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The detection of ultra-high-energy (UHE, ≥10 PeV) neutrinos via detectors designed to utilize the
Askaryan effect has been a long-time goal of the astroparticle physics community. The Askaryan effect
describes radio-frequency radiation from high-energy cascades. When a UHE neutrino initiates a cascade,
cascade properties are imprinted on the radiation. Thus, observed radiation properties must be used to
reconstruct the UHE neutrino event. Analytic Askaryan models have three advantages when used for UHE
neutrino reconstruction. First, cascade properties may be derived from the match between analytic function
and observed data. Second, analytic models minimize computational intensity in simulation packages.
Third, analytic models can be embedded in firmware to enhance the real-time sensitivity of detectors.
We present a fully analytic Askaryan model in the time domain for UHE neutrino-induced cascades in
dense media that builds upon prior models in the genre. We then show that our model matches semianalytic
parametrizations used in Monte Carlo simulations for the design of IceCube-Gen2. We find correlation
coefficients greater than 0.95 and fractional power differences <5% between the fully analytic and
semianalytic approaches.
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I. INTRODUCTION

The extrasolar flux of neutrinos with energies between
[0.01–1] PeV has been measured by the IceCube collabo-
ration [1]. Previous analyses have shown that the discovery
of ultra-high-energy neutrinos (UHE-ν) will require an
expansion in detector volume because the flux is expected
to decrease with energy [2–6]. The UHE-ν flux could
potentially explain the origin of UHE cosmic rays
(UHECR), and provides the opportunity to study electro-
weak interactions at record-breaking energies [7,8].
Utilizing the Askaryan effect expands the effective volume
of UHE-ν detector designs, because this effect offers a way
to detect UHE-ν with radio pulses that travel more than
1 km in sufficiently RF-transparent media such as Antarctic
and Greenlandic ice [9–11].
The Askaryan effect occurs within a dense medium with

an index of refraction n. A relativistic particle with v > c=n
initiates a high-energy cascade with negative total charge.
The charge radiates energy in the RF bandwidth, and the
radiation may be detected if the medium does not signifi-
cantly attenuate the signal [12,13]. The IceCube EHE
analysis has constrained the UHE-ν flux to be E2

νϕν ≤
2 × 10−8 GeV cm−2 s−1 sr−1 between [5 × 1015–2 × 1019]
eV [4]. Arrays of Oð100Þ in situ detectors encompassing
effective areas of ≈104 m2 sr per station, spaced by Oð1Þ

RF attenuation length could discover a UHE-ν flux beyond
the EHE limits. The most suitable ice formations exist in
Antarctica and Greenland, and a group of prototype
Askaryan-class detectors has been deployed. These detec-
tors seek to probe unexplored UHE-ν flux parameter space
from astrophysical and cosmogenic sources [5,6,14,15].
Askaryan radiation was first measured in the laboratory

in silica sand, and later ice [16–18]. Cascade properties
affect the amplitude and phase of the radiation. At RF
wavelengths, cascade particles radiate coherently, and the
radiation amplitude scales with the total track length of the
excess negative charge. The RF pulse shape is influenced
by the longitudinal length of the cascade, and the pulse is
strongest when the viewing angle is close to the Cherenkov
angle, θC. The excess charge profile describes the excess
negative charge versus longitudinal position on the cascade
axis. Radiation wavelengths shorter than the lateral width
of the cascade, perpendicular to the cascade axis, are
attenuated. At energies far above 10 PeV in ice, however,
excess charge profiles generated by electromagnetic
cascades experience the Landau-Pomeranchuk-Migdal
(LPM) effect and can have multiple peaks [19,20]. This
theoretical foundation has been constructed from a variety
of experimental and simulation results.
The field of Askaryan-class detectors requires this

foundation for at least two reasons. First, the theoretical
form of the Askaryan RF pulse is used to optimize RF
detector designs. Askaryan models are incorporated into*jhanson2@whittier.edu
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simulations [21–23] in order to calculate expected signals
and aid in detector design. For example, reconstruction
tools for the radio component of IceCube-Gen2 combine
machine learning and insights from Askaryan radiation
physics [24–26]. Second, Askaryan models are used as
templates to search large data sets for signal candidates
[5,27]. The signal-to-noise ratios (SNRs) at RF channels
are expected to be small (SNR ≈ 3), because the amplitude
of the radiated field decreases with the vertex distance
(1=r), and the signal is attenuated by the ice [9,28,29]. Low
SNR signals require correspondingly low RF trigger thresh-
olds, but signals must be sampled for a bandwidth of
[0.1–1] GHz. Thus, RF channels are triggered at high rates
by thermal noise. UHE-ν signals will be hidden within
millions of thermal triggers. Template-waveform matching
between models and data is a powerful technique for
isolating RF signals from high-energy particles [27,30].
Askaryan models fall into three categories: full

Monte Carlo (MC), semianalytic, and fully analytic. The
original work by Zas et al. (ZHS) [13] was a full MCmodel.
The properties of cascades with total energy ≤1 PeV were
examined. A parametrization for the Askaryan field below
1 GHz was offered, attenuating modes above 1 GHz via a
frequency-dependent form factor tied to the lateral cascade
width. The semianalytic approach was introduced by
Alvarez-Muñiz et al. (ARVZ) [31]. This approach accounts
for fluctuations in the charge excess profile, and provides an
analytic vector potential observed at the Cherenkov angle.
The vector potential at the Cherenkov angle is labeled the
form factor, and observed fields are derived from the
derivative of the vector potential once convolved with a
charge excess profile from MC. Recent work also accounts
for differences in fit parameters from electromagnetic and
hadronic cascades, and other interaction channels, while
matching full MC simulations [32].
Finally, fully analytic models of Askaryan radiation

from first principles have been introduced. Ralston and
Buniy (RB) gave a fully analytic model valid for obser-
vations of cascades in the near and far field, with the
transition encapsulated by a parameter η [33]. The result
was a complex frequency-domain model. Recently, a
model and software implementation was given by
Hanson and Connolly (JCHþ AC) that built upon RB
by providing an analytic form factor derived from GEANT4

simulations, and accounted for LPM elongation [34]. This
work connected the locations of poles in the complex
frequency plane to η and the form factor. The poles
combine to form a low-pass filter for the Askaryan
radiation. The JCHþ AC results match the ZHS results
while demonstrating the physical origins of model param-
eters. The RB and JCHþ AC results are given in the
Fourier domain, but most UHE-ν searches (like template
matching) have taken place in the time domain. The goals
of this work are to produce a fully analytic time-domain
model accounting for complex poles, valid for all viewing

angles θ and η < 1, and to demonstrate that it matches
semianalytic models.
In Sec. II, the cascade geometry, units, and vocabulary

are defined. In Sec. III, we describe how the JCHþ AC
form factor fits into the current model [34]. In Sec. IV, the
analytic Askaryan field, observed at θ ¼ θC (on-cone), is
presented. In Sec. V, the analytic Askaryan field observed
for θ ≠ θC (off-cone) is presented. In Sec. VI, fully analytic
fields are matched to semianalytic fields generated with
NuRadioMC [23] at 10 PeV (electromagnetic cascades)
and 100 PeV (hadronic cascades). Though the LPM effect
is activated in NuRadioMC, it has a negligible influence on
the waveform comparison at these energies. In Sec. VII, the
results are summarized and potential applications of the
model are described.

II. UNITS, DEFINITIONS, AND CONVENTIONS

The coordinate system of the Askaryan radiation from a
vector current density J⃗ is shown in Figs. 1(a)–1(b). Primed
cylindrical coordinates refer to J⃗, and the unprimed
spherical coordinates refer to the observer. The zenith or
viewing angle is measured with respect to the longitudinal
axis (z0). The observer displacement is r ¼ jx⃗ − x⃗0j, in the r̂
direction. The origin is located where the cascade has the
highest instantaneous charge density (ICD). The ICD is
treated with cylindrical symmetry, so it has no ϕ0 depend-
ence. This assumption is based on the large number of
cascade particles and momentum conservation. The lateral
extent of the ICD is along the lateral axis (ρ0). The viewing
angle is θ in spherical coordinates, and the Cherenkov
angle occurs when θ satisfies cosðθCÞ ¼ 1=nice with nice ¼
1.78� 0.003 [35].
In Fig. 1(c), an example excess charge profile nðz0Þ is

shown with characteristic longitudinal length a. The
individual ICDs represent the excess charge density for
small windows of time, and nðz0Þ refers to the total excess
charge as a function of z0. Approximating the central

(a) (b) (c)

