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The cosmic-ray fluxes of electrons and positrons (e�) are measured with high precision by the space-
borne particle spectrometer AMS-02. To infer a precise interpretation of the production processes for e� in
our Galaxy, it is necessary to have an accurate description of the secondary component, produced by the
interaction of cosmic-ray proton and helium with the interstellar medium atoms. We determine new
analytical functions of the Lorentz invariant cross section for the production of π� and K� by fitting data
from collider experiments. We also evaluate the invariant cross sections for several other channels,
involving for example hyperon decays, contributing at the few % level on the total cross section. For all
these particles, the relevant 2 and 3 body decay channels are implemented, with the polarized μ� decay
computed with next-to-leading order corrections. The cross section for scattering of nuclei heavier
than protons is modeled by fitting data on pþ C collisions. The total differential cross section
dσ=dTe�ðpþ p → e� þ XÞ is predicted from 10 MeV up to 10 TeV of e� energy with an uncertainty
of about 5–7% in the energies relevant for AMS-02 positron flux, thus dramatically reducing the precision
of the theoretical model with respect to the state of the art. Finally, we provide a prediction for the
secondary Galactic e� source spectrum with an uncertainty of the same level. As a service for the scientific
community, we provide numerical tables and a script to calculate energy-differential cross sections.
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I. INTRODUCTION

During the last decades, the space-based experiments
PAMELA, AMS-02, DAMPE and CALET have performed
unprecedented precise measurements of the cosmic-ray
(CR) fluxes with uncertainties at the few percent level in an
energy range from 1 GeV to tens of TeV, making the
physics of charged CRs a precision discipline. These
experiments have measured the CR nuclear [1–7] and
leptonic (positron and electron, e�) [8–12] components,
as well as cosmic antiprotons [13,14]. The most recent
positron flux measurement by AMS-02 extends from 0.5 to
1000 GeV with an uncertainty <5% for almost the whole
energy range. The new precise flux data have stimulated
numerous analyses on Galactic CR propagation [15–31],
lepton production from astrophysical sources like pulsars
and supernova remnants [32–45], and particle dark matter
annihilation or decay into antimatter [26,46–48].
It is generally established that the so-called secondary

production, i.e., production by the interaction of CRs with
the interstellar medium (ISM) atoms, contributes to e� flux
in our Galaxy (see, e.g., [49]). In particular, the flux of
cosmic eþ is dominated by this process at energies below
10 GeV. Instead, above 10 GeV the data (see, e.g., [12]) are

higher than the predictions for the secondary production.
This is called the positron excess and its origin remains
unresolved. To infer reliable conclusions on the possible
contribution of primary sources, such as pulsars or dark
matter, to the positron excess, an accurate description of the
secondary production is necessary.
The dominant production of secondary flux comes from

the proton-proton (pþ p) channel, namely CR protons
interacting on ISM hydrogen atoms. Other relevant con-
tributions involve CR projectile or ISM target atoms given
by helium (Heþ p, pþ He, and Heþ He). Following the
results obtained with secondary antiprotons for which the
calculation involves the same CRs and ISM atoms (see,
e.g., [50]), channels involving heavier CR species and
atoms can contribute at the few percent level to secondary
e�. Secondary e� are mainly produced by spallation
processes between CRs and ISM atoms producing pions
(π�) and kaons (K�), which subsequently decay into e�.
Therefore, the cross sections for the production of π� and
K� are key elements for the calculation of secondary e�.
There are two different strategies to parametrize the e�

production cross sections. The first possibility is to find an
analytic description of the double differential and Lorentz
invariant cross section for the production of π� and K�,
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performing a fit to cross section data. This strategy was first
pursued by [51] and then repeated with new data by [52].
The other option is to use predictions from Monte Carlo
event generators [53–55]. The authors of [56] used this
strategy to extract the required cross sections.
Both methods have advantages and drawbacks. Analytic

functions permit to calibrate cross sections very precisely
on existing data, but they imply large extrapolations in the
parameter space where measurements are not available.
Moreover, it is hard to use this method on production
channels for which data are scarce or not available, as for
example for pþ He. Monte Carlo generators can be used to
derive the cross sections for all the possible channels of
production, i.e., also for nuclei or hyperon contributions,
but they typically do not fully reproduce the available data
which is relevant for CRs at low energies (see, e.g., [57,58]
for antiprotons). In fact, codes like PYTHIA or QGSJET are
mainly tuned to high-energy data (with center of mass
energy of the order of TeV). As outlined in Ref. [49], the
adoption of the predictions from different cross section

models [51,56,59] produces a variation in the normalization
of the secondary e� flux up to a factor of 2. Instead, in
Ref. [55] the authors have shown that the differences in the
source term obtained by using the results in [56] and
different event generators can reach 30% in the relevant
energies for e� CR physics. However, Ref. [55] does not
consider the models from Refs. [51,59], so the reported
uncertainty could be underestimated.
The GALPROP code [60], widely used in the community

for calculating the propagation of CRs, implements for the
e� production cross sections the pion production in pþ p
collisions developed by [61,62]. The e� distributions from
the muon decay are computed following [54]. On the other
hand, DRAGON [63,64] and USINE [65] codes employ the
[56] e� production cross sections, as well many others (see,
e.g., [20,26,49,66]).
The production cross section of e� from Kamae et al.

[56] are largely used by the community, despite being tuned
on at least 20-year old data. The analysis by Ref. [56]
carefully checks the total pþ p cross sections and the

FIG. 1. This diagram represents the eþ production channels from a pþ p collision considered in our analysis. The same scheme holds
for e− production under charge conjugation (except for the initial pþ p state). We report here only the channels that produce at least
0.5% of the total yield (see the main text for further details).
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separate contribution from nondiffractive, diffractive, and
resonance-excitation processes. However, this does not
guarantee that the cross sections catch the correct depend-
ence in the relevant kinematic phase space (e.g., in the
transverse momentum and rapidity). The reason is that,
until recently, the available dataset was limited to data
collected from the 1960s to the 1980s. In the last decades,
however, new experimental datasets have become avail-
able. For example, the NA49 and NA61/SHINE collabo-
rations at the CERN Super Proton Synchrotron [67,68]
provide important information for the energies of interest
for AMS-02 and a wide range of the double differential
cross section. Moreover, high-energy data at center-of-mass
energy

ffiffiffi
s

p
> 200 GeV have been collected from different

experiments [69–72]. These data permit us to calibrate
precisely the dependence with the

ffiffiffi
s

p
. Given the impor-

tance of these data in astroparticle physics, a reevaluation of
the leptonic production cross sections is mandatory for
pþ p, Heþ p, pþ He, and Heþ He collisions. In this
paper, we engage ourselves in this task, in order to provide
an updated parametrization of the inclusive e� production
cross section.
The paper is structured as follows. In Sec. II we report

the model for the calculation of the source term from the
double differential cross section of pions and kaons. In
Sec. III, we provided a detailed discussion of the pion
channel for positron production in proton-proton collisions.
Then, in Sec. IV we discuss all the other channels from
proton-proton collisions as shown in Fig. 1. Section V is
dedicated to nuclei collision and we discuss how to scale
the cross sections from proton-proton to proton-nuclei
collisions. Our results for the total positron and electron
production cross section as well as for the source spectrum
are presented in Secs. VI and VII, respectively. Finally, we
conclude in Sec. VIII.

II. FROM CROSS SECTIONS
TO THE SOURCE TERM

The source term is computed as the convolution between
the primary CR flux (ϕ), the density of the ISM (nISM) and
the energy-differential cross section for e� production
(dσ=dTe�). In particular, the total source term is calculated
as the sum of all the possible combinations of the ith CR
species with the jth ISM components as

qðTe�Þ ¼
X
i;j

4πnISM;j

Z
dTiϕiðTiÞ

dσij
dTe�

ðTi; Te�Þ; ð1Þ

where Te� is the e� kinetic energy, ϕi is the CR flux at the
kinetic energy Ti, nISM;j is the number density of the ISM
jth atom, and dσij=dTe� is the energy-differential produc-
tion cross section for the reaction iþ j → e� þ X. The
factor 4π corresponds to the angular integration of the
isotropic CR flux. We note that, in general, the source term

depends on the position in the Galaxy because both the CR
gas density and the CR flux are a function of the position.
Almost the entire ISM (99%) consists of hydrogen and
helium atoms [73]. CRs share the same hierarchy with most
of the flux given by protons and helium nuclei. Therefore,
the main channels for the production of secondary e� are
pþ p, pþ He, Heþ p, and Heþ He.
Secondary positrons and electrons are not produced

directly in the proton-proton (or nuclei) collisions but
rather by the decay of intermediate mesons and hadrons.
In Fig. 1, we show a sketch of all the production channels
for eþ that are considered in this analysis. The channels that
produce e− are the same as in Fig. 1, but all particles have to
be replaced by their antiparticles (e.g., πþ → π− and
μþ → μ−). We neglect production or decay channels that
contribute less than 0.5% to the total positron production.
One example is the production of positrons (electrons) from
the decay of antineutrons (neutrons). This channel is
suppressed because in the decay almost all of the energy
is carried away by the antiproton (proton) and positrons
(electrons) are only produced at very small energies [56].
We will discuss other channels that we neglect or that we
include with a simple rescaling of other contributions in
Sec. IV E.
We provide now the calculations to find the source term

starting from the production cross sections of pions and
kaons. We focus on eþ and consider the dominant channel
which involves intermediate πþ and gives a contribution of
about 80–90% to the final positron yield. After production,
pions first decay into muons with a branching ratio of
99.99%, and then the muons decay into positrons. This
discussion shows that the derivation of the differential cross
section for the production of positrons is split into two
steps. First, we must model the pion production cross
section and then the decays of the pion to the positron.
The positron production cross section is calculated from

the pion production cross section as follow:

dσij
dTe�

ðTi; Te�Þ ¼
Z

dTπ�
dσij
dTπ�

ðTi; Tπ�ÞPðTπ� ; Te�Þ ð2Þ

where Tπ� is the kinetic energy of the pion that decays into
a e� with kinetic energy Te�. PðTπ� ; Te�Þ is the probability
density function of the process which can be computed
analytically. In Sec. II A we detail how we obtain P.
In contrast to the pion decay, the pion production cross

section cannot be derived from first principles. It rather has
to be modeled and fitted to experimental data. High-energy
experiments provide measurements of the fully differential
production cross section usually stated in the Lorentz
invariant form:

σðijÞinv ¼ Eπ�
d3σij
dp3

π�
: ð3Þ
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Here Eπ� is the total π� energy and pπ� its momentum. The
fully differential cross section is a function of three
kinematic variables. We choose them to be the center of
mass energy

ffiffiffi
s

p
, the transverse momentum of the pion pT ,

and the radial scaling xR. The latter is defined as the pion
energy divided by the maximal pion energy in the center of
mass frame, xR ¼ E�

π�=E
max �
π� , where the asterisk denotes

the center of mass reference frame.
After modeling the Lorentz invariant cross section, the

energy-differential cross section for pion production as
required in Eq. (2) is obtained by first transforming the
kinetic variables into the fix-target frame, i.e., the frame
where the ISM target atom is at rest, and then by integrating
over the solid angle Ω:

dσij
dTπ�

ðTi; Tπ�Þ ¼ pπ�

Z
dΩσðijÞinv ðTi; Tπ� ; θÞ;

¼ 2πpπ�

Z þ1

−1
d cos θσðijÞinv ðTi; Tπ� ; θÞ; ð4Þ

where θ is the angle between the incident projectile and the
produced π� in the LAB frame. The derivation of the other
channels works in analogy to the pion channel, namely, we
first model the production and then the decay. We will first
concentrate on the eþ production cross sections, then we
provide parallel results for secondary e−. The channels and
cross sections are very similar, but not identical. In fact,
charge conservation implies that the production of eþ is
enhanced with respect to e− since both the target and the
projectiles involved in the production process are positively
charged particles.

A. Computation of the π� to e� decay rates

The largest fraction of e� produced in pþ p collisions
comes from the π� and subsequent μ� decays, as illustrated
in Fig. 1. Therefore, we need the probability distribution,
PðEπ� ; Ee�Þ, for obtaining an e� with energy Ee� from a
π� with energy Eπ�. The π� decay is entirely determined
from kinematics, namely, in the π� rest frame, the energy of
the μ� is determined by energy and momentum conserva-
tion. In contrast, the μ� decay goes into three final states
and has to be computed in Fermi theory. The μ� are fully
polarized into their direction of motion after the π� decays.
We implement the polarized μ� decay rate including the
next to leading order (NLO) corrections [74]. In the rest
frame of the μ�, the decay rate is given by

dΓ
dE0

e�d cos θ
0 ¼ C½fðE0

e�Þ � gðE0
e�Þ cos θ0�; ð5Þ

where C is a normalization factor, E0
e� is the energy of

the e�, and θ0 is the angle between the direction of
polarization of the μ� and the direction of motion of the

e�. The apostrophe denotes that quantities are computed in
the rest frame of the μ�. We extract the functions fðE0

e�Þ
and gðE0

e�Þ at NLO from Ref. [74].
Then, we follow the steps of Ref. [75] to obtain

PðEπ� ; Ee�Þ. In short, we perform two Lorentz trans-
formations, first from the μ� rest frame to the π� rest
frame and then from the π� rest frame to the LAB frame
(i.e. the rest frame of the Galaxy). Finally, we integrate over
all the possible directions of the μ� and all the directions of
the e�. Figure 2 shows our result for PðEe� ; Eπ�Þ as a
function of Ee� for a few different values of Eπ� . We note
that our calculations are an improvement over the standard
treatment in CR propagation codes. For example, in
GALPROP [60] the π� decay rate is computed according
to Ref. [54], not containing NLO correction and assum-
ing me ¼ 0.

