] for a coherent source with
instantaneous turn on, and both properties were observed
in the simulations of Refs. [59,65,66]. In Sec. II E, we
validate the spectral shape of Eq. (18) and its envelope
[cf. Eq. (24)] with a set of dedicated simulations. We study
the dynamics of the proposed model in further detail in a
separate publication [88].
Previous semianalytical analyses of (M)HD turbulence

predicted different spectral shapes and scaling with the
parametersΩ�

M (orΩ�
K in the case of kinetic turbulence) and

k�. The main difference with what is proposed here resides
in the fact that we assume a constant-in-time magnetic
stress, while previous analyses accounted for some form of
time decorrelation of the source. To give some examples,
the UETC were modeled with the top hat ansatz in
Ref. [82], providing a scaling as ΩGW ∝ Ω�

M
3=2ðH�=k�Þ,

and with the Kraichnan random sweeping model in
Ref. [90], providing a scaling as ΩGW ∝ Ω�

K
3=2ðH�=k�Þ2.

The typical scaling of GW production by sound waves,
ΩGW ∝ K2ðH�=k�Þ2=ð

ffiffiffiffi
K

p þH�=k�Þ, where K denotes the
normalized kinetic energy, cannot be reproduced by our
model either, as it is typical of a stationary, decorrelating
source [91,92]. An heuristic model inspired by this scaling
was adopted in Ref. [93], providing for turbulence the
scaling ΩGW ∝ Ω�

K
3=2ðH�=k�Þ for a long source and

ΩGW ∝ Ω�
KðH�=k�Þ2 for a short source.

At t > tfin, the source stops operating and the GWenergy
density only decreases due to the expansion of the
Universe. The GW energy density today, normalized to
the critical energy density today, becomes

h2Ω0
GWðkÞ ¼

�
afin
a0

�
4
�
h
Hfin

H0

�
2

ΩGWðk; tfinÞ

≃ 3.5 × 10−5ΩGWðk; tfinÞ
�
10

gfin

�1
3

; ð27Þ

where the factor ðafin=a0Þ4 gives the ratio between the
GW energy density at tfin and today and ðHfin=H0Þ2 is the
ratio between the critical energy densities, being H0 ¼
100h km s−1 Mpc−1 the Hubble rate today with h ≃ 0.68
[94]. The prefactor in Eq. (27) is computed using [95]

afin
a0

¼ T0

Tfin

�
g0
gfin

�1
3

; ð28Þ

Hfin ¼
ffiffiffiffiffiffiffiffiffiffiffi
4π3G
45ℏ3

s
g
1
2

finT
2
fin; ð29Þ

where we take the entropic degrees of freedom and
temperature today to be g0 ¼ 3.91 and T0 ¼ 2.755 K,
respectively. The gravitational and reduced Planck con-
stants are G¼2.76×10−53 J−1 s and ℏ ¼ 1.05 × 10−34 J s,
respectively. At the QCD phase transition T� ∼ 100 MeV,
we take the entropic and relativistic degrees of freedom to
be equal with value gfin ≈ g� ∼ 10 [95].

2. Analysis of NANOGrav results
with the analytical GW spectrum model

A thorough comparison of the MHD GW signal with the
common noise reported by NANOGrav [16], PPTA [17],
EPTA [18], and IPTA [19] is performed in Sec. III, after we
present the results of simulations in Sec. II E. In this
subsection, we redo the analysis of Ref. [54], in order to
show how it changes with the more accurate model of the
SGWB spectrum given in Eq. (24).
Note that Eq. (24) corresponds to the envelope of the

SGWB spectrum: indeed, the SGWB in Eq. (18) is rapidly
oscillating. In principle, time averages appropriate to the
specific GW observatory and its detection strategy should
be performed, but here and in Sec. III, for simplicity, we are
comparing the PTA data with the SGWB envelope. This
procedure is conservative.
In Ref. [54], the analysis was simplified setting a

reference amplitude for the NANOGrav observation of
h2Ωref

GW ¼ 10−9 at fyr ¼ 3 × 10−8 Hz and comparing it
with an order-of-magnitude estimate of the GW signal
from MHD turbulence, obtained by taking ΩGW ∼
Ω�

M
2ðH�l�Þ2 for the GW energy density at the peak

frequency fGW ∼ 2=l�. In Sec. II D 1, we have demon-
strated that a more careful analysis of the GW signal,
which we validate with the simulations in Sec. II E, leads
instead to ΩGW ≃ AΩ0Ω�

M
2ðH�l�Þ2 with AΩ0 ¼ AΩ=ð2πÞ2 ≃

1.5 × 10−2 [cf. Eq. (25)], and fGW ¼ 2B=l� with B ≃ 0.8
(corresponding to kGW ≃ 1.6k�).
Using Eqs. (25) and (27), one finds the amplitude of the

GW signal at the peak at present time, for a signal produced
at the QCD phase transition epoch:
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h2Ω0
GWðkGWÞ≃3.5×10−5AΩ0Ω�

M
2ðH�l�Þ2

�
10

g�

�1
3

: ð30Þ

If we take the characteristic scale to be the largest processed

eddies of the magnetic field H�l�jLPE ¼
ffiffiffiffiffiffiffiffiffiffi
3
2
Ω�

M

q
, as we

assumed in Ref. [54], we get

h2Ω0
GWðkGWÞjLPE ≃ 5.3 × 10−5 AΩ0Ω�

M
3

�
10

g�

�1
3

: ð31Þ

Furthermore, the peak of the GW spectrum at kGW ¼
1.6k� ¼ 2Bk� translates at present time into the peak
frequency

fGW¼2B
l�

≃2.24×10−8
B

H�l�

T�
100MeV

�
g�
10

�1
6

Hz; ð32Þ

where we have used the characteristic Hubble frequency

H� ≃ 1.12 × 10−8
T�

100 MeV

�
g�
10

�1
6

Hz: ð33Þ

For the largest processed eddies,

fGWjLPE ≃ 1.8 × 10−8
Bffiffiffiffiffiffiffi
Ω�

M

p T�
100 MeV

�
g�
10

�1
6

Hz: ð34Þ

According to the model of Sec. II D 1, h2Ω0
GW ∝ f

at frequencies f ≲ fGW. To reproduce the estimate of
Ref. [54], we fix the magnetic characteristic scale to the
largest processed eddies and adopt the aforementioned
reference amplitude and frequency of the NANOGrav
observation to compute the amplitude of the magnetic
field that could account for it:

h2Ω0
GWðkGWÞjLPE ≃ 10−9

fGWjLPE
3 × 10−8 Hz

;

5.3 × 10−5AΩ0Ω�
M
3 ≃ 6.1 × 10−10BΩ�

M
−1=2;

Ω�
M ≃ 0.04ðB=AΩ0 Þ2=7 ≃ 0.12: ð35Þ

In Ref. [54], this was estimated to be Ω�
M ¼ 0.03, setting

B ¼ AΩ0 ¼ 1 and using vA ¼ ffiffiffiffiffiffiffiffiffiffi
2Ω�

M

p
. Using the most

accurate GW signal model developed in Sec. II D 1, it
turns out that one needs a higher magnetic field amplitude
to explain the NANOGrav observation at the largest
processed eddies scale and for T� ¼ 100 MeV. The value
in Eq. (35) exceeds the nucleosynthesis bound [84–86]:
we confirm this finding in Sec. III; cf. Fig. 5. We will find
that one needs to consider smaller T�, or characteristic
scales l� < l�jLPE, to have a signal compatible with PTA
observations.

