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We investigate the gravitational waves (GWs) at low frequencies produced by neutrinos that are emitted
anisotropically from the protoneutron star (PNS) during its cooling phase that lasts for about a minute. We
are particularly interested in the deci-Hz range, in which some satellite-borne detectors are expected to have
good sensitivities. We first give a formulation based on the spherical-harmonic expansion of the neutrino
luminosity to obtain the gravitational waveform as well as the characteristic strain. In the absence of
multidimensional simulations of PNS cooling, from which we can extract reliable data on the neutrino
luminosities as a function of a solid angle, we construct them by hand. In the first model, the time evolution
is approximated by piecewise exponential functions. In the second model we employ the time profile
obtained in a 1D cooling simulation for all harmonic components for simplicity. In both cases, we consider
not only axisymmetric components but also nonaxisymmetric ones. In the third model, we consider
axisymmetric neutrino emissions, the axis of which is misaligned with the rotation axis and, as a result,
rotates with the PNS. We find from the first model that the decay times in piecewise exponential function at
late phases can be inferred from the positions of bumps and dips in the characteristic strain of the GW in the
case of a slow cooling, whereas they may be obtained by identifying the positions of slope change in the
case of rapid cooling, which may be induced by convection in PNS.We confirm the former result also in the
second model. The results of the third model show that the gravitational waves emitted by the neutrinos
contain circularly-polarized components in contrast to the first two models, in which only linear
polarizations occur, and give oscillatory features in the waveform with the frequencies of integral
multiples of the rotation frequency, which are also clearly reflected in the characteristic strain. Finally, we
compare the GW signals thus obtained with the sensitivity curves of some planned GW detectors that are
expected to be sensitive to GWs in the deci-Hz range. If these admittedly crude models are any guide, these
detectors, DECIGO in particular, will have a fair chance of detecting the GW signals as we consider them in
this paper if they are emitted from within our Galaxy.
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I. INTRODUCTION

Core-collapse supernovae (CCSNe) [1] are explosion
phenomena that occur at the final stage of massive stars. In
this process, neutron stars [2] are normally produced as a
result (see, e.g., Ref. [3] for possible black hole forma-
tions). After the launch of an explosion, the central region
filled with neutrons is very hot, T ≳ 1011 K, and still proton
and lepton rich, Yp ∼ Ye ≳ 0.2 [4]. It is hence referred to as
the protoneutron star (PNS) [5]. It cools and deleptonizes
by emitting neutrinos copiously for about a minute [6–8].
This stage is called the cooling phase of PNS. This is
probably the most important stage for neutrino emissions
from an observational point of view. In fact, what
Kamiokande and IMB detectors observed from

SN1987A in the Large Magellanic Cloud are the neutrinos
produced in this phase. In this paper, we will pay attention
to the gravitational waves (GWs) that those neutrinos emit
during the same phase. We are particularly concerned with
the sub-Hz range. This is understandable if one is reminded
that the duration of the cooling phase is about a minute. It
has been known that emissions/absorptions/scatterings of
particles are accompanied by the emission of GWs in
general [9,10]. It was Epstein [11] that first considered
asymmetric emissions of a copious amount of neutrinos
from astronomical events such as CCSNe as a promising
GW source. However, it was Burrows and Hayes [12] that
first addressed this issue based on realistic simulations
of CCSNe.
CCSNe had been considered to be a promising GW

source and studied extensively [13,14] long before the first
direct detection of GWs from the coalescence of a black*fulei@akane.waseda.jp
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hole binary by LIGO in 2016 [15]. In these investigations,
the GW emissions from neutrinos were indeed calculated
quantitatively in addition to those from nonspherical matter
motions, which occur commonly via hydrodynamical
instabilities, rotation, and magnetic stresses [16–20].
They found that the GWs from the neutrinos emitted
anisotropically have the following properties: (1) their
typical frequencies are lower than those of the GWs
produced by matter, since the neutrino luminosities change
more gradually, (2) the GW signal from neutrino has a so-
called memory, i.e., the metric perturbation does not go
back to zero after the passage of the GW; in other words,
the zero frequency limit of the GW signal is nonvanishing,
and (3) the GW strain may be dominated by the contri-
bution from neutrinos at low frequencies although the
energy carried by those GWs is minor. See Refs. [13,14] for
more details.
These studies focused on the GW emissions during the

postbounce phase of CCSNe, i.e., up to ∼1 sec after the
core bounce. More recently, Mukhopadhyay et al. [21]
extended the exploration to the PNS cooling phase. They
approximated the neutrino light curve with an exponen-
tially decaying function with a single decay constant; the
anisotropy of the neutrino emission is specified by a single
parameter, which is assumed to be a multi-Gaussian
function of time. They confirmed that the GW signals
have memories, which correspond to the zero-frequency
limit of the characteristic strain. Comparing these signals
with its sensitivity, they demonstrated that DECIGO, a
planned satellite-borne GW detector, will be able to detect
them if they are emitted from a source at a distance of
10 kpc. In this paper, instead of using a single parameter to
characterize the anisotropy, we employ the spherical-
harmonic expansion of the neutrino luminosity, which
enables us to perform angular integrations exactly; the
time evolution of the coefficient for each harmonic com-
ponent is modeled in three ways up to 50 s. We then
calculate the GW waveforms as well as their characteristic
strains for these models. We also investigate the polar-
izations and the anisotropies of the GWemissions. In one of
the three cases, we consider a rotating neutrino beam,
which may occur in a rotating magnetized PNS with the
magnetic axis misaligned with the rotation axis. Wewill see
that the rotation frequency is reflected in the characteristic
strain.
In order to see the detectability, we simply compare the

characteristic strains obtained in our models with the
planned sensitivities of near-future detectors, LISA [22],
DECIGO [23,24], and ALIA [25] that are sensitive to the
deci-Hz GW signals. Considering the simplicity of our
models, we do not think it is necessary to elaborate on the
assessment of the detectability further, with noises taken
into account properly. The results of this simple compari-
son indicate that all these detectors, DECIGO in particular,

will have a good chance to detect the GW signals if they are
emitted from a distance of 10 kpc unless our expectation of
the neutrino asymmetry is not widely off the mark.
This paper is organized as follows. Our formulation

with the spherical harmonics expansion as well as the
three models are described in Sec. II. In Sec. III we
present the main results and analyses thereof. Finally, we
close the paper with the conclusions and some prospects
in Sec. IV.