III. POSITRONS FROM p + p → π + +X COLLISIONS

In this section, we focus on the πþ production channel
which is responsible for almost 80% of the eþ and,
therefore, deserves the most careful discussion. We intro-
duce our strategy and the most important concepts for the
modeling of the production cross section and subsequent
decays. Many concepts from this section will be applied
analogously to the other channels discussed in Sec. IV. So,
this section also serves as an important reference for the
following.
As outlined in Sec. II, secondary eþ are produced via

various different channels. The common scheme is that the
eþ are produced indirectly, i.e., they come from the decay
of one or more intermediate mesons or hadrons. Some
channels involve an additional μþ decay.
The secondary production gives most of its contribution

to AMS-02 positron data in the range between 0.5 and

FIG. 2. Eπ�PðEe� ; Eπ�Þ computed from the π� and subsequent
μ� decays for π� LAB energies of 10, 30, 100, 300 and
1000 GeV from left to right.
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10 GeV. These positrons are mostly produced from CR
protons with energies between 5 and 200 GeV, which
corresponds to center of mass energies between 3.6 and
20 GeV. The measurement of pion production in this
energy range and with the widest coverage of the kinetic
parameter space is provided by the NA49 experiment [67]
at

ffiffiffi
s

p ¼ 17.3 GeV. Therefore, we decided to gauge our
modeling of the eþ invariant cross section on NA49.
To good approximation the Lorentz invariant production

cross section is scaling invariant:

σinvðs; xR; pTÞ ≈ σinvðs0; xR; pTÞ: ð6Þ

However, two ingredients are violating this approximate
invariance: first, the rise of the inelastic cross section for
pþ p collisions (see Sec. III A) and, second, the softening
of the pT shape at large center of mass energies (see
Sec. III C).
Guided by the above considerations, our strategy is as

follows: in the first step, we fix the kinematic shape of the
πþ production cross section using only the NA49 data. In
the second step, we combine measurements of the multi-
plicity at different

ffiffiffi
s

p
down to 3 GeV, and measurements of

the multiplicity and the pT shape by CMS [72,76] and
ALICE [77] to calibrate our model over a large range of
energies. A summary of the included datasets is provided in
Table I.
We detail the analytic model for the pion production in

Sec. III A. In Secs. III B and III C we discuss the fit to
NA49 and other center of mass energies, respectively, and
show the first results in Sec. III D.

A. Model for the invariant production cross section

In this section, we specify the analytical model of the
invariant cross section for the inclusive production of πþ in
pþ p collisions. In the past, several empirical parametri-
zations were proposed and compared to existing data at that
time [51,59,80,81]. In the meantime, NA49 data [67]
became available and Ref. [82] identified three of these
parametrizations that provide a moderately good agreement
with the new pþ p data. However, the parametrizations
were not refitted to the new NA49 data and indeed the

agreement was not very precise. Finally, the best two of
those three parametrizations were also scaled to the pþ C
data, again showing a moderately good agreement.
Instead of adopting one of these old parametrizations, we

propose a new parametrization of σinv which can fit a large
number of datasets of the inclusive production of πþ in
pþ p collisions, with

ffiffiffi
s

p
ranging from few GeV up to

LHC energies. As outlined in Ref. [67], the πþ are
produced by a combination of prompt emission, emerging
from the hadronization chains, and the decay of hadronic
resonances, in particular from ρ and Δ. Inspired by this
idea, we write σinv as the sum of two terms, called Fp and
Fr, which should roughly follow the prompt and resonance
components. However, we emphasize that the individual
terms do not have precise physical meaning. It is neither
our aim nor do we have the data to precisely distinguish the
physically prompt and resonant production. Our only aim is
to describe the total cross section which corresponds to the
sum of the Fp and Fr terms. The Lorenz invariant cross
section is given by

σinv ¼ σ0ðsÞc1½Fpðs; pT; xRÞ þ FrðpT; xRÞ�AðsÞ; ð7Þ

where σ0ðsÞ is the total inelastic pþ p cross section. The
derivation of σ0ðsÞ along with its uncertainty is discussed in
Appendix A. The functional form of FpðpT; xRÞ is partially
inspired by the parametrizations from Ref. [82] (and Refs.
therein). Specifically, we use

Fpðs; pT; xRÞ
¼ ð1 − xRÞc2 expð−c3xRÞpc4

T

× exp

�
−c5

ffiffiffiffiffiffiffiffiffi
s=s0

p
c6
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þm2

π

q
−mπ

�c7
ffiffiffiffiffiffiffi
s=s0

p c6
�
; ð8Þ

where
ffiffiffiffiffi
s0

p ¼ 17.3 GeV is the energy of NA49 data. The
model parameters ci will be fitted to the available cross
section data, as explained in the following of this section.
On the other hand, the empirical expression for Fr is

motivated by the contributions from resonances, as simu-
lated in Ref. [67] (see their Fig. 54). The functional form of
FrðpT; xRÞ reads

TABLE I. Summary of all pþ p datasets used for π� and/or K� fits, their center of mass energies and references.
σinv is the fully differential production cross section usually stated in the Lorentz invariant form and n is the total
multiplicity of a particle. With

p
we indicate when the quantity is considered in the analysis.

Experiment
ffiffiffi
s

p ½GeV� σinv n Ref.

NA49 17.3 (π�; K�) ✓ � � � [67,78]
ALICE 900 (πþ; K�Þ ✓ � � � [77]
CMS 900, 2760, 7000, 13000 (π�; K�) ✓ � � � [72,76]
Antinucci 3.0, 3.5, 4.9, 5.0, 6.1, 6.8 (π�) � � � ✓ [79]

2.8, 3.0,3.2, 5.3, 6.1, 6.8 (Kþ) � � � ✓ [79]
4.9, 5.0, 6.1, 6.8 (K−) � � � ✓ [79]

NA61/SHINE 6.3, 7.7, 8.8, 12.3, 17.3 (π�; K�) � � � ✓ [68]
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FrðpT;xRÞ

¼ ð1− xRÞc8 exp
�
−c9pT −

�jpT − c10j
c11

�
c12
�

×

�
c13 expð−c14pc15

T xRÞþ c16 exp

�
−
�jxR − c17j

c18

�
c19
��

:

ð9Þ

Finally, we allow for an additional scaling with
ffiffiffi
s

p
, which

is required to obtain the correct πþ multiplicity at different
energies. The functional form is given by

AðsÞ ¼ 1þ ð ffiffiffiffiffiffiffiffiffiffiffi
s=c20

p Þc21−c22
1þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

s0=c20
p Þc21−c22

� ffiffiffiffiffi
s
s0

r �
c22
; ð10Þ

which represents a smoothly broken power law as function
of

ffiffiffi
s

p
with slopes c21 and c22 above and below the break

position at
ffiffiffi
s

p ¼ c20, respectively. In all the formulas
reported in the paper, pT;

ffiffiffi
s

p
, the mass of the particles,ffiffiffiffiffi

s0
p

and energies are intrinsically normalized to 1 GeV, in
order to have dimensionless parameters.

B. Fit of the π + production to NA49 data

The NA49 experiment at the CERN Super Proton
Synchrotron performed precise measurements of πþ inclu-
sive cross sections of pþ p interaction. Data are collected
at

ffiffiffi
s

p ¼ 17.3 GeV and over a large range of xF and pT ,
where xF ¼ 2pL=

ffiffiffi
s

p
is the reduced longitudinal momen-

tum. In the first step, we fix the shape of the Lorenz
invariant cross section as a function of xR and pT at the
NA49 center of mass energy. To a first approximation, the
shape of the cross section is invariant and does not change

when going to different values for
ffiffiffi
s

p
. This approximation

works very well for
ffiffiffi
s

p
values below 50 GeV. At higher

energies this scaling invariance is broken (see also
Sec. III C). The parametrizations of Eqs. (8)–(10) contain
a few parameters that change the behavior of the invariant
cross section as function of

ffiffiffi
s

p
, i.e., they break the scaling

invariance. More specifically, those parameters are c6, c20,
c21, and c22. However, the parametrization is chosen such
that the cross section at the center of mass energy of NA49
is independent of those parameters. Hence we can use the
NA49 data to fix all the other parameters of our model that
do not depend on

ffiffiffi
s

p
. We perform a χ2 fit using the

MULTINEST package [83] to minimize the χ2, with statistical
and systematic uncertainties added in quadrature. We note
that there is also a normalization uncertainty of 1.5%. This
normalization uncertainty is not included in the fit but taken
into account separately (see below). We use MULTINEST

with 1000 live points, an enlargement factor of eft ¼ 0.7
and a stopping parameter of tot ¼ 0.1.
Our results are summarized in Fig. 3, where we plot the

invariant cross section for the inclusive πþ production in
pþ p collisions as a function of xR (left) and pT (right).
The data are displayed along with our best fit results and the
1σ uncertainty for a few representative values at fixed pT

and xF, respectively. The residuals of the data and the width
of the theoretical uncertainty band are displayed in the
bottom panels. The fit converges to a total χ2NA49 ¼ 338

with 263 degrees of freedom (d.o.f.), meaning that we
obtain a very good fit with χ2NA49=d:o:f: ¼ 1.29. The data
are well described at all pT and xF values. The structures in
the low pT data are very well followed by our parametric
formulae, Eqs. (8) and (9).

FIG. 3. Results of the fit on the NA49 data [67] invariant cross section for the inclusive πþ production in pþ p collisions. The left
(right) panel shows the NA49 data along with our fit results for representative pT (xF) values, as a function of xR (pT ). Each curve is
plotted along with its 1σ uncertainty band. In the bottom part of each panel we plot the residuals, which are defined as (data-model)/
model, and the width of the 1σ uncertainty band on the model.
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Finally, we derive the uncertainties on our cross section
fit. To this end, we extract the covariance matrix and the
mean parameter values from the MULTINEST fit. The
covariance matrix C contains the uncertainties and corre-
lations of all the fit parameters. At this point, we account for
the previously neglected normalization uncertainty of the
NA49 data. The overall normalization of the cross section is
dictated by the c1 parameter. So, an additional 1.5%
uncertainty on the normalization can be accounted by
resetting the corresponding diagonal entry of the covari-
ance matrix: C1;1 → C1;1 þ 0.0152c21. Then, we sample 500
parameter realizations using a multivariate Gaussian dis-
tribution. Figure 3 shows the uncertainty band at the
68% confidence level, which spans about 5% over all
the kinematic range explored by the data. For pT > 2 GeV
it increases to almost 10%. However, we note that high pT
values are suppressed after the angular integration
[see Eq. (2)].

C. Fit to different center of mass energies

The general kinematic shape of the invariant πþ pro-
duction cross section has been fixed in the previous section.
Here we focus on the scaling of the cross section at differentffiffiffi
s

p
. Our parametrization introduces two physically differ-

ent dependencies on
ffiffiffi
s

p
. On the one hand, the parameter c6

in Eq. (8) allows a softening of the pT shape as observed at
high energies, while on the other hand the factor AðsÞ and
the parameters c20 to c22 introduce an overall renormaliza-
tion. In this section, we proceed with the determination of
the parameters c6, c20, c21, and c22. All the other para-
meters are fixed to the values of the fit to the NA49 data, as
described above in Sec. III B.
To extend to

ffiffiffi
s

p
below NA49 measurement we use the

multiplicity measurements of NA61/SHINE [68] as well as
a collection of data points provided in Ref. [79] (in the
following also called Antinucci). At larger

ffiffiffi
s

p
we use the

pT dependent data provided by CMS [72,76] and ALICE
[77] at central rapidity. All datasets and their

ffiffiffi
s

p
are

summarized in Table I. As in the previous section, we
perform a χ2 fit and use the MULTINEST [83] package to
scan over the parameter space.
Typically, each cross section measurement contains a

statistical, a systematic, and a scale uncertainty. In the last
section, we only used a single dataset, the one from NA49,
which allowed us to use a simplified treatment where we
ignore the scale uncertainty of 1.5% at first and then added
it in a postprocedure. Here we combine datasets from
different experiments and, thus, the scaling uncertainty has
to be included from the beginning. For datasets with only a
single data point, this is straightforward and we can simply
add all the individual uncertainties in quadrature. In
practice, those are the multiplicity measurements taken
by NA61/SHINE and Antinucci. We note that the
Antinucci data points are a collection from different
experiments and therefore have independent uncertainties,

and the NA61/SHINE are taken at different
ffiffiffi
s

p
. On the

other hand, at higher energies, we use the measurements of
the invariant cross section by ALICE and CMS at central
rapidity. The cross section is provided for values of the
transverse momentum between 0.1 and 2.5 GeV. For those
data points the scaling uncertainty is fully correlated so we
cannot simply add them in quadrature in the definition of
the total χ2. Instead, we follow Ref. [50] and introduce
nuisance parameters allowing for an overall renormaliza-
tion of each dataset from ALICE and CMS. Then, the total
χ2 is defined as the sum of two parts:

χ2 ¼ χ2stat þ χ2scale: ð11Þ

Here the first term accounts for the statistical and system-
atic uncertainty, while the second term constrains the
nuisance parameters according to the scale uncertainties.
Explicitly, χ2stat is given by the sum over all data points ik
and all datasets k:

χ2stat ¼
X
k

X
ik

ðωkσinvik − σinvð
ffiffiffi
s

p
ik ; xRik ; pTikÞÞ2

ω2
kσ

2
ik

; ð12Þ

where σinvik is the measured cross sections and
σinvð

ffiffiffi
s

p
ik ; xRik ; pTikÞ is the evaluation of our cross section

parametrization at the corresponding kinematic variables.
The nuisance parameters ωk rescale both the cross section
measurement and the uncertainties σ2ik . Then, the second
term of the Eq. (11) is given by

χ2scaleðωÞ ¼
X
k

ðωk − 1Þ2
σ2scale;k

; ð13Þ

where σscale;k is the scale uncertainty for each dataset. We
stress that the sum in Eq. (12) runs over every single data
point, while the sum in Eq. (13) only runs over datasets. So,
moving up or down all the data points of a dataset by the
same factor is only penalized once and not for each
data point.
Finally, we address two more subtleties. First, the

ALICE and CMS experiments provide d2n=ðdpTdyÞ data
(that we convert in Lorentz invariant cross section) aver-
aged in relatively large rapidity bins of jyj < 0.5 and
jyj < 1, respectively. In order to take this into account,
we also average our model evaluation over those rapidity
ranges. Second, the recent experiments (NA61/SHINE,
ALICE and CMS) perform feed-down corrections, namely
they subtract the πþ production from the weak decay of
strange particles which are mainly KS

0, but also Λ̄ and Σþ.
In contrast, the collection of multiplicity measurements
from Antinucci is not corrected for this feed-down. So, we
correct those data points by subtracting the contributions of
KS

0 using our estimation from Sec. IV. This contributions to
the total multiplicity vary from 0.4% for

ffiffiffi
s

p ¼ 3 GeV to
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1.7% for
ffiffiffi
s

p ¼ 6.8 GeV. To be conservative we add this
correction at each data point to the measurement uncer-
tainty in quadrature.
Figure 4 shows the results of the fit at high energies. The

invariant cross section is plotted as a function of pT and at
different energies of the corresponding ALICE and CMS

data. The ALICE data at
ffiffiffi
s

p ¼ 0.9 TeV cover a wide range
of pT from 0.1 up to 2.5 GeV, while the CMS data span a
smaller range in pT , only up to 1.2 GeV, but they extend the
center of mass energies up to 13 TeV. The fitted function
provides a good agreement with the data. The uncertainty
on σinv is about 5% at the lowest pT values and increases to
10% for pT > 2 GeV.
In Fig. 4 (right panel), we compare the multiplicity from

our parametrization with the available data as a function offfiffiffi
s

p
. The plot is divided into two energy regimes: at lower

energies, experiments determine the total multiplicity
which is integrated over the whole kinematic parameter
space, while the collider experiments only determine the
multiplicity at central rapidity, often expressed as an
average dn=dy. The fit includes the data points with the
filled symbols from Antinucci and NA61/SHINE, while the
open data points are only plotted for comparison. At high
energies, next to the ALICE and CMS data, we also show
data from PHENIX [70] and STAR [84]. The dn=dy data
points at high energies are actually averaged over different
rapidity ranges, namely PHENIX: jηj < 0.35, STAR:
jyj < 0.5, CMS: jyj < 1, ALICE: jyj < 0.5, while our
model is plotted for jyj < 0.5. However, dn=dy is fairly
flat at high energies and mid rapidity such that the impact
on the model (gray line) is negligible. ALICE and CMS
provide measurements which are feed-down corrected,
while we perform the feed-down correction for PHENIX
and STAR ourselves by subtracting the contributions
of KS

0 .
1

FIG. 4. Left panel: invariant cross section of inclusive πþ production in pþ p collisions at large
ffiffiffi
s

p
as measured by ALICE and CMS.

The dashed lines represent the best fit parametrization and the shaded bands show the uncertainty at the 1σ level. Right panel:
multiplicity (left subpanel) and dn=dy (right subpanel) of πþ production in pþ p collisions measured at different

ffiffiffi
s

p
. The solid

lines represent the best fit parametrization and the gray shaded bands show the uncertainty of our fit at the 1σ level. Filled data points
are included in the fit while open data points are only plotted for comparison. The bottom panels shows the residuals defined as
(data-model)/model.

TABLE II. Results from the best fit and the 1σ error for the
parameters in Eqs. (7)–(10). c1 is in units of GeV−2.

πþ π−

c1 1.05� 0.14 0.85� 0.15
c2 3.62� 0.24 5.37� 0.30
c3 −1.05� 0.36 −2.25� 0.46
c4 0.10� 0.04 0.55� 0.11
c5 4.96� 0.14 4.83� 0.20
c6 ð−3.81� 0.04Þ × 10−2 ð−4.45� 0.06Þ × 10−2

c7 0.91� 0.02 1.01� 0.03
c8 0.11� 0.09 1.04� 0.26
c9 6.91� 0.10 7.09� 0.19
c10 0.54� 0.03 0.60� 0.06
c11 0.67� 0.03 0.68� 0.05
c12 3.67� 0.41 2.67� 0.25
c13 4.68� 0.73 5.80� 1.04
c14 3.10� 0.16 3.87� 0.42
c15 −0.84� 0.03 −0.86� 0.05
c16 0.34� 0.07 3.15� 0.03
c17 0.14� 0.01 ð1.67� 0.92Þ × 10−2

c18 0.18� 0.01 0.12� 0.01
c19 5.35� 0.73 0.83� 0.06
c20 9.79� 0.70 9.61� 0.72
c21 −0.79� 0.05 −0.90� 0.07
c22 ð2.06� 0.04Þ × 10−1 ð2.09� 0.04Þ × 10−1

1Actually, STAR [84] measured only the average of πþ and π−
production, which becomes symmetric at high energies.
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In general, both the fitted data and the ones plotted for
comparison are in good agreement with our best-fit para-
metrization. For the data points from NA49, ALICE and
CMS this is expected, since their data in the xR − pT plane
have been included in the fits to Eqs. (8)–(10). Instead, the
comparison of the data from STAR and PHENIX provides
an independent cross-check. The STAR is in very good
agreement with our parametrization, while the PHENIX
data lie systematically below our multiplicity line. We note
that something similar was also observed for antiprotons
[85], potentially pointing to a more general unaccounted
systematic. Overall, our parametrization provides a good fit
to the datasets at different

ffiffiffi
s

p
. The χ2n=d:o:f: of the best fit

converges to 189=129. More details and individual con-
tributions are provided in Table IV. Furthermore, the
parameters c6, c21, c22 and c23 are all well constrained
by the fit and their values are summarized in Table II.
Within our parametrization, the multiplicity is determined
with a precision of about 3% above

ffiffiffi
s

p
of 10 GeV,

increasing to 5% at the lowest
ffiffiffi
s

p
. At high energies, the

radial scaling invariance is not only broken by the general
increase of the cross section with

ffiffiffi
s

p
but also because the

pT shape hardens. ALICE and CMS measure the cross
section as a function of pT only at midrapidity.
NA61/SHINE also provided data in the xR − pT plane

which are however not included in our fit to Eqs. (8)–(10).
As discussed above we use a phenomenologically
motivated function and fix the kinematic shape of the
cross section with the most reliable data from NA49
data assuming radial scaling invariance. An additional
dataset would require a more careful assessment of
systematics to avoid overconstraining the fit parameters,
and thus underestimating uncertainties. Moreover, we
observed some inconsistencies in the tables provided

by Ref. [68].2 We decided therefore not to include this
data in the fit. Nevertheless, we have checked that the
NA61/SHINE data are generally consistent with our
parametrization also in the xR − pT plane. We provide
more information in Appendix B.
In our parametrization, we assume that there is no similar

violation of scaling in xR. While the bulk of pions (and thus
finally also positrons) are produced at midrapidity, the
steeply falling CR projectile flux in the source term
enhances pions produced in forward direction [86].
The enhancement is supposed to become less important
at very high energies, but it might be important at
intermediate energies, i.e., between NA49 and ALICE/
CMS. In the future, more experimental data might help to
solve the issue.

D. Results on the e + production cross section

Now we have all the ingredients to compute the differ-
ential cross section for the production of eþ as a function of
the incident proton energy, Tp, and the positron energy,
Teþ , using Eqs. (2) and (5). As a matter of fact, it means that
we have to perform a double integration in the solid angle
and in the πþ energy. In Fig. 5, we present the result for the
cross section dσpp→πþþX=dTeþ as function of Teþ (left
panel) and Tp (right) panel for a few representative values
of Tp and Teþ , respectively. The cross section peaks at
positron energies below 100 MeV at about 100 to
300 mb=GeV, almost independently of Tp, and decreases
rapidly to zero for Teþ close to the threshold, i.e., at

FIG. 5. Differential cross section for the production of eþ from πþ in pþ p collisions, computed for different incident kinetic proton
energies as a function of eþ kinetic energy (left) and different eþ kinetic energies as a function of p kinetic energy (right).

2In the database https://www.hepdata.net/record/ins1598505
referred [68] for some data points the systematic errors are written
to zero or set equal to the central data point.
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Teþ ¼ Tp. The uncertainties are about 5% for almost all Teþ ,
which is in agreement with the results from in Secs. III B and
III C. The relative uncertainty increases above 20% when
approaching the threshold. We note, however, that this
kinematic range is suppressed in the positron source term
and has a negligible impact on the final uncertainty.
The projection of the cross section on Tp for fixed values

of Teþ shows a rapid increase above the threshold which
continues for about one order of magnitude in Tp.
Afterward the cross section keeps rising very slowly with
energy. As before, the relative uncertainty is large close to
the threshold. The results of this section already hint at the
final result. The by far dominant contribution of eþ
production in pþ p collisions comes from πþ. So, even
after adding the contributions from smaller channels, both
the general behavior of the cross section and the relative
uncertainty will follow the trends in Fig. 5.

IV. CONTRIBUTION FROM OTHER CHANNELS

A. Contribution from K +

About 10% of the positrons produced in pþ p collisions
come from the decays of charged kaons. As sketched in
Fig. 1, the main different decay channels considered in this
work (branching fraction in brackets) are

(i) Kþ → μþνμ (63.6%),
(ii) Kþ → πþπ0 (20.7%),
(iii) Kþ → πþπþπ− (5.6%),
(iv) Kþ → π0eþνe (5.1%).

To obtain the decay spectrum from kaons we proceed in
this way: for the Kþ → μþνμ channel we follow the same
method reported in Sec. II A, but adapted to Kþ; for Kþ →
πþπ0 we have to add one step to the πþ decay, considering
all the possible energies of the πþ produced from this
process; for the last two and less important three-body
decay channels we adopt a simplified treatment, assuming
that the three particles take 1=3 of the Kþ energy. To obtain
the total positron yield we closely follow the steps from πþ
as detailed in Sec. III, namely, we fit an analytical formula
for the Lorentz invariant cross section of the inclusive Kþ
production in pþ p collisions. In contrast to pions, kaons
do not contain strong resonant production. So, we can use a
simplified version of Eqs. (7) and (8) and define the Lorenz
invariant cross section by

σinv ¼ σ0ðsÞd1FKðs; pT; xRÞAKðsÞ ð14Þ

with

FKðs; pT; xRÞ
¼ ð1 − xRÞd2 expð−d3pd4

T xRÞpd5
T

× exp

�
−d6

ffiffiffiffiffiffiffiffiffi
s=s0

p
d7
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þm2

K

q
−mK

�d8
ffiffiffiffiffiffiffi
s=s0

p d7
�
;

ð15Þ

where mK is the mass of the kaon, di are the fit parameters
and

ffiffiffiffiffi
s0

p
is set to 17.3 GeV. The energy dependent

normalization AKðsÞ is taken to be

AKðsÞ ¼ A0
K

�
1 −

ffiffiffiffiffi
sth

p
ffiffiffi
s

p
��

1þ
ffiffiffiffiffi
s
d9

r
d10−d11

� ffiffiffi
s

p
d11 ; ð16Þ

where sth is the threshold energy for Kþ production and A0
K

is determined by the condition AKðs0Þ ¼ 1.
We follow the two-step procedure previous used for πþ

(see Secs. III B and III C), fixing first the xR–pT shape with
NA49 data [78], and then adjusting the

ffiffiffi
s

p
behavior with

the multiplicity measurements from Antinucci, NA61/
SHINE, ALICE and CMS [68,72,76,77,79]. In this way,
we fit the parameters d1 to d6 and d8 with NA49 data, while
the remaining parameters are fixed in a second fit keeping
the first set of parameters fixed and using the multiplicity
data at smaller and larger

ffiffiffi
s

p
. For ALICE and CMS we use

the pT-dependent multiplicity measurements at midrapid-
ity. A summary of the datasets is provided in Table I.
The χ2=d:o:f: converges to 306=253 with the individual

contribution χ2NA49=d:o:f: ¼ 146=151 from the first fit and
the χ2n=d:o:f: ¼ 160=102 from the second fit. The best-fit
parameters are reported in Table III. In Fig. 6, we compare
our best fit parametrization with the experimental meas-
urement. In the left panel, the NA49 data of the invariant
cross section is shown as a function of xR and for a few
representative values of pT , while the right panel shows the
comparison with various multiplicity measurements as a
function of

ffiffiffi
s

p
. All in all, our parametrization provides a

very good description of the available data. The shaded
bands mark the 1σ uncertainty at fixed pT , which is below
5% at smallest xR and increases to 15% at xR ¼ 0.45 for the
smallest pT . Whereas the uncertainties can be larger than
the ones in the πþ channel, their impact on the final
positron yield, dσ=dTþ

e , is suppressed by the smaller
production rate of kaons with respect to pions. A com-
parison of Fig. 6 with Fig. 3 shows that the Kþ production
is suppressed by about one order of magnitude. Finally, we

TABLE III. Results from the best fit and the 1σ error for the
parameters in Eqs. (14)–(16). d1 is in units of GeV−2.