E. GW spectrum from MHD simulations

In this section, we present the MHD simulations we have
performed, which are listed in Table I with their character-
istics. We use the Pencil Code [57] to evolve the magnetic
field via Eqs. (2)–(4) and compute the SGWB spectrum
sourced by the magnetic field via Eq. (13), following the
methodology7 of Refs. [58,59]. We do so for a range of
parameters Ω�

M and k�, to accurately study the resulting
GW spectra and compare them with the prediction of the
model derived in Sec. II D under the assumption of constant
magnetic stresses. The simulations are initiated with a fully
developed stochastic and nonhelical magnetic field accord-
ing to Eqs. (5)–(7), and zero initial velocity field. The
magnetic field later decays following the turbulent MHD
description.

TABLE I. Summary of runs.

Run Ω�
M k�H−1� H�δte H�δtfin Ωnum

GW ðkGWÞ ½Ωenv
GW=Ωnum

GW �ðkGWÞ n H�L H�tend H�η

A1 9.6 × 10−2 15 0.176 0.60 2.1 × 10−9 1.357 768 6π 9 10−7

A2 � � � � � � � � � � � � � � � � � � 768 12π 9 10−6

B 1.0 × 10−1 11 0.233 0.60 4.0 × 10−9 1.250 768 6π 8 10−6

C1 9.9 × 10−2 8.3 0.311 0.75 5.6 × 10−9 1.249 768 6π 8 10−6

C2 � � � � � � � � � � � � � � � � � � 768 12π 10 10−7

D1 1.1 × 10−1 7 0.354 0.86 1.1 × 10−8 1.304 768 6π 5 10−7

D2 � � � � � � � � � � � � � � � � � � 768 12π 9 10−7

E1 8.1 × 10−3 6.5 1.398 2.90 5.5 × 10−11 1.184 512 4π 8 10−7

E2 � � � � � � � � � � � � � � � � � � 512 10π 18 10−7

E3 � � � � � � � � � � � � � � � � � � 512 20π 61 10−7

E4 � � � � � � � � � � � � � � � � � � 512 30π 114 10−7

E5 � � � � � � � � � � � � � � � � � � 512 60π 234 10−7

7In particular, we use the methodology described in Sec. 2.6 of
Ref. [58], which is denoted there as approach II.
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Guided by the findings of Sec. II D and of Ref. [54],
in runs A–D we have chosen for initial conditions a
characteristic scale k�H−1� near the Hubble horizon 2π,
and total magnetic energy density around 10% the total
radiation energy density at the time of generationΩ�

M ≃ 0.1.
These runs have eddy turnover times in the range
H�δte ∈ ð0.17; 0.4Þ. The evolution of the magnetic field
is expected to play a role at wave numbers below the peak
of the GW spectrum, since vA ≃ 0.4; cf. Sec. II D. To check

the validity of the model developed in Sec. II D also in the
limit of large δte, we have included runs E, which feature a
smaller value of Ω�

M ≃ 10−2 and a characteristic wave
number k�, again close to the Hubble horizon 2πH�,
corresponding to an eddy turnover time of 1.4H−1� .
The simulations in the present work use a periodic cubic

domain of comoving size H�L with a discretization of n3

mesh points (see Table I), such that the smallest wave
number computed is k0 ¼ 2π=L. We have chosen L and n

FIG. 1. Simulated GW spectra h2Ω0
GWðkÞ of runs A–E (dots) compared to the analytical model developed in Sec. II D assuming

constant magnetic stresses: Eq. (18) at tfin (thin gray lines) and its envelope Eq. (24) (dot-dashed black lines). The maximal values over
one oscillation of the numerical outputs at each wave number are shown in different colors for runs with different domain sizes and are
combined to show the GW spectra from subhorizon scales up to the scales where the inertial range is developed. Runs A1–E1 (blue dots)
are computing the smallest scales resolved, up to a Nyquist wave number of kNyH−1� ¼ 126. The spectra are shown in terms of kH−1� and

compensated by ðg�=10Þ−1
3, such that they can be scaled to the specific value of the comoving Hubble rate at the time of generation H�

and to different values of g�.
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such that the resulting dynamical range above the spectral
peak (at k > kGW) allows an accurate prediction of the
dynamical evolution of the velocity and magnetic fields. At
the same time, since we are particularly interested in the
GW spectral region around H� and below, we need to use
domains of size H�L > 2π (see Table I). Following
Ref. [59], we fix the viscosities ν ¼ η and choose them
to be as small as possible (see Table I), in order to
appropriately resolve the inertial range [67]. The numerical
values of the viscosities are still much larger than their
physical values at the QCD epoch,8 which would require a
much larger resolution. We are anyway able to properly
resolve the interesting part of the inertial range, which is
closest to the peak (very high frequencies are of little
observational interest since the GW amplitude at those
frequencies is several orders of magnitude smaller).
The GW spectra resulting from the simulations are shown

in Fig. 1, together with the analytical solution obtained at tfin
[cf. Eq. (18)] and its envelope [cf. Eq. (24)]. As observed in
previous simulations (see, e.g., Refs. [59,66]) and explained
in Sec. II D, we confirm that the k modes of the GW spectra
initially grow in time as δt2 and, after a time δt ∼ 1=k, they
start to oscillate around a stationary value. To plot the GW
spectra in Fig. 1, we choose the maximal amplitude of such
oscillations for each wave number, since we are interested in
the envelope of the oscillations. In previous simulations, the
low wave number regime was not captured, due to the size of
the domains [55,59,66]. Here, we have increased the size of
the domain and we have run the simulations for long times
(see Table I, where tend denotes the end of the simulations),
such that even the smallest wave numbers of the box reach
the oscillatory regime. Since tend ≫ δtfin ≳ δte, in the GW
spectra of Fig. 1, we observe both the causal k3 slope,
expected at k < kbr ≡ 1=δtfin, following the model of
constant magnetic stresses presented in Sec. II D 1, and
the transition toward the regime that is linear in k, expected
at maxðH�; 1=δtfinÞ < k≲ kGW. The latter was also
observed in previous numerical simulations [55,59,64–66].
In order to investigate the spectrum at the smallest wave

numbers, we have performed several runs with the same
parameters k� and Ω�

M, but with different sizes of the cubic
domain: respectively, runs A1 and A2, C1 and C2, D1 and
D2, and runs E1–E5. Runs A1, B1, C1, and D1 have a
resolution of 7683 mesh points and a size H�L ¼ 6π,
which corresponds to k0H−1� ¼ 1=3 and a Nyquist wave
number of kNyH−1� ¼ 126. For runs A, C, and D, we have
performed a second set of runs, with the same initial
conditions but domains doubling the size of A1, C1,
and D1, so that the smallest wave number is k0H−1� ¼ 1=6.

We reconstruct the final GW spectrum by combining
the results of the multiple simulations. This allows us to
compute more discretized modes of the GW spectra
in different wave number ranges. From Fig. 1, one
appreciates that we can accurately reproduce the break
from k3 to k1.
Runs E have the largest eddy turnover time; hence,

the k3 regime is expected to occur at smaller wave numbers.
We have then performed four additional runs, with the
largest domain (E5) being 15 times larger than the initial
one (E1), corresponding to k0H−1� ¼ 1=30. Runs E have
H�δtfin > 1: the transition from the k3 to the k1 regimes
should therefore be smoother, according to the constant
stress model, and develop a logarithmic dependence in
the region 1=δtfin < k < H�. Indeed, the GW spectrum
follows the curve predicted by the analytical model, i.e.,
k3 ln2ð1þH�=kÞ, and the transition of this curve toward
the k3 regime occurs around the wave number kbrH−1� ¼
ðH�δtfinÞ−1 ≃ 0.3.

