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It has been suggested that there is possibly a class of stellar-mass black holes (BHs) residing near
(distance ≤ 103M) the galactic center massive black hole, Sgr A*. Possible formation scenarios include the
mass segregation of massive stellar-mass black holes and/or the disk migration if there was an active
accretion flow near Sgr A* within Oð10Þ Myr. In this work, we explore the application of this type of
objects as sources of space-borne gravitational wave detectors, such as Laser Interferometer Space Antenna
(LISA). We find it is possible to probe the spin of Sgr A* based on the precession of the orbital planes of
these stellar-mass black holes moving around Sgr A*. We also show that the dynamical friction produced
by accumulated cold dark matter near Sgr A* generally produces small measurable phase shift in the
gravitational waveform. In the case that there is an axion cloud near Sgr A*, the dynamical friction induced
modification to gravitational waveform is measurable only if the mass of the axion field is in a narrow range
of the mass spectrum. Gravitational interaction between the axion cloud and the stellar-mass black holes
may introduce additional precession around the spin of Sgr A*. This additional precession rate is generally
weaker than the spin-induced Lense-Thirring precession rate, but nevertheless may contaminate the spin
measurement in a certain parameter regime. At last, we point out that the multibody gravitational
interaction between these stellar-mass black holes generally causes negligible phase shift during the
LISA lifetime.
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I. INTRODUCTION

In the past years there were exciting revolutions in
probing astrophysical black holes in the strong-gravity
regime, thanks to the observations by the LIGO and the
Virgo collaboration (the LVC) [1–4] and EHT (Event
Horizon Telescope) [5,6]. In the next decades, space-based
gravitational wave (GW) detectors, such as LISA [7] and
Tianqin [8,9], will enable unprecedented measurements on
the mass, spin, spacetime, orbital, and environmental
properties of massive black holes at cosmological distances
[10,11]. For example, one particularly interesting type of
source is EMRI (extreme mass ratio inspirals), which often
comprises a stellar-mass black hole orbiting around a
massive black hole. As this kind of system usually stays
within the LISA band for 104–105 cycles during the
observation period, small additional effects (e.g., extra
channel of dissipation) may accumulate over many orbital
cycles to generate measurable phase shifts. As a result,
EMRIs may serve as an ideal probe for deviations
from general relativity [10–14] and astrophysical environ-
mental effects [15–18]. In addition, the formation of
EMRIs may be greatly accelerated by accretion flows,

which provides promising opportunities for multimessen-
ger observations [19,20].
There is one special massive black hole (MBH), Sgr A*,

which resides at the center of our own galaxy, with distance
of orders of magnitude closer than any other massive black
holes. The chance of forming an ordinary EMRI around
Sgr A* during the LISA observation period is negligible
(≲10−6 from the loss-cone formation channel with EMRI
rate ∼102 Gyr−1 per MBH [21–24]). However, because of
the small distance between Sgr A* and Earth, it is still
possible to probe stellar-mass black holes at the lower end
of the LISA frequency band (≥ 10−5 Hz), corresponding to
orbital radius ≤ 102M [25], where M is the gravitational
radius of the MBH. On the other hand, there are in fact
multiple ways to produce such low-frequency EMRIs
(referred as “Sgr A* EMRI” hereafter). For example, it
has been suggested that if there is a massive subclass of
stellar-mass black holes in the galactic nuclear cluster, the
mass segregation effect will lead to condensation of these
black holes at galactic centers, with distances Oð102ÞM
away from Sgr A* [26,27]. In addition, if there is a previous
active accretion phase in Sgr A*, as supported by the
presence of stellar disk near Sgr A* [28], the disk-assisted
migration tend to lead to a set of stellar-mass black holes
accumulating at distances between ∼80M–200M depend-
ing on the disk models and parameters [29–31], as required

*stahura@uoguelph.ca
†hyang@perimeterinstitute.ca

PHYSICAL REVIEW D 105, 123018 (2022)