Kþ K−

d1 ð1.22� 0.07Þ × 10−1 ð1.20� 0.07Þ × 10−1

d2 0.63� 0.45 1.12� 0.52
d3 3.35� 0.59 6.29� 0.71
d4 −0.17� 0.04 −0.09� 0.02
d5 ð−4.6� 2.4Þ × 10−2 ð−8.1� 20.45Þ × 10−3

d6 5.08� 0.05 5.13� 0.05
d7 ð−5.0� 0.1Þ × 10−2 ð−4.8� 0.1Þ × 10−2

d8 0.92� 0.01 0.93� 0.02
d9 11.61� 0.50 10.85� 0.56
d10 −1.72� 0.08 −1.34� 0.07
d11 ð2.02� 0.05Þ × 10−1 ð2.06� 0.05Þ × 10−1
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also compute the positron cross section from the decay of
K− into πþπ−π− and the subsequent decay of the πþ into
eþ. For this, we use the fit of the inclusiveK− production in
pþ p collisions, which is performed in analogy to the fit
of Kþ.

B. Contribution from K0
S

K0
S hadronically decay into neutral or charged pions:

(i) K0
S → π0π0 (Br ¼ 30.7%),

(ii) K0
S → πþπ− (Br ¼ 69.2%),

thus contributing to the final positron and electrons cross
sections with the same amount. The first decay channel is
negligible because almost all π0 decays into two photons
and only 1.2% into eþe−γ. In fact, K0

S makes between
1–5% of the total yield so contribution from the decay into
neutral pions will be below the per-mille level. We only
consider the second channel.
The NA61/SHINE experiment recently measured the

spectra for the production of K0
S from pþ p collisions with

a beam momentum of 158 GeV (
ffiffiffi
s

p ¼ 17.3 GeV) [87].
Double differential distributions were obtained in pT from
0 to 1.5 GeV and in y from −1.75 to 2.25.
Following a similar strategy as for πþ and Kþ, we first

fix the pT and xF dependence of the cross section by fitting
the data of NA61/SHINE at

ffiffiffi
s

p ¼ 17.3 GeV.3 In more
detail, we define the Lorenz invariant cross section by

σinv ¼ σ0ðsÞk1FK0
S
ðpT; xFÞAK0

S
ðsÞ; ð17Þ

with

FK0
S
ðpT;xFÞ¼ð1− jxFjÞk2 expð−k3pk4

T jxFjÞpk5
T exp½−k6pk7

T �;
ð18Þ

where ki are the fit parameters. The energy dependent
normalization AK0

S
ðsÞ is taken to be

AK0
S
ðsÞ ¼ AK0

S;0

�
1 −

ffiffiffiffiffi
k8
s

r
k9−k10� ffiffiffi

s
p

k10 ; ð19Þ

where the AK0
S;0

is determined by the condition AK0
S
ð ffiffiffiffiffi

s0
p ¼

17.3 GeVÞ ¼ 1 and the best-fit parameters k8, k9, k10 are
determined by a second fit to the multiplicities at differentffiffiffi
s

p
. We extract the multiplicity data from Ref. [78]

(reported in their Fig. 120) and fit with the function in
Eq. (17). We obtain a good result for both fits. The
χ2=d:o:f: converge to 20=41 and 42=24 for the fit to
NA61/SHINE data and the multiplicity data, respectively.
All the values of the best-fit parameters are reported in
Table VII. Figure 7 shows that our parametrization provides
a good description of the data. In the left panel, we compare
the NA61/SHINE data with the result of Eq. (17), while in
the right panel we show the multiplicity as a function of

ffiffiffi
s

p
together with the best fit of our parametrization in Eq. (17).
For comparison, we checked the predictions of the

multiplicity using the PYTHIA event generators. We employ
the PYTHIAversion 8.3 [53]. PYTHIA produces predictions for
the multiplicity that are close to the data with a shape only
slightly different from the best fit obtained with Eq. (17).

C. Contribution from K0
L

The decay time of the K0
L meson is 5.1 × 10−8 s which is

a factor of about 600 larger than the one of K0
S, making

it very difficult to detect K0
L particles at accelerator

FIG. 6. Comparison of the best-fit cross section parametrization for the inclusive Kþ production in pþ p collisions with NA49 data
(left panel) and multiplicity measurements at different center of mass energies by various experiments (right panel). Right panel: filled
data points are included in the fit while open data points are only plotted for comparison. The plots are similar to Figs. 3 and 4 (right).

3The NA61/SHINE data are given in d2n=ðdydpTÞ, which we
transform to σinv to perform the fit.
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experiments. Moreover, the K0
L has different decay chan-

nels and branching ratios than K0
S:

(i) K0
L → π�e∓νe (Br ¼ 40.6%).

(ii) K0
L → π�μ∓νμ (Br ¼ 27.0%).

(iii) K0
L → π0π0π0 (Br ¼ 19.5%).

(iv) K0
L → πþπ−π0 (Br ¼ 12.5%).

The lack of experimental data makes it impossible to
determine an independent parametrization of the produc-
tion cross section. Therefore, we employ the PYTHIA event
generator to compare the pT and xF dependence of the final
eþ spectra from K0

S and K0
L.

We find that thepT and xF shapes for the production of eþ

is very similar for the K0
L andK0

S particles. The difference is
simply a normalization factor (for more details see
Appendix C). The K0

L meson produces about a factor of
1.16 more eþ than K0

S which can be explained by different
decay modes of the two kaons. In particular, it is mainly due
to the branching ratio ofK0

S into 2π
0 (Br ¼ 30.7%) which is

larger than for K0
L (Br ¼ 19.5%) suppressing positron

production from K0
S (ð1 − 0.195Þ=ð1 − 0.307Þ ¼ 1.16).

So, in the following we assume that the production cross
section of positrons from K0

L can be obtained from K0
S by

rescaling with a factor 1.16. Because of charge symmetry,
we apply the same results for e− production. In particular, we
do not add any uncertainty related to the factor 1.16 used to
rescale the results of K0

S since this comes from the different
Br of K0

L and K0
S decay into pions that are very well

measured. We apply the same uncertainty of the K0
S to

the K0
L channel.

D. Contribution from Λ
The Λ hyperon decays mainly in
(i) Λ → pπ− (Br ¼ 63.9%).
(ii) Λ → nπ0 (Br ¼ 35.8%).

The former contributes only to the e− through the decay
of the π− while the latter would contribute to both the e�

with a negligible contribution through the π0 decay (see
Sec. IV E 1). Instead, the part related to the neutron decay
would contribute only at energies below 100 MeV [56].
Given the decay channels reported above, the Λ particle
contributes mainly to the e− secondary part. However, the
Λ production cross section helps to gauge some of the other
subdominant channels for eþ production, namely, we will
obtain their contribution by a rescaling, as explained in
Sec. IV E.
The NA61/SHINE experiment recently measured the

spectra for the production ofΛ from pþ p collisions with a
beam momentum of 158 GeV (

ffiffiffi
s

p ¼ 17.3 GeV) and
for pT ¼ ½0.; 1.9� GeV=c and y ¼ ½−1.75; 1.25� [88].
Following a similar strategy as for K0

S, we first fix the
pT and xF dependence of the cross section by fitting the
data of NA61/SHINE at

ffiffiffiffiffi
s0

p ¼ 17.3 GeV.4 In more detail,
we define the Lorenz invariant cross section by

σinv ¼ σ0ðsÞl1FΛðpT; xFÞAΛðsÞ; ð20Þ

with

FΛðpT; xFÞ ¼ ð1 − jxFjÞl2 expð−l3pl4
T jxFjÞpl5

T exp ½−l6pl7
T �;

ð21Þ

where li are the fit parameters. The energy dependent
normalization AΛðsÞ is taken to be

FIG. 7. Left panel: comparison of the K0
S production cross section measured by the NA61/SHINE experiment and the best fit of

Eq. (18). Right panel: multiplicity data for the production of K0
S measured by different experiments (blue data points) collected and

reported in Fig. 120 of Ref. [78] and the best fit obtained with our model (gray dashed line) and PYTHIA 8.3 (red dashed line).

4The NA61/SHINE data are given in d2n=ðdydpTÞ, which we
transform to σinv to perform the fit.
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AΛðsÞ ¼ AΛ;0

�
1 −

ffiffiffiffi
l8
s

r
l9−l10� ffiffiffi

s
p

l10 ; ð22Þ

where the AΛ;0 is determined by the condition AΛð ffiffiffiffiffi
s0

p ¼
17.3 GeVÞ ¼ 1 and the best-fit parameters l8, l9 and l10 are
determined by a second fit to the multiplicities at differentffiffiffi
s

p
. For this, we extract the collection of data on the

multiplicity reported in Fig. 16 of [88] and fit it by the
multiplicity obtained from our parametrization in Eq. (20).
We obtain a good result for both fits. The χ2=d:o:f: of the
best fits converges to 27=49 and 53=23 for the fit to NA61/
SHINE cross section and the multiplicities, respectively.
All values of the best-fit parameters are reported in
Table VII. Figure 8 shows that our parametrization provides
a good description of the data. In the top panel, we compare
the NA61/SHINE data with the result of Eq. (20), while in
the bottom panel we show the multiplicity as a function offfiffiffi
s

p
together with the best-fit of our parametrization

in Eq. (20).
For comparison, we checked the predictions of the

multiplicity using the PYTHIA event generators. PYTHIA

produces predictions for the multiplicity which are close to
the data with a shape slightly different with respect to the
best fit obtained with Eq. (20).

E. Subdominant channels

Other channels contribute with a subdominant amount to
the eþ and e− yield. The Λ̄, the charged Σ and Ξ hyperons
have typical decay times of the order of 10−10 s and their
pion contributions are usually removed with the feed-down
correction. We thus have to add it to our calculations. The
multiplicities of Ω baryons in pþ p collisions are a factor
of about 3–4 orders of magnitude smaller than the one of Λ
particles, so we neglect them.

Unfortunately, no data are available at the energies of
interest for the secondary source term. We decide thus to
estimate the contribution of the Λ̄, Σ and Ξ baryons using
the PYTHIA code [53]. In particular, we run simulations of
pþ p collisions for

ffiffiffi
s

p
ranging from a few GeV to a few

TeV, i.e., Ep ¼ ½20; 106� GeV. We calculate the multiplic-
ities of these particles, ni, where i runs over Σþ, Σ−, Ξ0, Ξ−

and their antiparticles as well as Λ̄. Then, we calculate the
ratio ni=nΛ, both derived with PYTHIA for consistency. We
decide to proceed in this way because for Λ we have a
model for the invariant cross section (see Sec. IV D) and its
mass is similar or equal to the Λ̄, Σ and Ξ, so we expect the
dependence of the cross section with the kinematic param-
eters to be similar. Then, we use the ratio ni=nΛ to add these
subdominant channels to the total yield of e� by rescaling
the Λ cross sections into e� as follows:

dσ
dTe

ðTp; TeÞ ¼
dσ
dTe

ðTp; TeÞΛ ×
X
i

F iðTpÞ; ð23Þ

where F iðTpÞ represents the correction factor that we use
to rescale the cross section for the production of e− or eþ
for the ith hyperon from the one of Λ particles. For
example, charged Σ particles can decay into protons or
neutrons and pions, so FΣðTpÞ can be written as

FΣðTpÞ ¼
nΣðTpÞ · Br

π
Σ

nΛðTpÞ · Br
π
Λ
; ð24Þ

where Br
π
Σ is the branching ratio for the decay of the

hyperons into charged pions. In contrast, the Ξ particles
decay into pions and Λ particles so FΞðTpÞ takes a
different form that we will report below. Finally, since Λ̄
is the antiparticle of the Λ the correction factor for this

FIG. 8. Left panel: comparison of the Λ production cross section measured by the NA61/SHINE experiment and the best fit of
Eq. (20). Right panel: multiplicity data for the production of Λ measured by different experiments (blue data points) collected and
reported in Fig. 16 of [88] and the best fit obtained with our model (gray dashed line) and PYTHIA 8.3 (red dashed line).
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particle is simply the ratio nΛ̄=nΛ between the multiplicity
for the production of Λ̄ with respect to Λ.
Below, we list the particles we consider in this section

reporting the branching ratios into pions.
(i) The Λ̄ hyperon decays mainly into p̄πþ with Br ¼

63.9% and n̄π0 with Br ¼ 35.8%. The former
contributes only to the eþ through the decay of
the πþ, while the latter would contribute negligibly
through the π0 decay. Instead, the part related to the
antineutron decay would contribute only at energies
below 100 MeV [56]. However, in this case the
branching ratio exactly cancels with the one of Λ
such that we get FΛðTpÞ ¼ nΛ̄=nΛ.

