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Primordial black holes (PBHs) can form as a result of primordial scalar perturbations at small scales.
This PBH formation scenario has associated gravitational wave (GW) signatures from second-order GWs
induced by the primordial curvature perturbation, and from GWs produced during an early PBH dominated
era. We investigate the ability of next generation GWexperiments, including BBO, LISA, and CE, to probe
this PBH formation scenario in a wide mass range. Measuring the stochastic GW background with GW
observatories can constrain the allowed parameter space of PBHs for masses 109–1027 g. We also discuss
possible GW sources from an unconstrained region where light PBHs (< 109 g) temporarily dominate the
energy density of the universe before evaporating. We show how PBH formation impacts the reach of GW
observatories to the primordial power spectrum and provide constraints implied by existing PBH bounds.
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I. INTRODUCTION

Primordial black holes (PBHs) may play an interesting
role in astrophysics and cosmology [1,2]. Much attention
has been paid recently to the possibility of PBHs as dark
matter (DM) and as an explanation of recent LIGO/VIRGO
[3] gravitational wave (GW) observations [4]. Such PBHs
would need to be heavy enough to avoid Hawking
evaporation on timescales comparable to the age of the
Universe. Alternatively, there may have existed a signifi-
cant population of light PBHs, which would have Hawking
evaporated at early times. Though not corresponding to an
observable PBH population today, light evaporating PBHs
can be tied to other interesting phenomena, such as an early
period of PBH domination [5,6], baryogenesis [7–11], the
production of dark radiation [6–8,10–14], and perhaps the
production of the observed DM density, either as a product
of Hawking radiation [6–8,12–14] or if evaporation ends in
a stable relic [15–18]. Such scenarios are challenging to
probe. However, gravitational wave observations at inter-
ferometers can provide important insight into the formation
and abundance of both evaporating and long-lived PBHs
produced in the early Universe.
In this work, we will study the prospects for future GW

interferometers to detect a gravitational wave background
associated with PBH formation and, possibly, black hole
domination, across a wide range of mass scales. The most
well-studied PBH production mechanism is the collapse of
primordial density perturbations from inflation. In this
context, a sizable density perturbation associated with

the formation of PBHs can source a stochastic GW back-
ground at second order in cosmological perturbation theory
[19–26]. Additionally, if the density perturbations are large
enough to generate a substantial population of PBHs, a
period of PBH domination can ensue, which provides
additional mechanisms for producing primordial GWs.
Such mechanisms have been the study of recent works
including [27–30]. We will elucidate on the combined
impact of these sources in what follows.
There is a large corpus of existing literature dealing with

GWs associated with PBH formation. Our study comple-
ments this past work in several ways. For one, we
incorporate a treatment of the effects of a possible PBH-
dominated era, which provides several additional mecha-
nisms for generating GWs and affects the observational
prospects. Second, we study a larger range of PBH masses
than is often considered, including very light PBHs which
are sometimes neglected due to their evaporation at early
times. Third, we incorporate a state-of-the-art treatment
relating the underlying inflationary perturbations to the
resulting PBH mass spectrum and subsequent evolution.
Finally, we present our results in a unified way alongside
other observational constraints and prospects, facilitating a
clear comparison of the corresponding GW interferometer
reach to that of other observations sensitive to evaporating
or long-lived PBHs.
Our study focuses on PBHs for which the underlying

inflationary perturbations, or the effects of PBH domina-
tion, give rise to signals at GW interferometers. This occurs
for subsolar mass PBHs (assuming that the mass spectrum
is approximately monochromatic), and so we will show
results for masses below ∼1030 g. It is important to note,
however, that heavier PBHs with masses above ∼1030 g
can also induce an observable GW signal through various
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mechanisms. There is a vast corresponding literature
covering this regime as well, especially in the context of
the observed LIGO/VIRGO mergers (see e.g., [3,31,32])
and recent NANOGrav results [33–36]. Such scenarios
can also induce GW signals at interferometers if the mass
function is sufficiently extended or the corresponding
inflationary perturbations approximately scale-invariant
[37], but we will not consider this possibility further,
focusing instead on PBH populations with a nearly
monochromatic mass function peaked well below the
solar-mass regime.
Our study is organized as follows. Section II discusses

various aspects of primordial black hole cosmology, and
introduces the relevant parameter space. Section III details
the relationship between the assumed underlying infla-
tionary perturbations and the resulting black hole mass
spectrum. Section IV describes the various stochastic GW
sources relevant at interferometer scales, including GWs
from the formation and evaporation of PBHs, while the
resulting observational prospects are discussed alongside
other astrophysical and cosmological probes in Sec. V.
We conclude in Sec. VI. Our final results are summarized
in Figs. 6–7.

II. PRIMORDIAL BLACK HOLE COSMOLOGY

Primordial black holes could have meaningfully
impacted our cosmic history in several ways. Depending
on their mass and initial abundance, they may have led to an
early period of black hole domination (BHD), injected
entropy (including a possible dark radiation component [6])
as they evaporated, or survived long enough to constitute
some fraction of the observed dark matter density. In this
section, we discuss these various possibilities in the context
of the PBH parameter space, compared with current
constraints on PBHs.
We will describe the PBH parameter space in terms of

characteristic mass mBH and an initial fraction of the total
energy density at time t⋆, with

β ¼ ρBH;⋆
ρr;⋆

: ð1Þ

Here ρr;⋆ is the energy density in radiation at that time, and
we will assume throughout that PBHs are formed in the
early radiation-dominated FRW universe.
There are several mechanisms that could in principle

give rise to an abundance of PBHs, but the most well-
studied is the collapse of density fluctuations from infla-
tion, whereby PBHs are formed when a large scalar
perturbation enters the horizon. We will assume this
mechanism throughout, taking a primordial curvature
perturbation power spectrum that is peaked at a character-
istic comoving wave number k⋆. We take t⋆ to be the time
when the mode k⋆ enters the horizon, which is defined by
the condition k⋆ ≡ a⋆H⋆, with a⋆,H⋆ the FRW scale factor

and Hubble parameter at horizon entry. The PBH mass is
proportional to the horizon mass at this time:

mBH ¼ 4πγeff
3

ρr;⋆H−3⋆ ; ð2Þ

where γeff is an Oð1Þ prefactor inferred from numerical
simulations and dependent on the spectrum of the primor-
dial curvature perturbation. For a review on PBH formation
and discussion of this γ parameter, see Refs. [2,39–41], and
references therein. It is important to note that our γeff differs
from the value of γ ∼ 0.2 which appears sometimes in the
literature. The difference arises from the fact that we define
the PBH initial conditions at horizon entry of the mode k⋆,
but more realistically, PBH formation happens over an
extended period of time. In addition, the PBHs form with a
distribution of masses, and heremBH is defined by fitting to
a lognormal mass distribution, given in (21). Examples
of the PBH mass function and details about the time-
dependent formation rate will be provided in Sec. III.
For now, we emphasize that the value of γeff depends on
the amplitude and shape of the primordial curvature
perturbation.
Both γeff and g⋆, the number of relativistic degrees of

freedom at PBH formation, will enter into a number of
quantities, making it useful to define the parameter

