
Analysis method for 3D power spectrum of projected tensor fields with
fast estimator and window convolution modeling: An application to

intrinsic alignments

Toshiki Kurita 1,2,* and Masahiro Takada 1

1Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes
for Advanced Study (UTIAS), The University of Tokyo, Chiba 277-8583, Japan
2Department of Physics, Graduate School of Science, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

(Received 28 February 2022; accepted 12 May 2022; published 1 June 2022)

Rank-2 tensor fields of large-scale structure, e.g., a tensor field inferred from shapes of galaxies, open up
a window to directly access 2-scalar, 2-vector, and 2-tensor modes, where the scalar fields can be measured
independently from the standard density field that is traced by distribution of galaxies. Here we develop an
estimator of the multipole moments of coordinate-independent power spectra for the three-dimensional
tensor field, taking into account the projection of the tensor field onto plane perpendicular to the line-of-
sight direction. To do this, we find that a convenient representation of the power spectrum multipoles can be
obtained by the use of the associated Legendre polynomials in the form which allows for the fast Fourier
transform estimations under the local plane-parallel (LPP) approximation. The formulation also allows us
to obtain the Hankel transforms to connect the two-point statistics in Fourier and configuration space,
which are needed to derive theoretical templates of the power spectrum including convolution of a survey
window. To validate our estimators, we use the simulation data of the projected tidal field assuming a
survey window that mimics the BOSS-like survey footprint. We show that the LPP estimators fairly well
recover the multipole moments that are inferred from the global plane-parallel approximation. We find that
the survey window causes a more significant change in the multipole moments of projected tensor power
spectrum at k ≲ 0.1 hMpc−1 from the input power spectrum, than in the density power spectrum.
Nevertheless, our method to compute the theory template including the survey window effects successfully
reproduces the window-convolved multipole moments measured from the simulations. The analysis
method presented here paves the way for a cosmological analysis using three-dimensional tensor-type
tracers of large-scale structure for current and future surveys.

DOI: 10.1103/PhysRevD.105.123501

I. INTRODUCTION

There are ongoing and upcoming wide-area cosmology
surveys such as the Subaru Hyper Suprime-Cam (HSC)
survey [1], the Subaru Prime Focus Spectrograph (PFS) [2],
the Dark Energy Spectrograph Instrument (DESI),1 ESA
Euclid, Rubin Observatory’s Legacy Survey of Space
and Time (LSST),2 and NASA Roman Space Telescope.
These surveys will enable us to address fundamental
questions of the universe such as the nature of dark matter
and dark energy and the physics involved in generation of
primordial fluctuations that are the seeds of cosmic
structures today, with unprecedented precision. A standard
method used to study large-scale structure (LSS) is based
on statistics of “density” field of LSS tracers. For example,

the three-dimensional spatial distribution of galaxies,
inferred by observed angular positions and photometric
or spectroscopic redshifts of individual galaxies, has been
used to constrain cosmological parameters of the standard
ΛCDM model [e.g., 3,4], properties of the primordial
perturbations [e.g., 5,6], and gravity theories beyond
general relativity [e.g., 7].
Generally speaking, we can also explore vector- and

tensor-type components from LSS observables, which
carry complementary or even independent cosmological
information from that from the scalar-type observables. For
example, the redshift-space distortion (RSD) effect [8] and
the kinetic Sunyaev-Zel’dovich effect [9] arise from pecu-
liar velocities of galaxies or galaxy clusters, which could in
general contain the information on vector-type compo-
nents, in addition to the information of scalar gravitational
potential. Also promisingly, shapes of galaxies, which are
usually quantified by the ellipticities, can be used to extract
rank-2 tensor information in large-scale structure. Physical
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correlations between shapes of different galaxies, the so-
called intrinsic alignments (IA), have been studied as one of
important effects in large-scale structure physics [10–13]
[also see 14–17 for reviews].
The leading theory for the IA effect is the linear alignment

model (LA) [18], which predicts that galaxy shapes originate
from the primordial tidal field in large-scale structure. This
model has also been extended to include the effect from
nonlinear structure formation [19–24]. Here the nonlinear
evolution generally induces vector- and tensor-type modes in
the observed IA effect on small scales; e.g., the nonlinear
effect induces B-mode in the IA signal on small scales, even
if the IA effect starts from a pure E-mode (scalar tidal field)
in the linear regime. There are also numerical studies to
investigate IA; using N-body simulations for dark matter
halo shapes [25–33]; using hydrodynamical simulations for
simulated galaxy shapes [34–43]. In an observation side,
many works [44–50] have reported significant detections of
IA correlation functions from actual dataset such as lumi-
nous red galaxies in the SDSS dataset.
Although the IA effect has been studied mainly as a

contamination to weak lensing, recently several works have
proposed that IA can be used as a new cosmological probe.
For example, Refs. [51–53] proposed that scale-dependent
shape bias in the large-scale IA effect can be used to explore
the spin-2 (quadrupolar) anisotropic local-type primordial
non-Gaussianity (PNG), independently from the effect of
the isotropic local-type PNG on the galaxy bias at large
scales [5]. This PNG effect on the IA power spectrum was
confirmed using halo shapes in N-body simulations where
the anisotropic PNG initial conditions are implemented [54].
These are interesting directions to explore because the
PNG signal gives a smoking-gun signal of the physics in
the early universe such as inflation [55]. Also interestingly,
characteristic tensor-type (therefore B-mode) signatures
can be induced by the primordial gravitational wave
[56,57] due to the so-called fossil effect on large-scale
structure. Furthermore, even within the standard ΛCDM
model, Refs. [58,59] discussed that a measurement of the IA
effect can improve cosmological parameter estimation when
combined with the galaxy clustering correlations.
Motivated by the above background, in this paper we

develop a method to measure the three-dimensional power
spectrum of rank-2 tensor tracers of LSS from a realistic
cosmology survey. To have a practical method that can be
applied to actual data, we consider the tensor field that can
be obtained by projecting the rank-2 tensor field onto local
2D plane perpendicular to the line-of-sight (LOS) direction
to each LSS tracer (e.g., galaxy). This is indeed the case for
galaxy shapes that are measured from the projected light
distribution (i.e., surface brightness distribution). Since
the projected tensor field varies with the LOS direction,
we will first define coordinate-independent power spectra
of the projected tensor field. To keep generality of our
formulation, we will express the projected tensor power

spectrum in terms of the underlying power spectra of
scalar-, vector-, and tensor modes and derive how the
derived power spectra are related to the coordinated-
independent power spectra or the E- and B-mode power
spectra, where the E=B-mode decomposition is useful for
the projected rank-2 field, e.g., because the scalar pertur-
bation induces only the Emode in the linear regime and the
Bmode gives a smoking-gun signature of vector- or tensor-
type perturbation.
Furthermore, extending the so-called Yamamoto estima-

tor [60] or the local plane-parallel (LPP) approximation
[61–63] for redshift-space power spectrum of galaxies, we
will develop an estimator of the projected tensor power
spectra. To do this, we will use the associated Legendre
polynomials, instead of the standard Legendre polyno-
mials, to define multipole moments of the projected tensor
power spectra. This allows us to derive a convenient
representation of the multipole moments that allows for
fast Fourier transform estimation of the power spectrum
moments from an actual wide-area survey. We will also use
the representation to derive the Hankel transforms to relate
the multipole moments in Fourier and configuration space.
We will use the Hankel transforms to derive equations
for computing theoretical template of the projected tensor
power spectra including the effect of survey window
convolution, in analogy with the form of the standard
galaxy power spectrum [64]. Then we will use simulations
of the tidal field assuming the BOSS-like survey footprint
to demonstrate validation of our method for the LPP
estimator of the projected tensor power spectrum and the
accuracy of theoretical templates including the survey
window convolution. With this study, we will be ready
to apply our method to actual data such as the SDSS data,
e.g., for constraining the anisotropic PNG signal in the
rank-2 tensor tracers of LSS.
This paper is organized as follows. In Sec. II, we first

define helicity-based decomposition of rank-2 tensor field
and then derive formula for the coordinate-independent
power spectra of the projected tensor field. In Sec. III, we
develop a methodology of the power spectrum analysis for
the projected tensor field including FFT-based LPP estima-
tors and survey window convolution. In Sec. IV, we use the
simulated tidal field to validate our method assuming the
BOSS-like survey geometry. Finally we give some dis-
cussion along an application of our method to real data in
Sec. V and then give conclusion in Sec. VI.
Throughout this paper, we use the following

abbreviations:

Z
x
≡
Z

dx;
Z
k
≡
Z

dk
ð2πÞ3 ;

Z
k̂
≡
Z

dΩk̂

4π
;

and we use quantities with hat symbol ð̂ Þ to denote their
unit vectors. In addition we define the Fourier and inverse
Fourier transforms as
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fðkÞ≡
Z
x
fðxÞe−ik·x; fðxÞ≡

Z
k
fðkÞeik·x:

and denote the Hankel and inverse Hankel transforms in
terms of the l-th order spherical Bessel function as

Hl½gðrÞ�ðkÞ≡ 4πð−iÞl
Z

r2drjlðkrÞgðrÞ;

H−1
l ½gðkÞ�ðrÞ≡ il

Z
k2dk
2π2

jlðkrÞgðkÞ:

II. TENSOR OBSERVABLES OF LARGE-SCALE
STRUCTURE

A. Tensor field

In this paper we consider a 3D tensor field estimated
from large-scale structure observables, whose components
are denoted as sijðxÞ satisfying sij ¼ sji. The Fourier
transform is given by sijðkÞ≡ R

x sijðxÞe−ik·x. An example
is the tensor field that can be inferred from shapes of
galaxies or dark matter halos. The galaxy or halo shape is
characterized by the second moments of their light or mass
density profile, which form the tensor field sampled at
galaxy/halo positions. The rank-2 tensor field sij carries 6
components at each position, which correspond to scalar,
vector and tensor modes, respectively, as discussed in the
following. The tensor field is, without loss of generality,
can be decomposed into 6 orthogonal polarization states,
which we label p ¼ f0; z; x; y;þ;×g following the nota-

tions in Ref. [65]: sijðkÞ≡P
p s̄

ðpÞðkÞε̄ðpÞij ðk̂Þ where k̂ is

the unit vector of k and ε̄ðpÞij ðk̂Þ is the polarization basis.

The 6 polarization bases are; ε̄ð0Þij ¼ ffiffiffiffiffiffiffiffi
1=3

p
δKij is the scalar

mode of the trace component where δKij is the Kronecker

delta function; ε̄ðzÞij ¼ ffiffiffiffiffiffiffiffi
3=2

p ðk̂ik̂j − δKij=3Þ is the longi-

tudinal scalar mode (ε̄ðzÞii ¼ 0); ε̄ðx;yÞij ¼ ffiffiffiffiffiffiffiffi
1=2

p ðk̂iŵðx;yÞ
j þ

k̂jŵ
ðx;yÞ
i Þ are the vector modes, where ŵðx;yÞðk̂Þ are two

orthonormal and transverse vectors satisfying ŵðpÞ ·

ŵðp0Þ ¼ δKpp0 and k̂ · ŵðpÞ ¼ 0; ε̄ðþ;×Þ
ij ¼ ffiffiffiffiffiffiffiffi

1=2
p ðŵðxÞ

i ŵðxÞ
j −

ŵðyÞ
i ŵðyÞ

j ; ŵðxÞ
i ŵðyÞ

j þ ŵðxÞ
j ŵðyÞ

i Þ are two traceless and trans-

verse tensor modes which satisfy ε̄ðþ;×Þ
ii ¼ 0 and

ε̄ðþ;×Þ
ij k̂j ¼ 0. Note that the results we will show below

are independent of the specific choice of ŵðx;yÞ. We define
the normalization factor of each basis so that

ε̄ðpÞij ε̄ðp
0Þ

ij ¼ δKpp0 . For a galaxy shape case the trace compo-

nent s̄ð0ÞðkÞ characterizes a size of galaxy. The trace
component would be generally an independent observable
from the traceless scalar component [see, e.g., 66–68].
However the analysis method of the trace component is the
same as that for the density fluctuation field, which is well

studied for a galaxy clustering analysis. Hence from now
on, we denote the trace component simply as δðxÞ and
focus on other 5 traceless components.
As more convenient expressions, we alternatively

expand the tensor field by their transformation properties
under a rotation around k̂ as

sijðkÞ ¼
X2
m¼−2

sðmÞðkÞεðmÞ
ij ðk̂Þ; ð1Þ

where the new basis fεðmÞ
ij g is the so-called helicity basis

related to the polarization basis as

εð0Þij ¼ ε̄ðzÞij ; εð�1Þ
ij ¼ 1ffiffiffi

2
p

�
ε̄ðxÞij � iε̄ðyÞij

�
;