2470-0010=2022=105(12)=123018(14) 123018-1 © 2022 American Physical Society

https://orcid.org/0000-0001-5678-5028
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.123018&domain=pdf&date_stamp=2022-06-21
https://doi.org/10.1103/PhysRevD.105.123018
https://doi.org/10.1103/PhysRevD.105.123018
https://doi.org/10.1103/PhysRevD.105.123018
https://doi.org/10.1103/PhysRevD.105.123018


by equating the disk migration timescale with the gravi-
tational wave radiation timescale. Frequencies of GWs
from such Sgr A* EMRIs are within the range of
½:5–2� × 10−5 Hz, considering circular orbits. If the time
that the latest accretion episode ended is not earlier than
Oð107Þ years, we still expect some black holes have not
merged with Sgr A* after the gravitational wave radiation-
induced inspiral, as another way of forming Sgr A* EMRIs
at present. Notice that gravitational wave measurement will
likely be the only way to probe Sgr A* EMRIs if they
do exist.
Assuming the presence of Sgr A* EMRIs, it is natural to

ask what is the detectability of these systems using LISA,
and what we can learn by observing them. The first
question is partially answered by previous works in [32]
by computing the event SNR (signal-to-noise ratio) as a
function of orbital radius. For the sake of completeness, we
present a distribution of SNR with system parameters
drawn from Monte-Carlo samplings, assuming the detec-
tion by LISA. There is one subtle point worth noticing here:
the detection threshold of SNR for such systems should be
much smaller than ∼16, which is commonly used as a
benchmark value for EMRIs. For Sgr A* EMRIs the
template bank contains much less parameters as the sky
location and distance of the source is known. Smaller
parameter space in the waveform results in smaller penalty
in the false-alarm probability, which leads to smaller
detection threshold SNR ∼ 10.
Our work is primarily focusing on the second question,

i.e., the applications of Sgr A* EMRIs. We consider three
possible sources that may produce observable effect in the
gravitational waveform. The first source is the spin-orbit
coupling between Sgr A* and the stellar-mass black hole,
which induces Lense-Thirring precession on the orbit. We
construct the waveform model to include precession effect
and perform the Fisher analysis to address the accuracy of
the inferred spin. The result is rather promising: for Sgr A*
EMRIs with orbital separation a ≤ 90M, we generally have
ΔS=S ∼ 0.5%–24%, with median value at ∼2% level.
Notice that while we have measurement on the mass of
Sgr A* based on the motion of S stars, the spin is
completely unknown. In the future we may obtain con-
straints on the spin using EHT, but based on the experience
from the measurement on M87 [33,34], the spin constraint
is unlikely to be very stringent. Measuring gravitational
waves from Sgr A* EMRIs may be the most accurate way
to probe the spin of Sgr A*.
Second, we have investigated possible influence of dark

matter in the vicinity of Sgr A*. Assuming cold dark matter
description with plausible density prescription at galactic
center, we find that Sgr A* EMRIs are less capable of
probing the effect due to dynamical friction than normal
EMRIs, assuming comparable event SNR. On the other
hand, if an axion dark matter cloud is excited by black hole
superradiance around Sgr A*, considering a typical system

configuration, we find the dynamical friction effect is above
the measurement noise only if the mass of the axion field is
between 3.1 × 10−18 eV to 3.3 × 10−18 eV. The chance that
the axion mass lies in such narrow range is small. Moreover,
in this case the gravitational coupling between the axion
cloud and the stellar-mass BH may be strong enough to
induce additional precession of the orbit planewhich is larger
than themeasurement uncertainty. This additional precession
is generally weaker than the Lense-Thirring precession, but
they are degenerate with each other.
Third, we also considered the influence of gravitational

interaction between the stellar-mass black holes. As a
model problem, we compute the Kozai-Lidov timescale
assuming the presence of a nearby third body (stellar-mass
black hole), and find it to be much smaller than the
observation period of LISA. As a result, we conclude that
multibody effect is not important for Sgr A* EMRIs.
The rest of this article is organized as follows. In Sec. II