II. METHODS AND MODELS

A. Formulation

The facts that the emissions, absorptions, and scatterings
of neutrinos (actually of any particles) are accompanied by
the productions of gravitational waves (GWs) and that the
phenomenon may be important in astronomical events like
supernovae were first pointed out by Epstein [11] and
Turner [26]. Burrows and Hayes [27] were the first to apply
the formula to a realistic supernova model and touched the
GW memory. More systematic investigations were con-
ducted by Mueller et al. [16,17]. The formula they
developed will be extended in the following (see also
Refs. [18,19,21]). The gravitational wave that is emitted
from the neutrinos that are radiated anisotropically from a
point source is given as

hSðt; α; βÞ ¼
2G
c4R

Z
t

0

dt0
Z

dΩWSðΩ; α; βÞ
dLν

dΩ
ðΩ; t0Þ;

ð1Þ

where S ∈ ðþ;×Þ specifies the GW polarizarion, and
dLν=dΩ is the neutrino energy radiated per time and per
solid angle, R is the distance from the source to the
observer, and WSðθ;ϕ; α; βÞ is the geometric weight given
by

WSðθ;ϕ; α; βÞ ¼
DSðθ;ϕ;α; βÞ
Nðθ;ϕ; α; βÞ ; ð2Þ

Dþ ¼ ½1þðcosϕcosαþ sinϕsinαÞsinθ sinβþ cosθcosβ�
ð½ðcosϕcosαþ sinϕsinαÞsinθcosβ−cosθsin2β�
− sin2θðsin2 cosα−cosϕsinα2ÞÞ; ð3Þ

D× ¼ ½1þðcosϕcosαþ sinϕsinαÞsinθ sinβþ cosθcosβ�
2½ðcosϕcosαþ sinϕsinαÞsinθcosα− cosθ sinβ�
sinθðsinϕcosα− cosϕsinαÞ; ð4Þ

N ¼ ½ðcosϕ cos αþ sinϕ sin αÞ sin θ cos β − cos θ sin β�2
þ sin2θðsinϕ cos α − cosϕ sin αÞ2; ð5Þ
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where θ ∈ ½0; π� and ϕ ∈ ½0; 2π� are the zenith and azimuth
angles to specify Ω, whereas β ∈ ½0; π� and α ∈ ½−π; π� are
the zenith and azimuth angles to give the direction to the
observer (see Fig. 1). Note that Eq. (1) is actually applicable
to a source of a finite size as long as the observer is located
at a sufficiently large distance from the source.
The anisotropy of neutrino emissions may be expressed

most conveniently with the spherical-harmonic expansion.
Since the GW production is essentially governed by linear
equations for astronomical events of our concern, each
harmonic component can be treated separately. From an
observational point of view, it is true that we do not obtain
individual spherical-harmonic components but instead the
total signal is obtained. From a theoretical point of view,
which we take in this paper, the total signal cannot be
understood unless we understand its individual harmonic
components in detail. In addition, as will be shown shortly,
the spherical-harmonic expansion enables us to perform
angular integrations in advance and to understand the
angular dependence of GW emissions. In this paper we
do not employ the ordinary complex spherical-harmonic
functions given as

Ym
l ðθ;ϕÞ ¼ Cm

l P
m
l ðcos θÞeimϕ; ð6Þ

where Pl
mðcos θÞ is the associated Legendre polynomial

(l ¼ 0; 1; 2;… and m ¼ −l;−lþ 1;…; l) and Cm
l is the

normalization factor. Instead, we utilize the real harmonics
defined as

Ym
l ðθ;ϕÞ ¼

8>>><
>>>:

1

i
ffiffi
2

p ðYm
l ðθ;ϕÞ − Y−m

l ðθ;ϕÞÞ m < 0;

Ym
l ðθ;ϕÞ m ¼ 0;
1ffiffi
2

p ðYm
l ðθ;ϕÞ þ Y−m

l ðθ;ϕÞÞ m > 0;

ð7Þ

or more concretely given as

Ym
l ðθ;ϕÞ ¼

8>><
>>:

ffiffiffi
2

p
Km

l P
m
l ðcos θÞ cosðmϕÞ m < 0;

Km
l P

m
l ðcos θÞ m ¼ 0;ffiffiffi

2
p

Km
l P

m
l ðcos θÞ sinðmϕÞ m > 0;

ð8Þ

with

Km
l ¼ ð−1Þmþjmj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
: ð9Þ

Then we expand dLðt; θ;ϕÞ=dΩ as

dLðt; θ;ϕÞ
dΩ

¼
X∞
l¼0

Xl

m¼−l

almðtÞ
4π

Ym
l ðθ;ϕÞ: ð10Þ

Inserting the above expression into Eq. (1), we obtain the
following formula for the gravitational waveform,

hSðt; α; βÞ ¼
X∞
l¼0

Xl

m¼−l

2G
c4R

Z
t

0

dt0almðt0Þdt0

×
1

4π

Z
Ω
dΩWSðθ;ϕ; α; βÞYm

l ðθ;ϕÞ

¼
X∞
l¼1

Xl

m¼−l
hamp
lm ðtÞΨS

lmðα; βÞ; ð11Þ

with

hamp
lm ðtÞ ¼ 2G

c4R

Z
t

0

dt0almðt0Þdt0; ð12Þ

ΨS
lmðα; βÞ ¼

1

4π

Z
Ω
dΩWSðθ;ϕ; α; βÞYm

l ðθ;ϕÞ: ð13Þ

One finds that each harmonic component is a product of
two factors; the first piece depends only on time and gives
the scale of the GW, whereas the second one depends solely
on observer’s position and can be obtained irrespective of
details of the neutrino emission. The first factor can be
evaluated once the angle-dependent neutrino luminosity
dL=dΩ is provided by reliable multidimensional simula-
tions of PNS cooling, which are unfortunately still unavail-
able at present. In this paper, we hence employ some
models for the evaluation of hamp

lm .