(ii) The Σþ baryon decays with Br ¼ 51.6% into pπ0

and 48.3% into nπþ. The former contributes less
than the per-mille level to the total source term
through the decay of the π0 (see Sec. IV E 1).
Instead, the latter is relevant for the eþ production.
For this particle thus Br

πþ
Σþ ¼ 0.48 and the correction

factor F is given by Eq. (24). The antiparticle of Σþ

is Σ̄− and contributes to the electron yield.
(iii) Σ− decays with almost Br ¼ 100% into n̄π− and

contributes to the electron yield. For this source thus
we have Brπ

−

Σ− ¼ 1. Its antiparticle is Σ̄þ and has to
be included for the positron production.

(iv) The Ξ0 decays with almost 100% into π0Λ thus
producing e− through the Λ decay. We use for the
correction factor in Eq. (24) FΞ0 ¼ ðBrπ−Λ · nΞ0Þ=
ðBrπ−Λ · nΛÞ ¼ nΞ0=nΛ. The antiparticle of Ξ0 is Ξ̄0.
Since Ξ̄0 decays into π0Λ̄ we rescale by
F Ξ̄0 ¼ ðBrπþΛ̄ · nΞ̄0Þ=ðBrπ−Λ · nΛÞ ¼ nΞ̄0=nΛ.

(v) The Ξ− decays with almost 100% into π−Λ. We
use for this particle FΞ− ¼ ðð1þ Brπ

−

Λ Þ · nΞ−Þ=
ðBrπ−Λ · nΛÞ. The antiparticle is Ξ̄þ for which we
take F Ξ̄þ ¼ ðð1þ Brπ

þ
Λ̄ Þ · nΞ̄þÞ=ðBrπ−Λ · nΛÞ.

In Fig. 9, we show the correction factor F for the
subdominant channels that contribute to eþ and e−. In
particular, we see that the Σþ and Σ− are the hyperons that
contribute the most to the eþ and e− production, respec-
tively, with about 10–30% of the Λ particles. Instead, the Ξ
baryon contribution is well below the 10% of the Λ. At theffiffiffi
s

p
of NA49 the results we find for Σþ, Σ− and Λ̄ are

consistent with the multiplicities calculated from the
dn=dxF shown in Fig. 22 of [89].5 At low energy, F is
between 10% and 50% for eþ and e−, while at high energy
it reaches 1 for e− and 2 for eþ. We also show in the same
figure the variation to F obtained from different PYTHIA

setups (uncertainty band). We explain the details of this in
Appendix D. The correction factor can change by 40%
depending on the setup of the Monte Carlo simulation.

Therefore, we decide to associate a systematic uncertainty
of 40% to these channels at all energies.

1. Contribution from π0

Neutral pions are expected to be produced in pþ p
collisions with a similar rate as charged pions. However,
π0s decay with a branching ratio of 98.82% into two
photons and only with 1.17% into eþe−γ. Therefore, the
contribution of the π0 to the e� production is expected to be
at the 1% level. Since no data are available for the e� from
π0 at the energy of interest, we use the PYTHIA event
generator to derive the pT and xF dependence of e�

produced from π� and π0. We find that the dn=dxF and
dn=dpT are very similar in shape for the production of e�

from π0 and from π�. The difference is just a normalization

FIG. 9. Correction factor F for the contribution of Λ̄, Σ and Ξ
from pþ p collisions at different proton energies in the LAB
frame Ep. We show the result obtained for each individual
contribution and total one obtained with Eq. (24). We also display
the uncertainty band found by running PYTHIA using different
setup parameters and tunings. The top (bottom) panel is for the
correction factor applied to secondary e− (eþ).

5Figure 22 of [89] reports the result of a Monte Carlo
simulation for the dn=dxF of hyperons that the NA49 collabo-
ration used to correct the data for the feed-down.
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factor that depends on the different multiplicity of π0 (nπ0)
and π� (nπ�) for the production of pions from pþ p
collisions. We show in Fig. 10 the result obtained for
nπ0=nπþ and nπ0=nπ− as a function of the incoming proton
energy and for different PYTHIA setups. As expected,
nπ0=nπþ is smaller than nπ0=nπ− and they both tend to 1
for very high energies. The variations in the ratio of the
multiplicities with respect to the average are between 1.0%
and 1.5%. We decide to add the contribution from π0 to the
e� yield by multiplying the charged pions cross sections by
a factor ð1þ nπ0 · B

π0
r =nπ�Þ, where Bπ0

r ¼ 0.017. We asso-
ciated to this contribution an uncertainty of 1%.

V. CONTRIBUTION FROM NUCLEI COLLISIONS

In the Galaxy, nuclei interactions (pþ A, Aþ p, and
Aþ A) give a significant contribution to the production of
secondary particles. Many former analyses relied on a
simple, overall rescaling of the pþ p cross section by a
geometric factor or mass number [49,61,90]. Here we go
beyond this approximations by using the data of NA49 for
the production of πþ in pþ C collisions at pp ¼ 158 GeV
[89]. While pion production in pþ p collisions is by
definition symmetric under a reflection along the beam axis
in the center-of-mass frame, this is not necessarily the case
in pþ A collisions (in the nucleon-nucleon center-of-mass
frame). Actually, the NA49 pþ C data reveals an asym-
metry in the cross section between forward and backward
production [91], which is plausible, because the carbon
target contains not only protons but also neutrons and the
binding of the nucleons could play a role. The asymmetry
makes a description of the cross section in terms of xR, an
intrinsically symmetric variable, inconsistent. Thus, wewill
use xF instead of xR to parametrize pþ A collisions.

In principle, it would be useful to determine a standalone
parametrization for the pion production of each pþ A
initial state, especially for pþ He, which is most relevant in
the context of CRs. However, the currently available data
on πþ production measurements in pþ A collisions are not
sufficient to obtain independent descriptions. Especially for
pþ He collisions the available data is very scarce. A few
measurements of pion production in pþ He collisions
were taken in the 1980s [92], however, with the goal to
study the nuclear quark structure and in a kinematic regime
where the production is forbidden in single-nucleon colli-
sions. This kinematic regime is highly suppressed in the
Galaxy. So, we will rely on an xF and A-dependent
rescaling. Inspired by the treatment for antiprotons in
[50] we exploit a rescaling of pþ p cross section in terms
of overlap functions. The idea is to split the πþ production
into two components produced by either the projectile or
the target, where the πþ from each component are mainly
produced in forward direction. Adjusting the normalization
of the overlap functions separately allows for accommodat-
ing an asymmetry.
We model the inclusive Lorentz invariant cross section of

the A1 þ A2 → πþ þ X scattering by

σA1A2

inv ð ffiffiffi
s

p
; xF; pTÞ

¼ fA1 A2ðA1; A2; xF; D1; D2; D3Þσppinvð
ffiffiffi
s

p
; xR; pTÞ; ð25Þ

where A1 and A2 are the mass numbers of the projectile and
target nucleus, respectively, andD1,D2 andD3 are three fit
parameters. Explicitly, the factor fA1A2 is defined by

fA1A2ðxFÞ ¼ AD1

1 AD1

2 ½AD2

1 FproðxFÞ þ AD2

2 FtarðxFÞ�; ð26Þ

with FproðxFÞ and FtarðxFÞ given by

Fpro=tarðxFÞ ¼
1� tanhðD3xFÞ

2
: ð27Þ

In the above equations, the kinetic variables xF and
ffiffiffi
s

p
refer to the nucleon-nucleon center-of-mass frame. We do
not claim that FproðxFÞ and FtarðxFÞ are the actual projectile
and target overlap functions. They are rather an effective
treatment that we have introduced to describe the NA49
data. To determine σpAinv, we fit the xF-dependent rescaling
factor fA1A2ðxFÞ of Eq. (26), while σppinvð

ffiffiffi
s

p
; xR; pTÞ is fixed

to the best-fit values of Sec. III A. In other words, we fix the
three free parameters that are D1 to D3 performing a χ2 fit
using the NA49 data on σinv for the inclusive πþ production
in pþ C collisions at

ffiffiffi
s

p ¼ 17.3 GeV [89]. We obtain a
good fit with a χ2=d:o:f: of 400=265. The best-fit param-
eters are reported in Table V. The result of the fitted
parametrization is compared to the NA49 data of σinv in
Fig. 11. The cross section is plotted as a function of xF for a
few representative values of pT . We observe a good

FIG. 10. Ratio of the multiplicity for π0 and πþ (red band) and
π− (blue band) from pþ p collisions. The bands represent the
envelop of the results by changing the setup of PYTHIA as
explained in details in Appendix D.
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agreement of the data with the parametrization, especially
at low values of pT , which are the most important for
positron production in the Galaxy. The uncertainties on the
model turn out to be about 5%, which mostly comes from
the uncertainty in the pþ p collisions. Finally, we also
check, a posteriori (as for pþ p collisions), that our
parametrization is qualitatively in good agreement with
NA61/SHINE data [93] of pþ C scattering provided atffiffiffi
s

p ¼ 7.7 GeV. Using the rescaling relation of Eq. (25) we
obtain the cross sections for pþ He and all other nuclei
collisions.
While we are improving the state of the art [49,61,62],

which is based on a rescaling of the normalization of pþ p
cross section by a simple geometrical factor, our result
points to the need of collecting data of the pþHe→πþþX
cross section. This might allow disentangling pþ p and
pþ A fits in the future by performing separate fits of the
parametrizations for each pþ He and pþ A that avoid
rescaling from pþ p. Actually, one reason for the small
uncertainty bands in Fig. 11 can be related to the fact that
the kinematic shape of our parametrization for pþ A is
already partly fixed by pþ p, see Eq. (25). In this sense,
more data in the pþ He (and more general pþ A)
collisions might allow a more correct estimation of uncer-
tainties. We also note the absence of data for xF < 0.1 in
Fig. 11, a kinematic regime which is important for the
production of pions in Aþ p collision in CRs. Here we rely
on an extrapolation of our parametrization. We also tried a
fit to pþ C data, but considering all the parameters in
Eqs. (7)–(9) and (25). In this case uncertainties rise to
7–8%.
For the Kþ production channel, we refer to NA61/

SHINE [93] data at
ffiffiffi
s

p ¼ 7.7 GeV. We found that a simple
rescaling from the pþ p case (fpA ¼ AD1) is sufficient.

The best fit converges to a χ2=d:o:f. of 151=93 and the best-
fit value of D1 is reported in Table V. For the remaining
subdominant production channels discussed in Sec. IV we
adopt the same rescaling as for Kþ.

VI. RESULTS ON THE e+ PRODUCTION CROSS
SECTION AND SOURCE SPECTRUM

We now have all the elements to compute the total
differential cross section dσ=dTeþ for the inclusive pro-
duction of eþ in pþ p inelastic collisions. The result is
obtained by summing all the contributions of πþ, Kþ and
K−, KS

0 , K
L
0 and subdominant channels (S. C.) fitted on the

data as discussed in Secs. III and IV. This is the main result
of our paper and it is displayed in Fig. 12. We plot dσ=dTeþ

for the separate production channels, and their sum, along
with the relevant 1σ uncertainty band. At the bottom of
each panel we display the 1σ uncertainty band around the
best fit for the total dσ=dTeþ . The four plots are for incident
proton energies Tp of 10, 100, 1000 and 10000 GeV. The
πþ channel dominates the total cross section, being about
10 times higher than the Kþ (and K− contributing few % of
Kþ) channels. Positron production from KS

0 , K
L
0 , and S. C.

are of the order, all contributing at a few % level, slightly
depending on Teþ and Tp. The main comment to these
results is the smallness of the uncertainty with which we
determine dσ=dTeþ . At 1σ the uncertainty band around the
best fit is 4% to 7% at all Tp energies. For Tþ

e values close
to Tp, the error band spreads up since data for this limit
(which corresponds to xR ¼ 1) are not available.
We conclude that the eþ production cross section from

pþ p collisions is determined with very high precision.
This result is mainly due to the precision of the data at our
disposal, and also to the appropriate empirical description
provided by our algebraic model.
In Fig. 13, we present the computation of the source

spectrum of eþ in the Galaxy as a function of Teþ ,
implementing Eq. (1). We fix nH ¼ 0.9 cm−3 and
nHe ¼ 0.1 cm−3. The CR fluxes ϕi for a nucleus i are
taken from [31]. We plot separate results for the collision of
pþ p, pþ He, Heþ p, He-He and C, N and O CR
scattering off H, with their uncertainty due the production
cross sections computed in this paper. The qðEÞ is predicted
with a remarkably small uncertainty, ranging from 5% to
8% depending on the energy. We nevertheless remind that
the different estimations and parametrizations used in the
literature pointed out differences by a factor of 2. Our
results definitively exclude that eþ cross sections can gauge
the source spectrum, and consequently the flux at Earth, by
more than a factor of few %. We compare our results for the
pþ p channel with [56] (labeled Kamae) and [55] (labeled
AAfrag). The Kamae cross section predicts an about 20%
smaller source term above 5 GeV, while it predicts a
significantly larger source term below 1 GeV. In contrast,
for AAfrag, we only report results for Teþ above 1 GeV,

FIG. 11. Results of the fit on the NA49 data [89] invariant cross
section for the inclusive πþ production in pþ C collisions. We
show the NA49 data together with our fit results as a function of
xF for some representative values of pT . Shaded bands show the
1σ uncertainty band.
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FIG. 12. Differential cross section for the inclusive production of eþ in pþ p collisions, derived from fits to the data as described in
Sec. III and IV.We plot separate production of πþ,Kþ andK−,KS

0 ,K
L
0 and S.C. and their sum. Each plot is computed for incident proton

energies Tp, of 10, 100, 1000 and 10000 GeV. The curves are displayed along with their 1σ error band. At the bottom of each panel the
1σ uncertainty band is displayed around the best fit individually for each contribution.