εð�2Þ
ij ¼ 1ffiffiffi

2
p

�
ε̄ðþÞ
ij � iε̄ð×Þij

�
: ð2Þ

Note that the helicity tensors transform as εðmÞ
ij → eimψεðmÞ

ij

under a rotation around k̂ by angle ψ . Requiring statistical
homogeneity and isotropy and parity invariance, we can
write the autopower spectra of the tensor field as a sum over
power spectra of each helicity field [22]:

hsijðkÞsklðk0Þi≡ ð2πÞ3δ3Dðkþ k0Þ ×
�
Λð0Þ
ij;klðk̂ÞPð0Þ

ss ðkÞ

þ
X2
λ¼1

ΛðλÞ
ij;klðk̂Þ

PðλÞ
ss ðkÞ
2

�
; ð3Þ

or equivalently,

hsijðkÞsijðk0Þi≡ ð2πÞ3δ3Dðkþ k0Þ
X2
λ¼0

PðλÞ
ss ðkÞ; ð4Þ

where δ3DðkÞ is Dirac delta function and ΛðλÞ
ij;kl ≡P

m¼�λ ε
ðmÞ
ij εðmÞ�

kl are the rotationally invariant tensors in

the plane normal to k̂ with respect to the helicity λ≡ jmj,
and the explicit forms are

Λð0Þ
ij;klðk̂Þ ¼

3

2

�
k̂ik̂j −

1

3
δKij

��
k̂kk̂l −

1

3
δKkl

�
; ð5Þ

Λð1Þ
ij;klðk̂Þ ¼

1

2
ðPikðk̂Þk̂jk̂l þ Pilðk̂Þk̂jk̂k þ Pjkðk̂Þk̂ik̂l

þ Pjlðk̂Þk̂ik̂kÞ; ð6Þ

Λð2Þ
ij;klðk̂Þ ¼

1

2
ðPikðk̂ÞPjlðk̂Þ þ Pilðk̂ÞPjkðk̂Þ

− Pijðk̂ÞPklðk̂ÞÞ; ð7Þ
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where PijðâÞ≡ δKij − âiâj is the projection tensor with
respect to â.
In addition to the autopower spectra, we define the cross-

power spectra with the density field as

hsijðkÞδðk0Þi≡ ð2πÞ3δ3Dðkþ k0Þεð0Þij ðk̂ÞPð0Þ
sδ ðkÞ: ð8Þ

B. Projected tensor field

It is usually difficult to estimate the 3D tensor field from
large-scale structure observables. What is easier to measure
instead is a projected tensor field, where the projection is
onto plane perpendicular to the LOS direction at each
position. For a galaxy shape case, we can estimate the
projected shape of a galaxy from its observed surface
brightness distribution. Correlations of the projected shape
field, i.e., IA correlations [11,18], have been observed from
actual data [e.g., 46,69]. In this paper we do not discuss
another source of correlations of observed galaxy shapes,
which arise from cosmological weak lensing effects due to
the foreground large-scale structure (the so-called cosmic
shear), so please do not confuse IA with cosmic shear. We
hereafter denote the projected tensor field as γijðxÞ satisfy-
ing x̂iγijðxÞ ¼ 0, where we set an observer’s position to the
coordinate origin and x̂ becomes the unit vector along the
line-of-sight direction to x (in this case x̂i is equivalent to
the angular position of x on the celestial sphere of an
observer in our choice of the coordinate). The projected
tensor field can be defined by

γijðxÞ≡ Λð2Þ
ij;klðx̂ÞsklðxÞ: ð9Þ

Note that the last term of Λð2Þ
ij;kl in Eq. (7) ensures that γij is

traceless; γii ¼ 0. Hence γij carries two modes. The
coordinated-independent two modes, often used in the
literature, are E- and B-modes, as discussed below.
For later convenience, we introduce the complex repre-

sentation of the projected tensor field using the helicity
basis in real space:

�2γðxÞ≡ γ1ðxÞ� iγ2ðxÞ≡ eð�2Þ
ij ðx̂ÞγijðxÞ ¼ eð�2Þ

ij ðx̂ÞsijðxÞ;
ð10Þ

where eð�2Þ
ij is defined in terms of the orthonormal basis;

fx̂; êθ; êϕg as

eð�2Þ
ij ðx̂Þ≡ êð�1Þ

i ðx̂Þêð�1Þ
j ðx̂Þ; ð11Þ

with

êð�1Þðx̂Þ≡ 1ffiffiffi
2

p ðêθ � iêϕÞ; ð12Þ

and êθ and êϕ are the unit vectors in the 2D plane
perpendicular to the line-of-sight direction x̂, e.g., the
RA and Dec directions in the celestial coordinate. We

have used the relation eð�2Þ
ij Λð2Þ

ij;kl ¼ eð�2Þ
kl in the last equality

of Eq. (10). The helicity basis eð�2Þ
ij satisfies identities,

eð�2Þ
ii ¼ eð�2Þ

ij eð�2Þ
ij ¼ 0 and eð�2Þ

ij eð∓2Þ
ij ¼ 1. The projected

tensor components γ1 and γ2 correspond to the distortions
along the directions of coordinate axes (êθ or êϕ) and the
directions rotated by 45° from coordinate axes, respectively
[also see Ref. 56, for the definition]. Hereafter we will
use only the “þ2” component because the results in the
following sections are identical to those in the case of using
the “−2” component; we will omit the label “þ2” for

notational simplicity, e.g., γðxÞ≡ þ2γðxÞ, eijðx̂Þ≡eðþ2Þ
ij ðx̂Þ

from here on.

C. Power spectrum of projected tensor field

In this section we briefly review derivation of power
spectra of the projected tensor field assuming the distant
observer approximation or equivalently the global plane-
parallel (GPP) approximation.
As we described above [Eq. (9)], the projected tensor

field, γijðxÞ, is obtained from projection of sijðxÞ onto
plane perpendicular to the LOS direction (x̂). Hence the
projected components of tensor field varies with the
LOS direction, and its Fourier transform is generally given

by a convolution form as γijðkÞ ¼
R
k0 Λð2Þ

ij;klðk − k0Þsklðk0Þ.
Assuming the GPP approximation, the tensor field shares
the same, global LOS direction, which we denote as a
constant unit vector n̂ in the following. In this case the
projection tensor becomes a constant tensor, and the
helicity basis in real space, eij, and the orthonormal vectors,
êθ and êϕ, become independent of x̂. The projected tensor

field reduces to γijðx; n̂Þ ≃ Λð2Þ
ij;klðn̂ÞsklðxÞ and also its

Fourier transform is simply expressed by a multiplication

form as γijðk; n̂Þ ≃ Λð2Þ
ij;klðn̂ÞsklðkÞ.

Since the complex projected tensor field in Fourier space
is given as γðk; n̂Þ≡ eijðn̂ÞsijðkÞ, we can construct the so-
called E=B-mode fields as

Γðk; n̂Þ≡ Eðk; n̂Þ þ iBðk; n̂Þ≡ γðk; n̂Þe−2iϕk̂;n̂ ; ð13Þ
where the phase factor is given as

e2iϕk̂;n̂ ≡ 2eijðn̂Þk̂ik̂j
Pijðn̂Þk̂ik̂j

; ð14Þ

which determines a rotation of the shear components on the
plane perpendicular to the LOS direction by angle between
êθðn̂Þ and the projected wave vector; k⊥i ≡ Pijðn̂Þkj. Using
these modes, we can define the coordinate-independent
power spectra from the observed fields δ and Γ as
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hΓðkÞδ�ðk0Þi≡ ð2πÞ3δ3Dðk − k0ÞPγδðkÞ
≡ ð2πÞ3δ3Dðk − k0ÞPEδðkÞ; ð15Þ

hΓðkÞΓ�ðk0Þi≡ð2πÞ3δ3Dðk−k0ÞPþðkÞ
≡ð2πÞ3δ3Dðk−k0Þ½PEEðkÞþPBBðkÞ�; ð16Þ

hΓðkÞΓðk0Þi≡ ð2πÞ3δ3Dðk − k0ÞP−ðkÞ
≡ ð2πÞ3δ3Dðk − k0Þ½PEEðkÞ − PBBðkÞ�; ð17Þ

wherewe have introduced the E- andB-mode power spectra,
PEE and PBB, and we have assumed that the imaginary part
corresponding to parity-odd power spectrum vanishes due
to parity invariance: hBδi ¼ hEBi ¼ 0. The power spectra
generally depend on the norm of Fourier modes k≡ jkj and
the angle, μk ≡ k̂ · n̂; PðkÞ ¼ Pðk; μkÞ.
We can relate the projected tensor power spectra to the

full 3D power spectra of the tensor field (see the
Appendix A for the derivation):

PγδðkÞ ¼
ffiffiffi
3

8

r
ð1 − μ2kÞPð0Þ

sδ ðkÞ; ð18Þ

PþðkÞ ¼
3

8
ð1 − μ2kÞ2Pð0Þ

ss ðkÞ þ 1

8
ð1 − μ2kÞfð1 − μkÞ2

þ ð1þ μkÞ2gPð1Þ
ss ðkÞ þ 1

32
fð1 − μkÞ4

þ ð1þ μkÞ4gPð2Þ
ss ðkÞ; ð19Þ

P−ðkÞ ¼ ð1 − μ2kÞ2
	
3

8
Pð0Þ
ss ðkÞ − 1

4
Pð1Þ
ss ðkÞ þ 1

16
Pð2Þ
ss ðkÞ



:

ð20Þ

The spectra, Pð0Þ
sδ and PðλÞ

ss (λ ¼ 0, 1, 2), generally depend
on jkj and μk, e.g., due to the RSD effect [8], the primordial
fossil effects [65], and also the super-survey tidal effect
[70,71]. Hence we use vector notation k in the argument
of power spectra to keep generality of our discussion. We
should stress that the μk-dependent prefactors in front of
the underlying tensor power spectra on the rhs, such as
ð1 − μ2kÞ, are purely from geometrical effects due to the
projection from sij to γij. In particular, the factorized form
of the cross- and “minus”-power spectra become important
when we construct FFT-based estimators of the power
spectra of the projected tensor field and derive the asso-
ciated Hankel transforms that give the 1D integral relations
to the correlation functions.
The E- and B-mode autopower spectra of the projected

tensor field are explicitly given as

PEE ¼ 1

2
ðPþ þ P−Þ ¼

3

8
ð1 − μ2kÞ2Pð0Þ

ss þ 1

4
μ2kð1 − μ2kÞPð1Þ

ss

þ 1

16
ð1þ μ2kÞ2Pð2Þ

ss ;

PBB ¼ 1

2
ðPþ − P−Þ ¼

1

4
ð1 − μ2kÞPð1Þ

ss þ 1

2
μ2kP

ð2Þ
ss : ð21Þ

Thus the E-mode power spectrum arises from the scalar
(helicity-0), vector (helicity-1), and tensor (helicity-2)
modes, while the B-mode spectrum is from the vector
and tensor modes, as in the CMB polarization power
spectra [72–74], the cosmic shear spectra [75–77], and
the IA spectra [31,78]. Note that Ref. [79] employed the
Limber approximation to derive the E=B-mode angular
power spectra of the IA shear, where only the Fourier
modes with μk ¼ 0 are considered, and arrived at con-
clusion that the B-mode angular power spectrum is only
from the vector mode.

D. Hankel transforms

In this section we derive the Hankel transforms to relate
the power spectra of the projected tensor field to the
two-point correlation functions. We will later use the
Hankel transform expressions to derive the formula of
power spectrum including the effect of survey window
convolution.
Let us begin with defining coordinate-independent

correlation functions of the projected tensor field. For this
purpose we introduce the projected tensor field at the
position x, defined with respect to line connecting x and x0,
denoted as γrðx;x0Þ:

γrðx;x0Þ≡ γþðx;x0Þ þ iγ×ðx;x0Þ≡ γðxÞe−2iϕr̂;n̂ ; ð22Þ

with

e2iϕr̂;n̂ ≡ eijðn̂Þr̂ir̂j
Pijðn̂Þr̂ir̂j

; ð23Þ

where r≡ x − x0, the vector connecting x and x0. ϕr̂;n̂ in
Eq. (23) is the phase factor rotating the tensor components
on the plane perpendicular to the LOS direction and thus
γþðγ×Þ is the tangential (cross) component with respect to
the projected relative vector; r⊥i ≡ Pijðn̂Þrj.3
Using the above fields, we can now define the coor-

dinate-independent correlation functions as

3In the case of ðn̂; êθ; êϕÞ ¼ ðx̂3; x̂1; x̂2Þ for instance, we
reproduce the standard matrix representation as

�
γþ
γ×

�
¼

�
cos 2ϕ sin 2ϕ

− sin 2ϕ cos 2ϕ

��
γ1

γ2

�
; ð24Þ

where ϕ≡ ϕr̂;x̂3
is the angle between r⊥ and x̂1.
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ξγδðrÞ≡ hγrðx;x0Þδðx0Þi ¼ hγðxÞδðx0Þie−2iϕr̂;n̂ ; ð25Þ

ξþðrÞ≡ hγrðx;x0Þγ�rðx0;xÞi ¼ hγðxÞγ�ðx0Þi; ð26Þ

ξ−ðrÞ≡ hγrðx;x0Þγrðx0;xÞi ¼ hγðxÞγðx0Þie−4iϕr̂;n̂ : ð27Þ

These correlation functions are free of choices of the
coordinates êθ and êϕ; e.g., a rotation of the êθ and êϕ
coordinates does not change these correlation functions.
The correlation functions generally depend on the distance
between two points, r≡ jrj, and angle, μr ≡ r̂ · n̂;
ξðrÞ ¼ ξðr; μrÞ, e.g., due to the RSD effect.
Using the definitions of the power spectra in Eqs. (15)–(17)

and those of the correlation functions in Eqs. (25)–(26), we
can find relations to connect these as4

PγδðkÞ ¼
Z
r
ξγδðrÞe2iðϕr̂;n̂−ϕk̂;n̂Þe−ik·r; ð28Þ

PþðkÞ ¼
Z
r
ξþðrÞe−ik·r; ð29Þ

P−ðkÞ ¼
Z
r
ξ−ðrÞe4iðϕr̂;n̂−ϕk̂;n̂Þe−ik·r: ð30Þ

We consider multipole moments of the power spectrum,
which is defined by the angle average with respect to k̂, and
derive the Hankel transform. The easiest case is the Hankel
transform for the “plus” autopower spectrum, PþðkÞ
because it is similar to that for the redshift-space power
spectrum of the density field:

PðlÞ
þ ðkÞ≡ ð2lþ 1Þ

Z
k̂
PþðkÞLlðμkÞ

¼ 4πð−iÞl
Z

r2drξðlÞþ ðrÞjlðkrÞð¼Hl½ξðlÞþ ðrÞ�ðkÞÞ;

ð31Þ

whereLlðxÞ is the l-th order Legendre polynomial, and we
have defined multipole moments of the power spectrum

and correlation function as PþðkÞ ¼
P

l P
ðlÞ
þ ðkÞLlðμkÞ

and ξþðrÞ ¼
P

l ξ
ðlÞ
þ ðrÞLlðμrÞ.