F. Fit of the analytical to the numerical GW spectra

Figure 1 shows that the analytical model based on the
assumption of constant anisotropic stresses over the time
interval δtfin accounts for most of the SGWB spectral
features: the slopes [including the k3 ln2ð1þH�=kÞ
increase characteristic of the constant source], the positions
at which the slopes change, and the total amplitude. In
addition, it predicts accurately the early time evolution
of the spectra, starting with an initial phase of growth,
proportional to δt2 and a subsequent oscillatory period,
settling in after a time δt ∼ 1=k. However, the analytical
model does not provide a value for δtfin, which is related to
the validity of the constant-in-time magnetic stress approxi-
mation, and, hence, on the dynamical decay of the turbulent
magnetic field, characterized by the eddy turnover time δte.
Additionally, the numerical spectra have a smoother tran-
sition from k3 toward the k3 ln2ð1þH�=kÞ curve than the
piecewise envelope given in Eq. (24), leading to larger
values of the numerical GW amplitudes at the peak kGW.
This is likely due to the fact that the source decays
smoothly in time, instead of shutting down abruptly as
we assume in the constant model.
Since the MHD turbulent decay occurs on a typical

timescale of the order of the eddy turnover time, we expect
the source duration parameter δtfin to be related to δte. The
specific values of δtfin used in the envelopes shown in Fig. 1
(see Table I) have been extracted by fitting the analytical
solution to the numerical spectra output from each simu-
lation in the k3 range. In Fig. 2 (upper panel), we show δtfin
inferred from the simulations vs δte and fit the linear
relation

δtfin ¼ 0.184H−1� þ 1.937δte: ð36Þ

8At the QCD scale T� ∼ 100 MeV, we can use Eq. (1.11) of
Ref. [96], adapted in Eq. (19) of Ref. [97], to get
η ∼ 4 × 10−6ðT�=100 MeVÞ−1 cm2 s−1, which corresponds to
H�η ∼ 2.91 × 10−23ðT�=100 MeVÞðg�=10Þ1=2 in our normalized
units [59].
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Note that, in the limit δte → 0, this fit yields a finite δtfin,
which is unphysical. Furthermore, we only have one
simulated point in the region of large δte. Equation (36)
is therefore a tentative fit and should not be extrapolated
outside the range of δte validated by the simulations.
The discrepancy between the amplitude of the

numerical and analytical GW spectra at the peak (see
Table I) is expected to decrease as the eddy turnover
time increases, since the decay is slower and the

assumption of a constant source is appropriate for a
larger range of wave numbers. In the middle panel of
Fig. 2, we show the ratio between Ωnum

GW ðkGWÞ and
Ωenv

GWðkGWÞ [cf. Eq. (25)], which is decreasing, as
expected, together with the following fit:

G ¼ Ωnum
GW ðkGWÞ

Ωenv
GWðkGWÞ

¼ 1.317 − 0.097H�δte: ð37Þ

Altogether, the SGWB spectrum for given initial param-
eters k� and Ω�

M can be obtained from the analytical model
relying on constant stresses developed in Sec. II D 1 and,
in particular, from Eq. (24), fixing δtfin via the empirical
linear fit of Eq. (36), with the caveat, however, that this
relation has only been validated in the range tested with the
simulations.
Additionally, one can compensate the second branch of

the envelope in Eq. (24), i.e., the regime 1=δtfin < k≲ kGW
proportional to ln2½1þ ðH�=kÞ�, by the factor G given by
the empirical fit of Eq. (37). This compensated model of the
envelope of the GW spectrum at tfin reads

ΩGWðk;tfinÞ¼ 3

�
k
k�

�
3

Ω�
M
2
CðαÞ
A2ðαÞpΠ

�
k
k�

�
×

�
ln2½1þH�δtfin� if k<kcomp

br ;

Gln2½1þðk=H�Þ−1� if k≥ kcomp
br ;

ð38Þ

where the specific position of the compensated break kcomp
br

is moved from 1=δtfin to

kcomp
br H−1� ¼ ½ð1þH�δtfinÞ1=

ffiffi
G

p
− 1�−1; ð39Þ

to ensure continuity in the envelope function after com-
pensating one of the branches by G. The envelopes of the
GW spectra are shown in Fig. 2 (bottom panel), both with
and without compensating by G, together with the output of
the simulations listed in Table I.
Whether to use the compensated model Eq. (38) or

directly Eq. (24) depends on the particular situation. It can
be appreciated from Fig. 2 that the uncompensated model
fits the numerical simulations better in the region below the
spectral peak (k < kGW), but it underpredicts the amplitude
at the peak; while the compensated one fits the peak but
overpredicts the spectra at smaller wave numbers. Hence,
the choice between one or the other model depends on
which range of wave numbers one prioritizes to reproduce
with the highest accuracy.

III. COMPARISON WITH PTA RESULTS

In this section, we adopt the analytical model developed
in Sec. II D and validated in Sec. II E with MHD simu-
lations and compare the resulting SGWB with the obser-
vations reported by the PTA collaborations [16–19],

A
B

C
D

E

A

B

C

D

E

E1E3E4

A1
A2

B

C1, C2
D1

D2

FIG. 2. Upper panel: the points represent the eddy turnover
times of the simulations δte and the corresponding values of δtfin
obtained by fitting the break into k3 (occurring at 1=δtfin
according to the analytical model). The dashed line represents
the fit of Eq. (36). Middle panel: the points represent the ratio G
between the numerical and the analytical SGWB amplitudes at
the peak. The dashed line represents the fit of Eq. (37). Bottom
panel: the SGWBs computed with the analytical model given in
Eq. (24) (dot-dashed lines), and from the adjusted model given in
Eq. (38) (solid lines), are compared to the results of the MHD
simulations (colored points). The compensated model uses the
empirical fits shown in the upper and middle panels.
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thereby inferring the range of parameters T�, k�, and Ω�
M,

which could account for the PTA results. We remind that
we consider a nonhelical magnetic field and assume that the
GW production starts once the magnetic field has a fully
developed turbulent spectrum.

A. PTA results

The three PTA collaborations NANOGrav, PPTA, and
EPTA, and the IPTA Collaboration, have independently
constrained the amplitude ACP of a red common process
(CP) to several pulsars by fitting the power spectral density
SðfÞ to a single power law (PL) of slope −γ, as [16–19]

SðfÞ ¼ A2
CP

12π2

�
f
fyr

�
−γ
f−3yr ; ð40Þ

or to a broken PL as

SðfÞ ¼ A2
CP

12π2

�
f
fyr

�
−γ
�
1þ

�
f

fbend

�1
κ

�κγ
f−3yr ; ð41Þ

with fbend ¼ 1.035 × 10−8 Hz and κ ¼ 0.1. The reference
frequency corresponds to 1 yr, fyr ≃ 3.17 × 10−8 Hz.
The CP reported by NANOGrav, PPTA, EPTA, and