FIG. 1. (a) Side view of the coordinate systems used in the
analysis. Spherical unprimed coordinates refer to the observer.
Primed cylindrical coordinates refer to J⃗ðρ0; z0Þ. (b) Front view of
the coordinate system. The ICD is assumed to have no ϕ0
dependence. (c) The function nðz0Þ describes the total cascade
excess charge, and it has a characteristic width a. The ICD has an
instantaneous width much smaller than a [34].
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portion of nðz0Þ as a Gaussian distribution Nðμ; σÞ corre-
sponds to setting a ¼ 2σ. Askaryan radiation occurs
because nðz0Þ represents excess negative charge
[13,34,36]. Cascades may be characterized as electromag-
netic, initiated by charged outgoing leptons from UHE-ν
interactions, or hadronic, initiated by the interaction
between the UHE-ν and the nucleus. Electromagnetic
cascades follow the Greisen distribution and hadronic
cascades follow the Gaisser-Hillas distribution. An exam-
ple of such an implementation via the ARVZ semianalytic
parametrization is AraSim [11].
The units of the electromagnetic field in the Fourier

domain are V/m/Hz, often converted in the literature to
V/m/MHz. To make the distance dependence explicit, both
sides of field equations are multiplied by r, as in rE⃗ ¼ …,
making the units V= Hz. Throughout this work, an overall
field normalization constant E0 is used. E0 may be linearly
scaled with energy, as in other Askaryan models. We show
that the on-cone field amplitude is proportional to E0 times
a characteristic frequency squared, so the units of E0 are
V=Hz2. For off-cone results, we show that the field
amplitude is proportional to E0 times a characteristic
frequency divided by a characteristic pulse width, and
the units of E0 remain V=Hz2.
In Sec. III B, we review briefly the energy dependence of

the longitudinal length a in both the electromagnetic and
hadronic cases. For the Greisen distribution with critical
energy Ecrit, it can be shown that if nmax ¼ nðzmaxÞ, where
zmax ¼ ln ðEC=EcritÞ, then nmaxa ∼ EC=Ecrit. Thus, the area
under the curve nðz0Þ scales with the total cascade energy
EC. RB demonstrated that the Askaryan radiation ampli-
tude is proportional to nmaxa and therefore EC. The cascade
develops over a length ≈a, but the radiation is coherent
over a length Δz0coh for which the displacement is constant
to first order relative to a wavelength. The η parameter is the
square of the ratio of a to Δz0coh:

η ¼
�

a
Δz0coh

�
2

¼ k
r
ða sin θÞ2: ð1Þ

In the far field, η < 1. In the first JCHþ AC model, a
limiting frequency ωC was shown to filter the Askaryan
radiation [34]:

η ¼ ω

ωC
: ð2Þ

The effect of ωC is described in Sec. IV. The Askaryan
radiation is primarily polarized in the θ̂ direction,with a small
amount along r̂ [31,34]. The wave vector is k ¼ ð2πÞ=ðnλÞ,
where n is the index of refraction. A 3D wave vector was
defined by RB, equivalent to q⃗ ¼ nkð1; ρ⃗=RÞ. The vector
current density is treated by RB as a charge density times the
velocity of the ICD: J⃗ðt; x⃗0Þ ¼ ρðz0 − vt; ρ0Þv⃗. Further, the
charge density is factored into nðz0Þ times the ICD:

ρðz0 − vt; ρ0Þ ¼ nðz0Þfðz0 − vt; ρ0Þ. The form factor F̃ is
the three-dimensional spatial Fourier transform of the
ICD [33].
The result for F̃ was derived analytically by JCHþ AC

[34], and that derivation is briefly described in Sec. III A.
JCHþ AC define a parameter σ, and F̃ is a function of σ:
F̃ðσÞ. The variable σ is related to the ratio of the lateral ICD
width to the radiated wavelength. In the derivation of F̃, it is
convenient to set σ equal to the ratio of the angular
frequency to the low-pass cutoff frequency ωCF of F̃:

σ ¼ ω

ωCF
: ð3Þ

Armed with F̃, the longitudinal length a and the
corresponding energy dependence on E0, the RB field

equations E⃗, and the displacement r, the Askaryan electro-
magnetic field may be assembled according to the follow-
ing form [33]:

rE⃗ðω; θÞ ¼ E0

�
ω

2π

�
ψ E⃗ðω; θÞF̃ðω; θÞ: ð4Þ

The factor E0 is proportional to the cascade energy. The
factor ω is the angular frequency. The variable ψ is

ψ ¼ −i expðikrÞ sin θ. The function E⃗ðω; θÞ contains the
vector and complex pole structure of the field (see
Refs. [33,34]). The model represented by Eq. (4) is an
all-θ, all-ωmodel. That is, Eq. (4) is valid at all frequencies
and all viewing angles, provided one accepts the approxi-
mation of the central portion of nðz0Þ as Gaussian. The first
goal of this work is to build an all-θ, all-tmodel in the time
domain, derived from Eq. (4), and the second goal is to
compare it to semianalytic parametrizations.

III. THE FORM FACTOR AND LONGITUDINAL
LENGTH PARAMETER

To arrive at the main electromagnetic field in the time
domain, the individual pieces of Eq. (4) must first be
assembled. The first piece will be the form factor F̃ that
accounts for the 3D ICD, followed by some remarks
about the energy dependence of the longitudinal length
parameter a.

A. The form factor

The form factor is the 3D Fourier transform of the ICD
fðz0; ρ⃗0Þ, with q⃗ ¼ nkð1; ρ⃗=RÞ [33]:

Fðq⃗Þ ¼
Z

d3x0fðz0; ρ0Þe−iq⃗·x⃗0 : ð5Þ

The goal is to evaluate F̃ in the Fourier domain for an
ICD definition informed by cascade simulations.
Simulations of the cascade induced by UHE-ν indicate a
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thin wave of charge in z0 spread uniformly in ϕ0, that
decreases exponentially in ρ0. Using these observations
JCHþ AC completed the derivation in Ref. [34]. The final
result was a simple analytic formula:

F̃ ¼ 1

ð1þ ðω=ωCFÞ2Þ3=2
ð6Þ

The form factor acts as a low-pass filter with the cutoff
frequency ωCF:

F̃ ≈
ω2
0

ðωþ iω0Þðω − iω0Þ
: ð7Þ

The definition ω0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
ωCF has been used. The effect

of the approximation is illustrated in Fig. 2. Equation (7)
matches the original ZHS parametrization (see Eq. 20
of Ref. [13]).

1. A note about the Molière radius

In Sec. VI B, the decay constant l of the lateral
component of the ICD is inferred from best-fit values of
ω0. The connection between the l parameter and ω0 was
described by JCHþ AC [34]. Put simply, the ICD decays
by a factor of 1=e a lateral distance l from the cascade axis.
Note, however, that the l parameter is not the Molière
radius. The Molière radius is the lateral radius which forms
a cylinder containing 90% of the energy deposition of the
cascade. For ice with a density of 0.917 g cm−3, one can
estimate RM ≈ 9.2 cm using standard formulas. Although it
is tempting to compare l to RM, these parameters have
different definitions. Knowing that l is related to ω0, l may
be estimated as λ=2 in ice at the cutoff frequency. At 3 GHz
in ice, λ=2 ≈ 2.8 cm, and at 1 GHz in ice, λ=2 ≈ 8.4 cm.
Although the results are at the same order of magnitude as
RM, there are three effects limiting the high-frequency
spectrum of the radiation: ω0, ωC, and the viewing angle.
Thus, l < RM is possible for a radiation spectrum limited
to ≲1 GHz.

B. The longitudinal length parameter

The next piece required in the assembly of the main
electromagnetic field is the energy dependence of the
overall amplitude, and the energy dependence of the
longitudinal length parameter, a, which is a part of E⃗ in
Eq. (4) [33]. What follows are two separate discussions,
one for electromagnetic cascades, and one for hadronic
cascades. Though we share these calculations for conven-
ience, note that a variety of theoretical and experimental
results on this topic are available [16,37,38].

1. Electromagnetic case

The number of charged particles versus distance in
radiation lengths nðz0Þ in an electromagnetic cascade taking
place in a dense medium with initial cascade energy EC,
critical energy Ecrit, normalization parameter n0, and age s
is [34]

nðz0Þ ¼ n0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðEC=EcritÞ

p exp

�
z0
�
1 −

3

2
lnðsÞ

��
: ð8Þ

To find the energy-dependent width of the Greisen
distribution, four steps are necessary: (1) normalization of
nðz0Þ as a fraction of the maximum excess charge, (2) con-
version of nðz0Þ to nðsÞ, (3) determination of the width of
nðsÞ by approximating the central portion as a Gaussian
distribution, and (4) conversion of the width from s units to
radiation lengths z0, and then converting those results to a
distance. Define the ratio R¼nðzmax�a=2Þ=nmax, so the
FWHM occurs when R ¼ 0.5. The final result in radiation
lengths is

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðEC=EcritÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6 lnðRÞ

p
ð9Þ

Since R < 1, lnðRÞ < 0 and a is real valued, and a in
Eq. (9) is in radiation lengths. In solid ice the density is
ρice ¼ 0.917 g cm−3, and the electromagnetic radiation
length is z0 ¼ 36.08 g cm−2 [34]. Converting to distance
gives

a ¼ z0
ρice

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðEC=EcritÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6 lnðRÞ

p
ð10Þ

Note that a ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðECÞ

p
, as shown by RB and others. The

product nmaxa is proportional to the energy EC=Ecrit. For
this reason RB took nmaxa as the field normalization rather
than EC [33]. As an example, letting R ¼ 0.4, and
Ecrit ≈ 108 eV, gives a ≈ 4 meters for EC ¼ 1016 eV. We
show in Sec. VI that our fitted a values are close to 4 meters
when matched to semianalytic parametrizations.