On the other hand, in the case of the cross-power spectrum
Pγδ and the “minus” autopower spectrum P−, there are
additional phase factors and thus the angle integration is not
trivial unlike the density auto or “plus” auto power spectra.
To overcome this complexity, we use the associated
Legendre polynomials, instead of Ll, which are defined as

Lm
L ðμÞ≡ ð−1Þmð1 − μ2Þm=2 dm

dμm
LLðμÞ: ð32Þ

The associated Legendre polynomials satisfy the following
orthogonal relation and the integration identity (see
Appendix E for the proof):Z

1

−1

dμ
2
Lm
L ðμÞLm

L0 ðμÞ ¼ ðLþmÞ!
ð2Lþ 1ÞðL −mÞ! δ

K
LL0 ð33Þ

Z
k̂
e−imϕk̂;n̂Lm

L ðk̂ · n̂ÞLl0 ðk̂ · r̂Þ¼ 1

2Lþ1
δKLl0L

m
L ðr̂ · n̂Þe−imϕr̂;n̂ ;

ð34Þ
Throughout this paper we use the capital letter “L” to denote
the order of associated Legendre polynomials (Lm

L ), while we
use the lower letter “l” to denote the order of Legendre
polynomials (Ll). Let us first consider the cross power
spectrum [Eq. (28)]. Introducing the multipole moments of
the cross spectrum and the cross correlation, expanded in
terms of the associated Legendre polynomials withm ¼ 2, as

PðLÞ
γδ ðkÞ≡ ð2Lþ 1Þ ðL − 2Þ!

ðLþ 2Þ!
Z
k̂
PγδðkÞLm¼2

L ðk̂ · n̂Þ; ð35Þ

ξγδðrÞ≡
X
L¼2

ξðLÞγδ ðrÞLm¼2
L ðr̂ · n̂Þ; ð36Þ

we can find the following the Hankel transform (see
Appendix C):

PðLÞ
γδ ðkÞ¼ 4πð−iÞL

Z
r2drξðLÞγδ ðrÞjLðkrÞð¼HL½ξðLÞγδ ðrÞ�ðkÞÞ;

ð37Þ
for integer L with L ≥ 2, and we introduced the factor
ðL − 2Þ!=ðLþ 2Þ! in Eq. (35) accounting of the orthogon-
ality relation of the associated Legendre polynomials

[Eq. (33)]. Also note PγδðkÞ¼
P

L¼2P
ðLÞ
γδ ðkÞLm¼2

L ðk̂ · n̂Þ.
Thus the associated Legendre polynomials with order m ¼ 2
can nicely deal with the phase factor in Eq. (28).5 The cross

4The expressions of Eqs. (28)–(30) are in analogy with the 2D
(angular) statistics. If we replace the 3D vectors, ðr;kÞ with the
2D vectors, ðθ;lÞ in Eqs. (28)–(30), the expressions just
correspond to the well-known relation between the angular
power spectrum and the angular 2D correlation function under
the global plane-parallel approximation: e.g.,

CγδðlÞ ¼
Z
θ
ξ2Dγδ ðθÞe2iðϕθ−ϕlÞe−il·θ ¼ 2π

Z
θdθξ2Dγδ ðθÞJ2ðlθÞ;

where Jm is the Bessel function of order m.

5We can expand the cross statistics in terms of the usual
Legendre polynomials instead as in the case of the galaxy
clustering; PγδðkÞ ¼

P
l¼0 P

ðlÞ
γδ ðkÞLlðk̂ · n̂Þ and ξγδðrÞ ¼P

l¼0 ξ
ðlÞ
γδ ðrÞLlðr̂ · n̂Þ, however, the moments of the same order

ðPðlÞ
γδ ; ξ

ðlÞ
γδ Þ are not directly associated with each other by the

Hankel and inverse Hankel transformations.
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power spectrum of projected tensor field is particularly
important, e.g., for IA measurements, so this is one of the
main results of this paper.
Similarly, using the associated Legendre polynomials

with orderm ¼ 4, we can find the Hankel transform for the
minus autopower spectrum of shear as

PðLÞ
− ðkÞ≡ ð2Lþ1Þ ðL−4Þ!

ðLþ4Þ!
Z
k̂
P−ðkÞLm¼4

L ðk̂ · n̂Þ

¼ 4πð−iÞL
Z

r2drξðLÞ− ðrÞjLðkrÞð¼HL½ξðLÞ− ðrÞ�ðkÞÞ;

ð38Þ

for integer L with L ≥ 4, and note P−ðkÞ ¼P
L¼4 P

ðLÞ
− ðkÞLm¼4

L ðk̂ · n̂Þ.
Before proceeding we would like to notice the following

things. One might think that Eqs. (37) and (38) are not a
complete expansion of the underlying power spectra, Pγδ

and P−, at first glace, because a set of the associated
Legendre polynomials fLm

L ðμÞg with fixed mð≠ 0Þ is not a
complete basis. An arbitrary function fðμÞ cannot be
generally expanded by a series of Lm

L ðμÞ; e.g., fðμÞ ¼ 1

cannot be expanded by fLm¼2
L g, because the lowest order

Lm¼2
L is Lm¼2

L¼2 ðμÞ ¼ 3ð1 − μ2Þ. However, this is not true. As
can be found from Eqs. (18) and (20), the power spectra Pγδ

and P− are given by the underlying 3D power spectra of

the tensor fields, Pð0Þ
sδ and PðλÞ

ss , with geometrical prefactors

ð1−μ2kÞ and ð1−μ2kÞ2, respectively: Pγδ ∝ ð1 − μ2kÞPð0Þ
δs and

P−∝ð1−μ2kÞ2½Pð0Þ
ss þ����. Recalling the definitions PγδðkÞ¼P

L¼2P
ðLÞ
γδ ðkÞLm¼2

L ðk̂·n̂Þ and P−ðkÞ¼
P

L¼4P
ðLÞ
− ðkÞLm¼4

L ×

ðk̂·n̂Þ, we can find that a set of fLm¼2
L ðμkÞ=ð1 − μ2kÞg

and fLm¼4
L ðμkÞ=ð1 − μ2kÞ2g includes a complete set of μ-

polynomials, fμ0k; μ1k; μ2k; � � �g. Hence a set of the multipole

moments, PðLÞ
γδ ðkÞ or PðLÞ

− ðkÞ, carries the full information on

the underlying power spectra, Pð0Þ
sδ ðkÞ and PðλÞ

ss ðkÞ.
Using the Hankel transform expressions Eqs. (37) and

(38), we will below develop a method that allows an
efficient FFTlog based computation of the power spectrum
including the survey window effect. Note that Refs. [30,58]
derived the Hankel transform relations between the 3D
power spectrum and the 3D correlation function for the IA
shear field assuming the linear IA model and linear RSD
effect. Compared to this, we have not employed any model
for the projected tensor field or the underlying power
spectra. Therefore the above Hankel transform formulae are
valid for any projected tensor field.

III. METHODOLOGY OF ANALYSIS

A. Estimators

In a wide solid-angle survey, the projection to define the
projected tensor field varies with the LOS direction (x̂) as

we discussed around Eq. (10). In this section we construct
estimators for multipole moments of 3D power spectrum of
such LOS-dependent projected tensor field, with the form
allowing fast Fourier transforms (FFTs).

1. Galaxy clustering

Before going to the power spectra of projected tensor
field, we briefly review a derivation for FFT-based estima-
tors for multipole moments of redshift-space galaxy power
spectrum, following [60] [also see Refs. 61,62].
Since the RSD effect arises from the LOS component of

the peculiar velocity of each galaxy in pair, the redshift-space
power spectrum breaks statistical translation invariance.
Even in such case, we can define the multipole moments
around an observer by the spatial average of the local power
spectrum considering the LOS directions toward the local
regions [see 61, for more detailed discussion]:

P̂ðlÞðkÞ≡ ð2lþ 1Þ
Z
k̂;x;x0

δðxÞδðx0Þe−ik·ðx−x0ÞLlðk̂ · d̂Þ;

ð39Þ
where x and x0 are positions of paired two galaxies used in
the two-point correlation function estimate, and d ¼
dðx;x0Þ is the direction referring to the pair ðx;x0Þ, e.g.,
the midpoint vector of the two galaxies; d≡ ðxþ x0Þ=2.
Note that, when all the galaxies in a survey region is
sufficiently distant to an observer or we can assume the
so-called distant observer approximation, we can take one
global n̂ for the LOS direction to all galaxy pairs and
Eq. (39) reduces to the GPP estimator:

P̂ðlÞðkÞ ≃ ð2lþ 1Þ
Z
k̂;x;x0

δðxÞδðx0Þe−ik·ðx−x0ÞLlðk̂ · n̂Þ

¼ ð2lþ 1Þ
Z
k̂
jδðkÞj2Llðk̂ · n̂Þ: ð40Þ

This recovers the statistical translation invariance.
The direct estimation using Eq. (39) is computationally

expensive for l > 0 because we need to calculate the
double sum with respect to x and x0 due to dðx;x0Þ. To
avoid this problem, we approximate d̂ as the direction
toward one galaxy in each pair, i.e., d̂ ≃ x̂ in Eq. (39) which
is so-called the endpoint approximation [61–63,80]. The
estimator [Eq. (39)] can be reduced to

P̂ðlÞðkÞ ≃ ð2lþ 1Þ
Z
k̂;x;x0

δðxÞδðx0Þe−ik·ðx−x0ÞLlðk̂ · x̂Þ

¼ ð2lþ 1Þ
Z
k̂

	Z
x
δðxÞe−ik·xLlðk̂ · x̂Þ




×

	Z
x0
δðx0Þeik·x0




≡ ð2lþ 1Þ
Z
k̂
δðlÞðkÞδð−kÞ; ð41Þ

ANALYSIS METHOD FOR 3D POWER SPECTRUM OF … PHYS. REV. D 105, 123501 (2022)

123501-7



where

δðlÞðkÞ≡
Z
x
δðxÞe−ik·xLlðk̂ · x̂Þ: ð42Þ

Note that δð0ÞðkÞ ¼ δðkÞ. This is often called Yamamoto
estimator or the local plane-parallel (LPP) estimator for
galaxy power spectrum. One advantage of this approxi-
mation is that we can use the FFT algorithm to compute
δðlÞðkÞ decomposing the Legendre polynomial in Eq. (42)
into the sum of the products of Cartesian components
[61,62], e.g., L2ðk̂ · x̂Þ ¼ 3

2
k̂ik̂jx̂ix̂j − 1

2
, or the spherical

harmonics [63]:

Llðk̂ · x̂Þ ¼ 4π

2lþ 1

Xl
m¼l

Ym
l ðk̂ÞYm�

l ðx̂Þ; ð43Þ

thereby allowing an efficient, fast computation of the
multipole moments. The LPP estimator [Eq. (41)] has
been found to be fairly accurate on scales of interest,
compared to the estimator [Eq. (39)] [61,62].