study the effect of spin induced orbital precession to
gravitational waveforms in case of Sgr A* EMRIs and
determine theprospect ofmeasuring the spin of SgrA*with a
10 years observation period of LISA. In Sec. III we explore
the prospect of detecting the signature of dark matter cloud
from similar observations, focusing on cold dark matter in
Sec. III A and axion dark matter in III B. Finally, we discuss
the Kozai-Lidov effect in the presence of a third object and
present our concluding remarks in Sec. IV. Throughout this
paper, we use units in which ℏ ¼ c ¼ G ¼ 1.

II. SPIN INDUCED ORBITAL PRECESSION

We begin by assessing the spin induced orbital preces-
sion of an Sgr A* EMRI. We will first discuss the
gravitational waveform generated by such a binary and
the modification to its phase due to orbital precession in
Secs. II A and II B respectively. Next, we present the data
analysis formalism (Fisher analysis) that we implement for
the estimation of measurement uncertainties and summa-
rize the results in Sec. II C. The main results of this section
include the threshold SNR for detecting a signal from Sgr
A* EMRI with LISA and constraints on various waveform
parameters, including the spin of Sgr A*.

A. Waveform

We implement the time domain waveform for LISA
presented in Ref. [35]. Following Ref. [35], we make use of
two sets of Cartesian coordinates—one associated with the
detector denoted by ðx; y; zÞ and the other ðx̄; ȳ; z̄Þ tied to
the ecliptic in a heliocentric frame (see Fig. 1). The
corresponding spherical polar coordinates are ðθ;ϕÞ and
ðθ̄; ϕ̄Þ respectively. The detector arms lie in the x–y plane
and the plane corotates with the detector.
The detector strain for LISA in time domain can be

expressed as [35]

SHAMMI TAHURA, ZHEN PAN, and HUAN YANG PHYS. REV. D 105, 123018 (2022)

123018-2



hðtÞ ¼
ffiffiffi
3

p

2
AðtÞcos ½2πftþ π _ft2þφpolðtÞþφDðtÞþφpðtÞ�:

ð2:1Þ

Here AðtÞ is the amplitude, φpolðtÞ is the polarization phase
and φDðtÞ is the Doppler phase that takes into account the
motion of the detector with respect to the sun. We also
include the effect of a small constant frequency evolution _f,
which may come from various dissipation mechanisms of
the binary. For the spin induced orbital precession, we set
_f ¼ 0, however this term will be considered in a later part
of the paper. The unconventional factor of

ffiffiffi
3

p
=2 is

attributed to the 60° angle between the detector arms.
φpðtÞ is the modulation to GW phase due to the orbital
precession. AðtÞ and φpolðtÞ are given by

AðtÞ ¼ ðA2þF2þðtÞ þ A2
×F2

×ðtÞÞ1=2; ð2:2Þ

φpðtÞ ¼ tan−1
�
−A×F×ðtÞ
AþFþðtÞ

�
; ð2:3Þ

where Fþ and F× are the antenna pattern functions:

FþðtÞ ¼
1

2
ð1þ cos2θsÞ cos 2ϕs cos 2ψ s

− cos θs sin 2ϕs sin 2ψ s; ð2:4aÞ

F×ðtÞ ¼
1

2
ð1þ cos2θsÞ cos 2ϕs sin 2ψ s

þ cos θs sin 2ϕs cos 2ψ s: ð2:4bÞ

Here ðθs;ϕsÞ are polar spherical coordinates associated
with n̂ where we use the convention that GWs from the

source propagate along −n̂. Note that ðθs;ϕsÞ are time-
dependent and we need to express them in terms of fixed
coordinates ðθ̄s; ϕ̄sÞ following Eqs. (3.16) and (3.17) of
Ref. [35]. The polarization angle ψ s is given by