FIG. 2. Black: Eq. (6), graphed versus σ ¼ ω=ωCF. Gray: the
two-pole approximation.
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2. Hadronic case

The Gaisser-Hillas distribution describes hadronic cos-
mic-ray air showers, but has also been applied to hadronic
cascades in dense media in codes like AraSim [11,22]. The
original function reads

nðz0Þ ¼ nmax

�
z0 − z0

zmax − z0

�ðzmax−z0Þ=λ
e
zmax−z0

λ : ð11Þ

The variables are defined as follows: nmax is the
instantaneous maximum number of particles in the cascade,
z0 is the longitudinal distance in radiation lengths, z0 is the
initial starting point, λ is the interaction length, and z0max is
the location of nmax. Using the same steps as the electro-
magnetic case, we find

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
λz0max

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8 lnðRÞ

p
ð12Þ

The a parameter again goes as
ffiffiffiffiffiffiffiffiffi
zmax

p ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðECÞ

p
which

produces similar lengths as the electromagnetic case when
scaled by the appropriate interaction length and ice density.

IV. ON-CONE FIELD EQUATIONS

The θ̂ component of the electromagnetic field at θ ¼ θC
will now be built in the time domain from Eq. (4). Setting
θ ¼ θC in the general RB field equations (Appendix A),
with Eq. (6) for F̃, σ ¼ ω=ωCF and η ¼ ω=ωCF, and letting
E0 be proportional to the cascade energy EC produces
Eq. 45 from JCHþ AC [34]:

rẼðω; θCÞ ¼
ð−iωÞE0 sinðθCÞeiωr=c

ð1 − iω=ωCÞ1=2ð1þ ðω=ωCFÞ2Þ3=2
: ð13Þ

More detail is provided in Appendix A. Let the retarded
time be tr¼ t−r=c (with the appropriate value for c given

the index versus depth), and let ω0¼
ffiffi
2
3

q
ωCF and

Ê0¼E0sinθC. Finally, let ϵ ¼ ω0=ωC. The inverse
Fourier transform of Eq. (13) is

rEðt; θCÞ

¼ Ê0iωCω
2
0

π

d
dtr

Z
∞

−∞

e−iωtr

ð2iωC þωÞðωþ iω0Þðω− iω0Þ
dω:

ð14Þ

In Eq. (14), the derivative with respect to the retarded
time d=dtr is introduced to remove a factor of ð−iωÞ from
the numerator. Accounting for the complex poles and the
sign of tr, complex integration and expansion to first order
in ϵ yields

rEðt;θCÞ ¼
1

3
Ê0ω

2
CF

(
ð1− 1

2
ϵÞeω0tr tr < 0

ð2e−2ωCtr − ð1þ 1
2
ϵÞe−ω0trÞ tr > 0

ð15Þ

Equation (15) represents the time-domain solution for
the on-cone θ̂ component of the Askaryan electric field.
The expansion to first order in ϵ is only performed so the
final result resembles semianalytic results for E⃗ ¼ −∂A⃗=∂tr
[31,32]. Table I summarizes the definitions of the param-
eters in Eq. (15). Fit results for the parameters of Table I are
shown in Sec. VI.
Notice that the amplitude is asymmetric, and the param-

eter ϵ influences the asymmetry. The ϵ parameter was
studied by JCHþ AC in detail. For example, Fig. 10 of
Ref. [34] shows that ϵ ≈ ½0.1 − 1� for an inverse lateral
width l−1 ¼ ffiffiffiffiffiffi

2π
p

ρ0 ≈ 20 m−1 and a ≈ 4 m. The best-fit
results for ϵ and a are shown in Sec. VI. JCHþ AC showed
that the expression for ϵ is the product of the ratio of the
lateral to longitudinal length, and the ratio of the longi-
tudinal length to the observer displacement, making it a
physical parameter connecting the event geometry to the
cascade shape [34]. Figure 3 displays normalized examples
of Eq. (15) for different values of ω0, ωC, and ϵ.

A. Verification of the uncertainty principle

As a check on the procedures used to perform the inverse
Fourier transform that produces Eq. (15), we verify below
that the uncertainty principle holds, forΔθ → 0. JCHþ AC
provided the Gaussian width of the radiation in the Fourier
domain: σν, where ν represents the frequency in Hz.
Generally speaking, Fourier transform pairs must obey
σνσt ≥ 1=ð2πÞ. The following procedure is used to com-
pute the width σt of the on-cone field. First, the tr < 0 and
tr > 0 cases are each treated as probability distributions
and normalized. Next, the average positive and negative
retarded times, t̄r;þ and t̄r;−, are computed. Finally, sub-
tracting the two averages yields σt:

TABLE I. Parameters used to build Eq. (15). Fitted values in
comparison to semianalytic parametrizations are shown in
Sec. VI.

Parameter Definition

Ê0
E0 sinðθCÞ

E0 ≈nmaxa
ω0

ffiffi
2
3

q
ωCF

ωCF ðc ffiffiffiffiffi
2π

p
ρ0Þ=ðn sin θÞ (see Eqs. 22, 23,

and 46 of Ref. [34])
ωC ðrcÞ=ðna2 sin2 θÞ

(see Eq. 39 of Ref. [34])
ϵ ω0=ωC
tr t − r=c
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σt ¼ t̄r;þ − t̄r;− ¼ ϵþ 2

ω0

¼ 1

ωC
þ 2

ω0

: ð16Þ

The result has the correct units and the limiting cases are
sensible. If ϵ → 0 (ωC ≫ ω0), then σt → 2=ω0, which is
expected from observing Eq. (15) if the ωC exponential
disappears. If ϵ ¼ 1 (ωC ¼ ω0), then σt ¼ 3=ω0. That is,
the pulse is wider if there is more than one relevant cutoff
frequency.
The expression for σν is given by Eq. 36 of JCHþ AC

[34]:

σν ¼
c

2πaΔ cos θ
ð1þ η2Þ1=2: ð17Þ

Expanding to first order in Δ cosðθÞ ¼ cosðθÞ − cosðθCÞ,

σν ≈
c

2πa sinðθCÞΔθ
ð1þ η2Þ1=2: ð18Þ

From Table I: ω−1
C ¼ na2 sin2ðθCÞ=ðrcÞ, and ω−1

0 ¼
nl sinðθCÞ=c, with l ¼ ffiffiffiffiffiffiffiffi

3=2
p

=ð ffiffiffiffiffiffi
2π

p
ρ0Þ. (Recall that ρ0

is a parameter discussed in Ref. [34]). Multiplying σt
and σν with the far-field limit (η < 1) gives the inequality

σνσt ≥
n
2π

��
a
r

�
sinðθCÞ
Δθ

þ 2

�
l
a

�
1

Δθ

�
: ð19Þ

Therefore, in order to satisfy σνσt > 1=ð2πÞ,

n
�
a
r

�
sinðθCÞ þ 2n

�
l
a

�
> Δθ: ð20Þ

Although a=r ≪ 1 and l=a ≪ 1, as long as these
expressions do not approach zero as fast as Δθ → 0 in
Eq. (20), the uncertainty principle holds. Yet these are
exactly the conditions of the problem: a displacement r in
the far field (but not infinitely far away) and a longitudinal
length a much larger (but not infinitely larger) than the
lateral ICD width l. Thus, σνσt > 1=ð2πÞ holds.

V. OFF-CONE FIELD EQUATIONS

Turning to the case for which θ ≠ θC, the θ̂ component of
the electromagnetic field will now be built in the time
domain. The RB field equations for the θ̂ and r̂ components
were summarized by both RB and JCHþ AC [33,34], and
are included here in Appendix A. Recall the general form of
the electromagnetic field, given in Eq. (4):

rE⃗ðω; θÞ ¼ E0

�
ω

2π

�
ψ E⃗ðω; θÞF̃ðω; θÞ: ð21Þ

The first task is to simplify E⃗ðω; θÞ before taking the
inverse Fourier transform. The simplification involves

expanding E⃗ðω; θÞ in a Taylor series such that u ¼
1 − iη ≈ 1, restricting η < 1 (far-field). Once E⃗ðω; θÞ is
simplified, the inverse Fourier transform of Eq. (21) may be
evaluated to produce the result. Table II contains useful
variable definitions, Table III contains useful function
definitions, and Table IV contains special cases of the
functions in Table III.
The original form of E⃗ðη; θÞ is shown in Appendix A.

Changing variables to u and x (Table II) and using the

TABLE II. Useful variables for the derivation of the off-cone
Askaryan electromagnetic field.

Variable Definition

u 1 − iη
x cosðθÞ
xC cosðθCÞ
q ðxxC − x2CÞ=ð1 − x2Þ
y ð1

2
ÞðkaÞ2ðcos θ − cos θCÞ2

p 1
2
ðacÞ2ðcos θ − cos θCÞ2

FIG. 3. Top: Eq. (15) from ½−4; 4� ns, with (black) ωC ¼
2πð1.25Þ GHz, ω0 ¼ 2πð1.56Þ GHz, ϵ ¼ 1.25, (gray) ωC ¼
2πð1.25Þ GHz, ω0 ¼ 2πð0.94Þ GHz, ϵ ¼ 0.75, (light gray)
ωC ¼ 2πð1.25Þ GHz, ω0 ¼ 2πð0.625Þ GHz, and ϵ ¼ 0.5. The
amplitudes of all curves are normalized to the peak of
the ϵ ¼ 1.25 (black) data. Bottom: same as top panel, plotted
between ½−1; 1� ns.
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function definitions and values in Tables III–IV, E⃗ðu; xÞ ·
θ̂ ¼ Eðu; xÞ becomes

Eðu; xÞ ¼ fðu; xÞgðu; xÞð1 − hðu; xÞÞ: ð22Þ

Expanding Eðu; xÞ near u ¼ 1 gives

Eðu; xÞ ¼ Eðx; 1Þ þ ðu − 1Þ _Eðx; 1Þ þOðu − 1Þ2: ð23Þ

The details of the expansion are shown in Appendix B.
The result is.