β0 ≡ ffiffiffiffiffiffiffi
γeff

p �
g⋆

106.75

�
−1=4

�
h

0.68

�
−2
β; ð3Þ

where h is the dimensionless Hubble constant. Throughout
this paper, we will generally suppress h dependence of
quantities and use h ¼ 0.68. In particular, the definition
above is useful is because the relic density of long-lived
PBHs is proportional to β0. We thus follow the convention
of plotting observational constraints in terms of β0 vs mBH,
and can thereby directly use the constraints of Ref. [39].
Assuming radiation domination, the temperature asso-

ciated with t⋆ is

T⋆ ¼ 3 × 108 GeV
ffiffiffiffiffiffiffi
γeff

p �
1015 g
mBH

�
1=2�106.75

g⋆

�
1=4

: ð4Þ

Depending on the primordial power spectrum, the actual
times associated with PBH formation will be slightly
different from t⋆. As discussed above, this leads to different
characteristic PBH masses, but these effects can be cap-
tured by the γeff parameter. Requiring T⋆ to be below a
reheat scale TRH ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
HIMpl

p
with the scale of inflation

HI ≲ 1014 GeV implies thatmBH ≳ 1 g, while requiring T⋆
to be well above BBN temperatures implies mBH ≲ 1034 g.
The relationship between mBH and k⋆ can be derived by

redshifting back from the present day. If β0 is sufficiently
small such that the PBHs never dominate the energy
density, then
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k⋆ ≃
5.4 × 1015

Mpc
ffiffiffiffiffiffiffi
γeff

p �
1015 g
mBH

�
1=2

; β0 < β0min; ð5Þ

where we have neglected the (mild) dependence on g⋆ in
this equation. βmin defines the condition for black hole
domination, which we will give below in (9).
Throughout this study, we will approximate the PBH

mass distribution as approximately monochromatic. The
formation scenarios we consider have sufficiently small
width in the PBH mass function, such that observational
constraints and cosmological evolution are expected to
be modified only at the Oð1Þ level by including a full
mass function. We will also neglect the effect of mergers
and accretion, so that once formed, the PBHs maintain an
approximately fixed mass until they begin to evaporate.
Given these assumptions, the subsequent cosmological
evolution of the PBH population is governed by the
parameters mBH and β0. We can therefore map the
mBH − β0 plane into different cosmological scenarios, as
shown in Fig. 1. In this paper, we will further map the
gravitational wave reach from interferometers onto this
plane.
Figure 1 shows three qualitatively different scenarios: in

the bottom right of themBH − β0 plane, PBHs are long-lived
enough to exist today. The region to the left of the blue
vertical line features PBHs that would have evaporated by
today, while the upper left corner supports an early black
hole-dominated epoch. The gray shaded parameter space
is excluded by existing constraints. Note that for the

parameter space shown, there is (or was) at least one
PBH formed in our observable universe. We discuss each of
these regions in turn below.

A. Long-lived PBHs

In the bottom right portion of the parameter space in
Fig. 1, the PBHs are heavy and the initial abundance
relatively small. Hawking radiation inevitably depletes the
energy density of PBHs. However, the evaporation rate
dmBH=dt ∝ 1=m2

BH, so that heavy PBHs evaporate slowly.
Sufficiently heavy PBHs can have lifetimes longer than the
age of the Universe and exist as a (meta-)stable relic today,
making up a fraction (or all) of the observed dark matter
density. The evaporation time tevap for sufficiently heavy
black holes is given approximately by [6]

tevap ≃ 4 × 10−4 s ×

�
mBH

108 g

�
3

ð6Þ

assuming only photons and neutrinos are emitted (the other
SM degrees of freedom are too heavy to be thermally
produced via Hawking evaporation of long-lived heavy
PBHs, since the Hawking radiation temperature is inversely
proportional to mBH). From this, we see that PBHs will
have lifetimes longer than the age of the Universe provided
mBH ≳ 4 × 1014 g. This region lies to the right of the blue
vertical line in Fig. 1.
The long-lived population of PBHs can serve as a viable

dark matter candidate. Since the effects of evaporation are
negligible in this mass range, the energy density of PBHs
simply redshifts as matter, ρBH ∝ a−3 with a the FRW scale
factor. Using entropy conservation, the PBH relic density
today is given by

ΩBH ≈ 1.4 × 1017β0
�
1015 g
mBH

�
1=2

: ð7Þ

The parameter values where PBHs are long-lived and
satisfy ΩBHh2 ≃ 0.12 with h ¼ 0.68 is indicated by the
black dashed line in Fig. 1, and provides a particularly
compelling target for GW interferometers and other astro-
physical probes, as is well known (see e.g., [42–44]).
Above the DM line in Fig. 1, the relic abundance of PBHs
is too large and leads to overclosure. This is the strongest
bound on the large-β region for mBH ∼ 1017–1023 g.

B. Evaporating PBHs

To the left of the blue vertical line in Fig. 1, mBH <
4 × 1014 g and PBHs are light enough to evaporate on
timescales smaller than the age of the Universe. In this
regime, PBHs themselves are no longer a viable DM
candidate, but can have other interesting effects. For
example, in Refs. [6,12], it was shown that evaporating
PBHs could source a significant amount of dark radiation.

FIG. 1. Range of PBH mass and β0 considered in this work. β0 is
proportional to β, the initial fractional energy density in PBHs;
see (3). The shaded region shows observational constraints for a
monochromatic mass function, see text. The solid lines delineate
different regimes of PBH cosmology, while the dashed line is
where PBHs comprise all of the observed DM. The dotted lines
are where Hawking radiation of the PBHs into particle DM
produces ΩDMh2 ≃ 0.1; the two lines shown are for DM mass of
109 GeV and 1013 GeV [6]. The dash-dotted line is where
Planck-scale relics from BHs make up all of the DM [38].
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The same work also pointed out that PBH evaporation can
also provide a nonthermal production mechanism for heavy
DM candidates, potentially giving rise to the observed DM
density. The dotted lines indicate the parameters which
produce ΩDMh2 ≃ 0.1 for particle DM mass of 109 GeV
(lower line) and 1013 GeV (upper line). Furthermore, it has
been suggested that quantum gravity effects may halt PBH
evaporation near the Planck scale, leaving behind a cold
∼Planck mass relic which is a possible DM candidate
[45,46]. The dash-dotted line in Fig. 1 indicates the
parameters required for the Planck-scale remnants to
produce ΩDMh2 ≃ 0.1.

C. Early black hole domination

Even if the PBHs evaporate away, if the primordial
curvature perturbation is large enough, there will be a
period of early black hole domination (BHD). Whether or
not BHD occurs depends on if the energy density in black
holes grows enough before they evaporate, so the minimum
value of β for BHD is given by the ratio TRH=T⋆, where the
reheating temperature TRH is the temperature at the time of
black hole evaporation (6). Assuming matter domination,
we find

TRH ¼ 2.8 × 104 GeV

�
mBH

104 g

�
−3=2

; ð8Þ

so our condition on the energy density for a BHD era is

β0min ≃ 3 × 10−10
�
104 g
mBH

�
: ð9Þ

For simplicity, we have suppressed the dependence on
degrees of freedom and on h.
For β0 > β0min, there is an additional BHD era where the

scale factor evolves as in a matter-dominated era. This
changes the relationship between the scale k⋆ and black
hole mass mBH, which now has β0 dependence:

k⋆ ¼ 2.4 × 1020

Mpc
ffiffiffiffiffiffiffi
γeff

p �
10−7

β0

�
1=3

�
104 g
mBH

�
5=6

; β0 > β0min

ð10Þ

since β0 determines the time of the onset of a BHD era. In
this region of parameter space, any gravitational waves
generated at the time of PBH formation will be diluted by
an additional redshifting factor given by

aRH
aBHD

¼ 2.4 × 103
�

β0

10−7

�
4=3

�
mBH

104 g

�
4=3

: ð11Þ

This has a significant impact on experimental reach
from gravitational wave interferometers if mBH < 109 g
and β0 > β0min.