FIG. 1. The source coordinates (X, Y, Z) and the observer
coordinates (X0, Y 0, Z0). The observer is located at a large distance
on the positive Z0 axis. The zenith and azimuth angles, β and α,
thus specify the direction of the observer. The orange sphere
is the PNS.
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B. Models

In the formulation given above, the input is almðtÞ, which
can be calculated from the luminosity once it is provided by
simulations. Unfortunately, we are currently lacking such
simulations. Hence, in this paper, we will calculate almðtÞ
by hand. In doing so, we take the simplest assumption;
all the harmonic components of the luminosity, both
axisymmetric and nonaxisymmetric ones, have the same
(but scaled) temporal profile as the isotropic one, i.e.,
almðtÞ ¼ ϵa00ðtÞ. This is certainly not true; each compo-
nent has its own time evolution in reality. We believe,
however, that this treatment still gives us an insight into the
information we can retrieve from the GW signals. Note that
the angular dependence of each harmonic component is
fully taken into account in advance in this formulation. We
consider three models in this paper. In model 1a and 1b, we
employ piecewise exponential functions (PEFs) for the
temporal profile of the isotropic component (and hence all
harmonic components) as follows: Model 1a:

a00ðtÞ¼Aie−t=ti ½1053 erg=s�;

ðAi;tiÞ¼

8>>>>>><
>>>>>>:

ð1.20;0.008Þ; 0.000≤ t½sec�<0.004;

ð0.55;0.500Þ; 0.004≤ t½sec�<0.300;

ð0.35;4.000Þ; 0.300≤ t½sec�<3.600;

ð0.15;12.50Þ; 3.600≤ t½sec�<20.00;

ð0.07;25.00Þ; 20.00≤ t½sec�≤50.00:

ð14Þ

Model 1b:

a00ðtÞ¼Aie−t=ti ½1053 erg=s�;

ðAi;tiÞ¼

8>>>>>><
>>>>>>:

ð3.000;0.008Þ; 0.000≤ t½sec�<0.004;

ð1.800;0.500Þ; 0.004≤ t½sec�<0.300;

ð1.100;2.000Þ; 0.300≤ t½sec�<3.600;

ð0.400;5.000Þ; 3.600≤ t½sec�<20.00;

ð0.018;20.00Þ; 20.00≤ t½sec�≤50.00:

ð15Þ

Model 1a roughly fits the result of a 1D simulation of PNS
cooling, which itself is employed as Model 2. Model 1b has
shorter cooling times for the reason explained later. All
these models both displayed in Fig. 2.
In Model 3, we assume that the neutrino emission is

axisymmetric with respect to a certain axis denoted by the
Z00 axis; this axis is rotating at a constant angular frequency
ω around the Z-axis of the space-fixed coordinates (X, Y,
Z) (see Fig. 3). Then the neutrino emission is nonaxisym-
metric with respect to these space-fixed coordinates in a
time-dependent way.
We can derive this time-dependent nonaxisymmetric

distribution of neutrinos by considering the transformation
from the rotating coordinates (X00, Y 00, Z00), in which the
neutrinos are axisymmetrically emitted with respect to Z00

axis, to the space-fixed coordinates (X, Y, Z). This is done
as follows. In Eq. (10), the sum of Ym

l ðθ;ϕÞ is replaced by
Plðcos θ0Þ, where θ0 is the angle between the Z00 axis and the
flight direction of neutrino direction n0 (see Fig. 3), we use
the notation blðtÞ ¼ ϵa00ðtÞ for convenience, and we then
apply the addition theorem to the Plðcos θ0Þ as follows:

dLðt; θ;ϕÞ
dΩ

¼
X∞
l¼0

blðtÞ
4π

Plðcos θ0Þ

¼
X∞
l¼0

Xl

m¼−l
blðtÞ

4π

2lþ 1
Ym
l ðΘðtÞ;ΦðtÞÞ

×

�
1

4π
Ym
l ðθ;ϕÞ

�
; ð16Þ

FIG. 2. The isotropic component of neutrino luminosity as a
function of time. The purple line is the result of a 1D simulation
of PNS cooling and used in Model 2. The green and blue lines are
the PEFs employed for Models 1a and 1b, respectively.

FIG. 3. The space-fixed coordinates (X, Y, Z) and the corotat-
ing coordinates (X00, Y 00, Z00) employed in Model 3.
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with

ΘðtÞ ¼ const; ð17Þ

ΦðtÞ ¼ ωt; ð18Þ

where ω is the angular frequency of rotation. Combining
blðtÞ and Ym

l ðΘðtÞ;ΦðtÞÞ to give almðtÞ as

almðtÞ ¼ blðtÞYm
l ðΘðtÞ;ΦðtÞÞ; ð19Þ

which leads to

hamp
lm ðtÞ ¼ 8πG

c4Rð2lþ 1Þ
Z

t

0

almðt0Þdt0; ð20Þ

we finally get

hSðt; α; βÞ ¼
Xþ∞

l¼1

Xl

m¼−l
hamp
lm ðtÞ ×ΨS

lmðα; βÞ; ð21Þ

which is the same form as in Eq. (11).
Now we explain the ideas behind these models some-

what in detail. In the current situation, in which no reliable
multidimensional simulation of PNS cooling is available,
the results of 1D simulations under spherical symmetry are
the best information we can utilize. In Model 2, we adopt
indeed the time profile obtained in one of such 1D
simulations for the isotropic component of the neutrino
luminosity (and hence for all harmonic components after
scaled) in our calculation of GW signals. It is well known
that the PNS cooling has a few phases that have different
cooling timescales [28]. Considering the experimental
nature of our study in this paper, we approximate the light
curve with piecewise exponential functions in Models 1a
and 1b so that we could see the different cooling times more
clearly. Model 1a is indeed a rough fit to the original light
curve. In Model 1b, on the other hand, the cooling times in
phases 3 through 5 are reduced from the values adopted in
Model 1a. This is motivated by the expectation that
convection will occur in PNS and accelerate the cooling
by enhancing neutrino emissions. Incidentally, in these
experimental models we investigate the time dependence of
the GW signals and the angular dependence of each
harmonic component separately, which is possible with
our formulation [see Eq. (11)].
In Model 2 as we mentioned, we employ the result of a