FIG. 13. Source terms of CR eþ (left panel) and e− (right panel). Next to the total source term we show the separate CR-ISM
contributions. In the bottom panels, we display the relative uncertainty of the total source term. We note, however, that for Teþ ≲ 1 GeV
(black dashed line) the source term is not constrained by cross section data but rather an extrapolation of our parametrization which
could possibly be affected by systematics.
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since they report cross sections only for Tp ≥ 3.1 GeV
meaning that the source term cannot be predicted accu-
rately at lower energies. The differences are within 10% for
most of the energy range between 1 and 100 GeV, while our
prediction becomes about 20% higher at 1 TeV. We also
checked the predictions for pþ He, Heþ p and Heþ He,
finding differences at a similar level.
Finally, we note that the available cross section data

(especially for pion production) contrain the positron
source term down to about 1 GeV. Below this energy,
the prediction of the source term relies on an extrapolation
from our parametrization and could be affected by larger
systematics.

VII. RESULTS ON THE e− PRODUCTION CROSS
SECTION AND SOURCE SPECTRUM

Secondary e− are produced in the Galaxy from the same
pþ p collisions as eþ. In this paper, we also provide new
results for the e− production cross section. We mirror the
same analysis performed for eþ and described at length in
the previous sections. In particular, for the σinv for π−

production we adopt the parametrizations reported in
Eqs. (7)–(10). The data employed in the fits are taken
from NA49 [67], NA61/SHINE [68], Antinucci [79],
ALICE [77] and CMS [76,77], as reported in Table I.
The results of the fit to the NA49 production cross

section π− data are displayed in Fig. 14 (left panel), as a

FIG. 14. Left panel: same as Fig. 3 (left panel) but for π− production in pþ p collisions. Right panel: same as Fig. 4 (right panel) but
for π− production in pþ p collisions at various

ffiffiffi
s

p
, as described by Eqs. (11)–(13) (see text for details).

FIG. 15. Differential cross section for the inclusive production of e− in pþ p collisions, derived from fits to the data as described in
Secs. III and IV. We plot separately the contribution from π−, Kþ and K−, KS

0 , K
L
0 , Λ, S.C. and their sum. We provide the result for

incident proton energy Tp of 10 and 100 GeV. The curves are displayed along with their 1σ uncertainty band. At the bottom of each
panel it is displayed the 1σ uncertainty band around the best fit for the total dσ=dTe− .
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function of xR and for a few representative values of pT .
The fit is globally very good, and the resulting uncertainties
are about 5–6%, as shown in the bottom panel and similar
to what we obtained for the πþ fit. The energy dependence
of the cross section has been fixed as for πþ, see Sec. III C.
The only difference is that the ALICE data points have not
been considered in the final fit, because they are incon-
sistent with CMS data at

ffiffiffi
s

p ¼ 0.9 TeV. The results on the
multiplicity are shown in Fig. 14 (right panel). Again, the fit
is pretty good, and the uncertainty is below 10%. The
results on goodness of the fit are summarized in Table IV
and the best-fit parameters are reported in Table II.
The contribution from K− is computed following the

same procedure as for the eþ from Kþ, see Sec. IVA. In
particular, we fitted data from the same experiments (and
same references) to Eqs. (14)–(16). The fit to the data is
very good, see Table IV, and the uncertainty band is similar
to the one found for the Kþ channel. The contributions
from K0

S, K
0
L and π0 decays are symmetric for both eþ and

e−, and have been discussed in Secs. IV B, IV C and IV E 1.
In addition, we consider also the contribution from the Λ
baryon as explained in Sec. IV D.
In Fig. 13 we present the computation of the source

spectrum of e− in the Galaxy as a function of Te− , as
discussed for eþ in Sec. VI. It is predicted with a
remarkably small uncertainty, ranging from 6% to 10%
depending on the energy. With respect to [56], we obtain
for the pþ p channel a higher prediction between 20–30%
between 1 GeV to 1 TeV. Instead, at lower energies our
cross sections are lower. However, at such low energies our

results, in particular below 1 GeV, as well as the ones from
[56], are driven by extrapolation. In contrast, the AAfrag
cross sections predict a 30–40% larger source term com-
pared to our cross section between 1 and 100 GeV. The
large difference for e− between the AAfrag model and
Kamae was already observed in [55]. In Fig. 15we summa-
rize our results for the cross sections of e− production.
Results and uncertainties are given for the total cross
section and the individual production channels for two
fixed proton energies of 10 and 100 GeV.

VIII. DISCUSSION AND CONCLUSIONS

The secondary production of e� in our Galaxy presents a
significant contribution to the e� fluxes measured at Earth.
In particular, the eþ flux is dominated by secondaries below
10 GeV. At higher energies, several primary contributions
are discussed in the literature, the most popular being
pulsars and dark matter annihilation or decay. The correct
interpretation of those primary contributions depends on
the accurate description of the secondary production.
Most of the secondary e� are produced in pþ p

collisions, nonetheless, the contributions from collisions
involving helium, both as a target and as a projectile, are
relevant. The main production channels of the secondary
e� involve the intermediate production and decay of π�
and K�, while some additional channels can contribute to
the source term at the percent level each.
In the last years, new experimental data have become

available covering large portions of the kinematic phase
space. In this paper, we determine an analytical description
of the Lorentz invariant cross section for the production of
π� and K�, especially focusing on pþ p collisions. Then,
we also evaluate, either by exploiting further data or by
referring to Monte Carlo generators, the inclusive cross
section into KS

0 , K
L
0 , Λ, Λ̄, π0, Σ and Ξ. For all these

particles, we implement the relevant 2 and 3 body decay
channels, which finally contribute to e�. The most impor-
tant decay of polarized μ� is computed including NLO
corrections.
The most relevant data are provided by the NA49 experi-

ment which measured π� and K� production in pþ p
fixed-target collisions at protonmomenta of 158GeV. These
data are intrinsically precise at a level of a few percent
(maximum 10%). Our analytical expressions for the invari-
ant cross section fit this data very well. For the important π�
channels the invariant cross section is determined with an
uncertainty of about 5% in the relevant kinematic parameter
space. Further data at lower and higher

ffiffiffi
s

p
are also described

well by our parametrizations. The differential cross section
dσ=dTe�ðpþ p → π� þ XÞ, which enters in the computa-
tion of the e� source term, is determined with about 5%
precision. Including all the production and decay channels,
the total dσ=dTe�ðpþ p → e� þ XÞ is predicted from
10 MeVup to tens of TeVof e� energy, with an uncertainty
of about 5–7%.

TABLE IV. Summary of the fit quality in the pþ p channel.
The first row corresponds to the fit of NA49 data (as detailed in
Sec. III B for πþ). Then, the second row states the χ2 of the fit to
other center of mass energies (see Sec. III C) with the individual
contributions from rows three to six. In the last row we give the
total χ2 and the d.o.f.

πþ π− Kþ K−

χ2NA49=d:o:f: 338=263 287=290 146=151 197=151
χ2n=d:o:f: 189=129 169=96 160=102 135=100
χ2ALICE 77 (33) � � � 42 (27) 36 (27)
χ2CMS 100 (88) 154 (88) 77 (68) 54 (68)
χ2NA61;Antinucci 10 (12) 15 (12) 39 (11) 44 (9)

χ2tot=d:o:f: 527=392 456=386 306=253 332=251

TABLE V. Best fit result and 1σ error for the parameters in
Eqs. (26) and (27).

πþ π− Kþ K−

D1 0.73� 0.01 0.72� 0.02 0.835� 0.004 0.829� 0.007
D2 0.30� 0.02 0.35� 0.03 0.0 0.0
D3 3.93� 0.43 4.21� 0.50 � � � � � �
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The cross section for scattering of nuclei heavier than
protons is obtained by fitting the NA49 data for the
production of π� on pþ C collisions. The statistical
uncertainties are very small, however, we cannot exclude
systematic effects, for example, due to the rescaling from
the pþ C. Future measurements of pion production in the
pþ He could help to remove this ambiguity.
Finally, we provide a prediction for the Galactic e�

source spectrum, which is obtained from a convolution of
the differential production cross section with the incident
CR flux and the ISM density. We include CR nuclei up to O
and p and He ISM targets. Our major result resides in the
precision with which this source term is predicted, which
ranges between 5% and 8% for eþ and 7% and 10% for e−.
The uncertainty in the secondary eþ and e− production is
therefore dramatically decreased with respect to the state of
the art, where different descriptions of the cross section
vary by a factor of about 2, posing a large systematic
uncertainty due to spallation reactions. We note, however,
that for Teþ ≲ 1 GeV the source term is not constrained by
cross section data but rather an extrapolation of our
parametrization which could possibly be affected by
systematics. Our results, especially in the eþ sector, finally
open the door to interpretations of CR data, especially from
the AMS-02 experiment, in which the second component
is no longer a limiting factor in pinpointing primary
components.

We provide numerical tables for the energy-differential
cross sections dσ=dTe� as a function of the e� and proton
energies and a script to read them. The material is available
at https://github.com/lucaorusa/positron_electron_cross_
section.
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APPENDIX A: PARAMETRIZATION OF THE
TOTAL INELASTIC CROSS SECTION

In this section we report the results for the calculation of
the inelastic cross section, which appears in Eq. (7). A new

calculation of the inelastic cross section is necessary to
estimate its uncertainty, that must be added to all the other
uncertainties. We take the available data from the Particle
Data Group [94] for the total collision and elastic pþ p
cross sections because very few data are available for the
inelastic cross sections. We first make a fit to the total
collision (σpptot ) and elastic (σppel ) cross section and then we
derive the inelastic σ0ðsÞ one as their difference. We use the
following functional form for both σpptot and σppel :

σpptot;el ¼ Zpp þ Bpplog2ðs=sMÞ
þ Ypp

1 ðsM=sÞη1 − Ypp
2 ðsM=sÞη2 ; ðA1Þ

where Bpp ¼ πðℏcÞ2=M2, sM ¼ ð2mp þMÞ2, all energies
are given in GeVand σpptot and σppel are given in units of mb.
We include in the fitting procedure only data referring to

Ep > 2 GeV because at lower energies the contribution of
the resonances become very important and complicate to
model precisely. Moreover, for e� with E > 1 GeV the
contribution from protons with energies below 2 GeV is

FIG. 16. This plot shows the result for the fit to the total (black
data and line) and elastic (blue data and line) cross section for
pþ p collisions. We also show the inelastic cross section (red
line) derived as σpptot − σppel , along with the available data. In the
bottom panel we show the 1σ uncertainty band derived for the
inelastic cross section and the relative difference between our best
fit and the one of Ref. [66] (brown dashed line).

TABLE VI. Fit results for the total and elastic proton scattering
cross sections according to Eq. (A1).

Parameter Total Elastic

M 1.589 3.094
Zpp 59.58 21.34
Ypp
1 0.890 2.667

Ypp
2 19.35 14.21

η1 2.543 1.003
η2 −0.0895 −0.0327
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negligible. For Ep < 2 GeV we then use the σ0ðsÞ para-
metrization reported in Ref. [56].
The fitting parameters for both σpptot and σ

pp
el are shown in

Table VI. The comparison between the model and the data
are shown in Fig. 16. The resulting functions provide good
fits to the available data, with a χ2=d:o:f: ¼ 0.88 for σpptot
and 2.20 for σppel , where statistical and systematic uncer-
tainties have been added in quadrature. As shown in
Fig. 16, the inelastic cross section σ0ðsÞ ¼ σpptot − σppel
has a 1σ uncertainty that is on average between 2–3%.
We add this uncertainty in the estimate of the source term
for the secondary production of e�. Our results are in very
good agreement not only with the PDG results on σpptot but
also with the function for σppel and previous references such
as [66] for the inelastic cross section.

APPENDIX B: COMPARISON WITH
DATA AT SMALL

ffiffi
s

p

As discussed in Sec. III C we fix the kinematic shape
of σinvðpþ p → πþ þ XÞ using NA49 data at

ffiffiffi
s

p ¼
17.3 GeV, while at lower energies we use the multiplicity
to adjust the overall normalization of the cross section. This
treatment can be cross checked by data. In particular, NA61/
SHINE [68] provides measurements of the Lorentz invariant
cross section for the inclusive πþ production in pþ p
collisions at different xR and pT . In Fig. 17, we compare
our parametrization with the NA61/SHINEmeasurements atffiffiffi
s

p ¼ 6.3 GeV and
ffiffiffi
s

p ¼ 8.8 GeV. The invariant cross
section is presented as a function of xR and for a few
representative values of pT . Our parametrization provides a

FIG. 17. Comparison between our best fit and the NA61/SHINE data [68] of Lorentz invariant cross section for the inclusive πþ

production in pþ p collisions at
ffiffiffi
s

p ¼ 6.3 GeV (left panel) and
ffiffiffi
s

p ¼ 8.8 GeV (right panel). The data is shown as a function of xR for a
few representative values of pT . Shaded bands show the 1σ uncertainty.