D. Constraints

Aside from the overclosure constraint, we show com-
bined observational constraints on PBHs from Ref. [39].
These bounds are for a monochromatic mass function, and
the observational constraints can change significantly for
PBHs with extended mass functions and large enough
widths [47]. In this work, we will restrict to formation
scenarios where the width of the PBH mass function is not
too large, such that constraints are not drastically different.
We will discuss the width of the PBH mass function further
in the following section.
We now briefly summarize where the constraints come

from. If 109 g < mBH < 4 × 1014 g, then PBHs will evapo-
rate during or after big bang nucleosynthesis (BBN), but
before today. This leads to injection of high energy particles
that can impact BBN or the cosmic microwave background
(CMB). These effects are the source of the strong con-
straints on β in the parameter space for evaporating BHs.
The bounds are again taken from Ref. [39], although note
that the BBN bounds have been updated in more recent
work [48]. Bounds from observations of CMB anisotropies
are strongest in the mass range of 3 × 1013 g to 2 × 1014 g,
see for example Ref. [49]. For long-lived PBHs with mass
1014 g≲mBH≲1017 g, the bounds come from various galac-
tic and extragalactic probes of cosmic rays or gamma rays
produced in the Hawking radiation. More recent work has
obtained stronger constraints with data from the INTEGRAL
satellite [50]. At higher masses, there are constraints from
lensing by PBHs. For 1023 g≲mBH ≲ 1028 g, shown here
are recently updated bounds [51] based on Subaru/HSC
observations [52]. For 1028 g≲mBH ≲ 1030 g, OGLE
bounds [53] are shown.

III. PRIMORDIAL BLACK HOLES FROM
CURVATURE PERTURBATIONS

In this work, we assume PBHs formed due to primordial
curvature perturbations with Gaussian statistics. In cases
with non-Gaussianity, the same curvature perturbation
amplitude gives a larger energy density in PBHs [54].
We will consider a monochromatic curvature perturbation

PðkÞ ¼ Aδðlogðk=k⋆ÞÞ; ð12Þ

as well as a more realistic initial Gaussian perturbation

PðkÞ ¼ Affiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
log2ðk=k⋆Þ

2σ2

�
: ð13Þ

It has been shown in [55] that the maximum primordial
curvature perturbation slope is ∝ k4 for single-field infla-
tion, so only a Gaussian with σ ≳ 1 can result in this case.
Multifield inflation [56–59] is required for growths steeper
than k4, which corresponds to a lognormal curvature
perturbation of σ < 1. We will restrict to σ ≤ 2 so that
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we can treat the black holes as forming at approximately the
same time and so that we can compare with observational
constraints on PBHs with nearly monochromatic mass
functions.
In the section, we relate the primordial perturbations to

the abundance and mass spectrum of the black holes, which
can then be translated into parameters β and γeff defined in
Sec. II. Because PBHs are forming from rare overdensities
over the vast majority of the parameter space, the relation-
ship between the primordial curvature perturbation and the
PBH mass function depends sensitively on the treatment
for the collapse of density fluctuations. There is an
enormous literature dedicated to this topic, with varying
results. Here we consider the Press-Schechter formalism
with the parameters given in [41]. As shown in [41,60],
this gives a relationship between BH mass spectra and
curvature perturbation that is consistent with other treat-
ments of PBH formation, namely peaks theory and varia-
tions thereof.
In the Press-Schechter formalism, PBHs are formed

whenever the density contrast exceeds a certain threshold.
Therefore the initial energy density can be simply related to
the probability distribution for density contrasts. Consider
black holes formed at a particular time corresponding to a
horizon size R. The initial fraction of the energy density in
those black holes is given by

βR ¼ 2

Z
∞

Cc

dC
m

MHðRÞ
pðCÞ; ð14Þ

where MHðRÞ is the horizon mass and C is a smoothed
density contrast, defined below. pðCÞ is the probability
distribution for C, and the lower limit Cc is related to the
density contrast threshold required for PBH formation. The
black hole mass is related to the density contrast and
horizon mass at formation by the critical collapse scaling
relation:

m ¼ MHðRÞKðC − CcÞγ; ð15Þ

where K and γ are constants determined via numerical
simulation. Here we use K ¼ 10, Cc ¼ 2.5, and γ ¼ 0.36.
The critical collapse relationship allows us to recast the
integrand of (14) as a function of black hole massm, which
gives us the mass function of black holes formed at a certain
horizon size, dβR=dm.
To relate the curvature power spectrum in Fourier space

to density contrasts in real space, we must smooth the
power spectrum on horizon scales R with window function
Wðk; RÞ. The variance of density contrasts on a scale R is
given by

σ20 ¼
Z

∞

0

dk
k
16

81
ðkRÞ4W2ðk; RÞPðkÞ: ð16Þ

In Press-Schechter, the probability density for density
contrasts is given in terms of this variance:

pðCÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ0

e
−C2

2σ2
0 : ð17Þ

Note that the probability density pðCÞ depends on the
horizon size, which appears in the calculation of σ0
through the smoothing of the primordial power spectrum.
It has been noted that different choices of window
functions can give rise to quite different required ampli-
tudes for PBH formation [61], but [41] resolves these
issues and shows that these differences are < 10% if one
uses consistent quantities for smoothing and threshold
density contrasts. In these calculations, we use the
Gaussian window function.
The total effective energy density fraction in black holes

is obtained by integrating (14) over PBHs formed at all
horizon sizes, multiplied by a redshifting factor to account
for the fact the black holes are forming in a radiation
dominated era

βðtÞ ¼
Z

∞

0

dR
R

RðtÞ
R

βR; ð18Þ

where R is the horizon size. Note that this is slightly
different from the true energy density at t, since integrating
over all horizon sizes includes black holes forming at
times greater than t. This is a negligible difference when
evaluated at t⋆, since most black holes form before t⋆.
Recall that the β parameter introduced in (1) is the effective
PBH energy density evaluated at the horizon entry for the
mode k⋆, and thus corresponds to βðt⋆Þ≡ β⋆. Evaluating
β⋆ from (18), we find that the relationship to A is well
described by the following fitting function:

β⋆ ¼ aAbErfc

�
cffiffiffiffi
A

p
�
; ð19Þ

where the fit parameters a, b, c will vary with the curvature
perturbation width. Concretely, a¼5.47, b¼0.51, c¼0.28
for the monochromatic case; a ¼ 14.3, b ¼ 0.66, c ¼ 0.47
for a Gaussian perturbation with σ ¼ 1; and a ¼ 36.0,
b ¼ 0.91, c ¼ 0.64 for a Gaussian perturbation with σ ¼ 2.
The PBH mass function is given by