2. Projected tensor field

In this section we construct estimators for multipole
moments of power spectrum of the projected tensor field. In
doing this, we need to take into account the LOS-direction
dependence of the projection operator Pijðx̂Þ in each
galaxy pair.
Let us first consider the cross power spectrum, Pγδ. From

Eqs. (25), (28), and (35), we can formally define the
estimator for multipole moments of Pγδ, without the GPP
approximation, in analogy to Eq. (39):

P̂ðLÞ
γδ ðkÞ≡ ð2Lþ 1Þ ðL − 2Þ!

ðLþ 2Þ!
Z
k̂;x;x0

γðxÞδðx0Þe−2iϕk̂;d̂

× e−ik·ðx−x0ÞLm¼2
L ðk̂ · d̂Þ; ð44Þ

where we recast the definition of the phase factor for later
use:

e2iϕk̂;d̂ ≡ 2eijðd̂Þk̂ik̂j
Pijðd̂Þk̂ik̂j

¼ 2eijðd̂Þk̂ik̂j
1 − ðk̂ · d̂Þ2 : ð45Þ

Note that we replaced the vector argument of Lm¼2
L , n̂, in

Eq. (35) with d̂ in Eq. (44) to explicitly include the LOS
dependence, instead of the global (constant) LOS direction.
Using the endpoint approximation, d̂ ≃ x̂, similarly to

Eq. (41) and writing the phase factor explicitly, Eq. (44)
reduces

P̂ðLÞ
γδ ðkÞ ≃ ð2Lþ 1Þ ðL − 2Þ!

ðLþ 2Þ!
Z
k̂

	Z
x
γðxÞ2e�ijðx̂Þ

× e−ik·x
Lm¼2
L ðk̂ · x̂Þ

1 − ðk̂ · x̂Þ2


k̂ik̂j

	Z
x0
δðx0Þeik·x




≡ ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!

Z
k̂
ΞðLÞ
ij ðkÞk̂ik̂jδð−kÞ; ð46Þ

where

ΞðLÞ
ij ðkÞ≡

Z
x
γðxÞ2e�ijðx̂Þe−ik·x

Lm¼2
L ðk̂ · x̂Þ

1 − ðk̂ · x̂Þ2 : ð47Þ

In the first equality on the rhs of Eq. (46), we were able to
rewrite the estimator by a product form of the Fourier
transforms as explicitly denoted by the square brackets, as
in Eq. (41). In particular, the use of the associated Legendre
polynomials of order m ¼ 2 leads to a cancellation of the
factor in the denominator of one Fourier transform,
1 − ðk̂ · x̂Þ2, because Lm¼2

L ðk̂ · x̂Þ has the overall same
factor 1 − ðk̂ · x̂Þ2 at all order: consequently, Lm¼2

L ðk̂ · x̂Þ=
½1 − ðk̂ · x̂Þ2� becomes polynomials of ðk̂ · x̂Þ as in the
standard Legendre polynomials, or similarly to Eq. (41).
Thus the product form allows us to use FFTs. For example,

since ΞðLÞ
ij ¼ ΞðLÞ

ji (therefore 6 components), we need to
compute a total of 6 × ð1þ 5þ 9Þ ¼ 90 FFTs for the
multipole moments with L ¼ 2, 4, 6.
Similarly, assuming the LPP endpoint approximation,

we can define the estimators for the multipole moments of
the autopower spectra, Pþ and P−, from Eqs. (29) and (30)
as explicitly derived in Appendix B:

P̂ðlÞ
þ ðkÞ≡ ð2lþ 1Þ

Z
k̂
γðlÞðkÞγ�ð−kÞ; ð48Þ

P̂ðLÞ
− ðkÞ≡ ð2Lþ 1Þ ðL − 4Þ!

ðLþ 4Þ!
Z
k̂
ΞðLÞ
ijklðkÞk̂ik̂jk̂kk̂lγð−kÞ:

ð49Þ

where γ�ð−kÞ≡ R
x γ

�ðxÞeik·x and we have defined the
auxiliary fields as

γðlÞðkÞ≡
Z
x
γðxÞe−ik·xLlðk̂ · x̂Þ; ð50Þ

ΞðLÞ
ijklðkÞ≡

Z
x
γðxÞ4e�ijðx̂Þe�klðx̂Þe−ik·x

Lm¼4
L ðk̂ · x̂Þ

½1− ðk̂ · x̂Þ2�2 : ð51Þ

Note that as shown in Eq. (29), the relation between the
“plus” power spectrum, Pþ, and the correlation function,
ξþ, obeys the same rule as in the density case. Therefore the
multipole components of it can be defined in terms of the
usual Legendre polynomials and thus the resulting
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estimator, Eq. (48), reduces to the similar form of the
clustering estimator, Eq. (41). On the other hand, in the case
of the “minus” power spectrum, P−, the additional phase
factor e−4iϕ exists in the transformation relation [Eq. (30)]
as in the case of the cross-power spectrum. Hence we define
the multipole coefficients with respect to the associated
Legendre polynomials of order 4, Lm¼4

L . Again the inte-
grand in Eq. (51) is the product form of x̂ and k̂ thanks to

the cancellation of ½1 − ðk̂ · x̂Þ2�2. Since ΞðLÞ
ijkl has sym-

metric properties, it requires a total of 15 × ð1þ 5þ 9Þ ¼
225 FFT computations for the multipoles with L ¼ 4, 6, 8.

B. Window convolutions

For an actual observation the power spectrum measure-
ment is affected by survey window effects. In this section,
we derive formula for the window-convolved power spec-
trum of the projected tensor field, in analogy with the
window convolution for the power spectrum of galaxy
density field [64,81,82]. The detail derivation is shown in
Appendix D and here we show the key equations.
We can measure the underlying cosmology fields

through a survey window function:

δ̃ðxÞ ¼ WδðxÞδðxÞ;
γ̃ðxÞ ¼ WγðxÞγðxÞ;

where Wδ, Wγ are the window functions for the density
field and projected tensor field, respectively. We use the
tilde symbol to denote the observed fields. The window
functions Wδ and Wγ are generally different, but in the
following we assume WδðxÞ ¼ WγðxÞ≡WðxÞ for sim-
plicity. For convenience, we also define the autocorrelation
of the window function:

QðrÞ≡
Z
x
WðxÞWðxþ rÞ; ð52Þ

and its multipole moments under the LPP approximation
are defined as

QlðrÞ≡ð2lþ1Þ
Z

dΩr̂

4π

Z
x
WðxÞWðxþrÞLlðr̂ · d̂Þ; ð53Þ

where d̂ is the direction toward the pair ðx;xþ rÞ.
After the calculation shown in Appendix D, we finally

obtain the unified expression for window convolutions for
various power spectra:

P̃ðlÞ
X ðkÞ ¼ 4πð−iÞl

Z
r2drjlðkrÞ

X
l0

QX
ll0 ðrÞ

×

	
il

0
Z

k02dk0

2π2
jl0 ðk0rÞPðl0Þ

X ðk0Þ


; ð54Þ

where

QX
ll0 ðrÞ≡

X
l00

Ql00 ðrÞð2lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mXÞ!
ðlþmXÞ!

ðl0 þmXÞ!
ðl0 −mXÞ!

s

×
�
l00 l l0

0 0 0

��
l00 l l0

0 mX −mX

�
; ð55Þ

with ðX; mXÞ ∈ fðδδ; 0Þ; ðγδ; 2Þ; ðþ; 0Þ; ð−; 4Þg. The 2 × 3
matrix form represents the Wigner 3j symbol. Note that the
clustering case, X ¼ δδ, corresponds to the results shown in
Ref. [82].6 In the case of X ∈ fγδ;−g, l and l0 in Eq. (54)
and (55) have to be considered as L and L0, which means
the labels of the associated Legendre polynomials.
Comparing the definition of the Hankel (H) and inverse
Hankel (H−1) transformations, we can reexpress Eq. (54) as

P̃ðlÞ
X ðkÞ ¼ Hl

	X
l0

QX
ll0 ðrÞH−1

l0 ½Pðl0Þ
X ðk0Þ�ðrÞ



ðkÞ

¼ Hl

	X
l0

QX
ll0 ðrÞξðl

0Þ
X ðrÞ



ðkÞ: ð56Þ

Thus once we calculate the window correlation function
multipoles, Ql, by the pair-counting of random particles
that trace the survey geometry, the convolution effects on
the measured power spectrum multipoles are now just a
sum of the window multiplications between the inverse
Hankel and Hankel transformations, which can be evalu-
ated by 1D FFTs known as FFTlog [83]. This fast and
precise convolution scheme was originally proposed by
Ref. [64] for the galaxy clustering power spectrum and we
here find that the same method can be applied to the case of
the projected tensor power spectra. Although the above
formulae are general, we will hereafter assume WðxÞ ¼ 1
in the measured region and 0 in the unmeasured region,
respectively, and ignore the small-scale effects, e.g., masks
due to bright stars.

IV. VALIDATION TEST

In this section, we show a validation of the LPP power
spectrum estimators we developed in the preceding section,
assuming a survey geometry that mimics the BOSS-like
survey footprint. We divide the validation test into two
parts: first we demonstrate how well the LPP estimator
works in curved sky configuration, compared with the GPP
estimator. Then we compare the measurements from the
LPP estimator with the theoretical prediction including the
survey window convolution.

6We omit the integral constraints and the wide-angle correc-
tions for simplicity.
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A. Data and settings

To perform our validation test we use 1000 simulation
realizations of the tidal field in a BOSS-like survey
footprint, as described in the following. We first generate
each realization of the matter density field, δðkÞ using
the linear matter power spectrum PðkÞ at redshift z ¼ 0,
in a simulation box with comoving side length of
3 h−1Gpc with 5123 grids. The Nyquist frequency
kNy ≃ 0.5 hMpc−1. As for the input PðkÞ we assume the
flat-geometry ΛCDM cosmology, which is consistent with
the Planck CMB data [84]: Ωm ¼ 0.3156 for the matter
density parameter, ωbð≡Ωbh2Þ ¼ 0.02225, ωcð≡Ωch2Þ ¼
0.1198 for the physical density parameters of baryon and
CDM, and ns ¼ 0.9645 and lnð1010AsÞ ¼ 3.094 for the tilt
and amplitude parameters of the primordial curvature
power spectrum. The input power spectrum corresponds
to σ8 ¼ 0.834, the rms value of present-day mass fluctua-
tions within a sphere of radius 8 h−1Mpc. We then
compute the tidal field TijðkÞ≡ ðk̂ik̂j − δij=3ÞδðkÞ in
Fourier space and inverse-Fourier-transform the field
to obtain TijðxÞ on each grid in configuration space.
We repeated the above procedures to generate 1000
realizations of Tij using different random seeds. In this
validation test, we simply assume that the tidal field
itself is inferred from some tensor-type large-scale struc-
ture observables such as galaxy shapes. Although this is a
very simplified setup, we think this is enough to validate
both our LPP estimators and window convolution calcu-
lations for the following reasons. Our main interest is to
study how well the LPP estimator recovers the desired
signal at large scales where the GPP approximation
ceases to be accurate. For the BOSS-like survey geometry,
the window effects become significant at large scales
k≲ 0.1 hMpc−1. In the standard structure formation
model with GR, large-scale correlations of any traceless
scalar component should arise from the tidal field, i.e.,
the longitudinal scalar mode or helicity-0 component
defined in Eq. (1). For example the large-scale IA signal
of galaxy shapes is given by the linear alignment
model [e.g., 18]. Nonlinear structure formation generally
induces other helicity components [e.g., 20,22], but these
appear only at small scales where the LPP estimator
should work and the window convolution effect is small.
Therefore we consider that our setup is sufficient to
validate our method.
We further define the projected tensor field observed at

each grid as

γðxÞ≡ eijðx̂obsÞTijðxÞ: ð57Þ

From Eqs. (15)–(17), the underlying power spectra of the
projected tensor field are given as

PγδðkÞ ¼
1

2
ð1 − μ2kÞPðkÞ;

PþðkÞ ¼ P−ðkÞ ¼
1

4
ð1 − μ2kÞ2PðkÞ: ð58Þ

In the following we do not consider the RSD effect, so the
μk-dependence of the power spectra is from the geometrical
factor, ð1 − μ2kÞ or ð1 − μ2kÞ2.
We employ a survey window that mimics the BOSS

Northern Galactic cap (NGC) footprint [85]. To be more
precise, we place a hypothetical observer at one particular
position in each simulation box and then cutout the fields
that lie in the hypothetical survey region with angular
ranges of RA ∈ ½120°; 260°� and DEC ∈ ½−5°; 70°� and the
radial distance range of r ∈ ½1.0; 1.5� h−1Gpc, as illustrated
in Fig. 1. Here the radial window roughly corresponds to
the redshift range 0.35≲ z ≲ 0.55 for the ΛCDM model or
the redshift range of the “mid-z NGC sample” used in the
cosmology analysis [e.g., 81]. The survey geometry has
the solid-angle area of about 8,000 square degrees on the
celestial sphere for the observer and the comoving volume
of about 2 ðh−1GpcÞ3.