Eðx; uÞ ¼ e−y
�
1 −

1

2
jηð2yþ 2q − 1Þ

�
: ð24Þ

The inverse Fourier transform of the θ̂ component gives
the time-domain results, after including the expanded
Eðu; xÞ:

rEðt; θÞ ¼ F−1
�
E0

�
ω

2π

�
F̃ψE

�
: ð25Þ

Intriguingly, the result is proportional to the line-
broadening function, H (DLMF 7.19, [39]) common to
spectroscopy applications. There are three terms in
Eq. (24). Two terms ultimately vanish, being integrals
over odd integrands (see Appendix B). The integral that
remains contains H, with ω1 ¼ tr=ð2pÞ:

I0 ¼ 2πi

�
ωC

ω0

�
e−

t2r
4pHð ffiffiffiffi

p
p

ω0; iω1

ffiffiffiffi
p

p Þ: ð26Þ

The line-broadening function is similar to a convolution
between a Gaussian function and a Lorentzian function,
and cannot be expressed analytically, though there are
examples of polynomial expansions [40]. Note that, for
situations relevant to the current problem, ω > ω1.
Requiring that ω > ω1 amounts to a restriction between
Δθ and jtrj:

jtrj < j2pωj: ð27Þ

It is shown in the next section that
ffiffiffiffiffiffi
2p

p
is the pulse width

σt, so j2pωj has units of time. Using the results of Sec. VA
below, the restriction on the retarded time may be written as
jtrj=σt < ωσt ¼ 2πðσt=TÞ. That is, the accuracy of the
waveform should be trusted within a number of pulse
widths that is less than 2π times the ratio of the pulse width
to the period of the lowest frequency. This is not a strong
requirement, since the field quickly approaches zero after
several pulse widths. Hereafter, this step will be called the
symmetric approximation, because the result for rE⃗ðtr; θÞ
in Eq. (28) has equal positive and negative amplitudes.
Evaluating the line-broadening function numerically would
account for amplitude asymmetry. The restriction on Δθ is
formalized in Sec. V B. Solving I0 using the symmetric
approximation clears the way for the final result (see
Appendix B):

rEðt; θÞ ¼ −
E0ω0 sinðθÞ

8πp
tre

− t2r
4pþpω2

0erfcð ffiffiffiffi
p

p
ω0Þ ð28Þ

Equation (28) represents the time-domain solution for
the off-cone θ̂ component of the Askaryan electric field.
Equation (28) is graphed in Figs. 4 and 5. In Fig. 4 (top),
Eðt; θÞ is shown normalized to the maximum value for the
angular range displayed, ½θC þ 1.5°; θC þ 5.5°�, from
t ¼ ½−5; 5� ns. Pulses with viewing angles closer to θC
have larger relative amplitudes and shorter pulse widths.
Figure 4 (bottom) contains the same results, but for
t ¼ ½−1.5; 1.5� ns. The pulses are symmetric and all zero
crossings are at tr ¼ 0 ns as a result of the symmetric
approximation. Figure 5 contains contours of the same
results as in Fig. 4.
As in the on-cone result, the overall field amplitude

scales with energy (E0 ∼ nmaxa). However, the amplitude
also scales with ω0=p. The argument of the complementary
error function,

ffiffiffiffi
p

p
ω0, is unitless. This factor is strictly

positive, so the range of the complementary error function
is (0,1). The factor

ffiffiffiffi
p

p
ω0 cannot be zero without set-

ting θ ¼ θC, or setting ωCF ¼ 0. Both cases are not
allowed. Equation (28) represents the off-cone (θ ≠ θC)
solution, so p ≠ 0. Setting ωCF ¼ 0 is not physical, for

TABLE III. Useful functions for the derivation of the off-cone
Askaryan electromagnetic field. The last row contains the vector
structure of the θ̂ component of the field.

Function Definition

fðu; xÞ ðuþ 3
ð1−uÞ2

u
x2−xxC
1−x2 Þ

−1=2

gðu; xÞ exp ð− 1
2
ðkaÞ2ðx − xCÞ2u−1Þ

hðu; xÞ ð1−uu Þq
E⃗ðu; xÞ · θ̂ fðu; xÞgðu; xÞð1 − hðu; xÞÞ

TABLE IV. Special cases of the functions defined in Table III,
when u ¼ 1.

Function (u ¼ 1Þ Result

fðx; 1Þ 1
_fju¼1

− 1
2

gðx; 1Þ expð−yÞ
_gju¼1 y expð−yÞ
hðx; 1Þ 0
_hju¼1

−q
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this implies infinite lateral width (l) and cascade particles
have finite transverse momentum. Another possibility is
that p ¼ 0 if a ¼ 0, but this implies E0 ¼ 0. Therefore,
0 < erfcð ffiffiffiffi

p
p

ω0Þ < 1.

A. Verification of the uncertainty principle

As in Sec. IVA, the uncertainty principle should be
checked. Equation (28) is an antisymmetric Gaussian
function with pulse width σt ¼

ffiffiffiffiffiffi
2p

p
. Let Δ cos θ ¼

ðcos θ − cos θCÞ. Using Table II, the expression
ffiffiffiffiffiffi
2p

p
evaluates to

σt ¼
ffiffiffiffiffiffi
2p

p
¼

�
a
c

�
ðΔ cos θÞ: ð29Þ

Recall that σν is given by

σν ¼
c

2πaΔ cos θ
ð1þ η2Þ1=2: ð30Þ

The uncertainty product is

σtσν ¼
1

2π
ð1þ η2Þ1=2: ð31Þ

In the far field, η < 1, so σtσν ≥ 1=ð2πÞ holds.

B. Usage of the on-cone versus off-cone fields

The form of Eq. (28), and the restriction between
Δθ and jtrj from the symmetric approximation suggests
the limit Δθ → 0 must be examined carefully. Since
p ∝ ðcos θ − cos θCÞ2, probing the model near θ ¼ θC is
equivalent to taking the limit that p → 0. Intriguingly, the
p−1 dependence in the field does not lead to a divergence.
As the field grows in amplitude from p−1 as p → 0, the
field width,

ffiffiffiffiffiffi
2p

p
, approaches zero.

Equations (16) and (29) contain the pulse widths of the
on-cone and off-cone fields, respectively. Power in the off-
cone case is limited by the pulse width

ffiffiffiffiffiffi
2p

p
, and the

observed power increases as Δθ and
ffiffiffiffiffiffi
2p

p
both decrease.

Thus, a reasonable constraint on when Δθmin is large
enough to use Eq. (28) is given by setting the off-cone
pulse width equal to the on-cone pulse width:

1

ωC
þ 2

ω0

¼
ffiffiffiffiffiffi
2p

p
: ð32Þ

Expanding the expression for p near θ ¼ θC, and
evaluating the square root leads to

1

ωC
þ 2

ω0

¼ a
c
sin θCΔθmin: ð33Þ

Using ϵ ¼ ω0=ωC, and letting k0 ¼ ω0=c, the formula
may be rearranged:

ϵþ 2 ¼ ak0 sin θ0Δθmin: ð34Þ

Squaring both sides, and then dividing both sides by r
yields

FIG. 4. Eðt; θÞ versus tr [Eq. (28)], normalized. The viewing
angle θ is varied from θC þ 1.5° to θC þ 5.5° in steps of 0.5°. Top:
ω0=ð2πÞ ¼ 1.0 GHz. Bottom: same as top, but zoomed in on the
central region.