1

βðtÞ
dβðtÞ
dm

: ð20Þ

and can be obtained by writing βR as an integral over
dβR=dm in (18). Examples of the resulting mass functions
are shown in Fig. 2. In order to compare to existing
observational bounds on PBHs with extended mass func-
tions, we fit this mass distribution to a log-normal mass
function given by
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1ffiffiffiffiffiffi
2π

p
σmm

exp

�
−
log2ðm=mBHÞ

2σ2m

�
: ð21Þ

The fit valuemBH is the characteristic black hole mass.mBH
can be written as some prefactor γeffðσ; AÞ timesM⋆ where
M⋆ ¼ 4πρr;⋆H−3⋆ =3, the horizon mass corresponding to the
entry of the mode k⋆.
Figure 3 shows that γeff is an OðfewÞ number that

decreases with increasing curvature perturbation width and
has a mild dependence on A. The width of the mass
function, σm, also grows with the curvature perturbation
width and A. For example, in Fig. 3, σm ranges from 0.4 to
1.1 going from a monochromatic to σ ¼ 2 primordial
spectrum for typical β values of interest for PBH obser-
vational constraints. Studies of PBH constraints with log-
normal mass functions have shown that for σm ≲ 0.2,
observational bounds on the PBHs are nearly identical to
that of a monochromatic mass function [47]. However, the
shape of the constraints starts to deviate from the mono-
chromatic case for σm ∼ 1 and will be substantially differ-
ent as σm is increased beyond 1. For this reason, we restrict
to σ < 2 in the primordial power spectrum. Given the
typical σm values for these primordial perturbations, the
observational bounds on monochromatic black hole mass
functions that we show from [47] are not exactly correct. In
addition, some of the formulae in Sec. II, such as the early
black hole domination condition, are also not exact in
the presence of an extended mass function. We neglect
these model-dependent Oð1Þ differences given that we are
working with many orders of magnitude in the total
parameter space.

IV. STOCHASTIC GRAVITATIONAL WAVE
SPECTRUM

There are potentially multiple sources of stochastic
gravitational waves associated with these PBHs.
Assuming PBHs form due to a large primordial scalar
perturbation, then gravitational waves can be generated at
second-order in perturbation theory. These gravitational
waves are dominantly produced around the time of PBH
formation, and will determine the sensitivity in the absence
of a BHD era. For sufficiently large density of PBHs such
that there is a BHD era, then there are several additional
effects. First, there can again be large scalar perturbations
during the matter dominated-era due to the Poissonian
distribution of PBHs, leading again to second-order gravi-
tational waves. There may also be contributions from PBH
clustering and evaporation at the end of a BHD era. These
sources from the BHD era do not depend on the origin of the
PBHs being from scalar perturbations, but they do in
principle depend on the resulting mass function of the PBHs.
In this section, we detail each of these possible GW

sources in turn. Note that aside from what is discussed here,
there could also be GWs from Hawking radiation and PBH
mergers [27,62–67], but these are generally at higher
frequency and cannot be detected by GW interferometers
for most of the PBH mass range we focus on. The GWs
from mergers start to become detectable for some experi-
ments at large masses near the very edge of our plots,

FIG. 2. PBH mass function for different primordial curvature
spectrum: the σ ¼ 1, 2 lines are for the spectrum in (13). The
amplitude is selected so that β⋆ ≃ 4 × 10−7 for all cases here.M⋆
is the horizon mass associated with entry of the mode k⋆. Fitting
these to log-normal mass functions gives peak BH masses of
mBH ¼ γeffM⋆ with γeff ≈ 7.6, 5.0, 3.1 and widths σm ≈ 0.4, 0.7,
1.1 for the monochromatic, σ ¼ 1, and σ ¼ 2 cases, respectively. FIG. 3. PBH mass function parameters as a function of the

amplitude A and width of the primordial curvature spectrum.
The peak BH mass is γeffM⋆ and the width of the log-normal
distribution is σm. The dots indicate the A values to produce β⋆
values of 10−7 and 10−14.
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but this contribution is more relevant for studies on solar
mass PBHs.

A. Second-order gravitational waves
from primordial scalar perturbations

Primordial scalar perturbations provide a source for the
tensor modes at second order in perturbation theory, as
first noted in [68]. In this section, we review the result
following Ref. [69], and also account for differences in
the parameter space where there is a black hole dominated
era. Again, we assume the primordial perturbations obey
Gaussian statistics throughout. For discussion of GWs
resulting from non-Gaussian primordial perturbations,
see Refs. [42,54].
As derived in detail in, e.g., Refs. [25,69–73], the

equation of motion for each tensor mode polarization is
given by

h00kðηÞ þ 2Hh0kðηÞ þ k2hkðηÞ ¼ 4SkðηÞ ð22Þ

where η is the conformal time, H ¼ aH is conformal
Hubble parameter, and SkðηÞ is a source term which
depends quadratically on the first order scalar perturbations
Φ. The tensor power spectrum and primordial power are
related to the tensors and scalars by

PGWðη; kÞδ3ðkþ k0Þ ¼ k3

2π2
hhkðηÞhk0 ðηÞi; ð23Þ

Pðη; kÞδ3ðkþ k0Þ ¼ k3

2π2
hΦkðηÞΦk0 ðηÞi: ð24Þ

The measurable quantity is the GWenergy density fraction
per logarithmic wavelength, which is given by

ΩGW ¼ 1

24

�
k

aðηÞHðηÞ
�

2

PGWðη; kÞ ð25Þ

where we have summed over both polarization modes.
We begin by considering a long-lasting radiation

dominated (RD) era after horizon entry of the primordial
perturbation. During radiation domination, the source
term drops as 1=aγ with γ ≈ 3 [25] while for a freely
propagating tensor mode h ∝ 1=a. As a result, the power
in the tensor modes will mainly be generated at horizon
entry of the primordial perturbation, and well afterwards,
they will behave as freely propagating gravitational
waves. In this calculation, we will focus on those modes
that enter the horizon during radiation domination and
first study their evolution through RD. We will separately
consider modes that enter the horizon during the PBH-
dominated era below.
The GW dimensionless power spectrum in pure radia-

tion-dominated (RD) is given by [69,70,73]

PGWðη; kÞ ¼ 2

Z
∞

0

dt
Z

1

−1
dsPðkvÞPðkuÞI2ðs; t; xÞ

×

�
tð2þ tÞðs2 − 1Þ

ð1 − sþ tÞð1þ sþ tÞ
�
2

ð26Þ

where P is the initial perturbation, u and v are defined as
u ¼ tþsþ1

2
and v ¼ t−sþ1

2
, and x ¼ ηk. The I2 term arises

from second order perturbation theory as an integral over
some combination of the Green’s function for tensors and
the transfer functions for the scalar modes. To consider k
modes within the horizon such that the gravitational wave
energy density is well defined, we take the limit x → ∞
(or ηk ≫ 1). In this limit and in a radiation-dominated era,
I2 can be explicitly written as

I2ðs; t;xÞ ¼ 288

x2
ðs2þ tð2þ tÞ−5Þ4
ðs2− ðtþ1Þ2Þ6

�
π2

4
Θ
�
t−

� ffiffiffi
3

p
−1

��

þ
�

s2− ðtþ1Þ2
s2þ tð2þ tÞ−5

þ1

2
log

				−2þ tð2þ tÞ
3− s2

				
�

2
�
:

ð27Þ

From this result, we see that the power spectrum PGW

scales as ∝ 1
η2
in the ηk ≫ 1 limit. Since aðηÞHðηÞ ¼ 1

η, we

find that the GW energy density fraction in this limit is
constant during RD:

ΩRD
GW ¼ 1

24
ðkηÞ2PGWðη; kÞjx→∞ ð28Þ

corresponding to freely-propagating modes. Note that all
dependence on the degrees of freedom is suppressed in the
above equations and restored in the final expression below.
The GW spectrum in (28) applies during the early

radiation dominated era. If there is a BHD era before
standard MRE, we must include an additional factor of
aðηBHDÞ=aðηRHÞ to account for the different scaling of the
energy density in matter-dominated era. This factor is just
the ratio of scale factors between the beginning of black
hole domination and the period of reheating at the end of
black hole domination.
Redshifting the energy density to today, we obtain the

final result for the second-order GWs associated with the
primordial perturbation:

ΩGW ¼ 1.4Ωγ;0

�
10.75
g⋆

�
1=3 1

24
ðkηÞ2PGWðη; kÞjx→∞

×

(
1 β0 < β0min

aðηBHDÞ
aðηRHÞ β0 ≥ β0min

: ð29Þ

g⋆ is degrees of freedom at the horizon entry of the k⋆
mode, and Ωγ;0 is the abundance of photons today. We
emphasize again that this applies for modes which have
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entered the horizon before PBH domination and therefore
satisfy kηBHD ≳ 1, or equivalently k≳ βk⋆. For the GWs
produced at PBH formation, the experimental reach is
primarily from tensor modes that are near the peak mode k⋆
or a few orders of magnitude below, so this result will
suffice for our purposes.

1. Dependence on primordial perturbation

For sufficiently narrow primordial spectra, the BH mass
function will not depend much on the details of the shape or
width of the spectrum. The situation is quite different for
the GW spectrum discussed in this section, however, where
the infrared tail is quite sensitive to the width of the
primordial spectrum.
Figure 4 shows the GW spectrum for a monochromatic

perturbation as well as Gaussians with a range of widths.
For the monochromatic case, the spectrum goes as k2 for
k ≪ k⋆. However, for a Gaussian primordial perturbation
with width σ, the slope of the GW spectrum goes as k2 for
σk⋆ ≲ k≲ k⋆, and goes as k3 for k≲ σk⋆ as also shown in
[74]. The k3 tail is a generic feature of gravitational waves
produced at second order in a radiation dominated universe,
as long as we have perturbations satisfying the conditions
given in Ref. [75]. The important conditions here are that
the source has finite width and that the k must be less than
all characteristic scales associated with the source. The
monochromatic case of course never satisfies these con-
ditions, so it does not show this k3 infrared scaling. In the
finite width case, the condition that k is less than the
characteristic scales associated with the source is satisfied

for k < σk⋆. This can be seen in the change in k scaling at
k ∼ σk⋆ for the case σ ¼ 0.001 in Fig. 4. For the otherOð1Þ
values of σ, the possible region with k2 scaling is not visible
and instead the dominant behavior of the tail is the k3

scaling. The width-dependence of the GW spectrum can
thus have large impacts on GW detectability, even when the
BH mass functions are similar.
In the monochromatic case, we can see the behavior for

k ≪ k⋆ by simply evaluating the integral (26) at the peak,
where s ¼ 0, t ¼ 2k=k⋆ − 1. Defining k̃ ¼ k=k⋆, then for
k̃ ≪ 1, we have

ΩRD
GW ¼ A2

3

4
k̃2
�
log2

�
4

3k̃2

�
− 4 log

�
4

3k̃2

�
þ π2 þ 4

�
:

In the Gaussian case, we can analytically approximate the
result via the Laplace method. Expanding the integrand
about the peak s ¼ 0, t ¼ 2k⋆

k e−2σ
2 − 1 and evaluating gives

the following simple expression for the power spectrum
for k̃ < σ:

ΩRD
GW ¼ A2

3k̃3e2σ
2

log3ð4e−4σ2
3k̃2

Þ
8

ffiffiffi
2

p
σ

×

�
log2

�
4e−4σ

2

3k̃2

�
þ 2σ2 log

�
4e−4σ

2

3k̃2

�
þ 4σ2

�−1=2
ð30Þ

which indeed goes as k̃3.

B. Gravitational waves from PBH-dominated era

In addition to GWs produced at PBH formation, which
dominates near the formation scale k⋆, there are also GWs
generated during matter domination [76] that contribute at
k below k⋆. We first consider GWs that arise from second
order perturbation theory sourced by the scalar perturba-
tions, with the difference in this case that the scalar
perturbations are produced by the gravitational potential
of the PBHs themselves.
We will adapt our estimate from [76], including here an

additional correction factor to restrict to the linear regime
in perturbation theory. We first review Ref. [76], which
directly computes the curvature power spectrum assuming
a Poissonian distributed gas of PBHs. At formation, the
density contrast in black holes can be treated as an
isocurvature perturbation, which later evolves into a cur-
vature perturbation. From [76], we have the following
approximation for the perturbation at the onset of BHD:

PΦðkÞ ¼
2

3π

�
k

kUV

�
3
�
5þ 4

9

k2

H2
d

�−2
ð31Þ

FIG. 4. Gravitational wave spectrum induced at second order
from the primordial scalar perturbations. ΩGW is the energy
density per logarithmic wavelength today. The different lines
show the dependence on the width of primordial curvature
power spectrum, σ. For reference, we take A ¼ 0.003, k⋆ ¼
1018 Mpc−1. The black and green lines are power law integrated
sensitivity curves for BBO and CE; for more details see Sec. V.
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whereHd is comoving Hubble at the onset of BHD and kUV
is the mean comoving BH separation scale,

kUV ¼
�

β

γeff

�
1=3

k⋆: ð32Þ

Upon PBH formation, the black hole energy fraction grows,
and the comoving Hubble when the black hole dominated
era begins is Hd ¼ βk⋆.
In order to calculate the contribution to the tensor power

spectrum, we make the replacements P → PΦ and
I → IMD in (26). Recall I arose in second order perturba-
tion theory as an integral over a combination of the Green’s
function in RD and quadratic terms in the transfer function,
so we must replace these with the solutions for the PBH era.
This is the same as an matter-dominated (MD) era for our
GW calculation, since BHs can be treated as a pressureless
nonrelativistic fluid for modes < kUV ≪ k⋆. The most
important difference to note between the RD and MD eras
is that the transfer function decays in RD but is constant
in MD, so in the limit x → ∞, I2RD ∝ 1

x2 as in (27), while
I2MD ¼ const. The source is constant and amplifies the
resulting GWs from the BHD era.
For the BHD era, the energy density is ΩGW ¼

ðk=aHÞ2PGWðkÞ=48, which has a factor of 2 difference
from the corresponding relationship for GWs generated in
the RD era, (25). While in the RD era there is an equal
contribution from kinetic and gradient terms, in the MD era
the kinetic terms are negligible when there is a constant
source term. This is because the constant source forces the
tensor modes to constant values at late times in the MD era.
An approximate form for the GW spectrum today is then
given by [76]