IPTA, characterized by the amplitude ACP and the slope
γ, does not show enough statistical significance toward a
quadrupolar correlation over pulsars, following the Hellings-
Downs curve, to be ascribed to a SGWB [16–20].
Interpreting theCP as an actual GW signal, the characteristic
strain hcðfÞ of the corresponding single-PL SGWB
would be

hcðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12π2SðfÞf3

q
¼ ACP

�
f
fyr

�3−γ
2

; ð42Þ

and the SGWB spectrum Ω0
GWðfÞ, defined in Eqs. (15)

and (27), would be

Ω0
GWðfÞ ¼ Ωyr

�
f
fyr

�
β

; ð43Þ

with

Ωyr ¼
2π2

3H2
0

f2yrA2
CP; β ¼ 5 − γ: ð44Þ

Analogously, the GW spectrum for the broken PL would be

Ω0
GWðfÞ ¼ Ωyr

�
f
fyr

�
β
�
1þ

�
f

fbend

�1
κ

�κð5−βÞ
: ð45Þ

In Fig. 3 (upper panel), we reproduce the 1σ and 2σ
contours of the amplitude Ωyr as a function of slope β

reported by NANOGrav using both the single- and broken-
PL fits [16], and by PPTA [17], EPTA [18], and IPTA [19]
using the single-PL fit. The PTA collaborations present
their data in terms of Fourier components of the timing
spectrum of the CP. The frequency of the first Fourier
mode corresponds to the inverse total observation time,
respectively, 12.5, 15, 24, and 31 yr for NANOGrav, PPTA,
EPTA, and IPTA. From this frequency, up to f ≃
1.25 × 10−8 Hz, the NANOGrav, PPTA, EPTA, and
IPTA analyses include, respectively, the first five, six,
eight, and ten Fourier modes. At higher frequencies, the
Fourier modes have bigger uncertainty and the presence of
a PL behavior is less clear [16–19]. As can be appreciated
in Fig. 3, the posterior SGWB amplitude and slope of the
NANOGrav dataset differ, depending on whether one fits a
single PL to the whole dataset or a broken PL turning to flat

FIG. 3. Upper panel: 1σ and 2σ contours of the amplitude h2Ωyr
vs slope β [cf. Eqs. (43) and (45)] derived from the NANOGrav
dataset for both the broken-PL (blue) and single-PL (green) fits
and from the PPTA (red), EPTA (purple), and IPTA (black)
datasets for the single-PL fit [16–19]. The gray shaded area shows
the slopes β ∈ ð1; 3Þ characteristic of the SGWB produced
by primordial MHD turbulence below the spectral peak;
cf. Sec. II D 1. Lower panel: shaded regions: range of the SGWB
spectra h2Ω0

GWðfÞ of Eqs. (43) and (45), corresponding to the 2σ
contours given in the upper panel. The vertical line shows the
reference frequency fyr. Dashed lines: 2σ maximum amplitude at
each frequency—such that larger amplitudes are, in principle,
excluded by the PTA observations.
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noise (β ¼ 5) at high frequencies f ≳ fbend. This behavior
is not observed in the PPTA, EPTA, and IPTA analyses.
We therefore consider both the single and broken PL for
the NANOGrav result, while we only keep the single PL for
PPTA, EPTA, and IPTA.
The part of the MHD-produced SGWB spectrum com-

patible with the PTA constraints on the spectral slope is the
subinertial range below the spectral peak, where β ∈ ð1; 3Þ
according to Eq. (24) and the numerical results (cf. Fig. 1).
The inertial range slope β¼−8=3 corresponds to γ ¼ 23=3,
which is too steep compared to the slopes reported by the
PTA collaborations (cf. Fig. 3). The peak wave number,
separating the subinertial and inertial parts of the spectrum,
must satisfy kGW > k� ≥ 2πH� by causality. Using the
relation

fGW ≃ 1.12 × 10−8
kGW
2πH�

T�
100 MeV

�
g�
10

�1
6

Hz; ð46Þ

and the value of the GW peak position kGW ≃ 1.6k�,
derived in Sec. II D 1, this translates into frequencies today
fGW ≳ 1.8 × 10−8 Hz, for temperatures around the QCD
scale. The subinertial range is therefore expected to cover
the region of highest quality PTA data (extending up to
f ≃ 1.25 × 10−8 Hz), supporting the hypothesis that the
latter are compatible with the GW signal from MHD
turbulence present at the QCD scale. At lower temperatures
T� ≲ 70 MeV, however, fGW decreases below f ≃
1.25 × 10−8 Hz. Moreover, at T� ≲ 5 MeV, the subinertial
range exits completely the frequency range of the IPTA
dataset if k� ¼ 2πH� (IPTA represents the lowest frequen-
cies probed by PTA—cf. Fig. 3).
For the range of initial parameters k� and Ω�

M that fit
the PTA observations, the break of the spectrum from the f3

to the f1 slope occurs in the PTA frequency band; in
particular, one can roughly estimate that 10−9 Hz≲ fbr ≲
4 × 10−9 Hz for temperatures of the order of 100 MeV. The
lowest bound in the above equation is obtained from the
values of the magnetic field parameters that maximize
the source duration, since kbr;min ¼ 1=δtfin;max. Following

relation (36), and given δte ¼ ðk�
ffiffiffiffiffiffiffiffiffiffi
3
2
Ω�

M

q
Þ−1, one needs to

insert the minimal values of both k� and Ω�
M. The former

corresponds to the horizon scale k� ¼ 2πH�, while the
latter can be roughly estimated imposing that the
SGWB peak given in Eq. (25), and evolved till today with
Eq. (27), is in the middle of the allowed region, say Ω0

GW ≳
5 × 10−10 (cf. Fig. 3). This leads to Ω�

M ≳ 0.03. From the
two conditions together, one then finds H�δtfin;max ≃ 1.6,
i.e., kbr;minH−1� ≃ 0.6, which gets translated into frequency
today via Eq. (46). Conversely, the upper bound of fbr can
be estimated from the maximal allowed value Ω�

M ¼ 0.1
and the maximal k�. The latter can again be estimated
thanks to Eq. (25) repeating the same argument as above,

leading to k� ≲ 6πH�. From these values, one finds then
H�δtfin;min ≃ 0.4, i.e., kbr;maxH−1� ≃ 2.2.
When better quality data will be available, the

presence of the break might become important to
constrain the origin of the SGWB; cf. the discussion in
Secs. III B and IV. Moreover, since the maximal source
duration is close to the Hubble time H�δtfin;max ≃ 1.6,
we expect the transition to occur rather sharply, i.e.,
without an extended logarithmic transition typical of long
sources.

B. Constraints on nonhelical magnetic fields
using the PTA results

In this section, we use the 2σ PTA contours of the
amplitude and spectral slope of the CP (cf. Fig. 3) to
identify the regions in the parameter space of the pri-
mordial magnetic field ðk�;Ω�

MÞ leading to a GW signal
compatible with the PTA observations, for fixed T�. We
limit the magnetic field characteristic wave number to be
larger than the horizon k� ≥ 2πH� and its maximum
amplitude to be below 10%, i.e., Ω�

M ≲ 0.1, according to
Refs. [84–86].
For a fixed T�, varying the parameters ðk�;Ω�

MÞ, we
construct the corresponding SGWBs using the analytical
model of Eq. (24) and setting δtfin to the empirical fit of
Eq. (36), validated by the numerical simulations. Note
that we are not compensating by the factor G as in Eq. (38)
[cf. also Eq. (37)], since we are interested in fitting the
SGWB spectrum at frequencies below the peak: as
demonstrated in Sec. III A, only the subinertial part of
the GW spectrum is expected to be in the frequency
region where the PTA data could be compatible with a
nonzero signal.
For each SGWB so constructed, we compute its slope at

each frequency in a subset of the frequency range of the
PTA observations. The subset is defined as follows: for the
single-PL fit, we choose a range spanning from the first
Fourier mode up to f ≃ 1.25 × 10−8 Hz, thereby excluding
the highest frequencies at which the PTA results have
large uncertainties (cf. Sec. III A); for the broken-PL fit
of NANOGrav, we further restrict the range to the
maximal frequency f ≃ 9 × 10−9 Hz, excluding the part
transitioning to the flat power spectral density with β ¼ 5
(cf. Fig. 3).
To compute the slope of the SGWB given in Eq. (24), we

simplify the frequency dependence of pΠ as

pΠðf=f�Þ ¼
� ðf=2f�Þ0 for f ≤ 2f�;

ðf=2f�Þ−11=3 for f > 2f�;
ð47Þ

while, in general, it is computed numerically using
Eq. (11). The resulting SGWB slope is
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β ¼ ∂ lnΩ0
GWðfÞ

∂ ln f

¼

8>><>>:
3 if f < 1=ð2πδtfinÞ;
3 − 2sðf=H�Þ if 1=ð2πδtfinÞ ≤ f < 2f�;

− 2
3
− 2sðf=H�Þ if f ≥ 2f�;

ð48Þ

where the function s gives the slope of the logarithmic term
appearing in Eq. (24),

sðxÞ ¼ −
1

2

d lnðln2½1þ 1=ð2πxÞ�Þ
d ln x

¼ ½ð1þ 2πxÞj lnð1þ 1=ð2πxÞj�−1; ð49Þ

and takes values between 0 and 1 in the low and high f
regimes, respectively, yielding the slopes of the SGWB
presented in Sec. II D.
Via Eqs. (43) and (45), one can calculate the range of

SGWB amplitudes allowed at 2σ by the PTA observations,
for a specific slope and frequency, given as a range of Ωyr

(cf. Fig. 3). For a fixed T�, we consider that a point in the
parameter space ðk�;Ω�

MÞ is compatible with the results
reported by one of the PTA collaborations if it provides a
SGWB spectrum with amplitude lying within the PTA 2σ
bounds corresponding to its slope at, at least, one of the
frequencies in the chosen PTA frequency subset. Note that
the amplitudes reported by the PTA collaborations assume
that the GW signal follows a PL, while we expect the
subinertial range of the SGWB produced by MHD turbu-
lence to present a spectral shape characterized by two
different regimes: one being a PL proportional to f3 and the
other one being approximately a PL proportional to f1

(cf. Sec. II D). Hence, our approach is conservative and
does not rule out SGWBs that present the break from f3 to
f1 within the PTA range of frequencies, which has not been
included in the reported analyses by the PTA collabora-
tions. We also allow, in our analysis, the break from f1 to
f−8=3 to occur within the PTA range. The additional
consequences of a broken-PL SGWB in cosmology, con-
sistent with NANOGrav observations, have been studied
in Ref. [98].
In Fig. 4, we show the curves delimiting the allowed

regions in which any SGWB compatible with the PTA
observations must lie, obtained using the values of ðk�;Ω�

MÞ
derived as described above. To be compatible with the
results of a given PTA collaboration, each MHD-produced
SGWB must lie within the region delimited by the dashed
and solid lines corresponding to that collaboration (i.e.,
purple lines for EPTA, red for PPTA, and so on). We
display the results for energy scales close to the QCD phase
transition, e.g., T� ¼ 150 MeV and g� ¼ 15 in the upper
panel and T� ¼ 100 MeV and g� ¼ 10 in the lower panel.
If T� ¼ 150 MeV, the upper boundary of the allowed

region is the same for all PTA data; hence, the solid lines

superimpose. This roughly corresponds to the point in
parameter space (k� ¼ 2πH�, Ω�

M ¼ 0.1) (though these
values can vary slightly with frequency). The lower
boundary of the allowed region is instead different for
each dataset considered: NANOGrav with both single and
broken PLs, PPTA, EPTA, and IPTA. If T� ¼ 100 MeV,
the region allowed by the NANOGrav single-PL fit
corresponds to Ω�

M slightly smaller than 0.1 and k� slightly
larger than the horizon scale. Note that, in general, the

FIG. 4. For T� ¼ 150 MeV and g� ¼ 15 in the upper panel, and
T� ¼ 100 MeV and g� ¼ 10 in the lower panel, we show the
upper boundary (solid lines) and the lower boundary (dashed
lines) of the regions compatible with the PTA data at 2σ. To be
compatible with NANOGrav with broken PL, each SGWB
spectrum must lie in the region within the blue solid and dashed
lines; with NANOGrav with single PL, within the green solid and
dashed lines; with PPTA, within the red solid and dashed lines;
with EPTA, within the purple solid and dashed lines; with IPTA,
within the black solid and dashed lines. The shaded areas
correspond to the range of allowed values h2Ω0

GWðfÞ of Eqs. (43)
and (45), restricted to the range of slopes of interest for a MHD-
produced SGWB, i.e., β ∈ ð1; 3Þ. The magnetic field character-
istic scale is bound to k� ≥ 2πH� and the magnetic energy
densities toΩ�

M ≤ 0.1. The vertical lines show the upper bound of
the PTA frequency subset to which we restrain the analysis: f ≃
1.25 × 10−8 Hz for the single-PL cases (dot-dashed line) and f ≃
9 × 10−9 Hz for the NANOGrav broken-PL case (dashed line).
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NANOGrav single-PL case is more constraining in terms of
ðk�;Ω�

MÞ values, since the minimum slope allowed at 2σ is
β ¼ 1.25 (cf. Fig. 3), while the other cases allow slopes
down to β ¼ 1.
The range of parameters ðk�;Ω�

MÞ compatible with the
data of the PTA collaborations at 2σ are shown in Fig. 5 for

temperature scales ranging from 2 to 200 MeV. At temper-
atures below 1 MeV, the PTA results cannot be accounted
for by a GW signal produced by MHD turbulence, in
the limit Ω�

M ≤ 0.1. For 100 MeV ≤ T� ≤ 200 MeV, the
magnetic field parameters are strongly constrained: its
characteristic wave number k� must be close to the horizon,

FIG. 5. For different values of T� ∈ ð2; 200Þ MeV, we show the allowed regions in the ðk�;Ω�
MÞ parameter space, derived as described

in the main text from the 2σ results of NANOGrav using the broken-PL (blue) and single-PL (green) fits and from the 2σ results of EPTA
(purple), PPTA (red), and IPTA (black) using the single-PL fits. The vertical and horizontal dot-dashed lines show the physical limits
k� ≥ 2πH� and Ω�

M ≤ 0.1, respectively: the allowed parameter region lies within the rectangle. The wave number of the largest
processed eddies k�jLPE is also shown (dot-dashed diagonal line).
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and its amplitude must be close to the upper bound
Ω�

M ≤ 0.1. Smaller characteristic scales and amplitudes
are allowed as T� decreases. For temperatures below
20 MeV, the point in parameter space ðk� ¼ 2πH�;
Ω�

M ¼ 0.1) is no longer compatible with the data, which
prefer magnetic fields with smaller characteristic scales but
higher amplitudes, until the latter exceed again their upper
bound for temperatures smaller than 1 MeV.
In particular, setting the largest processed eddies

as the characteristic scale of the magnetic field,

l�jLPEH� ¼
ffiffiffiffiffiffiffiffiffiffi
3
2
Ω�

M

q
, the resulting SGWB is only compat-

ible with the PTA observations at low temperatures
T� ∈ ð2; 50Þ MeV when we limit ΩM

� ≤ 0.1.
From the allowed parameter regions ðk�;Ω�

MÞ at each T�,
one can predict at which frequencies the break from f3 to
f1 occurs. While a rough estimate of the break frequency
was given in Sec. III A for T� ¼ 100 MeV, we show in
Fig. 6 the results of this more refined analysis. It can be
appreciated that the smaller the temperature of the phase
transition, the smaller the break frequency. Consequently, if
this break will be identified in future PTA data, it will help
elucidating the SGWB origin: as for the spectral peak fGW,
we find that fbr is connected to the energy scale of the
SGWB generating process.