1D simulation of PNS as it is. Although the details of this
simulation are not important as long as it is of the standard
quality, we will give some information briefly; the initial
condition is the snapshot at t ¼ 0.3 s postbounce obtained
in a 1D core-collapse simulation for 15 M⊙ progenitor [29]
with the general relativistic neutrino-radiation hydrody-
namics code [30], the inner region of the core (up to
∼1.47 M⊙) is extracted, and the subsequent quasistatic

evolution of PNS cooling is computed by solving the
Tolman-Oppenheimer-Volkov equation together with the
neutrino transfer equation under the so-called flux-limited
diffusion approximation [31]; Shen’s equation of state is
used [32]. Let us stress again that the employment of the
1D-simulation result is a crude approximation. Even the
isotropic component will be different in reality. We need to
wait for multidimensional simulations of PNS cooling.
Model 3 is more physically motivated. In this model
neutrinos are emitted axisymmetrically with respect to
an axis that is rotating at a constant angular frequency
around another axis fixed in space. Such a situation may
occur for a rotating magnetized PNS with the magnetic axis
misaligned with the rotation axis, in which neutrinos may
be emitted more preferentially in the direction of the
magnetic axis [33]. Since we are concerned with the
GW emission in the deci-Hz range in this paper, slow
rotators are the target. Magnetars are known to rotate
slowly with a rotation period typically longer than a second
although we do not know if they are born as such slow
rotators. The very strong magnetic fields B≳ 1014 G that
characterize the magnetars are also advantageous for this
scenario. Electrons will be affected by such strong fields
and in turn influence the neutrino transport [33], picking up
the magnetic axis as a special direction. Although the
observational information on the magnetic axis in magnet-
ars is scarce, it is more natural that the two axes are not
aligned with each other. This statement may be supported
by the fact that pulsars are supposed to be misaligned
rotators [34–37]. There are also some 3D magnetohydro-
dynamic simulations that suggest the misalignment of the
rotational and magnetic axes [38,39].
In the actual evaluation of GW signals, the scaling factor

for the anisotropic components of the luminosity is set to
ϵ ¼ 0.1 in Models 1 and 2. For Model 3, on the other hand,
we choose ϵ ¼ 0.01, which may correspond to B ∼ 1015 G
[33]. We have two more parameters to set in this case; Θ
and ω. Since we focus on the deci-Hz range, we choose the
spin frequency as f ¼ ω=2π ¼ 0.1 Hz. The inclination
angle Θ is arbitrary and chosen to be Θ ¼ π=2 as an
example. Note that different choices of Θ change the
amplitude alone [see Eqs. (19) and (20)].

III. RESULTS

Now we present the main results. Taking advantage of
the fact that each harmonic component of the GW wave-
form (and hence the characteristic strain also) is decom-
posed into the two factors [see Eq. (11)], hamp

lm and ΨS
lm,

each depending on the time and the observer’s position
alone, respectively; we will investigate them separately. We
first show the waveforms hamp

lm ðtÞ and the corresponding
characteristic strains for Models 1 and 2 in Secs. III A and
III B, respectively. We then look at the anisotropies of the
GW emissions based on ΨS

lmðα; βÞ. We also present the
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polarization angles of each harmonic mode up to l ¼ 3. The
results of Model 3 will be given thereafter. Again the
waveform, characteristic strain, as well as the polarization
will be studied in detail. Finally, we discuss prospective
detections in the deci-Hz range by some planned satellite-
borne detectors.

A. hamp
lm ðtÞ and the characteristic strains

for Models 1 and 2

In this section we present hamp
lm ðtÞ up to 50s, and the

corresponding characteristic strains h̃clmðfÞ for Models 1
and 2. Note that hamp

lm ðtÞ gives the overall scale and the time
profile of GW signals, whereas ΨS

lmðα; βÞ gives the angular
dependence of the GW emissions. We evaluate Eq. (12)
numerically. As mentioned repeatedly, the time profiles
hamp
lm ðtÞ are assumed to be the same for all harmonic

components in Models 1 and 2. In Model 2, in particular,
we use the time profile obtained in the 1D simulation of
PNS cooling just by scaling it. Then, Eq. (12) is reduced to

hamp
lm ðtÞ ¼ 2G

c4R

Z
t

0

ϵL1D
ν ðt0Þdt0; ð22Þ

where L1D
ν ðtÞ is the luminosity obtained in the simulation;

the scaling factor ϵ is set to 0.1. In Models 1a and 1b, on the
other hand, L1D

ν ðtÞ is replaced with the PEFs given in
Eqs. (14) and (15), respectively. These two models are of
experimental nature as can be understood from Fig. 2.
The GW waveforms obtained for these models are

shown in Fig. 4. Although the approximation by the
PEFs is rather crude, there is a good agreement between
Models 1a and 2. Note that there are slight differences in
the asymptotic values among the different models, since we
did not make any attempt to make the values of the integral
in Eq. (22) for these two models close to that for Model 2
when we constructed Models 1a and 1b. The waveform is
actually very simple, increasing monotonically. It is also
clear that the GW amplitudes approach nonvanishing
asymptotic values. This is the memory effect and reflects
the fact that neutrinos continue to expand as the time goes
to infinity, in sharp contrast to matter motions, which are

eventually halted. For Model 1b the GW amplitude rises
more quickly in accord with the faster decline of the
neutrino luminosity. We are not concerned with a slight
difference in the asymptotic values among models as we
mentioned earlier.
The characteristic strain h̃cSðfÞ of GW is a dimensionless

quantity, which is commonly used for the comparison of a
signal to a detector sensitivity. It is defined as

h̃cSðfÞ ¼ 2fjh̃SðfÞj; ð23Þ

where h̃SðfÞ is the Fourier transform of the waveform
hSðtÞ,

h̃SðfÞ ¼
Z

∞

−∞
hSðtÞe2πiftdt: ð24Þ

The characteristic strains for the PEFs can be calculated
analytically as follows:
Each exponential function in Eqs. (14) and (15) is

written in its own range as

LνiðtÞ ¼ kie
− t
ti ; i ¼ 1; 2; 3; 4; 5; ð25Þ

and the real and imaginary parts of its Fourier transform are
given, respectively, as