ΩGW ¼ 4.4 × 1019Ωγ;0 ×

�
gBHD
106.75

�
−1=3

�
gRH
10.75

�
−1=3

×

�
mBH

109 g

�
4=3

ðβ0Þ16=3

×

8>><
>>:

k
Hd

k < 8Hd

8 8Hd < k < kUV
0 k > kUV

: ð33Þ

Here we have assumed that the gravitational waves redshift
as radiation after the transition from the PBH-dominated
era to the radiation era. In general, there can be additional
dampening or growth in the GW spectrum result depending
on the details of the transition between the PBH and
radiation dominated eras [28,77]. For example, if there is a
sufficiently narrow BH mass function, there is a rapid
evaporation and a sudden change in the equation of state at
the end of the MD era, leading to a significant enhancement
in the spectrum relative to (32) [28–30]. This is the case if

the BH mass function has σm ≲ 0.01 [27], while we have
log-normal mass functions with typical σm ∼ 0.4–1.2.
However, it is not clear whether (33) applies for an

extended MD era, because at some point during the MD
era, density perturbations can become nonlinear. The
density perturbation at black hole formation is given by

δðtBHDÞ ∼
ffiffiffiffiffiffi
2

3π

r �
k

kUV

�
3=2

ð34Þ

and starts growing with the scale factor at Max½aBHD; ak�,
where ak is the scale factor at horizon entry for that mode,
since the density perturbation is frozen while outside of
the horizon and can only grow in the BHD era. Once
perturbations become nonlinear, the perturbation theory
solution of the scalar modes with a constant source term is
no longer valid. There may be GWs produced instead by
collapse of nonlinear perturbations or mergers, as estimated
in [78], but these require further numerical simulations to
treat properly.
A lower bound on the possible GW spectrum can be

obtained by restricting the source function to regions in k
and time for which δkðtÞ < 1. Setting the cutoff at δk ¼ 1
gives the cutoff scale factor acutðkÞ:

acut
aRH

¼ aBHD
aRH

×

8>><
>>:

ffiffiffiffi
3π
2

q �
Hd
k

�
2
�
kUV
k

�
3=2

k < Hdffiffiffiffi
3π
2

q �
kUV
k

�
3=2

k > Hd

: ð35Þ

Compared to the results of [76], cutting off the source
function when density perturbations become nonlinear
introduces an additional factor in (33) given by

R ≈

0
BB@Min

2
664aBHDaRH

×

8>><
>>:

ffiffiffiffi
3π
2

q �
kUV
6kBHD

�
3=2

k < 6Hdffiffiffiffi
3π
2

q �
kUV
k

�
3=2

k > 6Hd

; 1

3
775
1
CCA

2

;

ð36Þ

see the Appendix for details. Here we have connected the
results at k ≪ Hd and k ≫ Hd as the details in the
intermediate regime are unimportant. With this approach,
the source function is cut off well before the transition to
radiation domination, leading to a strong dampening of the
spectrum. Then the spectrum is far beneath the threshold
required for experimental observability, such the details of
how the source is cut off and the transition from the PBH
to the RD era are not relevant for our calculation. We note
that our estimate may be overly conservative, however. In
addition, other sources of GWs will be present and can be
many orders of magnitude larger when the perturbations
are nonlinear [78]. We estimate one possible source
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of GWs generated at the end of the BHD era in the
following subsection.

C. Gravitational waves from reheating

There can further be contributions to GWs from reheat-
ing of the universe due to PBH evaporation. One possibility
is that GWs are produced when the nonlinear structures of
the BHD era all evaporate into radiation. The idea is that the
black holes slowly evaporate a fraction of their mass into
radiation through the bulk of the BHD era. Then, at the end
of the BHD era, the remaining mass contained within the
halos evaporates and collides against the radiation fluid.
This could produce a turbulent fluid with eddies that
cascade down to smaller scales, which can induce GWs.
In this section, we perform an order of magnitude estimate
for this potential source. Detailed numerical simulations are
required to determine if evaporation of the clustered PBHs
indeed acts as an efficient source of turbulence.
The topic of GWs from turbulent events in the early

universe has been studied in Refs. [79,80]. Here we discuss
the assumptions and calculations in these works and argue
that the results can be used in estimating the GWs sourced
by the PBHs at the end of their lifetime. In these studies, the
picture is that during the early universe, a fraction of the
available energy density is transformed into kinetic energy
of the cosmological fluid. This kinetic energy is stirred on a
length scale LS over a time scale τstir. These quantities
correspond to the characteristic length and duration of
the turbulent source. The turbulent kinetic energy then
cascades down to some damping scale determined by the
fluid characteristics of the plasma.
In these works, the turbulent source is left generic and the

only assumption is that the spectrum of the turbulence is
Kolmogorov. We note that the Kolmogorov energy spec-
trum is a result from classical hydrodynamics and that
relativistic turbulence is much less explored; nonetheless,
we follow other works in assuming that classical theory
provides an approximation for turbulence in a relativistic
fluid. To summarize, the calculations of these studies
depend on the scale and duration of turbulence, cosmo-
logical parameters and characteristics of the plasma during
energy injection, and the model of the turbulence. The
gravitational wave spectrum from turbulence is then calcu-
lated by solving the usual wave equation for tensor modes
sourced by the transverse traceless piece of the stress-
energy tensor. References [79,80] perform this analysis in
Fourier and real space, respectively, arriving at approx-
imately the same results with slight differences arising from
different treatments in the time dependence of the turbu-
lence. In particular, no assumption is made on the particle
physics origin of the turbulence. For example, while
Refs. [79,80] discussed phase transitions as one possible
source of GWs, the results have been applied to other
scenarios such as decay of a scalar field reheating the
universe [78].

We may apply these results to calculate GWs from
Hawking evaporation in the BHD era, given the following
physical picture. For the bulk of the BHD era, the universe
will look like clusters of black holes with sparse radiation
fluid freely streaming outwards. However, by the end of the
BHD era, all of the mass in the black hole clusters then gets
deposited into radiation, which is a possible source of
turbulence. Since we expect the typical black hole mass
function to have a fairly significant width as in Fig. 2,
we approximate the turbulent source to last for around
τstir ≈ tevap. In addition, we take the length scale of the
turbulence source LS to be defined by the smallest
comoving wave number that becomes nonlinear by black
hole evaporation, kNL. That is, kNL is the comoving wave
number that satisfies acut ¼ aRH in (34), which gives

kNL ¼

8>><
>>:

3.2×1014
Mpc

�
mBH
104 g

�
−17
14 β0 > β0NL

1×1016
Mpc

�
mBH
104 g

�
−31
18

�
β0

10−7

�
−8
9 β0 < β0NL

ð37Þ

where

β0NL ¼ 5 × 10−6
�
mBH

104 g

�
−4
7 ð38Þ

is the minimum β0 such that the largest nonlinear mode
enters the horizon after the BHD era starts.
As argued in [79], the relevant timescale for production

of gravitational waves from turbulence is given by the
maximum of the turbulence duration τstir and the dissipa-
tion time of the largest eddies τS. In the PBH evaporation
scenario, the black hole mass function is wide enough
that the larger timescale is on the order of the black hole
evaporation time tevap. Then, the energy dissipation rate is
given by

ϵ ∼
κρ

wtevap
; ð39Þ

where ρ is the energy density, κ is the efficiency factor
of conversion to turbulent kinetic energy, and w is the
enthalpy density of the radiation fluid. Note that this is
highly approximate, as we’ve effectively treated the turbu-
lence as uniformly injected over the time tevap rather than
modeling the exact time-dependence of the Hawking
radiation, so the result should be treated as a very rough
estimate. Another important quantity for the turbulence
calculation is the Mach number defined in Ref. [80], which
goes as