FIG. 18. The left (right) panel shows the distribution of the multiplicity with respect to the pT (xF) variable for the eþ produced from
K0

L rescaled by a factor 1.16 (red dotted line) and K0
S (blue dashed line). The results are obtained using PYTHIA.
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very good description of the data, especially for the more
important small pT values.

APPENDIX C: A FEW MORE DETAILS ON THE
TREATMENT OF STRANGE MESONS

AND BARYONS

Here we collect a few tables and figures providing further
details on our treatment of K0

S, K0
L and Λ production.

Table VII summarizes the best-fit parameters of the cross
section as in Eqs. (17) and (20) for the K0

S and Λ, obtained
from the fit to NA61/SHINE data [87,88]. In Fig. 18 we
compare the eþ production spectra from K0

S and K0
L using

PYTHIA. Up to an overall normalization the distributions in
pT and xF look very similar. As explained in Sec. IV C we
thus assume that the positron production cross section of
K0

L is proportional to K0
S.

APPENDIX D: PYTHIA SETUP

PYTHIA is a program that is routinely used for the
generation of events in high-energy collisions between
elementary particles, including physics models for the

evolution from a few-body hard-scattering process to
complex multiparticle final state. PYTHIA has been designed
with physics model rigorously derived from theory and
others based on phenomenological models with parameters
to be determined from data. We use in this paper the latest
version 8.3 of PYTHIA [53].
Our benchmark setup is defined with the parameter

Tune:pp set to 4. This is also called “Tune 2M” and it has
been introduced with PYTHIA v.8.140 [95]. We then run the
Monte Carlo simulation also varying the tuning and
choosing Tune:pp set to 1,2,3,4,5,6,14,18. All the other
tunes are either created for very different scopes or have
only slight variations with respect to the one listed above.
In addition to varying the parameter Tune:pp we

change the value of the StringFlav:probQQtoQ
and StringFlav:ProbStoUD. The first one changes
suppression of diquark production relative to quark pro-
duction. In other words it changes the relative production of
baryon with respect meson. The second one modifies the
suppression of s quark production relative to ordinary u or d
one. We decide to perform simulations changing these
two parameters by a factor of 2 smaller and larger with
respect to the default one. Changing more than a factor
of 2 the values of StringFlav:probQQtoQ and
StringFlav:ProbStoUD does not have a significant
impact on the results.
We show in Fig. 19 the ratio between the correction factor

F obtainedwith our benchmarkmodel andwith the different
setup explained above. These figures are equivalent for the
ratio between the sum of multiplicity of the Σ and Ξ particle
with respect to the on of theΛ particle frompþ p collisions.
We see that changing the parameter Tune:pp variesF by a
factor of about 20% for electrons and 10% for positrons. The
variation of the parameters StringFlav:probQQtoQ
and StringFlav:ProbStoUD instead produces a larger
change in the correction factor that reaches 30%. Therefore,
we make the conservative choice to associate a systematic
error of 40% to the Σ and Ξ contribution of e�.

TABLE VII. Results from the best fit and the 1σ error for the
parameters in Eqs. (17) and (20). k1 and l1 are in units of GeV−2.

K0
S Λ

k1 1.88� 0.64 l1 ð3.3� 0.9Þ × 10−2

k2 9.23� 1.47 l2 1.48� 1.04
k3 −6.86� 1.71 l3 −2.21� 1.24
k4 0.20� 0.08 l4 −0.25� 0.15
k5 1.10� 0.13 l5 0.26� 0.11
k6 6.58� 0.40 l6 3.17� 0.28
k7 0.89� 0.04 l7 1.33� 0.08
k8 3.05� 0.14 l8 2.41� 0.03
k9 0.50� 1.06 l9 −0.44� 0.40
k10 0.045� 0.27 l10 −0.45� 0.14

ORUSA, DI MAURO, DONATO, and KORSMEIER PHYS. REV. D 105, 123021 (2022)

123021-22



[1] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R.
Bellotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M.
Bongi, V. Bonvicini, S. Borisov et al., Science 332, 69
(2011).

[2] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R.
Bellotti, M. Boezio, E. A. Bogomolov, M. Bongi, V.
Bonvicini, S. Bottai, A. Bruno et al., Astrophys. J. 791,
93 (2014).

[3] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett.
114, 171103 (2015).

[4] M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi, K.
Andeen, L. Arruda, N. Attig, P. Azzarello, A. Bachlechner,
F. Barao, A. Barrau, L. Barrin, A. Bartoloni, L. Basara, M.
Battarbee, R. Battiston, A. Bazo, B. Becker, and P. Zuccon,
Phys. Rev. Lett. 115, 211101 (2015).

[5] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett.
117, 231102 (2016).

[6] Q. An, R. Asfandiyarov, P. Azzarello, P. Bernardini, X. J. Bi,
M. S. Cai, J. Chang, D. Y. Chen, H. F. Chen et al. (DAMPE
Collaboration), Sci. Adv. 5, eaax3793 (2019).

[7] O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. Bagliesi, E.
Berti, G. Bigongiari, W. Binns, S. Bonechi, M. Bongi et al.
(CALET Collaboration), Phys. Rev. Lett. 122, 181102
(2019).

[8] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R.
Bellotti, M. Boezio, E. A. Bogomolov, M. Bongi, V.
Bonvicini, S. Borisov, S. Bottai et al., Phys. Rev. Lett.
106, 201101 (2011).

[9] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett.
122, 101101 (2019).

FIG. 19. Ratio between the correction factor obtained with the benchmark PYTHIA setup, with Tune:pp equal to 4, and the one found
with all the other tunes tested (right panel) and with the variation of the parameters StringFlav:probQQtoQ and StringFlav:
ProbStoUD (left panels). We show the results for the production of eþ (e−) in the top (bottom) panels.

NEW DETERMINATION OF THE PRODUCTION CROSS SECTION … PHYS. REV. D 105, 123021 (2022)

123021-23

https://doi.org/10.1126/science.1199172
https://doi.org/10.1126/science.1199172
https://doi.org/10.1088/0004-637X/791/2/93
https://doi.org/10.1088/0004-637X/791/2/93
https://doi.org/10.1103/PhysRevLett.114.171103
https://doi.org/10.1103/PhysRevLett.114.171103
https://doi.org/10.1103/PhysRevLett.115.211101
https://doi.org/10.1103/PhysRevLett.117.231102
https://doi.org/10.1103/PhysRevLett.117.231102
https://doi.org/10.1126/sciadv.aat9459
https://doi.org/10.1103/PhysRevLett.122.181102
https://doi.org/10.1103/PhysRevLett.122.181102
https://doi.org/10.1103/PhysRevLett.106.201101
https://doi.org/10.1103/PhysRevLett.106.201101
https://doi.org/10.1103/PhysRevLett.122.101101
https://doi.org/10.1103/PhysRevLett.122.101101


[10] G. Ambrosi et al. (DAMPE Collaboration), Nature
(London) 552, 63 (2017).

[11] O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. Bagliesi, E.
Berti, G. Bigongiari, W. Binns, S. Bonechi, M. Bongi et al.
(CALET Collaboration), Phys. Rev. Lett. 120, 261102
(2018).

[12] M. Aguilar, L. Ali Cavasonza, G. Ambrosi et al. (AMS
Collaboration), Phys. Rev. Lett. 122, 041102 (2019).

[13] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett.
117, 091103 (2016).

[14] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R.
Bellotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M.
Bongi, V. Bonvicini, S. Borisov et al., Phys. Rev. Lett. 105,
121101 (2010).

[15] M. Korsmeier and A. Cuoco, Phys. Rev. D 94, 123019
(2016).

[16] N. Tomassetti, Phys. Rev. D 96, 103005 (2017).
[17] W. Liu, Y.-h. Yao, and Y.-Q. Guo, Astrophys. J. 869, 176

(2018).
[18] Y. Génolini et al., Phys. Rev. D 99, 123028 (2019).
[19] N. Weinrich, Y. Génolini, M. Boudaud, L. Derome, and D.

Maurin, Astron. Astrophys. 639, A131 (2020).
[20] N. Weinrich, M. Boudaud, L. Derome, Y. Genolini, J.

Lavalle, D. Maurin, P. Salati, P. Serpico, and G. Weymann-
Despres, Astron. Astrophys. 639, A74 (2020).

[21] C. Evoli, R. Aloisio, and P. Blasi, Phys. Rev. D 99, 103023
(2019).

[22] C. Evoli, G. Morlino, P. Blasi, and R. Aloisio, Phys. Rev. D
101, 023013 (2020).

[23] M. J. Boschini et al., Astrophys. J. 858, 61 (2018).
[24] M. J. Boschini et al., Astrophys. J. 889, 167 (2020).
[25] M. J. Boschini et al., Astrophys. J. Suppl. Ser. 250, 27

(2020).
[26] M. Di Mauro and M.W. Winkler, Phys. Rev. D 103, 123005

(2021).
[27] P. D. L. T. Luque, M. Mazziotta, F. Loparco, F. Gargano,

and D. Serini, J. Cosmol. Astropart. Phys. 07 (2021) 010.
[28] P. De La Torre Luque, M. N. Mazziotta, F. Loparco, F.

Gargano, and D. Serini, J. Cosmol. Astropart. Phys. 03
(2021) 099.

[29] B. Schroer, C. Evoli, and P. Blasi, Phys. Rev. D 103, 123010
(2021).

[30] M. Korsmeier and A. Cuoco, Phys. Rev. D 103, 103016
(2021).

[31] M. Korsmeier and A. Cuoco, arXiv:2112.08381.
[32] D. Hooper, P. Blasi, and P. D. Serpico, J. Cosmol. Astropart.

Phys. 01 (2009) 025.
[33] M. Ahlers, P. Mertsch, and S. Sarkar, Phys. Rev. D 80,

123017 (2009).
[34] M. Boudaud et al., Astron. Astrophys. 575, A67

(2015).
[35] M. Boudaud, E. F. Bueno, S. Caroff, Y. Genolini, V. Poulin,

V. Poireau, A. Putze, S. Rosier, P. Salati, and M. Vecchi,
Astron. Astrophys. 605, A17 (2017).

[36] S. Manconi, M. D. Mauro, and F. Donato, J. Cosmol.
Astropart. Phys. 01 (2017) 006.

[37] S. Manconi, M. Di Mauro, and F. Donato, J. Cosmol.
Astropart. Phys. 04 (2019) 024.

[38] O. Fornieri, D. Gaggero, and D. Grasso, J. Cosmol.
Astropart. Phys. 02 (2020) 009.

[39] S. Manconi, M. Di Mauro, and F. Donato, Phys. Rev. D 102,
023015 (2020).

[40] M. Di Mauro, S. Manconi, and F. Donato, Phys. Rev. D 100,
123015 (2019).

[41] L. Orusa, S. Manconi, F. Donato, and M. Di Mauro,
J. Cosmol. Astropart. Phys. 12 (2021) 014.

[42] C. Evoli, E. Amato, P. Blasi, and R. Aloisio, Phys. Rev. D
103, 083010 (2021).

[43] R. Diesing and D. Caprioli, Phys. Rev. D 101, 103030
(2020).

[44] I. Cholis, T. Karwal, and M. Kamionkowski, Phys. Rev. D
98, 063008 (2018).

[45] I. Cholis and I. Krommydas, Phys. Rev. D 105, 023015
(2022).

[46] M. Cirelli, R. Franceschini, and A. Strumia, Nucl. Phys.
B800, 204 (2008).

[47] L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper, and C.
Weniger, Phys. Rev. Lett. 111, 171101 (2013).

[48] M. Di Mauro, F. Donato, N. Fornengo, and A. Vittino,
J. Cosmol. Astropart. Phys. 05 (2016) 031.

[49] T. Delahaye, R. Lineros, F. Donato, N. Fornengo, J. Lavalle,
P. Salati, and R. Taillet, Astron. Astrophys. 501, 821 (2009).

[50] M. Korsmeier, F. Donato, and M. Di Mauro, Phys. Rev. D
97, 103019 (2018).

[51] L. C. Tan and L. K. Ng, J. Phys. G 9, 1289 (1983).
[52] S. R. Blattnig, S. R. Swaminathan, A. T. Kruger, M. Ngom,

and J. W. Norbury, Phys. Rev. D 62, 094030 (2000).
[53] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,

P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.
Skands, Comput. Phys. Commun. 191, 159 (2015).

[54] S. R. Kelner, F. A. Aharonian, and V. V. Bugayov, Phys.
Rev. D 74, 034018 (2006); 79, 039901(E) (2009).

[55] S. Koldobskiy, M. Kachelrieß, A. Lskavyan, A. Neronov, S.
Ostapchenko, and D. V. Semikoz, Phys. Rev. D 104, 123027
(2021).

[56] T. Kamae, N. Karlsson, T. Mizuno, T. Abe, and T. Koi,
Astrophys. J. 647, 692 (2006); 662, 779(E) (2007).

[57] M. Kachelriess, I. V. Moskalenko, and S. S. Ostapchenko,
Astrophys. J. 803, 54 (2015).