ReðL̃νiðωÞÞ ¼
−ti

1þ ðωtiÞ2
½e−

Ti
ti ðcosωTi − ωti sinωTiÞ

þ e−
Ti−1
ti ðωti sinωTi−1 − cosωTi−1Þ�; ð26Þ

ImðL̃νiðωÞÞ ¼
ti

1þ ðωtiÞ2
½e−

Ti
ti ðωti cosωTi þ sinωTiÞ

− e−
Ti−1
ti ðωti cosωTi−1 þ sinωTi−1Þ�; ð27Þ

where ω ¼ 2πf, Ti−1, and Ti are the lower and upper
bounds of the ith range.
The Fourier transform of the total PEF is just the sum of

the contributions from the individual ranges. The character-
istic strains so obtained are shown in Fig. 5. In this paper, as
mentioned repeatedly, we will focus on the sub-Hz range.
In this figure we show the contributions from individual
phases separately in addition to the characteristic strain for
the entire evolution. In the latter (the purple line) one can
see clear features which wewant to exploit to find the decay
time of each phase. As a matter of fact, if one pays attention
to the frequency range of 0.001 Hz–0.02 Hz, one finds that
the characteristic strain is almost constant up to ∼0.002 Hz,
which is nothing but the memory. Note that we cannot
obtain the strictly zero frequency limit of the characteristic
strain from data that spans a finite period. Since the
characteristic strain is a continuous function of frequency,
it is expected to be nonvanishing and almost constant near
the zero-frequency. Then the characteristic strain starts to

FIG. 4. The gravitational waveforms for Models 1a, 1b, and 2.
The angular factor ΨS

lmðα; βÞ is not included.
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decline and reaches another (short) flat region at
∼0.015 Hz. Comparing the purple line with the blue line,
which is the contribution from phase 5, one recognizes
that the decline in the former reflects that of the latter. It is
also found that the frequency at the second plateau
corresponds to twice the inverse of the decay time,
t5 ¼ 25 sec, for phase 5. Similarly, there is another decline
and subsequent flattening of the characteristic strain in the
frequency range of 0.02 Hz–0.04 Hz. The decline is again
produced mainly by the fall in the contribution from phase
4. We find also that the frequency at the third plateau
corresponds to twice the inverse of the decay time for the
same phase, t4 ¼ 12.5 sec.
It is difficult, however, to extend this scheme to phase 3

or even earlier phases, since there are many oscillations up
to the frequencies, at which the decline occurs in these early
phases. There may be another way to extract the decay
times for these phases, though, if one looks at a bit higher
frequencies. Fig. 6 is a zoom-in to the frequency range of
1 Hz–5 Hz. One can see the characteristic strain oscillating
in this range. It is also apparent from the comparison with
the contribution from phase 3 (orange line) that this reflects
the oscillation of the characteristic strain in this phase. One
finds then that the number of oscillations per frequency,

∼3.7, corresponds to the decay time of the same phase. If
one inspects the purple line, i.e., the characteristic strain for
the entire evolution more closely, one finds that this
oscillation is actually superimposed by other oscillations
with smaller amplitudes and shorter periods, which in turn
reflect the oscillations in phases 2 and 1. In principle, the
same method can be applied to the first and second phases
by looking at even higher-frequency ranges, where the
oscillations are dominated by the contributions from these
early phases. In practice, however, this will be difficult to
do, since the amplitudes are much smaller and, moreover, at
these higher frequencies we are afraid that GWs from
matter motions, which we do not consider here, may not be
ignored.
We now shift our attention to Model 1b, which has

shorter decay times in phases 3 to 5 and may correspond to
the accelerated PNS cooling in the presence of convection
[40,41]. We present the characteristic strain for the entire
evolution as well as the individual contributions from
different phases in Fig. 7. One finds from this figure that
the characteristic strain (purple line) is much featureless
with clear humps and dips being absent. It is hence difficult
to apply the previous methods to find the decay times.
Comparing the characteristic strain for the whole evolution
(purple line) with the contributions from the individual
phases (lines with other colors); however, one still finds that
the decay times for these phases are encoded as the changes
of slope in the characteristic strain. In fact, the first change
of slope, i.e., the one at the lowest frequency, occurs at
∼0.03 Hz, which should correspond to a decay time
≈ 1

2×0.03 ¼ 16.7 s. This is indeed close to the decay time
of phase 5, t5 ¼ 20 sec, in Eq. (15). Similarly, the second
change of slope, although tiny, can be found at the
frequency of ∼0.1 Hz, which actually gives the decay time
of phase 4, i.e., t4 ¼ 5 s. Unfortunately, the decay time of
phase 3 is almost impossible to find although it is the
largest contribution in this model. This is because the sign
of the contribution from phase 3, which is not shown in the
figure, is opposite to those of the contributions from other
phases and its change of slope is almost washed out. Since
the extraction of the decay times for these late phases are

FIG. 5. The characteristic strain h̃cðfÞ for Model 1a (purple
line). Other lines with different colors are the contributions from
the individual phases.

FIG. 6. The zoom-in to the frequency range of 1 Hz–5 Hz of
Fig. 5. The notations are the same as in Fig. 5 but the horizontal
axis is in linear scale.

FIG. 7. The characteristic strains for Model 1b. The notations
are the same as in Fig. 5.
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already very subtle admittedly, we did not make any
attempt to retrieve the decay times of the earlier phases.
Note that we determine the above frequencies for the
plateaus and the points of slope by eye inspection, since we
think that it is sufficient for our purpose in this paper. In
Fig. 8, we present the characteristic strains for Model 2, that
is, for the time profile obtained in the 1D PNS cooling
simulation. For comparison, we show the results of Models
1a and 1b with the PEFs given in Eqs. (14) and (15),
respectively. One finds that the characteristic strain for
Model 2 is almost identical to that for Model 1a. This
implies that the decay times at different evolutionary phases
can be extracted also from the realistic time profile just in
the same way.
Note in passing that the common feature observed in

Fig. 8 that the characteristic strain has a nonvanishing zero
frequency limit (ZFL) is a manifestation of the GW
memory. In fact, the characteristic strain is defined as

h̃cðfÞ ¼
���� iπ _̃h

����; ð28Þ

and its ZFL can be expressed as

lim
f→0

h̃cðfÞ ¼ lim
f→0

����
Z þ∞

−∞

i
π
_hðtÞei2πftdt

����
¼

����
Z þ∞

−∞

i
π
_hðtÞdt

���� ¼ jhðt ¼ ∞Þj
π

; ð29Þ

where we assume that hðt ¼ −∞Þ ¼ 0.