B. Results: LPP vs GPP

In this section we compare the power spectra that are
measured from the fields fδðxÞ; γðxÞg in each realization
using the GPP or LPP estimators. To validate or assess the
accuracy of the LPP estimator for the projected tensor field,
we consider the following three configurations of the
projection, as schematically illustrated in Fig. 1:

(i) Case (a): This is the setup that mimics an actual
observation, intended to validate the LPP estimators
developed in this paper. We put an observer on the
origin and define the LOS direction to each grid
point x, i.e., x̂obs ¼ x̂. We define the projected
tensor field from the proper projection by
Eq. (57): γðxÞ≡ eijðx̂ÞTijðxÞ. Then we measure
the power spectra of the projected field using the
LPP estimator [Eq. (46)].

(ii) Case (b): This setup is for evaluating the inaccuracy
of GPP estimator in the power spectrum measure-
ment. For the projected tensor field, we use the same
definition as in Case (a): x̂obs ¼ x̂ at each grid
position. However, for the power spectrum meas-
urement, we adopt the global LOS direction (n̂)
toward the midpoint of the survey region to imple-
ment the GPP estimator; we set d̂ → n̂ in Eq. (44)7

for the cross power spectrum estimator and thus the
estimator become

7Equivalently we set e�ijðx̂Þ=½1 − ðk̂ · x̂Þ2� → e�ijðn̂Þ=½1 − ðk̂ ·
n̂Þ2� for the phase factor and Lm¼2

L ðk̂ · x̂Þ → Lm¼2
L ðk̂ · n̂Þ for the

associated Legendre polynomials, respectively, in Eq. (46).
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P̂ðLÞ
γδ ðkÞ→ ð2Lþ 1Þ ðL− 2Þ!

ðLþ 2Þ!
Z
k̂;x;x0

γðxÞδðx0Þe−2iϕk̂;n̂

× e−ik·ðx−x0ÞLm¼2
L ðk̂ · n̂Þ

¼ ð2Lþ 1Þ ðL− 2Þ!
ðLþ 2Þ!

Z
k̂
½Eðk; n̂Þ þ iBðk; n̂Þ�

× δð−kÞLm¼2
L ðk̂ · n̂Þ; ð59Þ

which is equivalent to the one used in Ref. [31].
Therefore this case uses an inconsistent treatment for
the projection for the tensor field and for the power
spectrum estimator.

(iii) Case (c): This is the case for distant observer
approximation. Namely we set x̂obs ≡ n̂ to define
the projected tensor field; γðxÞ≡ eijðn̂ÞTijðxÞ and
implement the GPP estimator [Eq. (59)] for the
power spectrum measurement. To have a fair com-
parison, we use the same survey window as Case (a)
and (b).

We use the cubic volume of 27 ðh−1GpcÞ3, which is the
same as that of the original simulations, to perform the FFT
transform. To reduce the statistical errors, in the following
we show the average of the power spectra measured from
the 1000 realizations.
Figure 2 compares the multipole moments of the power

spectra of the projected tidal field, P̃ðLÞ
γδ and P̃ðlÞ

þ with L ¼ 2

and l ¼ 2, respectively, measured using the LPP or GPP
estimators in Case (a)–(c) in Fig. 1. As shown in Eq. (58),
the multipole moments of the underlying power spectra,

Pγδ and Pþ, differ from the matter power spectrum PðkÞ by
a constant factor that is from the μk-integral of the
geometrical factor, ð1 − μ2kÞn (n ¼ 1 or 2), weighted by
the respective basis at each order given in Eq. (62). We
multiply the simulated results by this factor so that the
results match PðkÞ if the window function is absent, for
illustrative purpose. First of all, the results for Case (a) and
(c) fairly well agree with each other, verifying that the LPP
estimator developed in this paper works. However, note
that the agreement is not necessarily perfect, and we expect
subtle difference because the window functions Ql in Case
(a) and (c) are different with each other due to the different
LOS assumptions [see Eq. (53)] and hence the resulting
window convolution arises from different Fourier modes in
the two cases. Both Case (a) and (c) results show that the
BOSS-like survey window (Fig. 1) affects the mulitpoles at
k≲ 0.1 hMpc−1; the window effect leads to scale-depen-
dent suppression in the multipole amplitudes at the scales
compared to the input PðkÞ. On the other hand, the Case
(b) result displays a significant deviation from the input
PðkÞ or the Case (a)/(c) result and also does not match the
input even at small scales because the anisotropic signal
from the galaxy pairs far from the global LOS direction,
i.e., the midpoint vector of the survey geometry, is not
averaged with the correct weighting due to the inconsistent
LOS assumptions for the projected tensor field and for the
estimation. Note that the discrepancy of the Case (b) from
Case (a) results is scale-dependent at k≲ 0.1 hMpc−1 and
therefore cannot be absorbed by a change in the normali-
zation factor. Thus we conclude that the LPP estimator

(a) (b) (c)

FIG. 1. A schematic illustration of setups used for validation of the LPP power spectrum estimators for the projected tensor field. Gray
shaded region in each panel denotes a hypothetical survey window for which we take the BOSS Northern Galactic cap (NGC) footprint;
its solid angle area Ωsky ≃ 8; 000 deg2 and the radial width Δr ¼ 500 h−1Mpc (see text for details). Each blue ellipse denotes a “shape”
of the projected tidal field at its position; we define the field by projecting the 3D tidal field onto plane perpendicular to the LOS
direction, denoted by the black arrow. Case (a): This setup is for validating the LPP estimators. For each pair taken in the power
spectrum estimate, we use the local LOS direction, denoted as red arrow, to compute the phase factor and the associated Legendre
polynomials, which are needed for estimation of the multipole moments (see text for details). Case (b): The definition of the projected
tidal field is the same as Case (a), but we use the GPP estimator to measure the multipole moments of power spectra. The global LOS
direction (red arrow) is set as the direction of the midpoint of the survey region, viewed by the observer position. Case (c): This is the
case where we can employ the distant observer approximation. In this case we can use the global LOS direction to define the projected
tidal field and to implement the GPP estimator. We use the same LOS direction as the red arrow in Case (b). To have a fair comparison,
we employ the same survey window as Case (a) and (b). For all the three cases we use exactly the same simulation realizations of the
underlying 3D tidal field.
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works well to have an almost unbiased measurement of the
power spectrum of the projected tidal field.

C. Results: LPP estimator vs theory prediction

To interpret the measured power spectra of the projected
tensor field such as those in Fig. 2, we need theoretical
templates of the multipole moments including the survey
window effects. As we derived by Eq. (56), we can
compute the theoretical templates for the window-con-
volved power spectrum once the underlying power spectra
of the projected tensor field and the correlation function of
the window function, QðrÞ [Eq. (52)], are given. In this
section we evaluate whether the theoretical templates,

computed based on our formula, can reproduce the multi-
pole moments of power spectra measured from the simu-
lations of BOSS survey footprint in Sec. IV B.
In our validation simulations of the tidal field, the

underlying power spectra are given by Eq. (58); the power
spectra, apart from the geometrical μk-dependence of
ð1 − μ2kÞn, has no μk-dependence, i.e., the real-space matter

power spectrum, PðkÞ. In this case the moments, PðL¼2Þ
γδ ðkÞ,

Pðl¼0;2;4Þ
þ ðkÞ and PðL¼4Þ

− ðkÞ, contain the full information.
Using the formula Eq. (56), we can derive the theoretical
predictions for these moments including the survey window
effects:

P̃ðl¼0ÞðkÞ ¼ 4π

Z
∞

0

r2drj0ðkrÞξð0ÞðrÞQ0ðrÞ;

P̃ðL¼2Þ
Eδ ðkÞ ¼ −4π

Z
∞

0

r2drj2ðkrÞ
1

6
ξð2ÞðrÞ

�
Q0ðrÞ −

2

7
Q2ðrÞ þ

1

21
Q4ðrÞ

�
;

P̃ðl¼0Þ
þ ðkÞ ¼ 4π

Z
∞

0

r2drj0ðkrÞ
	
2

15
ξð0ÞðrÞQ0ðrÞ −

4

105
ξð2ÞðrÞQ2ðrÞ þ

2

315
ξð4ÞðrÞQ4ðrÞ



;

P̃ðl¼2Þ
þ ðkÞ ¼ −4π

Z
∞

0

r2drj2ðkrÞ
	
2

15
ξð0ÞðrÞQ2ðrÞ −

4

21
ξð2ÞðrÞ

�
Q0ðrÞ þ

2

7
Q2ðrÞ þ

2

7
Q4ðrÞ

�

þ 2

35
ξð4ÞðrÞ

�
2

7
Q2ðrÞ þ

100

693
Q4ðrÞ þ

25

143
Q6ðrÞ

�

;

FIG. 2. Left panel: the lowest-order multipole moment of the cross-power spectrum of the projected tidal field, Pð2Þ
γδ , measured using

the LPP or GPP estimators in each of the three setups illustrated in Fig. 1. The blue circle symbols show the result for Case (a), i.e., from
the LPP estimator developed in this paper, while the green-triangle symbols are the result for Case (c), the GPP estimator under the
distant observer approximation. The orange inverted-triangle symbols are the result for Case (b), which uses the inconsistent LOS
directions for the projected tensor field and for the power spectrum estimator. The dashed line denotes the input matter power spectrum
from which the tidal field is simulated. Right panel: similar to the left panel, but the results for the quadrupole moment of the autopower

spectrum of the projected tidal field, Pð2Þ
þ ðkÞ. To make the comparison easier, we multiply all the results by normalization factor to match

them with the input PðkÞ amplitude (see text for details).
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P̃ðl¼4Þ
þ ðkÞ ¼ 4π

Z
∞

0

r2drj4ðkrÞ
	
2

15
ξð0ÞðrÞQ4ðrÞ −

4

21
ξð2ÞðrÞ

�
18

35
Q2ðrÞ þ

20

77
Q4ðrÞ þ

45

143
Q6ðrÞ

�

þ 2

35
ξð4ÞðrÞ

�
Q0ðrÞ þ

20

77
Q2ðrÞ þ

162

1001
Q4ðrÞ þ

20

143
Q6ðrÞ þ

490

2431
Q8ðrÞ

�

;

P̃ðL¼4Þ
− ðkÞ ¼ 4π

Z
∞

0

r2drj4ðkrÞ
1

420
ξð4ÞðrÞ

�
Q0ðrÞ −

4

11
Q2ðrÞ þ

18

143
Q4ðrÞ −

4

143
Q6ðrÞ þ

7

2431
Q8ðrÞ

�
; ð60Þ

where ξðlÞ is the lth order inverse Hankel transform of the
input matter power spectrum:

ξðlÞðrÞ≡ il
Z

∞

0

k2dk
2π2

PðkÞjlðkrÞ ¼ H−1
l ½PðkÞ�ðrÞ; ð61Þ

and we have used the relations:

ξðL¼2Þ
γδ ¼ 1

6
ξð2Þ;

n
ξðl¼0Þ
þ ; ξðl¼2Þ

þ ; ξðl¼4Þ
þ

o
¼

�
2

15
ξð0Þ;−

4

21
ξð2Þ;

2

35
ξð4Þ

�
;

ξðL¼4Þ
− ¼ 1

420
ξð4Þ: ð62Þ

Here we also gave the monopole moment of the input
matter power spectrum, P̃ð0Þ, for comparison.
First, Fig. 3 shows the multipole moments of QlðrÞ

[Eq. (53)], which is estimated by the pair-counting method
of random points generated in the survey footprint [64].
From Eq. (60) we show the results up to Q8. The figure
shows that the BOSS-like survey window yields the higher-
order multipoles, although the higher-order moments have
smaller amplitudes than the lower-order ones.
Figure 4 shows another main result of this paper. The

figure shows that the measurement and prediction for the

lowest order moments, P̃ð2Þ
γδ and P̃ð0Þ

þ , are in good agreement

with each other to within 1% in the amplitude down to
k ≃ 0.01 hMpc−1. Note that the error bars in each k bin are
1σ errors on the mean, and the statistical error expected for
the BOSS-like survey is about factor of 30 greater than the
errors shown here. The agreement indicates that the LPP
estimator works well, and is ready to use for cosmological
analysis. On the other hand, the minus autopower spectrum,

P̃ð4Þ
− , and the higher-order moments of P̃þ such as P̃ð2Þ

þ and

P̃ð4Þ
þ , display more than 3% deviations from the theoretical

predictions, with increasing deviations in lower k bins at
typically k≲ 0.03 hMpc−1. We think that the deviations are
due to breakdown of the plane-parallel approximation and
can be explained by the wide-angle effect [e.g., 86, for such
discussion on the density power spectrum] (also see [87]).
This is beyond the scope of this paper, and will be our
future work. Another important remark is that the survey
window effect gives more significant suppression in the
moment amplitudes of the power spectrum for the projected
tidal field, compared to that for the standard power
spectrum of the density field (P̃ðl¼0Þ here). This is mainly
because the projection prefactor, ð1 − μ2kÞn, makes the
underlying power spectrum more anisotropic and thus
causes a more coupling of the Fourier modes with the
higher moments of the window function, Ql. This means
that the window effect is important to take into account in
order to make a correct interpretation of the measured
power spectra of the projected tensor field.
For comprehensiveness of discussion, we also study the

moments that arise from leakage of the power due to the
survey window effect:

P̃ðl¼2ÞðkÞ ¼−4π
Z

∞

0

r2drj2ðkrÞξð0ÞðrÞQ2ðrÞ;

P̃ðL¼4Þ
Eδ ðkÞ ¼ 4π

Z
∞

0

r2drj4ðkrÞ
1

6
ξð2ÞðrÞ

×

�
3

35
Q2ðrÞ−

6

77
Q4ðrÞþ

3

143
Q6ðrÞ

�
: ð63Þ

Note that these moments should be vanishing if there is no
survey window effect. Figure 5 shows the leakage moments
have a few per cent powers compared to the main signals,

P̃ðl¼0Þ and P̃ðL¼2Þ
γδ . We also show that the above theoretical

FIG. 3. Multipole moments of the autocorrelation function of
survey window, Ql [Eq. (53)], computed using the pair-counting
method for the BOSS-like survey window in Fig. 1.
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prediction, based on our formula, can well reproduce the
leakage moments.