FIG. 5. Contours of Eðt; θÞ versus θ versus tr [Eq. (28)],
normalized. The normalization is the same as in Fig. 4. Although
the contour lines extend into the region near θC, Eq. (5) is only
being evaluated at Δθ > 1.5° (see text for details).
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ðϵþ 2Þ2
r

¼ k0

�
k0ða sin θCÞ2

r

�
Δθ2min: ð35Þ

The quantity in parentheses on the right-hand side is η,
with ω ¼ ω0. Setting ω ¼ ω0 means η ¼ ϵ. Solving for
Δθmin gives

Δθmin ¼
ϵþ 2ffiffiffiffiffiffiffiffiffi
ϵk0r

p : ð36Þ

Assuming ϵ ≈ 1, f0 ≈ 1 GHz, n ¼ 1.78 for solid ice, and
c ¼ 0.3 m ns−1 (see Sec. VI A), k0 ≈ 35 m−1. Taking
r ¼ 1000 m, Δθmin ≈ 1°. Simple rules of thumb for the
application of Eq. (28) field are

Δθmin ≥ 1°; ð37Þ

Δθmin ∝
1ffiffiffiffiffi
kr

p : ð38Þ

VI. COMPARISON TO SEMIANALYTIC
PARAMETRIZATIONS

The fully analytic model will now be compared to the
ARVZ semianalytic parametrization used in NuRadioMC to
predict signals in IceCube-Gen2 Radio [23]. Specifically,
the comparison is between Eqs. (15) and (28) and the
NuRadioMC implementation of the semianalytic paramet-
rization given in Ref. [32]. To provide concrete comparisons,
a small set of waveforms was generated with NuRadioMC,
for both electromagnetic and hadronic cascades, on- and off-
cone. The electromagnetic cascades have EC ¼ 1016 eV,
while the hadronic cascades have EC ¼ 1017 eV. These
choices minimize the impact of the LPM effect, though
the LPM effect was activated in the NuRadioMC code.
The comparison involves three stages. First, wave-

forms and a values are generated for each cascade type,
energy, and angle: θ ¼ θC þ 3.0°, and θ ¼ θC. Second,
Eqs. (15) and (28) are tuned to match the waveforms. In
each fit, the Pearson correlation coefficient (ρ) is maximized,
and the sum squared of amplitude differences [ðΔEÞ2] is
minimized. Finally, best-fit parameters are tabulated.
Two remarks are important regarding the fit criteria.

First, the Pearson correlation coefficient is not sensitive to
changes in amplitude because it is normalized:

ρ ¼ covðfdata; fmodelÞ
σdataσmodel

: ð39Þ

If Ei represent the samples of the models, then

ðΔEÞ2 ¼
XN
i¼1

ðEi;data − Ei;modelÞ2: ð40Þ

A. Waveform comparison: θ= θC

1. Electromagnetic case

Six different electromagnetic cascades and the corre-
sponding Askaryan fields were generated using the
ARZ2019 model from NuRadioMC [23,32] for compari-
son to Eq. (15). The cascades have EC ¼ 10 PeV, and r ¼
1000 meters. The LPM effect is activated in NuRadioMC
for all comparisons in this work. The units of E⃗ðtr; θCÞ are
mV=m versus nanoseconds, so the units of rE⃗ are volts.
The sampling rate of the digitized semianalytic paramet-
rizations was 100 GHz, with N ¼ 2048 samples. Let fC ¼
ωC=ð2πÞ and f0 ¼ ω0=ð2πÞ. The frequencies fC and f0
were varied from [0.6–6.0] GHz. The parameter E0 was
varied from ½0.05 − 5.0� VGHz−2. In a simple two-level
for loop, the Pearson correlation coefficient ρ was
maximized by varying f0 and fC. Next, the sum of the
squared amplitude differences ðΔEÞ2 was minimized by
varying E0, while holding f0 and fC fixed. Several other
schemes were studied, including a three-level for loop,
but the two-stage process produced the best results. The
results are shown in Fig. 6.
Maximizing ρ corresponds to minimizing ðΔEÞ2. In

Fig. 7, ðΔEÞ2 is graphed versus ρ for one event. Best-fit
ρ values are ≈0.97 for this set, corresponding to best-fit
ðΔEÞ2 values of≈7%. Contours of ρ > 0.95 for f0 versusfC
are shown in Fig. 6 (left column). The crosses represent the
best-fit locations. The dashed gray line at y ¼ x corresponds
to f0=fC ¼ ϵ ¼ 1. Though Eq. (15) contains an expansion
to first order in ϵ, making it resemble the derivative of the
vector potential from the ARVZ semianalytic parametriza-
tion [32], the expansion is optional. There is a restriction that
ϵ ≠ 2 [see Eq. (A14) of Appendix A]. Thus, the best-fit ϵ
values avoid the solid black lines (ϵ ¼ 2) in Fig. 6, but are
large enough to account for pulse asymmetry. The best-fit
waveforms are shown in Fig. 6 (right column). The gray
curves correspond to the semianalytic parametrization, and
the black curves represent Eq. (15).
Table V contains the best-fit results for the Eq. (15)

parameters, along with best-fit ρ values and ðΔEÞ2 values.
The horizontal and vertical distances from the crosses to the
ρ > 0.95 contour are used as error estimates for f0 and fC
in Table V. The a errors typically encompass the a values
from NuRadioMC. The full region in ½f0; fC� space for
which UHE-ν signals are expected the radio component of
the IceCube Gen2 detector will be the topic of future
studies, along with the apparent difference in ϵ values
depending on the electromagnetic or hadronic classification
of the cascade (see Fig. 8).

2. Hadronic case

Using the same procedure as in the electromagnetic case,
NuRadioMC was used to generate six hadronic cascades at
100 PeV for comparison to Eq. (15). The energy was
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increased to show that the model describes a range of
energies, so the waveform amplitudes are larger by a factor
of 10 relative to the 10 PeV case. The LPM effect is
activated in NuRadioMC for all comparisons in this work.
The main results are shown in Fig. 8, and the correlation
contours represent ρ ¼ 0.985.
The results shown in Fig. 8 demonstrate that modeling

hadronic cascades at θ ¼ θC is similar to the electromag-
netic case, with one interesting difference. The contours
enclose best-fit ϵ values below the dashed line, whereas the
fits to the electromagnetic cases were above the dashed line.
This could indicate a potential discriminator for cascade
classification. Another difference between the electromag-
netic and hadronic cases is that the gray contours in Fig. 8
correspond to ρ ¼ 0.985, as opposed to ρ ¼ 0.95 in the
electromagnetic case.

FIG. 6. Fit results: electromagnetic case, θ ¼ θC,EC ¼ 10 PeV.
The rows correspond to NuRadioMC waveforms 1–6, with
10 PeV electromagnetic cascades. Left column: best fits for f0
and fC. Dashed line: ϵ ¼ 1. Solid line: ϵ ¼ 2. Gray contour:
ρ > 0.95. Black cross: best fit. Right column: best-fit waveforms.
Gray: semianalytic parametrizations from Ref. [23]. Black:
Eq. (15).

FIG. 7. Fractional difference in the sum of amplitude differences
squared [ðΔEÞ2] versus correlation coefficient (ρ) for waveform 1
at EC ¼ 10 PeV, for the electromagnetic case.

TABLE V. Fit results: electromagnetic case,θ¼θC,EC¼10PeV.
The six rows (from top to bottom) correspond to NuRadioMC
waveforms 1–6,WITH10 PeVelectromagnetic cascades. From left
to right: the form-factor cutoff frequency, coherence cutoff fre-
quency, energy-scaling normalization, longitudinal length param-
eter, the best-fit correlation coefficient, and the relative power
difference between the NuRadioMC semianalytic parametrization
and the fully analytic model. The parameter means and errors in the
mean are quoted in the bottom two rows.

No.
f0

(GHz)
fC

(GHz)
E0

(V GHz−2)
awave (m),
aMC (m) ρ

ðΔEÞ2
(%)

1 3.9þ0.2
−1.9 2.3þ1.3

−0.3 0.3 4.1þ1.2
−0.3 , 4.85 0.97 6.5

2 3.9þ0.3
−1.5 2.10.9−0.1 0.5 4.3þ1.8

−0.2 , 6.35 0.97 10.9
3 4.0þ1.2

−1.0 2.3þ0.8
−0.4 0.35 4.1þ0.7

−0.4 , 4.48 0.96 7.5
4 3.7þ0.1

−0.5 1.9þ0.5
−0.1 1.85 4.5þ1.1

−0.3 , 5.6 0.955 8.9
5 3.9þ1.4

−0.9 2.7þ1.4
−0.8 0.18 4.0þ2.0

−1.2 , 4.48 0.97 5.7
6 3.9þ1.3

−1.9 2.3þ1.3
−0.3 0.31 4.1þ2.0

−0.5 , 4.85 0.97 6.4

Average 3.88 2.3 0.6 4.18 0.966 7.7
Error 3.08 0.1 0.3 0.07 0.003 0.8
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Table VI contains the best-fit parameters corresponding
to Fig. 8. The typical power difference ðΔEÞ2 has decreased
with respect to the electromagnetic case. The ρ values all
exceed 0.985, and the ðΔEÞ2 results are typically below
2 percent. Intriguingly, ϵ < 1 means higher fC values,
which in turn yields systematically low a values relative to
those generated in NuRadioMC, despite the increased
energy. Reconstructed a values are still within a factor
of 2 of the MC-true values. Despite the systematic offset,
the best-fit a and the NuRadioMC a values are tightly
correlated (see Fig. 11 below).

B. Waveform comparison: θ ≠ θC

1. Electromagnetic case

The general comparison procedure of Sec. VI A was
repeated with the same semianalytic parametrization from
NuRadioMC, but with 12 new events each viewed at
θ ¼ θC þ 3.0° (six electromagnetic cascades, six hadronic).
One difference is that ω0 only changes the waveform
amplitude, along with E0. The pulse width σt ¼

ffiffiffiffiffiffi
2p

p
connects the longitudinal length a and the viewing angle
with respect to the Cherenkov angle.
The fit procedure was performed in two stages. First, θ

values and a values were scanned from ½θC þ 1.5°; θC þ
10.0°� and [0.1, 10] meters, respectively, to maximize ρ.
Once the best-fit values for a and θ were determined, ðΔEÞ2
was minimized by varying f0 ¼ ω0=ð2πÞ and E0 from
[0.3, 3.0] GHz and ½0.1; 2.0� VGHz−2, respectively. The
ðθ; aÞ scan and the ðf0; E0Þ scan were each separate two-
level for loops. The results are shown in Fig. 9.