B. Dependence on the observer position:
ΨS

lmðα;βÞ and polarizations

Now we shift our attention to ΨS
lm, the angular depend-

ence of GW emissions, for Models 1 and 2.
We begin with the axisymmetirc cases withm ¼ 0 in the

spherical harmonics expansion. Since there is no depend-
ence on the azimuth angle α, we set it to zero. We show in
Fig. 9 ΨS

lm as a function of β. It turns out that ΨS
10 is

vanishing identically. The dipolar asymmetry of neutrino
emission hence does not produce GWs. As can be seen
from the figure, the GWs cannot be detected if the observer
is located either on the north pole or on the south pole.
There are clearly preferential directions depending on l,
e.g., the equator is the best direction for the l ¼ 2 mode.
Note also that the ×-mode of GW is vanishing in this
axisymmetric case. As a result, the observed GW signals
are linearly polarized irrespective of the detailed contents of
harmonics in this case.
Next, we proceed to the nonaxisymmetric case with

m ≠ 0. They are presented as color maps in Figs. 10–15 for
all combinations of l and m up to the third order. Note that
we also put arrows on top of the color maps for theþ-mode
that show the polarization patterns, which will be discussed
later in this section. This time not only theþ-mode but also
the ×-mode is nonvanishing; both modes are displayed as a
function of α and β in the Mollweide projection. As is
evident, they have distinct features depending on the
combination of l and m. Of course, the actual signals
are superpositions of these patterns. Although it is not
available for the moment, once a light curve of neutrino is
provided as a function of solid angle by multidimensional
computations of PNS cooling, we can immediately calcu-
late such superpositions according to Eq. (11).
In the nonaxisymmetric case, the polarization of GW

signals is nontrivial even for individual harmonics, since
there exists the ×-mode in addition to the þ-mode now. As
mentioned just above, we are currently lacking the reliable
estimate of the neutrino luminosity as a function of solid
angle and we employ in this paper the simplest models, in
which all harmonic components of the neutrino luminosity
have the same time profile. Even in that case, the position
angle of their linear polarization changes from position to
position on the celestial sphere. As understood from
Eq. (11), it is determined by ΨS

lm alone. As a matter of
fact, under this circumstance, the GW waveform has a þ-
mode alone if one rotates the observer coordinates by an
angle of Δ around the Z0 axis (see Fig. 1),

FIG. 8. The comparison of characteristic strains among Models
1a, 1b, and 2.

FIG. 9. The angular factor Ψþ
lm as a function of β. Here we set

α ¼ 0. Note that the ×-mode vanishes identically.
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Δ ¼ 1

2
arctan

�
h×ðtÞ
hþðtÞ

�

¼ 1

2
arctan

�
Ψ×ðα; βÞ
Ψþðα; βÞ

�
: ð30Þ

Here Δ is assumed to be in the range of ð− π
2
; π
2
Þ.

We show in Figs. 10–15 this angle by the arrows attached
to different points. Although shown in the panels for þ-
modes alone for convenience, the polarization angle is
determined by the ratio of the two modes [see Eq. (30)].
The angles that the arrows make with the horizontal axis
and are measured anticlockwise correspond to the values of
Δ above at their points. Note that the distributions of the

FIG. 10. The color map of the angular factor ΨS
lmðα; βÞ for l ¼ 1 and m ¼ �1 in the Mollweide projection. The left and right columns

correspond to the þ- and ×-modes, respectively. The arrows in the left panels represent the angles of the linear polarization for each
harmonic component. The top and bottom rows are for the m ¼ −1 and m ¼ 1, respectively. Note that the color scale is different from
panel to panel.

FIG. 11. Same as Fig. 10 but for l ¼ 2 and m ¼ �1.
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value of Δ are antisymmetric with respect to α ¼ 180°. It
should be mentioned again that the actual signal is a
superposition of all spherical harmonic modes and its
polarization should be quite different from what we have
shown here for the individual modes. We think, however,
that this information is still useful. As a matter of fact, we
do not know at the moment in what proportion these
components are mixed in the total signal; in fact we simply
“assumed” in this paper that the amplitudes of all compo-
nents are 0.1 in Models 1 and 2 and 0.01 in Model 3, which

is discussed in the next section. This is because we have no
reliable simulations of PNS cooling in multidimensions at
present as we repeatedly mentioned. In this sense, the
analysis of each harmonic component is more important for
the moment.

C. Results of Model 3

Now we proceed to Model 3, in which the neutrino
emission is axisymmetric with respect to a certain axis that

FIG. 12. Same as Fig. 10 but for l ¼ 2 and m ¼ �2.

FIG. 13. Same as Fig. 10 but for l ¼ 3 and m ¼ �1.
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itself is rotating at a constant angular frequency around
another axis, which we identify with the Z axis. As should
be evident fromEq. (16), the spherical harmonicswithm ≠ 0
have their own time profiles that are different from that of
the spherical component because of ΦðtÞ ¼ ωt ¼ 2πft
originating from the rotation of the symmetry axis around
the Z axis. This should be reflected in the GW signals. In
Figs. 16 and 17, we show the contributions to thewaveforms
hþðt; α; βÞ and h×ðt; α; βÞ from harmonics with different l’s
up to 4. We assume that ϵ ¼ 0.01 and the observer is located

atα ¼ 160° andβ ¼ 140° as a generic position andΘ ¼ π=2.
In these figures,we sum the harmonics overm for each l. This
should be understandable, since the underlying angular
distribution is axisymmetric with respect to a certain axis
[see Eq. (19)].
One finds that not only the þ-mode but the ×-mode is

also nonvanishing in this case. It is also clear in these
figures that there are oscillatory features in the waveforms
of individual harmonic components. This is understandable
from Eqs. (8), (16), (19), and (20); almðtÞ contains

FIG. 14. Same as Fig. 10 but for l ¼ 3 and m ¼ �2.