M ∝
�

ϵ

kNL

�
1=3

∝ κ1=3
�
kRH
kNL

�
1=3

: ð40Þ

Typical Mach numbers for these early evaporating black
holes are M ∼ 0.1–0.5. The comoving wave number of the
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horizon at the end of evaporation kRH can be calculated
from (6) and is given by

kRH ¼ 4.9 × 1011

Mpc

�
mBH

104

�
−3
2

: ð41Þ

With these physical quantities in hand, we may apply the
final result of Ref. [80] to our scenario. For clarity, we
rewrite the original expression here and make explicit the
replacements in our variables. The turbulence-sourced GW
spectrum today is [80]

hc ∝
�
100 GeV

T�

��
100

g�

�
1=3

×

�
H�
k0

�
3=2

ðH�τstirÞ1=2ðk30ωHijijðω;ωÞÞ1=2; ð42Þ

where T�, g� are the temperature and degrees of freedom at
the end of the turbulence, k0 is the inverse length scale of
the turbulent source, τstir is the turbulence duration, ω is the
angular frequency of the gravitational waves at tevap, and
the function Hijij is approximated by

7M3k−40
16π3=2

Z
1

0

dx x11=4 exp

�
−
�

ω

k0M

�
2

x

�
Erfc

�
−

ω

k0M

ffiffiffi
x

p �
:

Then, taking T� ¼ TRH, g� ¼ gRH, τstir ¼ tevap, and rewrit-
ing in terms of comoving quantities H� ¼ kRH=aRH,
k0 ¼ kNL=aRH, ω ¼ kNL=aRH, and using the usual
ΩGW ¼ 2π2

3H2
Þ
f2h2c, we have

ΩGW;turb ¼ 4 × 10−22
�
100 GeV

TRH

�
2
�
100

gRH

�
2=3

×

�
k

1 Mpc−1

�
2
�
kRH
kNL

�
4
�

k
kNL

× FðkÞ
�

ð43Þ

where FðkÞ is given by

7M3

16π3=2

Z
1

0

dx x11=4 exp

�
−
�

k
kNLM

�
2

x

�
Erfc

�
−

k
kNLM

ffiffiffi
x

p �
:

The function FðkÞ is approximately constant below kNLM
and decays as k−15=2 above kNLM, so the GW spectrum
from turbulence peaks at kNLM. When the initial PBH
abundance is well above the BHD line, the spectrum has no
β0 dependence. This is because at large β0, the black hole
dominated era starts early enough that kNL is only depen-
dent on the PBH mass. This can be seen from (37), which is
β0 independent above β0NL. Within 3–4 orders of magnitude
in β0 of the BHD line, there is a large suppression in this
spectrum since the BHD era is much shorter and the halo
sizes are smaller.

The spectrum in (43) should be regarded only as a rough
estimate of the GWs from turbulence. For example, a large
uncertainty arises from the dependence on the efficiency
factor κ. There should also be an additional suppression
from the expansion of the universe since the turbulence
occurs over a Hubble time. Regardless, even with an
optimistic efficiency factor κ ¼ 1, our turbulence estimate
in (43) is not strong enough to be detected even by BBO
and does not appear in our reach plots.

D. Combined spectrum

In Fig. 5, we show the combined GW spectrum for a
reference PBH mass of mBH ¼ 1 × 105 g and assuming a
primordial perturbation with lognormal width σ ¼ 1. For
small enough β, there is no BHD era, and the only GWs are
those induced from the primordial perturbation, discussed
in Sec. IVA. The dashed lines show the GW spectrum
where there is a BHD era. The BHD era leads to an overall
redshifting of the GW spectrum associated with BH
formation. For this signal, it also leads to a peak frequency
k⋆ which depends on β according to (10), leading to a peak
at lower frequencies as β is increased. In addition, our
rough estimate of the GW spectrum generated by turbu-
lence at PBH evaporation is visible, giving a contribution
that peaks at lower frequencies. The contribution from
gravitational waves generated during the BHD era dis-
cussed in Sec. IV B peaks in a similar frequency range as
the turbulent source, but has negligible amplitude when we

FIG. 5. Total gravitational wave spectrum today from a Gaus-
sian perturbation with σ ¼ 1, for mBH ¼ 1 × 105 g and different
values of β. The solid lines are for small β with no BHD era. The
dashed lines indicate the total resulting GWs when there is a BHD
era. We see that when β increases, the dominant contribution
shifts to the GWs from turbulence as discussed in Sec. IV C. For
this contribution, we assume an optimal efficiency of κ ¼ 1,
which gives a Mach number of M ≈ 0.2. For β much larger than
the minimum required for black hole domination, the turbulent
contribution is identical.
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implement a cutoff on nonlinear density perturbations. We
emphasize again that our estimate of this latter contribution
is likely too conservative and that a numerical study is
required to calculate the GW spectrum from the black hole
dominated nonlinear regime.

V. OBSERVATIONAL BOUNDS AND REACH

In this section we discuss the experimental reach for
various GWexperiments on the stochastic GW background
associated with PBHs. We show the sensitivity in terms of
the parameter space for the primordial scalar perturbation,
ðk⋆; AÞ, as well as in the black hole mass and mass fraction
parameter space, ðmBH; β0Þ. We also translate existing PBH
bounds into the ðk⋆; AÞ plane.

A. Calculation of observational bounds

We calculate the expected observational bounds and
observational reach from various current and proposed
experiments following Refs. [81,82]. We consider Big
Bang Observer (BBO) [83–86], Einstein Telescope (ET)
[87,88], Cosmic Explorer (CE) [89,90], and the Laser
Interferometer Space Antenna (LISA) [91,92]. Other pro-
posed interferometers that operate in a similar frequency
range to LISA include TianQin [93,94] and Taiji [95], while
experiments that cover a similar range as BBO include
DECIGO [96,97], AION [98,99], and AEDGE [98,100].
We also note that current LIGO/VIRGO data has been used
to search for a stochastic GW background [101], but the

results do not add any constraints to the parameter space
that we show.
An overview of the method to obtain the bounds can be

found in [81]. We follow the Appendix of [82], which
calculates the strain sensitivity curves for these experiments
explicitly using the methods in [81]. The strain sensitivity
curves and overlap reduction functions are used to calculate
an effective GW background Ωeff . The signal-to-noise
(SNR) ratio for an expected stochastic GW spectrum
ΩGW is then given by

ρ ¼
ffiffiffiffiffiffi
nT

p �Z
fmax

fmin

df

�
ΩGW

Ωeff

�
2
�
1=2

ð44Þ

where T is the observational time and we take the integral
over the entire bandwidth of the experiment. n is 1 or 2
for autocorrelation (LISA, CE) and cross-correlation detec-
tions (BBO, ET), respectively. The spectrum ΩGW is
function of initial perturbation amplitude A, scale k⋆,
and Gaussian width σ, so for some choice of σ, we can
solve for the parameters that give a desired SNR. In this
paper, we present results with ρ ¼ 1 and T ¼ 1 yr for each
experiment and assume a perfect subtraction of foreground
GWs from active sources. For a given σ, we can then use
the one-to-one correspondence between ðk⋆; AÞ and PBH
parameters from Sec. III to show the same bounds in
ðmBH; β0Þ space.