C. Constraints on the magnetic field amplitude
and characteristic scale today

The analysis performed in Sec. III B allowed us to
constrain the magnetic field amplitude Ω�

M and character-
istic scale k� at several fixed temperature values T�. In this
section, we derive the constraints on the comoving mag-
netic field strength B� and characteristic length l� com-
patible with the PTA results. We then compare them with
other constraints on primordial magnetic fields, in particu-
lar at recombination. The results are shown in Fig. 7.

To begin with, we transform the constraints on Ω�
M to

constraints on the comoving magnetic field root mean
square amplitude B� ¼

ffiffiffiffiffiffiffiffiffi
hB2i

p
:

B� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�

Mμ0
p �

a�
a0

�
2

≃ 3.87
ffiffiffiffiffiffiffi
Ω�

M

p �
g�
10

�
−1
6

μG; ð50Þ

where E�
M ¼ Ω�

ME
�
rad, the factor ða�=a0Þ2 accounts for the

fact that the magnetic field is comoving, and we have
recovered c ¼ 3 × 108 m=s ¼ 9.72 × 10−15 Mpc=s and
μ0 ¼ 40π G2 ðJ=m3Þ−1, otherwise set to c ¼ μ0 ¼ 1, since
in this section we want to express B� in Gauss (G) and l� in
parsecs. Consequently, E�

rad ¼ π2g�T4�=ð30ðℏcÞ3Þ [95]. The
characteristic comoving length scale l� can be expressed in
parsecs using Eq. (33):

l� ¼
2π

k�
≃ 5.4

H�
ck�

100 MeV
T�

�
g�
10

�
−1
6

pc: ð51Þ

The region of B� and l� values allowed by the PTA
results is shown in Fig. 7, and it is limited by T� ∈
ð1; 200Þ MeV, l� ∈ ð0.4; 20Þ pc, and B� ∈ ð0.5; 1.2Þ μG,
when we consider the nucleosynthesis constraint Ω�

M≤0.1,
which gives B� ≤ 1.2 μG ðg�=10Þ−1

6. If we allow9
0.1 ≤

Ω�
M ≤ 1, then the region extends to B� ∈ ð0.5; 3.8Þ μG,

l� ∈ ð0.1; 20Þ pc, and T� ∈ ð0.2; 350Þ MeV.
Figure 7 also shows the region in parameter space

ðB�; l�Þ that could be probed by the Laser Interferometer
Space Antenna (LISA). We have obtained it via a similar
analysis to that of Sec. III B, using the model developed in
Sec. II D 1 and considering the PL sensitivity of LISA for a
threshold signal-to-noise ratio of 10 and 4 yr of mission
duration [102,103]. LISA could probe the SGWB from
primordial magnetic fields with amplitudes in the range
B� ∈ ð0.08; 0.8Þ μG and characteristic scales in the range
l� ∈ ð2.6 × 10−8; 8 × 10−4Þ pc, with a range of temper-
atures T� ∈ ð50 GeV; 2000 TeVÞ when Ω�

M ≤ 0.1. If we
allow 0.1 ≤ Ω�

M ≤ 1, then the range of temperatures com-
patible with LISA extends to T� ∈ ð5 GeV; 5000 TeVÞ
and the primordial magnetic field parameters to l� ∈ ð10−8;
2.6 × 10−3Þ pc and B� ∈ ð0.08; 2.5Þ μG.
Along with the GW production, the primordial magnetic

field evolves following the MHD turbulent free decay.
For nonhelical fields, the direct cascade leads to the
scaling B ∝ l−5=2 for incompressible turbulence and B ∝
l−3=2 for compressible turbulence [3,104]. Furthermore,

FIG. 6. Range of frequencies at which the f3 to f1 break fbr
occurs, for the parameters ðk�;Ω�

MÞ compatible with the results of
each of the PTA collaborations, for different T� (cf. Fig. 5), in the
limit Ω�

M ≤ 0.1. The horizontal dot-dashed lines correspond to the
computed values of T�.

9In this subsection, we extend our analysis up to Ω�
M ≤ 1,

allowing a larger range of values of T�. Note, however, that
values Ω�

M ≳ 0.1 require a relativistic MHD description and
therefore the SGWB derived in Secs. II D and II E might be
modified.
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the turbulent evolution is expected to drive the magnetic
characteristic scale to the one of the largest processed

eddies [104], l�jLPEH� ¼
ffiffiffiffiffiffiffiffiffiffi
3
2
Ω�

M

q
. The magnetic field

amplitude at this scale can be obtained combining
Eqs. (50) and (51):

B�jLPE ≃ 3.6
l�jLPE
1 pc

T�
100 MeV

μG: ð52Þ

This equation can be readily applied to find as well the
magnetic field amplitude at recombination [3,104]

BrecjLPE ≃ 10−2 nG
lrecjLPE
1 kpc

; ð53Þ

where we have used Trec ¼ 0.32 eV [105]. Both Eqs. (52)
and (53) are shown in Fig. 7 by black dot-dashed lines.
The evolutionary paths, from the QCD phase transition

up to the epoch of recombination, of the extremities of the
ðB�; l�Þ region compatible with the PTA observations are
shown by red (compressible) and brown (incompressible)
dot-dashed lines in Fig. 7. In particular, the solid lines
indicate the evolutionary paths of a primordial magnetic
field with k� ¼ 2πH� andΩ�

M ¼ 0.1 at T� ¼ 150 MeV and
g� ¼ 15 and at T� ¼ 100 MeV and g� ¼ 10.
In Ref. [54], it was shown that the magnetic field

compatible with the NANOGrav results [16] would corre-
spond at recombination to a magnetic field of the same
order of magnitude of those analysed in Refs. [60,106]. In
these works, it was pointed out that a sub-nano-Gauss
prerecombination magnetic field would induce additional

FIG. 7. Region in the magnetic field parameter space, given by its comoving amplitude B and characteristic scale l, compatible with
the observations of the different PTA collaborations: in blue, NANOGrav with broken PL; in green, NANOGrav with single PL; in red,
PPTA; in purple, EPTA; in black, IPTA. The parameter space region accessible to LISA is shown in light blue. The horizontal dot-
dashed lines show the bounds Ω�

M ≤ 1, and Ω�
M ≤ 0.1 from nucleosynthesis [84–86]. The black dot-dashed diagonal lines show (i) the

magnetic field amplitude when the characteristic scale corresponds to the largest processed eddies at the QCD phase transition l�jLPE
[cf. Eq. (52)]; (ii) the magnetic field amplitude reached at recombination [cf. Eq. (53)]. The dot-dashed red and brown lines show the
evolutionary paths of the extremities of the parameter space region compatible with the PTA results up to recombination, following
compressible (red) and incompressible (brown) MHD free decay. The solid red and brown lines indicate the evolutionary paths of an
initial field with k� ¼ 2πH� and Ω�

M ¼ 0.1 at T� ¼ 100 MeV and g� ¼ 10 (right red dot) and at T� ¼ 150 MeV and g� ¼ 15 (left red
dot). The green line indicates the upper limit B≲ 0.1 nG, and the range Brec ∈ ð0.013; 0.1Þ nG, proposed to alleviate the Hubble
tension, both derived in Ref. [62] from CMB constraints on the baryon clumping. The black solid diagonal lines show the Fermi Large
Area Telescope (LAT) lower bound on the intergalactic magnetic field from timing of the blazar signal (darker gray area) and from the
search of extended emission (lighter gray area) [2]. The blue line shows the expected sensitivity of CTA [63]. At larger scales, the upper
bound from Faraday rotation (FR) is shown [99], and the blue shaded region indicates the observations of UHECR from the Perseus-
Pisces supercluster [100,101]. Note that the latter constraints refer to present time magnetic field strength and characteristic scale, and
they have been cut to avoid intersecting the evolutionary paths from the QCD phase transition up to recombination in the plot, for clarity.
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baryon inhomogeneities, which would enhance the recom-
bination rate, thereby changing the CMB spectrum in a way
that would alleviate the Hubble tension. Reference [62]
derived updated constraints on the baryon clumping from
data of CMB experiments, of about b≲ 0.5 at 95% con-
fidence level, which can be translated into an upper limit on
the prerecombination magnetic field amplitude Brec≲
0.1 nG. In addition, they derive a range b ∈ ð0.16; 0.55Þ
that is compatible with a value H0 ≈ 70 km s−1Mpc−1,
relieving the Hubble tension. Such values of the clumping
factor correspond to magnetic field strengths Brec ∈
ð0.013; 0.1Þ nG, which include phase transition and infla-
tionary produced magnetic fields [62,107]. The upper
limit and, in particular, the range derived to alleviate the
Hubble tension are indicated in Fig. 7 by a green line and
interval, respectively.
The end points of the evolutionary paths of the magnetic

field amplitude and characteristic scale compatible with the
PTA results, representing their values at recombination, lie
on the line given in Eq. (53), where we also superimpose
the constraint Brec ≲ 0.1 nG from Ref. [62]. It can be
appreciated that they are compatible. We therefore confirm
that a magnetic field at the QCD scale could both account
for the PTA results and alleviate the Hubble tension, as
pointed out in Refs. [60,62], depending on the parameters
k� and Ω�

M of the initial field and whether the developed
MHD turbulence of the primordial plasma is compressible
or incompressible.
Furthermore, in Fig. 7, we report the lower bounds on the

magnetic field amplitude from the Fermi gamma-ray tele-
scope [2,3,63,108]. It was shown recently that CTA is
sensitive to primordial magnetic fields up to 0.01 nG
(cf. Fig. 7) in the voids of the LSS [63]. The signal from
a primordial magnetic field produced in phase transitions
can be distinguished from one produced during inflation
since the latter is expected to produce a coherent signal
among several nearby blazars [109].
The magnetic field can be additionally constrained from

above by observations of ultra-high-energy cosmic rays
(UHECR) sources. Recent observations of UHECR from
the Perseus-Pisces supercluster [100] allowed one for the
first time to put an upper limit on the primordial magnetic
field in the voids of the LSS [101]. Finally, the upper
bounds from Faraday rotation measurements [99] are
shown in Fig. 7.

D. Role of the magnetogenesis scenario
on the SGWB spectrum

Primordial magnetic fields can be either produced
or amplified during the QCD phase transition (see
Refs. [3,4,110] for reviews and references therein). In
particular, some magnetogenesis scenarios at the QCD
scale have been proposed; see e.g., Refs. [111–117].
Previous works performing simulations to compute the
SGWB produced by MHD turbulence, both in the general

context of phase transitions [59,64–66] and, more specifi-
cally, at the QCD phase transition [55], have modeled
the magnetic field production via a forcing term in
the induction equation [cf. Eq. (4)]. These simulations
show that, in general, the efficiency of the GW production

q ¼ k�H−1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2Ω0

GW

q
=Ω�

M is larger when the magnetic field

is driven than when it is given at the initial time of the
simulation [59,66]. The spectral shape is also affected,
mostly in the inertial range, i.e., at frequencies larger
than fGW, where it presents a steeper forward cascade
toward smaller scales [55,59,66]. In the subinertial range,
the slope can also be slightly modified, presumably due to
deviations from Gaussianity [65,66,118].
However, since the magnetogenesis dynamics are still

uncertain and are model dependent, previous simulations
do not necessarily reproduce the actual physical mecha-
nism of magnetic field production that might have operated
in the early Universe. In any case, their results suggest that
the model presented in our work, which assumes that the
magnetic field is already present at the beginning of the
simulation, might be underpredicting the SGWB signal (or,
equivalently, overestimating the magnetic field strength
necessary to explain the PTA data). This can be appreciated
in Fig. 8, where we compare the SGWB obtained from
the analytical model of Eqs. (24) and (36), with the one
obtained in Ref. [55] for nonhelical fields with Ω�

M ¼ 0.1
and k� ¼ 10H� at T� ¼ 100 MeV. We also show, for
comparison, the SGWB obtained in Ref. [30] from an
inflationary magnetogenesis scenario with an end-of-
reheating temperature around the QCD scale, both for a

FIG. 8. SGWBs generated by different sources operating
around the QCD scale compared to the PTA results. The black
solid line shows the analytical model developed in Sec. II D,
validated with MHD turbulence simulations in Sec. II E (“QCD
decaying turbulence”). The dot-dashed line shows the SGWB
obtained in Ref. [55] by adding a forcing term in the induction
equation to model the magnetic field generation (“QCD driven
turbulence”). The dotted lines correspond to the inflationary
magnetogenesis scenario of Ref. [30] with an end-of-reheating
temperature around the scale of the QCD phase transition
(“inflationary”).
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nonhelical magnetic field with Ω�
M ≃ 0.04 and k� ≃ 2.9H�

at T� ¼ 150 MeV and a helical field with Ω�
M ≃ 0.1 and

k� ≃ 6.7H� at T� ¼ 120 MeV.

IV. COMPARISON WITH THE SGWB FROM
SUPERMASSIVE BLACK HOLE BINARIES

The most commonly considered model of the SGWB
in the nanohertz frequency range is that of the collective
GW signal from mergers of supermassive black hole
binaries (SMBHB). This unrelated signal serves as a
“foreground” for the cosmological SGWB signal detection.
It is interesting to analyze whether the two types of SGWB
can be distinguished by current and future detections.
Straightforward analytical estimates [119,120] show that

the cumulative spectrum of the GW emission from a
population of SMBHB losing energy exclusively via gravi-
tational radiation is expected to follow a PL with the slope
ð3 − γÞ=2 ¼ −2=3 or, equivalently, β ¼ 2=3 [cf. Eqs. (42)
and (43)]. This naive model is shown by the black dotted line
in Fig. 9. The large error bars of the PTA measurements do
not allow one to distinguish between this slope and the
expected slope of the SGWB produced by primordial MHD
turbulence (shown by the blue line in Fig. 9).
This simple analytical model Ω0