FIG. 15. Same as Fig. 10 but for l ¼ 3 and m ¼ �3.
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cosðmωtÞ or sinðmωtÞ in Eq. (19), which originates from
YlmðΘðtÞ;ΦðtÞÞ in Eq. (16) [see also Eq. (8)]. This is more
clearly seen in the characteristic strain, which is presented
for different harmonic components in Fig. 18. In fact, we
expect peaks to appear in the characteristic strains at the
frequencies of mf, in which m satisfies −l ≤ m ≤ l, since
they are indices of the spherical harmonic function Ylm. We
found indeed a peak at lf (i.e., m ¼ l) in Fig. 18. We did
not find, on the other hand, some of other peaks expected at
mf for m ≠ l in this figure: e.g. the peaks at f and 3f
(corresponding to m ¼ 1, and 3, respectively) for l ¼ 4 are

missing. This is because of the choice of Θ ¼ π=2. As a
matter of fact, we find from the spherical harmonic
functions that hamp

lm ¼ 0 at odd (even) m’s for an even
(odd) l at this value ofΘ. From this argument, we expect for
l ¼ 4 the peaks corresponding to m ¼ 2 and 4 to show up
and they do indeed although the former peak (correspond-
ing to m ¼ 2) is not very clear. Note that the characteristic
strain depends onΨlm, which is in turn affected by the value
of Θ. This is also the reason why some peaks are not
remarkable as for the combination of l ¼ 4 and m ¼ 2. In
order to vindicate this interpretation, we look into the case

FIG. 16. The gravitational waveform of the þ-mode, hþðtÞ, for different l’s. The position of observer is set to α ¼ 160°, β ¼ 140°.
The harmonic components are summed over m for each l. We set ϵ ¼ 0.01 and assume that the distance to the source is R ¼ 10 kpc.
The insets are the zoom-ins of the harmonics l ¼ 1 and 4.

FIG. 17. Same as Fig. 24 but for the ×-mode.
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withΘ ¼ π=6 in Fig. 19. We find indeed all the peaks atmf
with 0 < m ≤ l. These features can be used to infer the
rotation frequency f, which is supposed to be the frequency
of the stellar rotation itself. Since the actual characteristic
strain is a superposition of these individual spherical

harmonic components, we will observe a few peaks at
integral multiples of f. Then we may read out the rotation
frequency as the greatest common divisor of the peak
frequencies.
Next we move on to the polarization for this model.

Since the neutrino beam is rotating, we expect that the GW
signal will have a circular-polarization component. In order
to see this quantitatively, we investigate the Stokes param-
eters [42,43] defined as

Iðf; k̂Þ ¼ hjhþðf; k̂Þj2i þ hjh×ðf; k̂Þj2i;
Qðf; k̂Þ ¼ hjhþðf; k̂Þj2i − hjh×ðf; k̂Þj2i;
Uðf; k̂Þ ¼ 2hReðhþðf; k̂Þh�×ðf; k̂ÞÞi;
Vðf; k̂Þ ¼ 2hImðhþðf; k̂Þh�×ðf; k̂ÞÞi; ð31Þ

where I is the total intensity, Q and U stand for the linear
polarization, and V represents the circular polarization (the
focus here). In Fig. 20, we show the square root of the
modulus of V as a function of frequency for different
harmonic components. We find again for each line that
there are peaks at the frequencies, at which we observed the
peaks in the characteristic strains above. If nonvanishing
values of the V parameter with these peaks are observed, it
may be an indication that the neutrino beam, and hence the
PNS itself, are rotating at the frequency inferred from
the peaks.
The anisotropy of GW emissions for this model is time

dependent as should be understood from Eq. (21). We
show, as an example, hþ and h× at t ¼ 20 s as a function of
the solid angle in the Mollweide projection in Figs. 21 and
22, respectively. Again we sum the harmonic components
with the same l over all m. Hence the results may be

FIG. 18. The characteristic strains for Model 3. Here Θ ¼ π=2.
The harmonic components are summed over m for each l.

FIG. 19. Same as Fig. 26 but for Θ ¼ π=6.

FIG. 20. The square root of the absolute value of Vas a function of f for different l’s. The harmonic components are summed over m
for each l. The distance to the source is 10 kpc.
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understood as the sum of anisotropies for different m’s
shown in Figs. 10–15.

D. Detectability

Finally, in Fig. 23 we compare the characteristic strains
obtained so far with the planned sensitivities of prospective
deci-Hz GW detectors [44]; LISA [22], DECIGO [45–47],

ALIA [25], and B-DECIGO [48] for Model 2—the angular
factor, Ψ, is not included whereas for Model 3 it is included
and the observer is assumed to be located at α ¼ 160° and
β ¼ 140°; the distance to the source is assumed to be 10 kpc
for both cases and the amplitudes of anisotropic neutrino
emissions are ϵ ¼ 0.1 and 0.01 for Models 2 and 3,
respectively. Note that it is not our goal in this paper to
address the detectability of the GW signals with the

FIG. 21. The amplitude of the þ-mode hþ as a function of the observer position in the Mollweide projection at 20s for l ¼ 1 to 4.
The harmonic components are summed over m for each l. The values in the color bar are in unit of 10−22. The distance to the source is
assumed to be 10 kpc.

FIG. 22. Same as Fig. 29 but for the ×-mode h×.
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detector noises being taken into account in detail. Our
models are just not realistic enough for that. Instead we
would like to give a proof of principle that there is a fair
chance to detect the GW signals from the neutrinos emitted
asymmetrically from PNS by some prospective satellite-
borne GW detectors, which could give us an invaluable
opportunity to get some information on the asymmetry and
rotation of PNS. For that purpose, just a comparison of the
characteristic strains with the sensitivity curves is enough.
And note also that a mere detection does not imply
immediately that we can extract relevant information well.
One finds that the DECIGO has a potential to detect the

gravitational wave signal for Model 2 if the observer is
located at a favorable position. In fact, the observed signal
covers a wide range of frequency from 10−3 Hz to 10 Hz,
which will be sufficient to find the memory. B-DECIGO,
the precursor mission of DECIGO and hence its scaled-
down version, has a lower sensitivity. It may still be able to
detect the GW signal at its best-sensitivity frequency of
∼0.1 Hz. The detection may be limited down to 0.01 Hz.
ALIAwill be sensitive to a bit lower frequencies. It is better
indeed than DECIGO at ≲0.01 Hz. LISA has its best
sensitivity at even lower frequencies, ∼5 × 10−3 Hz and
may be able to detect the GW signal at these frequencies.
Note, however, that the characteristic strain considered here
does not include the angular factor Ψ [Eq. (13)] but only
corresponds to the time-evolution part [Eq. (12)]; the actual
detectability depends on the observer’s position. The
signal to noise ratio [49] of this characteristic strain for
DECIGO is crudely estimated as SNR ≈ 103 in the fre-
quency range of 0.001 Hz–10 Hz. Since the angular factor
is typically Ψ ≈ 10−2–10−1 for the optimal direction (see