V. DISCUSSION

We would like to mention about several things looking
ahead to application of our method to real data. Direct
observables of the auto power spectra are the “plus-” and
“minus-” spectra, Pþ and P−, not the spectra of the “E”
and “B” modes as shown in Eq. (21). Although
fPþðk; μÞ; P−ðk; μÞg and fPEEðk; μÞ; PBBðk; μÞg are
exchangeable at the level of functions of ðk; μÞ, the direct
observables in our method are the angle-integrated

moments, fPðl¼0;2;4;…Þ
þ ðkÞ; PðL¼4;6;…Þ

− ðkÞg, in terms of dif-
ferent basis, i.e., the Legendre and associated Legendre
polynomials, respectively. Hence, it is not straightforward
to reconstruct the E- and B-mode spectra from the
measured moments, where the E- and B-mode spectra
might be used to measure the power spectrum of the
dominated scalar mode for the ΛCDM model and to test
residual systematics in the linear regime, respectively, e.g.,
as expected in the case of the IA spectra and the cosmic
shear angular power spectra. Nevertheless, we stress that a
set of the multipole moments of Pþ and P− can be used to

extract the full information on the underlying power spectra
of scalar, vector, and tensor modes according to our
method, as shown in Sec. II D. In addition, if a stochastic
noise such as shape noise of galaxies equally contributes to
the E- and B-mode spectra, only the monopole of Pþ has
the shape noise contribution, and other higher-order
moments of Pþ and all moments of P− can be free of
the stochastic noise. In any case we can utilize these
properties to perform tests of systematic effects in an actual
measurement.
An obvious application of our method is to explore the

spin-2, local-type anisotropic primordial non-Gaussianity
(PNG) from the power spectrum of the projected tensor
field, which carries an independent information from the
isotropic PNG in the density tracer [54]. Note that, to
explore the PNG signal, the power spectrum analysis is
needed, and the correlation function in configuration space
is not suitable [5]. In the presence of spin-2 PNG, the power
spectrum, probed by galaxy shapes, is modified as

PðkÞ → ½1þ 12fs¼2
NL δbIAM−1ðkÞ�PðkÞ ð64Þ

where Mðk; zÞ≡ ð2=3Þk2TðkÞDðzÞ=ðΩmH2
0Þ, with TðkÞ

and DðzÞ denoting the transfer function and the linear

FIG. 4. The upper panels compare the multipole moments of power spectra, measured by the LPP estimator (points with error bars),
with the theoretical predictions including the window effects (solid lines). The lower panels show the fractional differences. We plot the
mean of 1000 realizations with error bar of the mean in each k bin, and normalize all the moments as in Fig. 2. Left panel: the blue
circles, orange inverted triangles and green triangles show the matter spectrum P̃ð0Þ, the lowest-order L ¼ 2 moment of cross spectrum

P̃ðL¼2Þ
γδ and the lowest-order L ¼ 4 moment of “minus”-auto spectrum P̃ðL¼4Þ

− , respectively, which are the lowest order multipole
moments for each spectrum. Right: the blue circles, orange inverted triangles, and green triangles show the l ¼ 0, 2, 4-th moments of

the “plus”-auto spectrum P̃ðlÞ
þ , respectively. The dark and light gray-shaded regions in the lower panel correspond to 1% and 3%

fractional differences.
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growth factor, respectively, fs¼2
NL is a parameter to character-

ize the PNG amplitude and δbIA is the response of galaxy
shapes to the quadrupolar modulation of the local matter
power spectrum due to the PNG. In the following we adopt
δbIA ¼ 0.17 as motivated by the results in Ref. [54].
Figure 6 shows how the window convolution affects the

quadrupole moments of the cross power spectrum, PðL¼2Þ
γδ ,

which carries a leading signal of the PNG effect [54]. It is
clear that the survey window effect for the BOSS-like survey
is significant. For comparison, we also show that the window
effect alters the power spectrum with the Gaussian initial
condition (i.e., the case of fs¼2

NL ¼ 0) at the comparable level
to the modification in the power spectrum with fs¼2

NL ∼ −180
in the absence of the survey window effect. Since the current
CMB constraint is at the level of σðfs¼2

NL Þ ∼ 20 [88], it is of
critical importance to take into account the survey window
effect, using our method, to obtain an unbiased estimate or
constraint of the PNG signal in Pγδ.

VI. CONCLUSION

In this paper, we have developed a method for measuring
the 3D power spectrum of the projected tensor field that is
estimated from large-scale structure observables, e.g.,

galaxy shapes. The projected tensor power spectrum is
related to the underlying power spectrum of scalar, vector
and tensor modes of LSS, so the measurement opens up a
window for exploring these different types of perturbations.
In a wide-area survey where the global plane-parallel

(GPP) approximation (or the distant observer approxima-
tion) is no longer valid, the statistical translation invariance
does not hold for the observed tensor field due to the
LOS dependent projection, very similarly to the case of
the observed galaxy density field affected by the LOS
dependent RSD effect. To obtain both the estimators and
window convolutions, we first formulated the coordinate-
independent power spectra and correlation functions taking
into account the projection of the tensor field to plane
perpendicular to each LOS (n̂) direction that leads to the
phase factor [e2iϕk̂;n̂ in Eq. (14)] reflecting the spin-2
properties of the tensor field. In addition we derived the
Hankel transformation between the multipole moments of
the power spectra and those of the correlation functions by
introducing the associated Legendre polynomial expansion.
The expansion in terms of the associated Legendre poly-
nomials provides us with two crucial results for the analysis
proposed in this paper:

(i) For measurements of the projected tensor power
spectra, the exact cancellation of the geometrical
prefactors allows us to construct FFT-based

FIG. 5. Similar to Fig. 4, but this plot shows the leakage
moments that arises due to the anisotropy of BOSS-like survey
window; in other words, the moments should be vanishing if
there is no window effect or for an isotropic window. The blue
circles and orange inverted triangles are the quadrupole moment
of the matter spectrum P̃ð2Þ and the L ¼ 4th moment of the cross

spectrum P̃ðL¼4Þ
γδ , respectively. The blue open and blue dashed

lines denote the negative values (we plot their absolute values).
Note that the range of y-axis is different from that in Fig. 4.

FIG. 6. Comparison of the BOSS-like survey window effect on

the cross power spectrum PðL¼2Þ
γδ with the modification in PðL¼2Þ

γδ

due to the spin-2 local-type primordial non-Gaussian (PNG)
initial condition. Here we show the quadrupole moment of Pγδ

because it is the lowest-order moment in our formulation and
carries most of the PNG information. The blue curves show the
power spectra in the Gaussian condition and the red curves are
those in the presence of the spin-2 PNG. The solid (dashed) lines
correspond to the results with (without) the window convolution.
We chose fs¼2

NL ¼ −180 for demonstration, because the effect
without the window convolution (dashed-red curve) is at the
comparable level with the Gaussian result with the window
convolution (solid-blue curve).
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estimators under the LPP approximation even in a
realistic wide-area survey.

(ii) The Hankel transformation relation between the
two-point statistics in Fourier and configuration
space allows us to calculate the survey window
effects in the theoretical prediction for the multipole
moments of projected tensor power spectrum based
on the 1D Fourier transforms (FFTlog).

To validate our formulations, we used the simulations of
tidal field to perform a hypothetical measurement of the
projected tensor power spectrum assuming the BOSS
NGC-like survey geometry. We simply considered the tidal
field, simulated assuming the random Gaussian field, as the
underlying tensor field and, using this, defined the observed
tensor field performing the projection on the normal plane
to the LOS direction of each pair in the power spectrum
estimation. This mimics a local observable linearly aligned
with the surrounding tidal field, which is the case for
intrinsic alignments of galaxy shapes at large scales for
instance. Although this seems to be a simplified setup, we
believe that this is enough for us to validate our method
because our main interest is how well our LPP estimators
work at large scales where the GPP approximation breaks
down. From the validation test, we found that the mea-
surements and the theoretical window convolutions of the
lowest moments of the cross- and plus- power spectrum,

Pð2Þ
γδ and Pð0Þ

þ are consistent with each other at 1% level even
at k ≃ 0.01 hMpc−1 that is the minimum wave number
accessible from the BOSS-like survey. On the other hand,

for the higher order moments such as Pð2;4Þ
þ , Pð4Þ

− , there are
more than 3% discrepancies between the measurement and
theory at k≲ 0.03 hMpc−1, probably due to the wide-angle
effect. Hence if we want to use the higher-order moments in
an analysis, we have to be careful about this possible bias.
Even in this case, our method can quantify this possible
bias for the ΛCDM-like linear power spectrum, for a given
survey geometry. Alternatively the wide-angle correction
can be included to further improve the accuracy of our
method on the lower wave number scales. We should also
stress that our LPP based method would be more accurate
for upcoming wide-area surveys such as the Subaru PFS
and DESI, which probe large-scale structure at higher
redshifts, where lower wave numbers correspond to smaller
angular separation in each galaxy pair than in a lower-
redshift galaxy survey.
With the analysis method in this paper we are ready to

perform a cosmology analysis of the projected tensor power
spectra for actual data. An obvious direction is to explore
the primordial non-Gaussianity (PNG) signal from the
cross power spectrum of galaxy shapes and galaxy number
density fluctuation on small k scales. We showed that the
survey window effect is crucial to take into account to
obtain an unbiased estimate of the possible PNG signal. A
joint cosmology analysis of the three-dimensional power
spectra of the galaxy distribution (scalar observables) and

the projected tensor observables would also be an interest-
ing direction to explore. To do such joint analysis we need
both imaging and spectroscopic data for the same cosmo-
logical volume, where the imaging data is needed to
characterize shapes of individual galaxies and the spectro-
scopic data is needed to measure distances to galaxies for
the 3D power spectrum analysis. This is indeed the case for
the SDSS BOSS, DESI, Subaru HSC/PFS, VRO LSST/
Euclid and Roman Space Telescope. We believe that the
method developed in this paper helps to extract as much
cosmological information as possible from these current
and upcoming datasets.
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APPENDIX A: RELATION BETWEEN FULL
TENSOR POWER SPECTRA AND PROJECTED

TENSOR POWER SPECTRA

We derive the relations between the full tensor power
spectra of sijðkÞ and the projected tensor power spectra of

γðk; n̂Þ≡ eðþ2Þ
ij ðn̂ÞsijðkÞ in Eqs. (18)–(20) where n̂ is the

LOS direction. For the cross spectrum, considering the
projection of the definition of the full 3D spectrum
[Eq. (8)], we have

hγðk; n̂Þδðk0Þi≡ ð2πÞ3δ3Dðkþ k0Þeðþ2Þ
ij ðn̂Þεð0Þij ðk̂ÞPð0Þ

sδ ðkÞ:
ðA1Þ

The above trace of two tensors is given as

eðþ2Þ
ij ðn̂Þεð0Þij ðk̂Þ≡

ffiffiffi
3

2

r
eðþ2Þ
ij ðn̂Þ

�
k̂ik̂j −

1

3
δKij

�

¼
ffiffiffi
3

2

r
eðþ2Þ
ij ðn̂Þk̂ik̂j ¼

ffiffiffi
3

8

r
ð1 − μ2Þe2iϕk̂;n̂ ;

ðA2Þ
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where μ≡ k̂ · n̂. We have used eðþ2Þ
ii ðn̂Þ ¼ 0 and the definition of the phase factor [Eq. (14)]. Hence, comparing Eq. (15)

with Eq. (A1), we obtain Eq. (18):