FIG. 6. For monochromatic perturbations, the observational reach for experiments BBO, LISA, CE, ET are shown in the ðk⋆; AÞ plane
for the primordial scalar perturbation (left) and in the ðβ0; mBHÞ plane of PBH parameters (right). We assume an observational time of
1 year and a signal-to-noise ratio of 1 for each of the experiments. In both panels, the gray shaded regions are the existing PBH bounds
that were shown in Fig. 1 and discussed in Sec. II D. The DM line (black, dashed) shows the parameters that would result in the
saturation of current observed dark matter density today. The BHD line (black, solid) is the minimum β0 at a givenmBH that would result
in a period of black hole domination. Above the BHD line, none of the GW sources we have estimated are observable. FormBH > 109 g,
the experimental reach comes from the second-order GWs induced by the primordial scalar perturbation. Note that pulsar timing arrays
(PTA) have some observational reach near at k⋆ ∼ 108 Mpc−1 ormBH ∼ 1030 g, but we choose not to show this here as these reaches are
most relevant for near solar mass PBHs.
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B. Results

Our main results are shown in Fig. 6 for a monochro-
matic perturbation and Fig. 7 for a finite width Gaussian
perturbation. The left panels show the existing bounds and
experimental reach in the parameter space of primordial

curvature perturbations, similar to Ref. [102], while the
right panels are in the parameter space for PBHs. In both
panels, the gray shaded region are existing bounds on
PBHs, as previously shown in Fig. 1. Similar to Fig. 1,
we again indicate where PBHs comprise all of the DM

FIG. 7. Similar to Fig. 6, but assuming a Gaussian perturbation as in Eq. (13). The different rows are for different curvature
perturbation widths σ.
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(dashed line) and the lower boundary to the region where
we have a black-hole dominated (BHD) era (solid line).
These features appear roughly inverted in the left and right
panel due to the relationship between mBH and k⋆. We note
again that the correspondence between k⋆ and mBH is
different if BHD occurs. If BHD never occurs, we have
k⋆ ∼m−1=2

BH , while if BHD does occur we instead have
k⋆ ∼m−5=6

BH β−1=3. This is why the PBH bounds depend on
both A and k⋆ in the BHD era.
For black holes that evaporate after BBN (mBH > 109 g),

gravitational wave interferometers are sensitive to the
stochastic GW spectrum induced at second order from
the primordial curvature perturbation. In this mass range,
we see the broadest level of sensitivity for the largest
curvature perturbation width (σ ¼ 2), with the reach
extending from 109–1028 g when all experiments are
included. This is because the GW spectrum extends over
a much wider frequency range, as seen in Fig. 4. The reach
curves thus shrink with smaller σ in Fig. 7. However, once
σ decreases below σ ∼ 0.01, the reach actually improves
again at small PBH mass, which can be seen in the
sensitivities for the monochromatic perturbation in
Fig. 6. This is because the k2 infrared tail grows as σ
decreases below σ ∼ 0.01, as discussed in Sec IVA 1.
In the region of parameter space where the black holes

are short-lived, the spectrum of stochastic GWs produced
during or at the end of the BHD era is highly uncertain
since density perturbations become nonlinear. At present,
we do not find a detectable signal from any of the sources
discussed in Secs. IV B–IV C. However, more numerical
work should be done to investigate what happens in a BHD
era as density perturbations become nonlinear and whether
there are observable GW sources from the transition of the
BHD to radiation era.

VI. CONCLUSIONS

In this paper, we have investigated how generation GW
interferometers can probe the parameter space of primordial
black holes in the mass range of 10 g–1028 g. Assuming
that the black holes form from some generic primordial
curvature perturbation at small scales generated by infla-
tion, there are several possible stochastic GW signals,
which we calculate as a function of the initial abundance
and mean black hole mass. Second order gravitational
waves from the primordial curvature perturbation can be
used to probe primordial black hole masses in the range
109–1028 g down to very small β0, depending on the
experiment and curvature perturbation width. For black
hole masses below 109 g, there are additional possible
sources of GWs if β0 is sufficiently large enough, such that
there is an early black hole dominated era. We considered
second order GWs generated from the black hole fluid
curvature perturbation itself, as well as GWs produced from
the turbulent fluid at the end of the BHD era. Based on our

estimates, we did not find these to give rise to observable
GWs. In addition, there may be GWs produced during the
nonlinear evolution of the BHD era, from Hawking
evaporation itself, mergers, or from a sharp transition from
black hole dominated to radiation eras. Treating the BHD
era properly and including all of these sources requires a
numerical treatment.
Finally, we also presented results in terms of the

curvature perturbation parameters and see that second
order GWs allow us to probe perturbations at quite small
scales. The stochastic GW spectrum is thus a promising
way to probe inflationary scenarios giving rise to both
short-lived black holes, as well as long-lived black holes
comprising some fraction of the dark matter today.
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APPENDIX: GWS IN BHD ERA

In this appendix, we briefly describe how we obtained
(36), which we use to obtain a rough lower bound on
second-order GWs sourced by scalar perturbations during
the BHD era.
To obtain (36), we imposed k-dependent time cutoff

on density perturbations. To apply this cutoff, we must
recalculate the quantity I, which now becomes

Iðu; v; xÞ ¼
Z

x

xd

dx̄
aðx̄Þ
aðxÞ kGkðx; x̄ÞFkðu; v; x̄Þ

× ΘðxcutðvkÞ − x̄ÞΘðxcutðukÞ − x̄Þ: ðA1Þ

where Gk and Fk are Green’s functions defined in [76],
x ¼ kηRH, and xcut ¼ kηcut is given by

xcutðvkÞ

¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Min

2
664aBHDaRH

×

8>><
>>:
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3π
2

q �
Hd
vk

�
2
�
kUV
vk

�
3=2

vk <Hdffiffiffiffi
3π
2

q �
kUV
vk

�
3=2

vk >Hd

;1

3
775

vuuuuut :

ðA2Þ

This comes from applying (35) to the density perturbation
vk. Evaluating I2 as in Appendix B of [76] gives the
leading term
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I2 ∼
100

9

ðxcutðvkÞÞ4
x4

; ðA3Þ

which is similar to the result in [76], but with an additional
suppression from the cutoff on nonlinear perturbations.
Since (A1) has two step functions we should have
Min½xcutðvkÞ; xcutðukÞ�, but the integrand always peaks
near u ∼ v so we take both step functions to be the same.
We now evaluate the tensor spectrum with our modifi-

cation to I2. Here we provide simple estimates in the large
and small k limits, similar to [76]. Since the integrand
(aside from the I2 factor) is peaked in u, v, we will treat I2

as constant about the peak. Then the effect of the nonlinear
cutoff is just to introduce a factor of ðxcutðvkÞ=xÞ4,

evaluated at the peak value of v. For k ≫ kBHD, the
integrand is peaked at u ¼ v ¼ 1, so we can approximate
xcutðvkÞ ≈ xcutðkÞ. For k ≪ kBHD, the integral is peaked at
u ∼ v ∼ 6kBHD

k which gives xcutðvkÞ ∼ xcutð6kBHDÞ. Using
(A2) in these limits then gives (36), where we glued the
solutions in the two limits together to obtain a continuous
function. We have checked numerically that including the
u, v dependence only leads to OðfewÞ deviations from our
analytic estimates.
Fig. 8 shows a comparison of the GW spectrum without

the nonlinear cutoff, (33), and with the cutoff. With the
nonlinear cutoff, our estimate of this GW signal is not
detectable.
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