Figs. 9, 10–15), the actual signal to noise ratio may be
10–100 for Model 2.
In Model 3, where the rotating (axisymmetric) neutrino

beam is considered, the amplitude of anisotropy in the
neutrino emission is assumed to be ϵ ¼ 0.01, one order of
magnitude smaller than in Model 2. As a result, the
characteristic strains are smaller accordingly. Note also
that they include the angular factor Ψ in this case. The
observer is assumed to be located at α ¼ 160° and
β ¼ 140°. As is evident, the GW signals, the individual
harmonics of which are shown in this figure, will be visible
only to DECIGO. This is not only thanks to its best
sensitivity but also due to the fact that its sensitivity is best
at frequencies of a few deci-Hz, which coincide with the
positions of the peaks in the GW signals. This coincidence
is obtained in turn because the rotation of PNS is assumed
to be very slow as is the case for magnetars. Note again that
the GW amplitude depends on the observer position; it is
also affected by the angle Θ between the two axes, which is
assumed to be π=2 in this figure. In fact the peak amplitude
for l ¼ 2 is smaller nearly by a factor of 2 to 3 for Θ ¼ π=6
(see Figs. 18 and 19). Nonetheless it is nice that DECIGO
has a fair chance to detect such a tiny anisotropy in neutrino
emissions and find the frequency of PNS rotation. Again,
just for reference, we give here the crude estimation of the
signal to noise ratios for DECIGO; ∼30 for Θ ¼ π=2 and
∼20 for Θ ¼ π=6.

IV. SUMMARY

We have investigated the gravitational radiation from the
neutrinos emitted anisotropically from protoneutron star in

FIG. 23. The sensitivity curves for LISA, DECIGO, ALIA, and B-DECIGO compared with the characteristic strains for Models 2 and
3. We assume that the distance to the source is 10 kpc and set ϵ ¼ 0.1 and 0.01 for Models 2 and 3, respectively.
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its cooling phase. By approximating with the piecewise
exponential function the neutrino light curve obtained with
the 1D simulation of PNS cooling under spherical sym-
metry, we have identified 5 phases, which have their own
decay time scales. We have employed this piecewise
exponential function as well as the original light curve
as the reference models for the time profiles of the
anisotropic component of the neutrino emissions, since
there is no multidimensional numerical simulation of PNS
cooling available for the moment to provide quantitatively
reliable data. We have also modified the PEF by hand to
study the effect of possible convection in PNS. We have
considered yet another model, in which neutrinos are
emitted axisymmetrically with respect to the axis that is
rotating around a space-fixed axis. We have in mind a
strongly magnetized PNS, or a magnetar, with a magnetic
dipole moment misaligned with the rotation axis. We
assumed a slow rotation with a period of 10 s as typified
by observed magnetars [50].
We then calculated the GW waveforms with our formula

based on the spherical-harmonic expansion of the neutrino
luminosity. The formula should be convenient once multi-
dimensional simulations become available to provide the
angle-dependent neutrino luminosities as a function of time
in the near future. We have also calculated the characteristic
strains for different spherical harmonic components, both
axisymmetric (m ¼ 0) and nonaxisymmetric (m ≠ 0). We
have demonstrated that some of the time scales that
characterize the decay of luminosity in different phases
may be derived from the bumps in the characteristic strain
at low frequencies for the cooling without convection; for
more rapid cooling in the presence of convection, we may
obtain some of the cooling times either from the locations
of slope changes or from the oscillation periods in the
characteristic strain.
For the axisymmetric neutrino emissions, the ×-mode

always vanishes and the GW signal is linearly polarized
just as for those from axisymmetric matter motions. For
nonaxisymmetrically emitted neutrinos, on the other hand,
the ×-mode is nonvanishing anymore. We have calculated,
for each harmonic mode, the polarization angle as a
function of the observer position on the celestial sphere.
It is actually correlated with the pattern of GW emissions,
since both of them are dictated by the angular factor Ψ in
Eq. (13). In the absence of reliable estimates of the neutrino
anisotropy in the protoneutron star cooling at present, all
we can do is to investigate the behaviors and properties of
each spherical harmonic mode individually. Note that once
we obtain a reliable theoretical prediction of the anisotropic

neutrino emissions from the protoneutron star, it is easy for
us to obtain the observed gravitational wave signals just by
superimposing these results on top of each other with
appropriate weights. These results are hence expected to
guide the near-future detection of deci-Hz gravita-
tional waves.
Then we have applied the same analysis to the model

meant for the rotating magnetar with its magnetic axis
misaligned with the rotation axis. The rotation of the
neutrino beam is indeed reflected as the peaks in the
characteristic strain and as the nonvanishing Stokes V
parameter. We have observed that these peaks appear at
the frequencies of integral multiples of the rotation fre-
quency, the fact that we may be able to employ to extract
from the GW signals the information on the PNS rotation at
its birth.
Finally, we have compared the characteristic strains

obtained in these models with the sensitivity curves of
some prospective deci-Hz detectors such as LISA,
DECIGO, ALIA, and B-DECIGO. We have shown that
DECIGO has the potential to detect all the features
mentioned above, covering a frequency range best suited
for the GW signals considered in this paper and having a
high enough sensitivity.
Our models are admittedly very crude. We assumed the

same time profile for all harmonic components, which is
certainly not true. The amplitudes of anisotropy in neutrino
emissions adopted in this paper may not be typical. We
have to wait for a realistic simulation of PNS cooling in
multidimensions, though. Once it is done, however, we are
ready to calculate the low-frequency GW signal from the
results they provide.
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