[58] M. Kachelrieß, I. V. Moskalenko, and S. Ostapchenko,
Comput. Phys. Commun. 245, 106846 (2019).

[59] G. D. Badhwar, S. A. Stephens, and R. L. Golden, Phys.
Rev. D 15, 820 (1977).

[60] A.W. Strong, I. V. Moskalenko, T. A. Porter, G.
Jóhannesson, E. Orlando, and S.W. Digel, arXiv:
0907.0559.

[61] C. D. Dermer, Astrophys. J. 307, 47 (1986).
[62] C. D. Dermer, Astron. Astrophys. 157, 223 (1986), https://ui

.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract.
[63] C. Evoli, D. Gaggero, A. Vittino, G. Di Bernardo, M. Di

Mauro, A. Ligorini, P. Ullio, and D. Grasso, J. Cosmol.
Astropart. Phys. 02 (2017) 015.

[64] C. Evoli, D. Gaggero, A. Vittino, M. Di Mauro, D. Grasso,
and M. N. Mazziotta, J. Cosmol. Astropart. Phys. 07 (2018)
006.

[65] D. Maurin, Comput. Phys. Commun. 247, 106942 (2020).
[66] M. di Mauro, F. Donato, A. Goudelis, and P. D. Serpico,

Phys. Rev. D 90, 085017 (2014).
[67] C. Alt et al. (NA49 Collaboration), Eur. Phys. J. C 45, 343

(2005).

ORUSA, DI MAURO, DONATO, and KORSMEIER PHYS. REV. D 105, 123021 (2022)

123021-24

https://doi.org/10.1038/nature24475
https://doi.org/10.1038/nature24475
https://doi.org/10.1103/PhysRevLett.120.261102
https://doi.org/10.1103/PhysRevLett.120.261102
https://doi.org/10.1103/PhysRevLett.122.041102
https://doi.org/10.1103/PhysRevLett.117.091103
https://doi.org/10.1103/PhysRevLett.117.091103
https://doi.org/10.1103/PhysRevLett.105.121101
https://doi.org/10.1103/PhysRevLett.105.121101
https://doi.org/10.1103/PhysRevD.94.123019
https://doi.org/10.1103/PhysRevD.94.123019
https://doi.org/10.1103/PhysRevD.96.103005
https://doi.org/10.3847/1538-4357/aaef39
https://doi.org/10.3847/1538-4357/aaef39
https://doi.org/10.1103/PhysRevD.99.123028
https://doi.org/10.1051/0004-6361/202037875
https://doi.org/10.1051/0004-6361/202038064
https://doi.org/10.1103/PhysRevD.99.103023
https://doi.org/10.1103/PhysRevD.99.103023
https://doi.org/10.1103/PhysRevD.101.023013
https://doi.org/10.1103/PhysRevD.101.023013
https://doi.org/10.3847/1538-4357/aabc54
https://doi.org/10.3847/1538-4357/ab64f1
https://doi.org/10.3847/1538-4365/aba901
https://doi.org/10.3847/1538-4365/aba901
https://doi.org/10.1103/PhysRevD.103.123005
https://doi.org/10.1103/PhysRevD.103.123005
https://doi.org/10.1088/1475-7516/2021/07/010
https://doi.org/10.1088/1475-7516/2021/03/099
https://doi.org/10.1088/1475-7516/2021/03/099
https://doi.org/10.1103/PhysRevD.103.123010
https://doi.org/10.1103/PhysRevD.103.123010
https://doi.org/10.1103/PhysRevD.103.103016
https://doi.org/10.1103/PhysRevD.103.103016
https://arXiv.org/abs/2112.08381
https://doi.org/10.1088/1475-7516/2009/01/025
https://doi.org/10.1088/1475-7516/2009/01/025
https://doi.org/10.1103/PhysRevD.80.123017
https://doi.org/10.1103/PhysRevD.80.123017
https://doi.org/10.1051/0004-6361/201425197
https://doi.org/10.1051/0004-6361/201425197
https://doi.org/10.1051/0004-6361/201630321
https://doi.org/10.1088/1475-7516/2017/01/006
https://doi.org/10.1088/1475-7516/2017/01/006
https://doi.org/10.1088/1475-7516/2019/04/024
https://doi.org/10.1088/1475-7516/2019/04/024
https://doi.org/10.1088/1475-7516/2020/02/009
https://doi.org/10.1088/1475-7516/2020/02/009
https://doi.org/10.1103/PhysRevD.102.023015
https://doi.org/10.1103/PhysRevD.102.023015
https://doi.org/10.1103/PhysRevD.100.123015
https://doi.org/10.1103/PhysRevD.100.123015
https://doi.org/10.1088/1475-7516/2021/12/014
https://doi.org/10.1103/PhysRevD.103.083010
https://doi.org/10.1103/PhysRevD.103.083010
https://doi.org/10.1103/PhysRevD.101.103030
https://doi.org/10.1103/PhysRevD.101.103030
https://doi.org/10.1103/PhysRevD.98.063008
https://doi.org/10.1103/PhysRevD.98.063008
https://doi.org/10.1103/PhysRevD.105.023015
https://doi.org/10.1103/PhysRevD.105.023015
https://doi.org/10.1016/j.nuclphysb.2008.03.013
https://doi.org/10.1016/j.nuclphysb.2008.03.013
https://doi.org/10.1103/PhysRevLett.111.171101
https://doi.org/10.1088/1475-7516/2016/05/031
https://doi.org/10.1051/0004-6361/200811130
https://doi.org/10.1103/PhysRevD.97.103019
https://doi.org/10.1103/PhysRevD.97.103019
https://doi.org/10.1088/0305-4616/9/10/015
https://doi.org/10.1103/PhysRevD.62.094030
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1103/PhysRevD.74.034018
https://doi.org/10.1103/PhysRevD.74.034018
https://doi.org/10.1103/PhysRevD.79.039901
https://doi.org/10.1103/PhysRevD.104.123027
https://doi.org/10.1103/PhysRevD.104.123027
https://doi.org/10.1086/505189
https://doi.org/10.1086/513602
https://doi.org/10.1088/0004-637X/803/2/54
https://doi.org/10.1016/j.cpc.2019.08.001
https://doi.org/10.1103/PhysRevD.15.820
https://doi.org/10.1103/PhysRevD.15.820
https://arXiv.org/abs/0907.0559
https://arXiv.org/abs/0907.0559
https://doi.org/10.1086/164391
https://ui.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract
https://ui.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract
https://ui.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract
https://ui.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract
https://ui.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract
https://ui.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract
https://ui.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract
https://ui.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract
https://ui.adsabs.harvard.edu/abs/1986A%26A...157..223D/abstract
https://doi.org/10.1088/1475-7516/2017/02/015
https://doi.org/10.1088/1475-7516/2017/02/015
https://doi.org/10.1088/1475-7516/2018/07/006
https://doi.org/10.1088/1475-7516/2018/07/006
https://doi.org/10.1016/j.cpc.2019.106942
https://doi.org/10.1103/PhysRevD.90.085017
https://doi.org/10.1140/epjc/s2005-02391-9
https://doi.org/10.1140/epjc/s2005-02391-9


[68] A. Aduszkiewicz et al. (NA61/SHINE Collaboration), Eur.
Phys. J. C 77, 671 (2017).

[69] I. Arsene, I. G. Bearden, D. Beavis, S. Bekele, C. Besliu, B.
Budick, H. Bøggild, C. Chasman, C. H. Christensen, H. H.
Dalsgaard et al. (BRAHMS Collaboration), Phys. Rev. Lett.
98, 252001 (2007).

[70] A. Adare, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y.
Akiba, H. Al-Bataineh, J. Alexander, K. Aoki, L.
Aphecetche, R. Armendariz et al. (PHENIX Collaboration),
Phys. Rev. C 83, 064903 (2011).

[71] J. Adam et al. (ALICE Collaboration), Eur. Phys. J. C 75,
226 (2015).

[72] A. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T.
Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J.
Erö, M. Flechl et al. (CMS Collaboration), Phys. Rev. D 96,
112003 (2017).

[73] K. M. Ferriere, Rev. Mod. Phys. 73, 1031 (2001).
[74] A. Arbuzov, Phys. Lett. B 524, 99 (2002).
[75] J. H. Scanlon and S. N. Milford, Astrophys. J. 141, 718

(1965).
[76] S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, A.

Tumasyan, W. Adam, E. Aguilo, T. Bergauer, M.
Dragicevic, J. Erö et al. (CMS Collaboration), Eur. Phys.
J. C 72, 2164 (2012).

[77] K. Aamodt et al. (ALICE Collaboration), Eur. Phys. J. C 71,
1655 (2011).

[78] T. Anticic, B. Baatar, J. Bartke et al. (NA49 Collaboration),
Eur. Phys. J. C 68, 1 (2010).

[79] M. Antinucci, A. Bertin, and P. Capiluppi, Lett. Nuovo
Cimento 6, 121 (1973).

[80] S. D. Ellis and R. Stroynowski, Rev. Mod. Phys. 49, 753
(1977).

[81] B. Alper et al. (British-Scandinavian Collaboration), Nucl.
Phys. B100, 237 (1975).

[82] J. W. Norbury and L. W. Townsend, Phys. Rev. D 75,
034001 (2007).

[83] F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. R.
Astron. Soc. 398, 1601 (2009).

[84] J. Adams et al. (STAR Collaboration), Phys. Lett. B 637,
161 (2006).

[85] M.W. Winkler, J. Cosmol. Astropart. Phys. 02 (2017) 048.
[86] F. Donato, M. Korsmeier, and M. Di Mauro, Phys. Rev. D

96, 043007 (2017).
[87] A. Acharya et al. (NA61/SHINE Collaboration), Eur. Phys.

J. C 82, 96 (2022).
[88] A. Aduszkiewicz et al. (NA61/SHINE Collaboration), Eur.

Phys. J. C 76, 198 (2016).
[89] C. Alt et al. (NA Collaboration), Eur. Phys. J. C 49, 897

(2007).
[90] C. D. Orth and A. Buffington, Astrophys. J. 206, 312

(1976).
[91] G. Barr, O. Chvala, H. Fischer, M. Kreps, M. Makariev, C.

Pattison, A. Rybicki, D. Varga, and S. Wenig, Eur. Phys.
J. C 49, 919 (2007).

[92] A. M. Baldin et al., Report No. JINR-E1-82-472, 1982.
[93] N. Abgrall et al. (NA61/SHINE Collaboration), Eur. Phys.

J. C 76, 84 (2016).
[94] P. D. Group, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[95] R. Corke and T. Sjostrand, J. High Energy Phys. 03

(2011) 032.

NEW DETERMINATION OF THE PRODUCTION CROSS SECTION … PHYS. REV. D 105, 123021 (2022)

123021-25

https://doi.org/10.1140/epjc/s10052-017-5260-4
https://doi.org/10.1140/epjc/s10052-017-5260-4
https://doi.org/10.1103/PhysRevLett.98.252001
https://doi.org/10.1103/PhysRevLett.98.252001
https://doi.org/10.1103/PhysRevC.83.064903
https://doi.org/10.1140/epjc/s10052-015-3422-9
https://doi.org/10.1140/epjc/s10052-015-3422-9
https://doi.org/10.1103/PhysRevD.96.112003
https://doi.org/10.1103/PhysRevD.96.112003
https://doi.org/10.1103/RevModPhys.73.1031
https://doi.org/10.1016/S0370-2693(01)01335-1
https://doi.org/10.1086/148156
https://doi.org/10.1086/148156
https://doi.org/10.1140/epjc/s10052-012-2164-1
https://doi.org/10.1140/epjc/s10052-012-2164-1
https://doi.org/10.1140/epjc/s10052-011-1655-9
https://doi.org/10.1140/epjc/s10052-011-1655-9
https://doi.org/10.1140/epjc/s10052-010-1328-0
https://doi.org/10.1007/BF02827250
https://doi.org/10.1007/BF02827250
https://doi.org/10.1103/RevModPhys.49.753
https://doi.org/10.1103/RevModPhys.49.753
https://doi.org/10.1016/0550-3213(75)90618-5
https://doi.org/10.1016/0550-3213(75)90618-5
https://doi.org/10.1103/PhysRevD.75.034001
https://doi.org/10.1103/PhysRevD.75.034001
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1016/j.physletb.2006.04.032
https://doi.org/10.1016/j.physletb.2006.04.032
https://doi.org/10.1088/1475-7516/2017/02/048
https://doi.org/10.1103/PhysRevD.96.043007
https://doi.org/10.1103/PhysRevD.96.043007
https://doi.org/10.1140/epjc/s10052-021-09976-y
https://doi.org/10.1140/epjc/s10052-021-09976-y
https://doi.org/10.1140/epjc/s10052-016-4003-2
https://doi.org/10.1140/epjc/s10052-016-4003-2
https://doi.org/10.1140/epjc/s10052-006-0165-7
https://doi.org/10.1140/epjc/s10052-006-0165-7
https://doi.org/10.1086/154386
https://doi.org/10.1086/154386
https://doi.org/10.1140/epjc/s10052-006-0166-6
https://doi.org/10.1140/epjc/s10052-006-0166-6
https://doi.org/10.1140/epjc/s10052-016-3898-y
https://doi.org/10.1140/epjc/s10052-016-3898-y
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1007/JHEP03(2011)032
https://doi.org/10.1007/JHEP03(2011)032