PγδðkÞ ¼
ffiffiffi
3

8

r
ð1 − μ2kÞPð0Þ

sδ ðkÞ: ðA3Þ

For the auto spectra, P�ðkÞ are defined by Eqs. (26) and (27). Using these equations and multiplying the full tensor auto

spectra [Eq. (3)] by eðþ2Þ
ij ðn̂Þeð∓2Þ

kl ðn̂Þ, we find

hγðk; n̂Þγ�ðk0; n̂Þi≡ ð2πÞ3δ3Dðkþ k0Þeðþ2Þ
ij ðn̂Þeð−2Þkl ðn̂Þ

�
Λð0Þ
ij;klðk̂ÞPð0Þ

ss ðkÞ þ
X2
λ¼1

ΛðλÞ
ij;klðk̂Þ

PðλÞ
ss ðkÞ
2

�
; ðA4Þ

hγðk; n̂Þγðk0; n̂Þi≡ ð2πÞ3δ3Dðkþ k0Þeðþ2Þ
ij ðn̂Þeðþ2Þ

kl ðn̂Þ
�
Λð0Þ
ij;klðk̂ÞPð0Þ

ss ðkÞ þ
X2
λ¼1

ΛðλÞ
ij;klðk̂Þ

PðλÞ
ss ðkÞ
2

�
; ðA5Þ

thus we need to calculate eðþ2Þ
ij ðn̂Þeð∓2Þ

kl ðn̂ÞΛðλÞ
ij;klðk̂Þ for each λ ¼ 0, 1, 2. For λ ¼ 0 [Eq. (5)], we can calculate them in a

similar way to the cross spectrum as

eðþ2Þ
ij ðn̂Þeð−2Þkl ðn̂ÞΛð0Þ

ij;klðk̂Þ ¼
3

8
eðþ2Þ
ij ðn̂Þeð−2Þkl ðn̂Þk̂ik̂jk̂kk̂l ¼

3

8
ð1 − μ2kÞ2; ðA6Þ

eðþ2Þ
ij ðn̂Þeðþ2Þ

kl ðn̂ÞΛð0Þ
ij;klðk̂Þ ¼

3

8
eðþ2Þ
ij ðn̂Þeðþ2Þ

kl ðn̂Þk̂ik̂jk̂kk̂l ¼
3

8
ð1 − μ2kÞ2e4iϕk̂;n̂ : ðA7Þ

For the “þ” component of λ ¼ 1 [Eq. (6)],

eðþ2Þ
ij ðn̂Þeð−2Þkl ðn̂ÞΛð1Þ

ij;klðk̂Þ ¼
1

2
eðþ2Þ
ij ðn̂Þeð−2Þkl ðn̂ÞðPikðk̂Þk̂jk̂l þ Pilðk̂Þk̂jk̂k þ Pjkðk̂Þk̂ik̂l þ Pjlðk̂Þk̂ik̂kÞ

¼ 1

2
Pikðn̂ÞPjlðn̂ÞPikðk̂Þk̂jk̂l

¼ 1

2
ð1 − μ2Þð1þ μ2Þ ¼ 1

4
ð1 − μ2Þfð1 − μÞ2 þ ð1þ μÞ2g: ðA8Þ

We have used the definition of eð�2Þ
ij ðn̂Þ≡ êð�1Þ

i ðn̂Þêð�1Þ
j ðn̂Þ [Eq. (11)] and the projection tensor:

Pijðn̂Þ ¼
X
m¼�1

êðmÞ
i ðn̂ÞêðmÞ�

j ðn̂Þ; ðA9Þ

where êð�1Þðn̂Þ defined in Eq. (12) is the polarization vector with respect to n̂. For the “−” component of λ ¼ 1,

eðþ2Þ
ij ðn̂Þeðþ2Þ

kl ðn̂ÞΛð1Þ
ij;klðk̂Þ ¼

1

2
eðþ2Þ
ij ðn̂Þeðþ2Þ

kl ðn̂ÞðPikðk̂Þk̂jk̂l þ Pilðk̂Þk̂jk̂k þ Pjkðk̂Þk̂ik̂l þ Pjlðk̂Þk̂ik̂kÞ

¼ 2eðþ2Þ
ij ðn̂Þeðþ2Þ

kl ðn̂ÞPikðk̂Þk̂jk̂l
¼ −2eðþ2Þ

ij ðn̂Þeðþ2Þ
kl ðn̂Þk̂ik̂kk̂jk̂l

¼ −
1

2
ð1 − μ2Þ2e4iϕk̂;n̂ : ðA10Þ

For λ ¼ 2 [Eq. (7)],
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eðþ2Þ
ij ðn̂Þeð−2Þkl ðn̂ÞΛð2Þ

ij;klðk̂Þ ¼
1

2
eðþ2Þ
ij ðn̂Þeð−2Þkl ðn̂ÞðPikðk̂ÞPjlðk̂Þ þ Pilðk̂ÞPjkðk̂Þ − Pijðk̂ÞPklðk̂ÞÞ

¼ 1

4
Pikðn̂ÞPjlðn̂ÞPikðk̂ÞPjlðk̂Þ −

1

2
eðþ2Þ
ij ðn̂Þeð−2Þkl ðn̂Þk̂ik̂jk̂kk̂l

¼ 1

4
ð1þ μ2Þ2 − 1

8
ð1 − μ2Þ2 ¼ 1

16
fð1 − μÞ4 þ ð1þ μÞ4g: ðA11Þ

eðþ2Þ
ij ðn̂Þeðþ2Þ

kl ðn̂ÞΛð2Þ
ij;klðk̂Þ ¼

1

2
eðþ2Þ
ij ðn̂Þeðþ2Þ

kl ðn̂ÞðPikðk̂ÞPjlðk̂Þ þ Pilðk̂ÞPjkðk̂Þ − Pijðk̂ÞPklðk̂ÞÞ

¼ 1

2
eðþ2Þ
ij ðn̂Þeðþ2Þ

kl ðn̂Þk̂ik̂jk̂kk̂l

¼ 1

8
ð1 − μ2Þ2e4iϕk̂;n̂ : ðA12Þ

Substituting all results into Eqs. (A4) and (A5) and comparing them with Eqs. (16) and (17), respectively, we obtain the
relations [Eqs. (19) and (20)]:

PþðkÞ ¼
3

8
ð1 − μ2kÞ2Pð0Þ

ss ðkÞ þ 1

8
ð1 − μ2kÞfð1 − μkÞ2 þ ð1þ μkÞ2gPð1Þ

ss ðkÞ þ 1

32
fð1 − μkÞ4 þ ð1þ μkÞ4gPð2Þ

ss ðkÞ; ðA13Þ

P−ðkÞ ¼ ð1 − μ2kÞ2
	
3

8
Pð0Þ
ss ðkÞ − 1

4
Pð1Þ
ss ðkÞ þ 1

16
Pð2Þ
ss ðkÞ



: ðA14Þ

APPENDIX B: ESTIMATOR OF AUTOPOWER SPECTRA

We derive the FFT-based estimators for the autopower spectra defined in Eqs. (48) and (49). In the case of the “plus”
component, PþðkÞ [Eq. (29)] we define the multipole moments with respect to the usual Legendre polynomials as in the
case of the clustering:

P̂ðlÞ
þ ðkÞ≡ ð2lþ 1Þ

Z
k̂;x;x0

γðxÞγ�ðx0Þe−ik·ðx−x0ÞLlðk̂ · d̂Þ

≃ ð2lþ 1Þ
Z
k̂

	Z
x̂
γðxÞe−ik·xLlðk̂ · x̂Þ


	Z
x̂0
γ�ðx0Þeik·x0




≡ ð2lþ 1Þ
Z
k̂
γðlÞðkÞγ�ð−kÞ: ðB1Þ

On the other hand, the “minus” component, P−ðkÞ, considering the phase factor in Eq. (30), we define the multipole
moments with respect to the associated Legendre expansion of order m ¼ 4:

P̂ðLÞ
− ðkÞ≡ ð2Lþ 1Þ ðL − 4Þ!

ðLþ 4Þ!
Z
k̂;x;x0

γðxÞγðx0Þe−4iϕk̂;d̂e−ik·ðx−x0ÞLm¼4
L ðk̂ · d̂Þ

¼ ð2Lþ 1Þ ðL − 4Þ!
ðLþ 4Þ!

Z
k̂;x;x0

γðxÞγðx0Þ4e�ijðd̂Þe�klðd̂Þk̂ik̂jk̂kk̂le−ik·ðx−x
0Þ Lm¼4

L ðk̂ · d̂Þ
½1 − ðk̂ · d̂Þ2�2

≃ ð2Lþ 1Þ ðL − 4Þ!
ðLþ 4Þ!

Z
k̂

	Z
x̂
γðxÞ4e�ijðx̂Þe�klðx̂Þe−ik·x

Lm¼4
L ðk̂ · x̂Þ

½1 − ðk̂ · x̂Þ2�2


k̂ik̂jk̂kk̂l

	Z
x̂0
γðx0Þeik·x0




≡ ð2Lþ 1Þ ðL − 4Þ!
ðLþ 4Þ!

Z
k̂
ΞðlÞ
ijklðkÞk̂ik̂jk̂kk̂lγð−kÞ: ðB2Þ

Note that we have used the endpoint approximation; d̂ ≃ x̂, in the second line of Eq. (B1) and the third line of Eq. (B2).
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APPENDIX C: DERIVATION OF HANKEL
TRANSFORMS

First, we define the local cross spectrum as the Fourier
transform of the cross correlation function:

Pγδðk; d̂Þ≡
Z
r
ξγδðr; r̂ · d̂Þe2iϕr̂;d̂−2iϕk̂;d̂e−ik·r: ðC1Þ

Assuming the cross correlation function can be expanded in
terms of the associated Legendre polynomials with m ¼ 2:

ξγδðr; r̂ · d̂Þ≡
X∞
L¼2

ξðLÞγδ ðrÞLm¼2
L ðr̂ · d̂Þ; ðC2Þ

and using the plane-wave expansion and the addition
theorem for the Legendre polynomials:

eik·r ¼
X∞
q¼0

ð2qþ 1ÞiqjqðkrÞLqðk̂ · r̂Þ; ðC3Þ

Lqðk̂ · r̂Þ ¼ 4π

2qþ 1

Xq
n¼−q

Yn
qðk̂ÞYn�

q ðr̂Þ; ðC4Þ

with the rotational invariance of the inner product,
k̂ · r̂ ¼ ðRk̂Þ · ðRr̂Þ, for any rotation matrix R, Eq. (C1)
becomes

Pγδðk; d̂Þ ¼
X∞
L¼2

X∞
q¼0

Xq
n¼−q

ð−iÞqYn
qðS−1ðd̂Þk̂Þe−2iϕk̂;d̂4π

Z
dΩr̂ Lm¼2

L ðr̂ · d̂Þe2iϕr̂;d̂Yn�
q ðS−1ðd̂Þr̂Þ

Z
r2dr ξðLÞγδ ðrÞjqðkrÞ

¼
X∞
L¼2

X∞
q¼0

Xq
n¼−q

ð−iÞqYn
qðS−1ðd̂Þk̂Þe−2iϕk̂;d̂4π

Z
dΩr̂

Ym¼2
L ðS−1ðd̂Þr̂Þ

N m¼2
L

Yn�
q ðS−1ðd̂Þr̂Þ

Z
r2dr ξðLÞγδ ðrÞjqðkrÞ

¼
X∞
L¼2

X∞
q¼0

Xq
n¼−q

ð−iÞqYn
qðS−1ðd̂Þk̂Þe−2iϕk̂;d̂

4πδLqδn2
N m¼2

L

Z
r2dr ξðLÞγδ ðrÞjqðkrÞ

¼
X∞
L¼2

Lm¼2
L ðk̂ · d̂Þ4πð−iÞL

Z
r2dr ξðLÞγδ ðrÞjLðkrÞ; ðC5Þ

where Sðd̂Þ is the standard rotation matrix that takes x̂3

(3-axis) into the arbitrary direction d̂:

Sijðd̂Þ≡
0
B@

cos θ cosϕ − sinϕ sin θ cosϕ

cos θ sinϕ cosϕ sin θ sinϕ

− sin θ 0 cos θ

1
CA; ðC6Þ

for d̂≡ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, and N m
l is the

normalization factor in the definition of the spherical
harmonics:

Ym
l ðâÞ ¼ N m

lL
m
l ðâ · x̂3Þeimϕâ;x̂3 : ðC7Þ

We have also used the orthogonality of the spherical
harmonics:

Z
â
Ym
l ðâÞYn�

q ðâÞ ¼ 1

4π
δlqδmn; ðC8Þ

and the following identity outlined in Appendix E:

Ym
l ðS−1ðb̂ÞâÞ ¼ N m

lL
m
l ðâ · b̂Þeimϕâ;b̂ : ðC9Þ

From Eq. (C5), we can define the multipole moments of the
cross power spectrum as

PðLÞ
γδ ðkÞ≡ ð2Lþ 1Þ ðL − 2Þ!