GWðfÞ ∼ f2=3 does not
take into account a number of effects that influence the
shape of the SGWB from supermassive black hole mergers.
One of these effects is related to the “last parsec” problem
[120], the fact that the timescale of the gravitational energy
loss on GW emission is longer than the Hubble time for
binaries with subparsec binary separations. Orbital periods
of such binaries are about 10 yr and the GWemission from
these systems falls into the frequency range of the PTA
results. SMBHB can occur on the time span of the age of
the Universe only if there exists a nongravitational energy
loss that resolves the last parsec problem. In any case, this

alternative energy loss channel removes energy from the
GW signal and suppresses the GW spectral power. This
results in deviations from the PL scaling β ¼ 2=3.
Dynamical friction produced by scattering of stars may

be a viable solution to the last parsec problem if the
eccentricity of the binary black hole systems is taken into
account. Examples of modeling of this effect [121] are
shown by gray-shaded bands in Fig. 9. The suppression of
the GW power occurs in the frequency range of PTAs for
highly eccentric systems, with e ≥ 0.95.
Still another effect may produce a second break in the

spectrum at higher frequency, as seen in Fig. 9. This break
occurs due to the discreetness of the spatial distribution of
sources contributing to the SGWB [23,121].
Overall, the combination of the two breaks may result in

a SGWB spectrum from SMBHB similar to that produced
from MHD turbulence. This is clear from a comparison of
the model spectrum discussed above (blue line in Fig. 9)
with the state-of-art models for the supermassive black hole
SGWB spectra (gray bands in Fig. 9), calculated based on
the cosmological hydrodynamical model Illustris [122].
It still should be possible to distinguish between the

SMBHB and cosmological models using the statistics of
individual binary system detections at higher frequencies.
Even though the diffuse background flux is suppressed at
high frequencies because of the discreetness of the source
distribution, individual sources (not considered anymore as
part of the diffuse flux) become detectable. Their spectra
typically extend well into the frequency range of LISA and
their cumulative flux still follows the analytical f2=3

scaling, with a moderate suppression in the LISA frequency
range due to the fact that the GW emission from higher
mass systems does not reach LISA sensitivity band. If the
supermassive black hole SGWB is at the level of the current
PTA measurements, LISA should be able to detect numer-
ous individual merging systems and independently con-
strain the normalization of the supermassive black hole
merger part of the background [23].

V. CONCLUSIONS

In this work, we have analyzed the GW signal produced
by the anisotropic stresses of a primordial nonhelical
magnetic field. We suppose that some process related to a
primordial phase transition—in particular, here we focus on
the QCD phase transition—generates the initial magnetic
field. Since both the kinetic viscosity and the resistivity are
very low in the early Universe, the magnetic field induces
MHD turbulence in the primordial plasma. For simplicity,
we do not model the magnetic field generation nor the
buildup of the turbulent cascade, but we set as initial
condition for the GW production a magnetic field with
fully developed turbulent spectrum. This is an important
caveat of our analysis. We have chosen this approach to
better keep under control the physics of the GW production
and consequently gain insight on the resulting GW spectral

FIG. 9. Possible SGWB from supermassive black hole mergers
and by MHD turbulence, using the analytical model developed in
Sec. II D, compared to the PTA results. The black dotted line is
proportional to f2=3.
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shape, starting from simple initial conditions. The chosen
initial conditions are conservative: we expect the MHD
turbulent magnetic spectrum to develop for any magneto-
genesis mechanism and the amplitude of the SGWB to
increase if an initial period of magnetic field generation is
included in the analysis. We plan to increase the level of
complexity by analyzing concrete magnetic field production
mechanisms in future works.
The first important result of our analysis is that the GW

signal can be easily reproduced by assuming that the
magnetic stresses sourcing the GWs are constant in time
over a time interval δtfin. The reason is that, for most of the
spectral modes of the GW signal, the typical time of the GW
production is shorter than the typical time of the magnetic
field evolution since, by causality, the Alfvén speed is
smaller than the speed of light. We provide in Eq. (24) a
simple formula for the resulting SGWB spectrum, in which
the spectral slopes and the scaling with the source parameters
(i.e., energy scale of the source and magnetic field's
amplitude and characteristic scale) are apparent.
This formula can be used in general as a template for the

SGWB spectrum from fully developed MHD turbulence.
We have in fact validated it with a series of MHD
simulations initiated with a fully developed magnetic field
spectrum and no initial bulk velocity. These have been
performed using the Pencil Code [57] and consist in several
runs that cover a wide range of modes, from the large super-
Hubble scales up to the high wave numbers of the magnetic
field inertial range. The GW spectra outputs from the
simulations are well reproduced by the template obtained
under the assumption of constant anisotropic stress. In
particular, they both feature a break at a characteristic wave
number corresponding to the inverse duration of the GW
source, where the causal k3 increase transitions to a linear
increase, more or less smoothly depending on whether the
source lasts more or less than one Hubble time. We indeed
use the break position in the simulations to fix the source
duration parameter δtfin, which is a free parameter of the
analytical model, in terms of the eddy turnover time δte.
We have then applied our results to the case of the QCD

phase transition. As pointed out in a previous work [54], the
GW signal from MHD turbulence occurring close to the
QCD energy scale in the early Universe can account for
the CP reported recently by the observations of the PTA
collaborations: NANOGrav, PPTA, EPTA, and IPTA. Here
we have used the simulation-validated SGWB template
Eq. (24) and compared it to the PTA results.
Several points deserve to be highlighted concerning this

particular possible explanation of the PTA CP. First of all,
the region of the MHD-produced SGWB spectrum that is
compatible with the PTA constraints on the CP spectral
index is the subinertial region, and for temperature scales of
the order of the QCD phase transition, the subinertial region
naturally falls in the frequency range where the PTA data
present less uncertainty.

Second, the break in the SGWB spectrum is also
expected to fall in the same best quality data frequency
region, for temperatures around 100 MeV. The position
of the break is correlated to the energy scale of the
process that generated the magnetic field and, in turn,
the SGWB. Therefore, measuring the position of the
break in the future PTA data offers the interesting
opportunity to pin down its origin, especially if the
PTA observations can be combined with LISA to help
disentangle this SGWB of primordial origin from the one
due to SMBHB.
Third, the energy scale of the magnetogenesis mecha-

nism, and therefore of the GW production, is quite con-
strained already by the PTA data: it must be in the range
1 MeV < T� < 200 MeV; otherwise, this scenario fails to
explain the PTA results in the limit Ω�

M ≤ 0.1. At the same
time, the initial amplitude of the magnetic field must be at
least 1% of the radiation energy density, and its character-
istic scale must be within 10% of the horizon scale. It is
therefore not unreasonable to expect that future PTA data
will be able to falsify the hypothesis of the SGWB signal
from MHD turbulence.
At last, the ranges of magnetic field amplitudes and

characteristic scales that can account for the PTA CP
through the GW signal they generate could also affect the
evolution of the baryon density fluctuations at recombi-
nation, effectively enhancing the recombination process
and lowering the sound horizon at recombination
[60–62]. The presence of a magnetic field at recombi-
nation with present-time strength of about 0.01≲ Brec ≲
0.1 nG was recently proposed as a possible way to
alleviate the Hubble tension [60,62]. Such a field could
be detected in the voids of Large Scale Structure with a
future CTA gamma-ray observatory [63]. We find here
that the SGWB which such a magnetic field would
produce offers a further observational channel to test
this hypothesis.
The source code used for the simulations of this study,

the Pencil Code, is freely available [57]. The simulation
datasets are also publicly available [123]. The calculations,
the simulation data, and the routines generating the plots
are publicly available on GitHub [124].
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