FIG. 8. Fit results: hadronic case, θ ¼ θC, EC ¼ 100 PeV. The
six rows (from top to bottom) correspond to NuRadioMC
waveforms 1–6, with 100 PeV hadronic cascades. Left column:
best fits for f0 and fC. Dashed line: ϵ ¼ 1. Solid line: ϵ ¼ 2. Gray
contour: ρ > 0.985. Black cross: best fit. Right column: best-fit
waveforms. Gray: semianalytic parametrizations from Ref. [23].
Black: Eq. (15).

TABLE VI. Fit results: hadronic case, θ ¼ θC, EC ¼ 100 PeV.
The six rows (from top to bottom) correspond to NuRadioMC
waveforms 1–6, with 100 PeV hadronic cascades. From left to
right: the form-factor cutoff frequency, coherence cutoff fre-
quency, energy-scaling normalization, longitudinal length param-
eter, the best-fit correlation coefficient, and the relative power
difference between the NuRadioMC semianalytic parametriza-
tion and the fully analytic model. The parameter means and errors
in the mean are quoted in the bottom two rows.

No.
f0

(GHz)
fC

(GHz)
E0

(V GHz−2)
awave (m),
aMC (m) ρ

ðΔEÞ2
(%)

1 2.6þ0.6
−0.6 4.1þ1.1

−1.0 1.0 3.1þ0.8
−0.8 , 5.23 0.99 1.86

2 2.5þ0.7
−0.6 2.8þ0.9

−0.8 1.25 3.75þ1.2
−1.1 , 6.35 0.99 1.83

3 2.6þ0.7
−0.6 4.1þ1.2

−0.9 1.0 3.1þ0.9
−0.7 , 5.23 0.99 1.83

4 2.7þ0.6
−0.5 3.2þ0.8

−0.6 1.0 3.5þ0.9
−0.7 , 6.35 0.99 2.5

5 2.6þ0.7
−0.6 4.3þ1.4

−1.1 1.0 3.0þ1.0
−0.75, 4.85 0.99 1.755

6 2.6þ1.4
−0.7 4.1þ1.9

−1.2 1.0 3.1þ1.4
−0.9 , 5.23 0.99 1.86

Average 2.60 3.75 1.04 3.3 0.99 1.9
Error 0.03 0.25 0.04 0.1 0.0 0.1
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In Fig. 9 (left column), the best-fit a values and θ values
are marked with a cross. The circles represent the MC-true
values. Circles and crosses lie on the dashed lines, because
an uncertainty principle connects a values to θ values (see
Sec. VA). Specifically, Eq. (29) may be used to show, to
first order in Δθ ¼ θ − θC,

aΔθ ¼ c
ffiffiffiffiffiffi
2p

p
sin θC

¼ const: ð41Þ

The pulse width σt ¼
ffiffiffiffiffiffi
2p

p
is a constant derived from the

waveform, implying that the product of a and Δθ is
constant. The parameters a and Δθ are therefore inversely
proportional: a ∝ Δθ−1. The shape of the ρ > 0.95 contour
follows this inverse proportionality. The dashed lines
represent Eq. (41). These results suggest that a measure-
ment of the Askaryan pulse width would constrain the
cascade shape and geometry. The best-fit waveforms are
shown in Fig. 9 (right column). Typical correlation coef-
ficients exceed ρ ¼ 0.98. Table VII contains the fit results.
The fit results include estimates of the lateral width
parameter, l, derived from f0 (see Sec. III A). Despite
making the symmetric approximation to arrive at Eq. (28),
the fits include fractional power differences of ≈3%.

FIG. 9. Fit results: electromagnetic case, θ ≠ θC, EC ¼ 10 PeV.
The six rows (from top to bottom) correspond to NuRadioMC
waveforms 1–6, with 10 PeV electromagnetic cascades. Left
column: best-fit θ and a values. Crosses: best fits. Circles: MC
true values. Gray contour: ρ > 0.95. Dashed line: a versus θ from
Eq. (29). Right column: best-fit waveforms. Gray: semianalytic
parametrizations from Ref. [23]. Black: Eq. (28).

TABLE VII. Fit results: electromagnetic case, θ ≠ θC, EC ¼
10 PeV. The six rows (from top to bottom) correspond to NuR-
adioMC waveforms 1–6, with 10 PeV electromagnetic cascades.
From left to right: the viewing angle, longitudinal length parameter,
form-factor cutoff frequency, the energy-scaling normalization, the
lateral width of the cascade, the best-fit correlation coefficient, and
the relative power difference between theNuRadioMC semianalytic
parametrization and the fully analytic model. The parameter means
and errors in the mean are quoted in the bottom two rows.

No.

θwave
(deg),
θMC
(deg)

awave
(m),
aMC
(m)

f0
(GHz)

E0 (V
GHz−2) l (cm) ρ

ðΔEÞ2
(%)

1 58.5þ0.7
−0.6 ,

58.8
4.7þ1.3

−1.0 ,
4.85

0.75 1.2 3.4þ0.9
−0.7 0.99 1.93

2 58.4þ0.6
−0.5 ,

58.8
5.6þ1.4

−1.1 ,
5.60

1.0 1.2 2.6þ0.4
−0.3 0.99 2.61

3 58.0þ0.5
−0.4 ,

58.8
5.5þ1.3

−1.0 ,
4.48

1.0 1.1 2.6þ0.3
−0.2 0.98 4.47

4 59.1þ0.9
−0.7 ,

58.8
4.1þ1.2

−0.9 ,
5.23

0.75 1.2 3.4þ0.5
−0.5 0.995 0.80

5 58.3þ0.7
−0.5 ,

58.8
4.95þ1.4

−1.1 ,
4.85

0.75 1.2 3.4þ0.4
−0.3 0.99 1.8

6 57.9þ0.6
−0.4 ,

58.8
5.6þ1.5

−1.2 ,
4.48

0.75 1.2 3.5þ0.5
−0.4 0.99 1.83

Average 58.4 5.1 0.83 1.18 3.2 0.989 2.2
Error 0.2 0.2 0.05 0.02 0.2 0.002 0.5
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2. Hadronic case

The fit procedure for the hadronic cascades was the same
as the electromagnetic case, except that the range for E0

was expanded to ½1.0; 20.0� VGHz−2. As in the on-cone
procedure, the hadronic cascade energy was EC¼100PeV.
The results are shown in Fig. 10.
As with the electromagnetic case, ρ is maximized and

ðΔEÞ2 is minimized. Table VIII contains the best-fit
parameters, along with ρ and ðΔEÞ2. Solutions with ρ ≈
0.98 and ðΔEÞ2 ≈ 5% were found. Similar to the results
shown in Table VII, the results in Table VIII are in
agreement with the MC values from NuRadioMC. The
E0 values match expectations for 100 PeV cascades,
because they are a factor of 10 higher than those of the
10 PeV electromagnetic case. The results for a, l, and f0,
however, are not statistically different between Tables VII
and VIII. Future studies will require computing the
probability distributions of these parameters from large
numbers of UHE-ν cascades.
As a first exercise for statistical energy reconstruction from

waveform parameters, assume that θ ¼ θC þ 3.0° is already
measured. For example, θ could be determined bymeasuring
the cutoff frequency in the Fourier domain below 1GHz (see
Fig. 5 of Ref. [34], for example). Scanning Eq. (28) over all
NuRadioMC waveforms at fixed θ ¼ θC þ 3.0° yields
Fig. 11, in which the fitted a value from each waveform

FIG. 10. Fit results: hadronic case, θ ≠ θC, EC ¼ 100 PeV. The
six rows (from top to bottom) correspond to NuRadioMC
waveforms 1–6, with 100 PeV hadronic cascades. Left column:
best-fit θ and a values. Crosses: best fits. Circles: MC true values.
Gray contour: ρ > 0.95. Dashed line: a versus θ from Eq. (29)
(uncertainty principle). Right column: best-fit waveforms. Gray:
semianalytic parametrizations from Ref. [23]. Black: Eq. (28).

TABLE VIII. Fit results: hadronic case, θ ≠ θC,EC ¼ 100 PeV.
The six rows (from top to bottom) correspond to NuRadioMC
waveforms 1–6, with 10 PeV hadronic cascades. From left to right:
the viewing angle, longitudinal length parameter, form-factor
cutoff frequency, the energy-scaling normalization, the lateral
width of the cascade, the best-fit correlation coefficient, and the
relative power difference between the NuRadioMC semianalytic
parametrization and the fully analytic model. The parameter means
and errors in the mean are quoted in the bottom two rows.

No.