ðLþ 2Þ!
Z
k̂
Pγδðk; d̂ÞLm¼2

L ðk̂ · d̂Þ

¼ 4πð−iÞL
Z

r2dr ξðLÞγδ ðrÞjLðkrÞ; ðC10Þ

where we have used the orthogonality of the associated
Legendre polynomials [Eq. (33)]:

Z
1

−1

dμ
2
Lm
L ðμÞLm

L0 ðμÞ ¼ ðLþmÞ!
ð2Lþ 1ÞðL −mÞ! δLL0 : ðC11Þ

APPENDIX D: UNIFIED FORMULA
OF WINDOW CONVOLUTIONS

We first review the window convolution formula of the
galaxy clustering shown in Refs. [64,81,82] and next
slightly generalize it to derive that of the projected tensor
power spectrum.

1. Galaxy clustering

The window-convolved power spectrum of galaxy clus-
tering may be written by
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P̃ðk; d̂Þ≡
Z
r
ξðr; d̂ÞQðr; d̂Þe−ik·r

¼
Z
k0
jWðk − k0; d̂Þj2Pðk0; d̂Þ: ðD1Þ

The multipole moments of it is thus defined as

P̃ðlÞðkÞ

≡ ð2lþ 1Þ
Z
k̂
P̃ðk; d̂ÞLlðk̂ · d̂Þ

¼ ð2lþ 1Þ
Z
k̂;k̂0

jWðk−k0; d̂Þj2Pðk0; d̂ÞLlðk̂ · d̂Þ: ðD2Þ

Expanding the underlying power spectrum and the window
autocorrelation function in terms of the Legendre
polynomials:

Pðk0; d̂Þ≡X
l0

Pðl0Þðk0ÞLl0 ðk̂0 · d̂Þ; ðD3Þ

jWðk − k0; d̂Þj2 ¼
Z
r
Qðr; d̂Þeiðk−k0Þ·r

≡
Z
r

X
l00

Ql00 ðrÞLl00 ðr̂ · d̂Þeiðk−k0Þ·r; ðD4Þ

and also using the plane-wave expansion [Eq. (C3)]:

eiðk−k0Þ·r ¼
X
p;q

ð2pþ 1Þð2qþ 1Þð−iÞpiqjpðkrÞjqðk0rÞ

× Lpðk̂ · r̂ÞLqðk̂0 · r̂Þ; ðD5Þ

we can rewrite Eq. (D2) as

P̃ðlÞðkÞ¼ ð2lþ1Þ
X

l0;l00;p;q

Z
k̂;k̂0;r

Pðl0Þðk0ÞQl00 ðrÞð2pþ1Þ

× ð2qþ1Þð−iÞpiqjpðkrÞjqðk0rÞLlðk̂ · d̂Þ
×Ll0 ðk̂0 · d̂ÞLl00 ðr̂ · d̂ÞLpðk̂ · r̂ÞLqðk̂0 · r̂Þ: ðD6Þ

Using the angle integral of the product of two Legendre
polynomials:Z

k̂
Ll1ðk̂ · âÞLl2ðk̂ · b̂Þ ¼ δl1l2

2l1 þ 1
Ll1ðâ · b̂Þ; ðD7Þ

we do the k̂ and k̂0 integrals and then obtain

P̃ðlÞðkÞ ¼ ð2lþ 1Þ
X
l0;l00

Z
k02dk0

2π2

Z
r
Pðl0Þðk0ÞQl00 ðrÞ

× ð−iÞlil0jlðkrÞjl0 ðk0rÞLlðr̂ · d̂Þ
× Ll0 ðr̂ · d̂ÞLl00 ðr̂ · d̂Þ: ðD8Þ

Finally by using the Gaunt integral:

Z
dΩr̂Y

m1

l1
ðr̂ÞYm2

l2
ðr̂ÞYm3

l3
ðr̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3

0 0 0

�

×

�
l1 l2 l3

m1 m2 m3

�
; ðD9Þ

where
�

l1
m1

l2
m2

l3
m3

�
is the Wigner 3j symbol, we obtain the

fully angle-integrated result:

P̃ðlÞðkÞ ¼ ð2lþ 1Þ
X
l0;l00

Z
2

π
k02dk0

Z
r2drPðl0Þðk0Þ

×Ql00 ðrÞð−iÞlil0jlðkrÞjl0 ðk0rÞ
�
l00 l l0

0 0 0

�
2

¼ 4πð−iÞl
Z

r2drjlðkrÞ
X
l0

	X
l00

Ql00 ðrÞð2lþ 1Þ

×

�
l00 l l0

0 0 0

�
2

	

il
0
Z

k02dk0

2π2
jl0 ðk0rÞPðl0Þðk0Þ



:

ðD10Þ

2. Generalization to the projected tensor
power spectrum

If we have the projected tensor field, γðxÞ, we can think
the cross-, plus-, and minus-power spectra, ðPγδ; Pþ; P−Þ in
addition to the galaxy clustering power spectrum Pð¼ PδδÞ.
In the case of Pþ, the window convolution is the same as
the clustering case:

P̃þðk; d̂Þ≡
Z
r
ξþðr; d̂ÞQðr; d̂Þe−ik·r

¼
Z
k0
jWðk − k0; d̂Þj2Pþðk0; d̂Þ; ðD11Þ

hence the resulting convolution expression is exactly the
same as Eq. (D10).
To consider the case of the cross spectrum and the

“minus” component of the auto spectrum, we slightly
generalize the previous result beginning with the fact that
the window effect on any correlation function is defined by
ξ̃XðrÞ≡ ξXðrÞQðrÞ where X is the label of the statistics.
The definitions of the convolution thus should be
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P̃Xðk; d̂Þ≡
Z
r
ξXðr; d̂ÞQðr; d̂ÞeimXϕr̂;d̂−imXϕk̂;d̂e−ik·r ¼

Z
k0
jWðk − k0; d̂Þj2e−imXϕk̂;d̂þimXϕk̂0 ;d̂PXðk0; d̂Þ; ðD12Þ

where eimXϕ is the respective phase factor; ðX; mXÞ ∈ fðδδ; 0Þ; ðγδ; 2Þ; ðþ; 0Þ; ð−; 4Þg and the multipole components are
defined with respect to the associated Legendre polynomials:

P̃ðLÞ
X ðkÞ≡ ð2Lþ 1Þ ðL −mXÞ!

ðLþmXÞ!
Z
k̂
P̃Xðk; d̂ÞLmX

L ðk̂ · d̂Þ

¼ ð2Lþ 1Þ ðL −mXÞ!
ðLþmXÞ!

Z
k̂;k̂0

jWðk − k0; d̂Þj2e−imXϕk̂;d̂þimXϕk̂0 ;d̂PXðk0; d̂ÞLmX
L ðk̂ · d̂Þ: ðD13Þ

From this definition, by using the associated Legendre expansion for the underlying theoretical model:

PXðk0; d̂Þ≡X
L0

PðL0Þ
X ðk0ÞLmX

L0 ðk̂0 · d̂Þ; ðD14Þ

and substituting Eqs. (D4) and Eq. (C3), we obtain

P̃ðLÞ
X ðkÞ ¼ ð2Lþ 1Þ ðL −mXÞ!

ðLþmXÞ!
X

L0;l00;p;q

Z
k̂;k̂0;r

PðL0Þ
X ðk0ÞQl00 ðrÞð2pþ 1Þð2qþ 1Þð−iÞpiqjpðkrÞjqðk0rÞ

× e−imXϕk̂;d̂þimXϕk̂0 ;d̂LmX
L ðk̂ · d̂ÞLmX

L0 ðk̂0 · d̂ÞLl00 ðr̂ · d̂ÞLpðk̂ · r̂ÞLqðk̂0 · r̂Þ: ðD15Þ

By using Eqs. (C7), (C8), and (C9), we do the k̂ and k̂0 integrals:

P̃ðLÞ
X ðkÞ ¼ ð2Lþ 1Þ ðL −mXÞ!

ðLþmXÞ!
X
L0;l00

Z
k02dk0

2π2

Z
r
PðL0Þ
X ðk0ÞQl00 ðrÞð−iÞLiL0

jLðkrÞjL0 ðk0rÞLmX
l ðr̂ · d̂ÞLmX

L0 ðr̂ · d̂ÞLl00 ðr̂ · d̂Þ;

ðD16Þ
and also by using Eq. (D9), we finally obtain

P̃ðLÞ
X ðkÞ ¼ ð2Lþ 1Þ ðL −mXÞ!

ðLþmXÞ!
X
L0;l00

Z
2

π
k02dk0

Z
r2drPðL0Þ

X ðk0ÞQl00 ðrÞð−iÞLiL0
jLðkrÞjL0 ðk0rÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþmXÞ!
ðL −mXÞ!

ðL0 þmXÞ!
ðL0 −mXÞ!

s �
l00 L L0

0 0 0

��
l00 L L0

0 mX −mX

�

¼ 4πð−iÞL
Z

r2drjLðkrÞ
X
L0

	X
l00

Ql00 ðrÞð2Lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL −mXÞ!
ðLþmXÞ!

ðL0 þmXÞ!
ðL0 −mXÞ!

s �
l00 L L0

0 0 0

��
l00 L L0

0 mX −mX

�


×

	
iL

0
Z

k02dk0

2π2
jL0 ðk0rÞPðL0Þ

X ðk0Þ


: ðD17Þ

This corresponds to Eqs. (54) and (55) in the main text.

APPENDIX E: DERIVATIONS OF SOME
FORMULAS

1. Derivation of Eq. (C9)

Comparing the goal, Eq. (C9), with the definition of the
spherical harmonics, Eq. (C7), we first show the two identities:

�
ûðâ; b̂Þ · x̂3 ¼ â · b̂;
eimϕûðâ;b̂Þ;x̂3 ¼ eimϕâ;b̂ ;

where ûðâ; b̂Þ≡ S−1ðb̂Þâ. For the first equation, from the
definition of the standard rotationmatrixS inEq. (C6),wehave
ûðâ;b̂Þ · x̂3¼ðS−1ðb̂ÞâÞ · x̂3¼ â ·ðSðb̂Þx̂3Þ¼ â · b̂. We write
down the phase factor for arbitrarym as

eimϕû;x̂3 ¼ ðeiϕû;x̂3 Þm ¼
� ffiffiffi

2
p

êðþ1Þ
i ðx̂3Þûi

½Pijðx̂3Þûiûj�1=2
�m

; ðE1Þ

where êðþ1Þðx̂3Þ is the polarization vector defined in Eq. (12).
For the numerator,
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êðþ1Þðx̂3Þ · ûðâ; b̂Þ ¼ êðþ1Þðx̂3Þ · ðS−1ðb̂ÞâÞ
¼ ðSðb̂Þêðþ1Þðx̂3ÞÞ · â ¼ êðþ1Þðb̂Þ · â;

in the sameway as the first equation.Also for the denominator,
we obtain

Pijðx̂3Þûiûj ≡ ðδij − ẑiẑjÞS−1ii0 ðb̂Þâi0S−1jj0 ðb̂Þâj0
¼ ðS−1ii0 ðb̂ÞS−1ij0 ðb̂Þ − S−1ii0 ðb̂ÞẑiS−1jj0 ðb̂ÞẑjÞâi0 âj0
¼ ðSi0iðb̂ÞS−1ij0 ðb̂Þ − Si0iðb̂ÞẑiSj0jðb̂ÞẑjÞâi0 âj0
¼ ðδi0j0 − b̂i0 b̂j0 Þâi0 âj0
¼ Pijðb̂Þâiâj:

From these, we get

eimϕû;x̂3 ¼
� ffiffiffi

2
p

êðþ1Þ
i ðx̂3Þûi

½Pijðx̂3Þûiûj�1=2
�m

¼
� ffiffiffi

2
p

êðþ1Þ
i ðb̂Þâi

½Pijðb̂Þâiâj�1=2
�m

¼ eimϕâ;b̂ : ðE2Þ

Therefore,

Ym
l ðûðâ; b̂ÞÞ ¼ N m

lL
m
l ðûðâ; b̂Þ · x̂3Þeimϕûðâ;b̂Þ;x̂3

¼ N m
lL

m
l ðâ · b̂Þeimϕâ;b̂ :

2. Derivation of Eq. (34)

Z
k̂
eimϕk̂;âLm

l ðk̂ · âÞLl0 ðk̂ · b̂Þ ¼
Z
k̂

Ym
l ðS−1ðâÞk̂Þ

N m
l

·
4π

2l0 þ 1

Xl0
n¼−l0

Yn�
l0 ðS−1ðâÞk̂ÞYn

l0 ðS−1ðâÞb̂Þ

¼ 4π

2l0 þ 1

Xl0
n¼−l0

1

N m
l
Yn
l0 ðS−1ðâÞb̂Þ

Z
k̂
Ym
l ðS−1ðâÞk̂ÞYn�

l0 ðS−1ðâÞk̂Þ

¼ 4π

2l0 þ 1

Xl0
n¼−l0

1

N m
l
Yn
l0 ðS−1ðâÞb̂Þ

δll0δmn

4π

¼ δll0

2lþ 1
eimϕâ;b̂Lm

l ðâ · b̂Þ:

We have used Eq. (C9) and Eq. (C4) in the first line, Eq. (C8) in the third line, and Eq. (C9) again in the last line,
respectively. Taking the complex conjugate of both sides, we obtain Eq. (34).
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