θwave
(deg),
θMC
(deg)

awave
(m),
aMC
(m)

f0
(GHz)

E0 (V
GHz−2) l (cm) ρ

ðΔEÞ2
(%)

1 58.2þ0.6
−0.4 ,

58.8
6.1þ1.5

−1.2 ,
5.6

0.8 10.6 3.2þ0.5
−0.5 0.98 3.55

2 58.5þ0.4
−0.3 ,

58.8
5.9þ0.9

−0.8 ,
6.35

0.85 10.3 3.0þ0.3
−0.2 0.96 7.1

3 58.9þ0.8
−0.6 ,

58.8
5.5þ1.4

−1.1 ,
6.35

0.9 10.8 2.8þ0.5
−0.5 0.98 2.64

4 59.2þ0.8
−0.7 ,

58.8
4.3þ1.1

−0.8 ,
5.6

0.85 10.5 3.0þ0.5
−0.5 0.98 3.10

5 58.0þ0.2
−0.2 ,

58.8
7.2þ0.6

−0.6 ,
6.35

0.9 8.2 2.9þ0.3
−0.3 0.955 8.76

6 59.0þ0.8
−0.6 ,

58.8
4.3þ1.1

−0.9 ,
5.23

0.85 10.4 3.0þ0.5
−0.5 0.985 3.00

Average 58.6 5.5 0.86 10.1 3.2 0.973 5
Error 0.2 0.5 0.015 0.4 0.2 0.005 1
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is graphed versus the MC-true a value. The a errors in all
cases are taken to be�10 cm (� twoΔa step sizes). A least-
squares linear fit was applied to the data. The linear function
fits the data, and the correlation coefficient is 0.97. The
results in Fig. 11 imply an energy reconstruction technique
using the formulas found in Sec. III B. Consider the relation-
ship between a and lnðEC=EcritÞ: a ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðEC=EcritÞ

p
. The

fractional error in lnðEC=EcritÞ is proportional to the frac-
tional error in a:

σlnðEC=EcritÞ
lnðEC=EcritÞ

¼ 2c1

�
σa
a

�
: ð42Þ

If a reliable fit for the a parameter is obtained from
observed Askaryan waveforms, Eq. (42) shows that the
logarithm of the energy can be constrained.

VII. CONCLUSION

We have presented a fully analytic Askaryan model in
the time domain, and we have shown that it matches results
generated with semianalytic parametrizations used in
NuRadioMC. Pearson correlation coefficients between
the fully analytic and semianalytic parametrizations were
found to be greater than 0.95, and typical fractional
differences in total power were found to be ≈5%. New
results and potential applications are summarized in the
following sections.

A. Summary of new results

The main results are summarized in Table IX. This work
represents the first time the two distinct pole frequencies f0
and fC have been used to characterize the time-domain

field equations of the Askaryan effect for both θ ¼ θC and
θ ≠ θC. The uncertainty principle was verified on-cone
(θ ¼ θC), serving as a check on the model. By fitting on-
cone cascade parameters, we have shown that an analytic
model matches semianalytic predictions. The ϵ parameter
reveals a potential cascade classification scheme. Next, the
off-cone (θ ≠ θC) field equations were derived, and again
the uncertainty principle was verified. Off-cone cascade
parameters were fit, and the results are in excellent agree-
ment with semianalytic results. Fitting a values has
revealed a potential energy reconstruction.
To obtain the fields on- and off-cone, η < 1 was

assumed. The restriction η < 1 means that Eqs. (15)
and (28) must be applied to the far field. Given that a
and θC are fixed by cascade physics and ice density,
and that the relevant Askaryan bandwidth for ice is
[0.1–1] GHz, the parameter most easily varied within η
is the observer distance r. Taking ν ¼ 0.5 GHz, n ¼ 1.78,
c ¼ 0.3 m GHz, θ ¼ θC, and a ¼ 5 m, requiring that
η ¼ 1 gives r ≥ 0.4 km. Scaling to ν ¼ 0.25 GHz gives
r ≥ 0.2 km. According to NuRadioMC [23] (Fig. 13),
the r corresponding to UHE-ν at 1018 eV ranges from
0.7–3.2 km, and 0.2 km is rare.
The “acceleration argument” invoked by RB in Ref. [33]

states that if rðtÞ points to the ICD, rðtÞ must be constant
enough to ensure that Δr < λ. Using the law of cosines,
with two sides being r and rþ Δr, and a third being a, the
criteria that ða=rÞ2 ≪ 1 leads to jΔrj ≈ a=n which is
Oð2Þ m. When in doubt about usage and event geometry,
determining if ða=rÞ2 ≪ 1 is a good check. If the UHE-ν
event is a charged-current interaction with an electromag-
netic cascade far above the LPM energy for ice, a grows
faster than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðEC=EcritÞ

p
[20].

B. Utility of the analytic model

There are at least four advantages of fully analytic
Askaryan models. First, when analytic models are matched
to observed data, cascade properties may be derived
directly from the waveforms. Second, in large-scale sim-
ulations, evaluating a fully analytic model technically
provides a speed advantage over other approaches.
Third, fully analytic models, combined with RF channel

FIG. 11. The longitudinal length parameter a derived from the
Eq. (28) best fit versus the a value derived from the cascade
profile in NuRadioMC. A linear fit and correlation coefficient are
shown (slope: 0.83� 0.05; intercept: 0.2� 0.2 (m); correlation
coefficient ¼ 0.97).

TABLE IX. Summary of results in this work.

Result Location

rE⃗ðtr; θCÞ, on-cone field (θ̂) Eq. (15), Sec. IV
σtσν ≥ 1=ð2πÞ, on-cone Eq. (20), Sec. IVA
rE⃗ðtr; θÞ, off-cone field (θ̂) Eq. (28), Sec. V
σtσν ≥ 1=ð2πÞ, off-cone Eq. (31), Sec. VA
On-cone EM comparison to [32] Fig. 6, Table V
On-cone HAD comparison to [32] Fig. 8, Table VI
Off-cone EM comparison to [32] Fig. 9, Table VII
Off-cone HAD comparison to [32] Fig. 10, Table VIII
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response, can be embedded in firmware to form a matched
filter that enhances UHE-ν detection probability. Fourth,
parameters in analytic models may be scaled to produce
results that apply to media of different density than ice. This
application is useful for understanding potential signals in
the Antarctic firn, or the upper layer of snow and ice that is
of lower density than the solid ice beneath it.
The ability to fit cascade properties from waveforms will

be a useful tool for the radio component of IceCube-Gen2.
Examples of current reconstruction techniques include the
forward-folding method [25] and information field theory
[26]. In particular, the longitudinal length parameter a leads
to a reconstruction of lnðECÞ, given knowledge of Δθ
[Fig. 11 and Eq. (42)]. Further, all designs for detector
stations in IceCube-Gen2 radio include many distinct RF
channels and one phased array of channels. Matching our
analytic model to each channel waveform will provide a
separate measurement of parameters like a and θ (see gray
contours of Figs. 4 and 5). The ensuing global fit should
constrain the event energy and geometry.
The most intriguing usage for a fully analytic Askaryan

model would be to embed the model as a matched filter
in detector firmware. Because cascade properties are
unknown a priori, an array of matched filters could be
implemented to form amatched filter bank.One example of
this approach was the TARA experiment [41], which was
designed to detect low-SNR cosmic ray radar echoes. This
is similar to the challenge faced by the radio component of
the IceCube Gen2 detector: pushing the limit of low-SNR
RF pulse detection in a remote setting. For example, a
matched filter bank could be formed with an array of off-
cone field formulas with fixed a value and varying θ values,
which would then be convolved with the RF channel
impulse response (see Sec. 6 of Ref. [27]).
Finally, a fully analytic model enhances the ability of

IceCube-Gen2 radio to identify signals that originate in the
firn. At the South Pole, the RF index of refraction begins
around 1.35 and does not reach the solid ice value of 1.78
until 150–200 meters [28]. There are at least two signals
that could originate in the firn: UHE-ν events that create
Askaryan radiation, and UHE cosmic-ray cascades partially
inside or fully inside the firn. The altitude of the South Pole
makes the latter possible. The Askaryan radiation of the firn
UHE-ν events could be modeled via appropriate density
scaling of the cascade parameters.
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APPENDIX A: DETAILS OF THE ON-CONE
FIELD EQUATION DERIVATION

The original equations for the θ̂ component of E⃗ are

Wðη; θÞ ¼
exp ð− 1

2
ðkaÞ2 ðcos θ−cos θCÞ2

1−iη Þ
ð1 − iηð1 − 3iη cos θ

sin2 θ
cos θ−cos θC

1−iη ÞÞ1=2 ; ðA1Þ

E⃗ðη;θÞ · θ̂¼Wðη;θÞ
�
1− iη

cosθC
sin2 θ

cosθ− cosθC
1− iη

�
: ðA2Þ

Letting θ ¼ θC yields

E⃗ðη; θÞ · θ̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − iη

p : ðA3Þ

The complete field from the original RB model [33],
including the form factor F̃, ψ ¼ −i expðikrÞ sin θ, and E⃗ is

rE⃗ðω; θÞ ¼ E0

�
ω

2π

�
ψ E⃗ðη; θÞF̃: ðA4Þ

Take Eq. 6 for the form factor F̃. Let E0 be proportional
to cascade energy Ec and let θ ¼ θC:

rẼðω; θCÞ ¼
ð−iωÞE0 sinðθCÞeiωr=c

ð1 − iω=ωCÞ1=2ð1þ ðω=ωCFÞ2Þ3=2
: ðA5Þ

Suppose ω < ωC, and ω < ωCF, such that the following
approximations of the factors in the denominator are
valid:

ð1 − iω=ωCÞ1=2 ≈ 1 −
i
2

ω

ωC
; ðA6Þ

ð1þ ðω=ωCFÞ2Þ3=2 ≈ 1þ 3

2

�
ω

ωCF

�
2

: ðA7Þ

Using the approximations introduces simple poles into
the complex formula for the frequency-dependent electric
field. Inserting the approximations in the denominator of
Eq. (A5), we have

rẼðω; θCÞ ¼
ð−iωÞE0 sinðθCÞeiωR=c

ð1 − i
2
ω=ωCÞð1þ 3

2
ðω=ωCFÞ2Þ

: ðA8Þ

The denominator can be rearranged by factoring the ω

coefficients, and defining ω0 ¼
ffiffi
2
3

q
ωCF:
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rẼðω; θCÞ ¼
2iωCω

2
0ð−iωÞE0 sinðθCÞeiωr=c

ð2iωC þ ωÞðωþ iω0Þðω − iω0Þ
: ðA9Þ

Let Ê0 ¼ E0 sinðθCÞ, and let the retarded time be
tr ¼ t − r=c. Taking the inverse Fourier transform,
using the same sign convention as RB [33] [fðtÞ ¼
ð2πÞ−1 R∞

−∞ F̃ðωÞe−iωtdω], converts the field to the time
domain:

rEðt; θCÞ

¼ Ê0iωCω
2
0

π

d
dtr

Z
∞

−∞

e−iωtr

ð2iωC þωÞðωþ iω0Þðω− iω0Þ
dω:

ðA10Þ

(1) If tr > 0: Consider the contour comprised of the real
axis and the clockwise-oriented negative infinite
semicircle. On the contour, the exponential phase
factor in Eq. (A10) goes as

expð−iωtrÞ¼ expð−iðRcosϕþ iRsinϕÞtrÞ: ðA11Þ

For the semicircle, ϕ ∈ ½π; 2π�, so sinϕ < 0 and
tr > 0. Exponential decay occurs and the integrand
vanishes on the semicircle for jωj ¼ R → ∞.

(2) If tr < 0: Consider the contour comprised of the real
axis and the counterclockwise-oriented positive in-
finite semicircle. On the contour, the exponential
phase factor in Eq. (A10) goes again as

expð−iωtrÞ¼ expð−iðRcosϕþ iRsinϕÞtrÞ: ðA12Þ

For the semicircle, ϕ ∈ ½0; π�, so sinϕ > 0 and
tr < 0. Exponential decay occurs and the integrand
vanishes on the semicircle for jωj ¼ R → ∞.

Using cases 1 and 2, Eq. (A10) can be solved using the
Cauchy integral formula. Beginning with tr > 0, two poles
are enclosed in the semicircle: one that originated from the
coherence cutoff frequency, and the other that originated
from the form factor. The Cauchy integral formula yields

rEðt; θCÞ ¼ 2Ê0ωCω
2
0

d
dtr

�
e−2ωCtr

i2ð−2ωC þ ω0Þð−2ωC − ω0Þ

þ e−ω0tr

i2ð−ω0 þ 2ωCÞð−2ω0Þ
�
: ðA13Þ

Define the ratio of the cutoff frequencies: ϵ ¼ ω0=ωC.
After evaluating the time derivatives, Eq. (A13) becomes

rEðt; θCÞ ¼ Ê0ω
2
0

�
e−2ωCtr

ð1 − ϵ
2
Þð1þ ϵ

2
Þ −

e−ω0tr

ð2Þð1 − ϵ
2
Þ
�
: ðA14Þ

Expanding to linear order in ϵ, assuming ϵ < 1, and
recalling that ω2

0 ¼ 2
3
ω2
CF,

rEðt; θCÞ ≈
1

3
Ê0ω

2
CF

�
2e−2ωCtr −

�
1þ ϵ

2

�
e−ω0tr

�
: ðA15Þ

Turning to the case of tr < 0, consider integrating
Eq. (A10) along the contour comprised of the real axis
and the counterclockwise-oriented positive infinite semi-
circle. The contour encloses one pole, and the exponent
ensures convergence:

rEðt;θCÞ¼ð2πiÞÊ0ðπÞ−1iωCω
2
0

d
dtr

�
eω0tr

ð2iωCþiω0Þð2iω0Þ
�
:

ðA16Þ

After evaluating the derivative, the expression simplifies
with ϵ ¼ ω0=ωC:

rEðt; θCÞ ¼
1

2
Ê0ω

2
0

�
eω0tr

1þ 1
2
ϵ

�
: ðA17Þ

Finally, using the same first-order approximation in ϵ as
the tr > 0 case,

rEðt; θCÞ ≈
1

3
Ê0ω

2
CF

�
1 −

1

2
ϵ

�
eω0tr : ðA18Þ

Collecting the tr > 0 and tr < 0 results together,

rEðt;θCÞ ¼
1

3
Ê0ω

2
CF

� ð1− 1
2
ϵÞeω0tr ; tr < 0;

ð2e−2ωCtr − ð1þ 1
2
ϵÞe−ω0trÞ; tr > 0:

ðA19Þ

APPENDIX B: DETAILS OF THE OFF-CONE
FIELD EQUATION DERIVATION

Using Tables II–IV, Eq. (A2) reduces to

Eðu; xÞ ¼ fðu; xÞgðu; xÞð1 − hðu; xÞÞ: ðB1Þ

Expanding to first order with respect to u near (u ¼ 1)
gives

Eðu; xÞ ¼ Eðx; 1Þ þ ðu − 1Þ _Eðx; 1Þ þOðu − 1Þ2: ðB2Þ

The first term is fgð1 − hÞ evaluated at u ¼ 1: expð−yÞ
(Table IV). The second term requires the first derivative of
Eðu; xÞ with respect to u, evaluated at u ¼ 1:

_Eðu; xÞ ¼ f _gþ _fg − ðfg _hþ f _ghþ _fghÞ ðB3Þ

_Eð1; xÞ ¼ ðf _gþ _fg − ðfg _hþ f _ghþ _fghÞÞju¼1 ðB4Þ

The first derivatives of f, g, and h, evaluated at u ¼ 1,
are given in Table IV. Because hðx; 1Þ ¼ 0, terms propor-
tional to h will vanish. The result is
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_Eð1; xÞ ¼ 1

2
e−yð2yþ 2q − 1Þ: ðB5Þ

Inserting Eq. (B5) into Eq. (B2),

Eðu; xÞ ¼ e−y
�
1þ 1

2
ðu − 1Þð2yþ 2q − 1Þ

�
: ðB6Þ

Using the definition of u (Table II), the result may be
written as

Eðu; xÞ ¼ e−y
�
1 −

1

2
jηð2yþ 2q − 1Þ

�
: ðB7Þ

Proceeding with the inverse Fourier transform of the θ̂
component,

rEðt; θÞ ¼ F−1
�
E0

�
ω

2π

�
F̃ψE

�
: ðB8Þ

Let η ¼ ω=ωC, y ¼ pω2 (Table II). Inserting the Taylor
series for E, the form factor F̃, and ψ ¼ −i expðikrÞ sin θ
(Sec. II), and following the same steps as the on-cone case
produces

2πrEðt; θÞ

¼ E0ω
2
0 sinðθÞ

4πiωC

×
d
dtr

Z
∞

−∞

e−iωtr−pω
2ð2iωC þ 2pω3 þ ð2q − 1ÞωÞ

ω2 þ ω2
0

dω:

ðB9Þ

Unlike the on-cone case, Eq. (B9) cannot be integrated
with infinite semicircle contours, because the exponential
term diverges along the imaginary axis far from the origin.

Let I0 represent the constant term with respect to ω in the
numerator:

I0 ¼
Z

∞

−∞

e−iωtr−pω
2ð2iωCÞ

ω2 þ ω2
0

dω: ðB10Þ

Further, let I1 and I3 represent the linear and cubic terms,
respectively. Completing the square in the exponent of I0,
with ω1 ¼ tr=ð2pÞ, yields

I0 ¼ 2iωCe
− t2r
4p

Z
∞

−∞

e−pðωþiω1Þ2

ω2 þ ω2
0

dω: ðB11Þ

Equation (B11) may be recast as the line-broadening
function, H (DLMF 7.19, [39]) common to spectroscopy
applications:

I0 ¼ 2πi

�
ωC

ω0

�
e−

t2r
4pHð ffiffiffiffi

p
p

ω0; i
ffiffiffiffi
p

p
ω1Þ: ðB12Þ

Assume that ω > ω1. This approximating step will be
called the symmetric approximation:

I0 ≈ 2iωCe
− t2
2p

Z
∞

−∞

e−pω
2

ω2 þ ω2
0

dω: ðB13Þ

The result for I0 involves the complementary error
function (DLMF 7.7.1, [39]):

I0 ¼ 2iωCe
− t2
2pπω−1

0 epω
2
0erfcð ffiffiffiffi

p
p

ω0Þ: ðB14Þ

The integrals I1 and I3 are zero by symmetry, with odd
integrands over ð−∞;∞Þ. Inserting the result for I0 into
Eq. (B9) and evaluating the derivative finishes the problem
(see Sec. V).
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