ψ s ¼ arctan

�
L̂ · ẑ − ðL̂ · n̂Þðẑ · n̂Þ

n̂ · ðL̂ × ẑÞ

�
: ð2:5Þ

Here L̂ is the unit vector along the orbital angular
momentum of the binary and ẑ is the unit vector along
the z-axis of the detector. Aþ and A× are the amplitudes of
plus and cross polarization respectively,

Aþ ¼ 2M1M2

aD
½1þ ðL̂ · n̂Þ2�; ð2:6aÞ

A× ¼ −
4M1M2

aD
L̂ · n̂; ð2:6bÞ

with D denoting the distance to the Sgr A* EMRI and a is
the orbital separation. Various quantities in Eqs. (2.5)–(2.6)
can be expressed in terms of barred coordinates with the
help of Eqs. (3.20)–(3.22) of Ref. [35].
The Doppler phase φD in Eq. (2.1) denotes the phase

difference of the wavefronts at the detector and at the sun,
which is given by

φDðtÞ ¼ 2πfR sin θ̄S cos ðϕ̄ðtÞ − ϕ̄SÞ: ð2:7Þ

In above expression, R is the distance between sun and the
earth, and ϕ̄ðtÞ is associated with location of center-of-mass
of the detector:

ϕ̄ðtÞ ¼ ϕ̄0 þ 2πt=T: ð2:8Þ

Here T is period of LISA’s orbit around sun which is one
year, and ϕ̄0 is a constant denoting the position of the
detector at t ¼ 0 which we will set to zero. Note that the
Doppler phase in Eq. (2.7) is the leading order correction
due to the orbital motion of the detector around the sun.
Second order Doppler shift to the GW phase is of the order
vjφDj, which is a small correction [35] as v is the orbital
speed of the detector. Due to the time delay R sin θ̄ between
a signal at the barycenter and the detector, there is addi-
tional correction to the phase [35]. This is however
negligible as it depends on the frequency evolution which
is either zero or very small in our analyses. An additional
Doppler phase occurs from the rotation of the detector
about its axis which is of the order f times the arm length of
LISA in geometrized units and such correction is two
orders of magnitude smaller than the leading order Doppler
correction above. Hence, φD in Eq. (2.7) should suffice for
our purposes. Finally, we write down the modulation of
GW phase due to orbital precession following [36]:

FIG. 1. An illustration of the coordinate systems we use in
Sec. II. The set of barred Cartesian coordinates ðx̄; ȳ; z̄Þ is tied to
the ecliptic with the origin at the sun. On the other hand, the
unbarred coordinates ðx; y; zÞ are tied to the detector LISA, with
the detector’s arms lying in the x–y plane. Angle ϕ̄ðtÞ describes
the location of the detector with respect to the barred coordinates
in x̄–ȳ plane. ðθ̄s; ϕ̄sÞ are the spherical polar angles associated
with location of the source in barred coordinates.
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φpðtÞ ¼ 2

Z
t

0

�
L̂ · n̂

1 − ðL̂ · n̂Þ2
�
ðL̂ × n̂Þ · _̂Ldt; ð2:9Þ

where _̂L is the derivative of L̂ in time.

B. GW phase modulation due to orbital precession
of Sgr A* EMRI

We now apply Eq. (2.9) for the case of an Sgr A* EMRI.
The mass of Sgr A* is M1 ¼ ð4.297� 0.012Þ × 106 M⊙
[37–39] and we consider a stellar mass compact object with
massM2 ¼ 20 M⊙. We further assume that the spin of Sgr
A* (S1) is much greater than the spin of the stellar mass
object (S2), which is reasonable because the mass ratio is
already over 105. Consequently, we work in the limit of

M2 ≪ M1 and S2 ≃ 0. For such assumptions, _̂L due to spin
precession is given by [36]

_̂L ≃ΩpŜ × L̂; ð2:10Þ

where the precession frequency Ωp takes the form:

ΩP ≃
2S1
a3

: ð2:11Þ

Hereafter we will assume an orbital separation of
a ∼ 90M1, in which case the GW radiation-induced phase
shift is negligible during the observation period of LISA.
One can also find the dependence of signal-to-noise ratio
on the orbital separation in [32]. In the well-motivated
model where the stellar-mass black holes migrated to the
vicinity of the MBH assisted by the MBH accretion disk,
the orbital eccentricity damping timescale is much shorter
than its migration timescale [31]. Therefore we assume that
the stellar-mass black hole moves along a circular orbit,
although it is straightforward to allow nonzero eccentricity
in the Fisher analysis. The precession angle will be given by

αp ¼ αp;0 þΩPt: ð2:12Þ

Here αp;0 denotes the value of α at time t ¼ 0. We adopt the
convention that αp ¼ 0when L̂ · ˆ̄z is maximum (which also
means L̂, ˆ̄z, and Ŝ will be on the same plane), for which L̂
can be written as [36]

L̂ ¼ Ŝ cos λp þ
ð ˆ̄z − Ŝ cos θ̄spÞ

sin θ̄sp
sin λp cos αp

þ Ŝ × ˆ̄z
sin θ̄sp

sin λp sin αp: ð2:13Þ

Here λp is the angle between L̂ and Ŝ, while ðθ̄sp; ϕ̄spÞ are
spherical polar angles of the vector Ŝ. The angle φpðtÞ now

can be evaluated by plugging Eqs. (2.13) and (2.10)
in Eq. (2.9).

C. Analysis and results

We now proceed to the discussion of data analysis
technique and results pertaining the spin induced orbital
precession in the Sgr A* EMRI. We assume a maximum
observation period of Tobs ¼ 10 years with LISA [7] to
explore the science potential of these systems.

1. Data analysis formalism

We implement the Fisher analysis formalism to estimate
the statistical error on various parameters in the waveform.
Such analysis assumes the noise of the detector to be
Gaussian and stationary, which works better in the limit of
high SNR. Let us denote the detector’s noise as nðtÞ; then
the detector output can be expressed in terms of noise and
signal as

sðtÞ ¼ nðtÞ þ hðtÞ: ð2:14Þ

We define the inner product between two quantities A and
B in the following manner:

ðAjBÞ ¼ 4ℜ
Z

∞

0

Ã�ðfÞB̃ðfÞ
PnðfÞ

df: ð2:15Þ

ÃðfÞ is the Fourier transform corresponding to A, and the
asterisk superscript denotes complex conjugate. PnðfÞ is
the one-side detector noise spectral density for which we
consider the LISA detector noise given in Ref. [40]
(we ignore the galactic confusion noise as it is small
compared to the instrumental for the frequency range we
are working in).
The SNR of an event is

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

p
; ð2:16Þ

while a Fisher matrix element is defined as

Γij ¼ ð∂ihj∂jhÞ: ð2:17Þ

In the above equation, we denote a derivative with respect
to a binary parameter θi as ∂i. For a Sgr A* EMRI, the
orbital frequency can be considered as almost constant
during the observation period, so that it is more convenient
to use the time-domain waveform which is real-valued.
Hence, the Fisher matrix can be simplified in the following
way:
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ð∂ihj∂jhÞ ¼ 4
X
I;II

ℜ
Z

∞

0

∂ih̃
�ðfÞ∂jh̃ðfÞ
PnðfÞ

df;

≃
2

PnðfÞ
X
I;II

Z
∞

0

∂ihðtÞ∂jhðtÞdt;

≃
4

PnðfÞ
Z

∞

0

∂ihðtÞ∂jhðtÞdt; ð2:18Þ

where we have considered the contribution from two LISA
channels fI; IIg, and approximated the Sgr A* EMRI as a
monochromatic source with constant frequency f. In
practice, the upper limit of above integral is taken to be
the observation period which is 10 years in our case. Let us
denote the 1-σ error bar on Fisher parameter θi as Δθi ¼
θit − θi with θit denoting the true value of θi. If we do not
impose any prior information, the root-mean-square of Δθi
can be obtained as the square root of diagonal elements of
the inverse Fisher matrix:

ðΓ−1Þab ¼ hΔθiΔθji: ð2:19Þ

The waveform of a precessing Sgr A* EMRI contains
nine parameters as follows:

ðlnA; θ̄s; ϕ̄s; θ̄sp; ϕ̄sp; αp;0; λp;Ωp; fÞ; ð2:20Þ

where A ¼ ðM1M2Þ=ðDaÞ. Strictly speaking we know the
distance D and the sky locations of Sgr A* ðθ̄s; ϕ̄sÞ from
electromagnetic observations, but here we still include
ðθ̄s; ϕ̄sÞ as Fisher variables to address the angular resolution
of LISA for such systems. As the measurement error varies
for different system configurations, we use the Monte-
Carlo method to sample 100 different sets of underlying
parameters of Sgr A* EMRI, assuming uniform sky
distribution for the angles and uniform distribution for
the spin of Sgr A*. The underlying parameters for
ðθ̄s; ϕ̄sÞ; D;M1 are set to be their known values, and M2

is assumed with the same value in the fiducial model
(M2 ¼ 20 M⊙). For each set of the underlying parameters
we perform the Fisher analysis to compute the measure-
ment uncertainties for various parameters. The histograms
summarizing these Fisher analysis results are presented
in Sec. II C 3.

2. Threshold SNR

In order to address the detectability of Sgr A* EMRIs,
we need both the expected SNR of these systems and the
SNR detection threshold. The first quantity is partially
discussed in [32] and in Sec. II C 3, and in this section we
compute the threshold SNR, following similar strategy
described in Ref. [41] developed for stellar-mass black hole
binaries. Generally speaking, the threshold SNR reflects
our tolerance on the false-alarm probability with suitable
detection probability. It depends on the number of

templates in the template bank against which the observed
signal needs to be matched. Let us denote the number of
waveforms in the bank by NB, and write the template
waveforms as haðtÞ ¼ ρĥaðtÞ such that hĥjĥi ¼ 1, where
a ¼ 1; 2;…; NB.
The statistics σa ≔ hsjhai between the data s and the

templates ha follows the following probability distribution:

f1ðσa; ρÞ ¼ exp

�
−
�
σ2a þ ρ2

2

��
σaI0ðρσaÞ; ð2:21Þ

where I0 is the modified Bessel function of the first kind
of order 0. If there is no signal in the data (s ¼ n), the
probability distribution is simply

f1ðσa; ρ ¼ 0Þ ¼ σa exp

�
−
�
σ2a
2

��
: ð2:22Þ

We can claim a detection if σa > σthr at least for one
template a, with σthr denoting a certain threshold deter-
mined by a conventional false alarm possibility PF

PFðσthrÞ ¼
Z

∞

σthr

f1ðσa; ρ ¼ 0Þ dσa; ð2:23Þ

i.e., σthr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnPF

p
. Following Ref. [41], we choose a

representative value of PF ¼ 10−3=NB, which is similar to
the threshold PF in [42]. The detection probability as a
function of SNR for a given σthr is given by

PDðρÞ ¼
Z

∞

σthr

f1ðσa; ρÞdσa; ð2:24Þ

and the threshold SNR ρthr is obtained for a given detection
probability of PDðρthrÞ which is taken as 0.9 here.
We now implement Fisher analyses to estimate the

number of templates in the bank NB. In our case, the first
3 models parameters (the amplitude A and the source
location θ̄s, ϕ̄s) do not affect NB, because the amplitude
which only shows up as a prefactor of each template,
therefore can be searched over each template at negligible
cost and the source location is well known. Let us define the
following Fisher matrix for the remaining 6 model param-
eters ðθ̄sp; ϕ̄sp; αp;0; λp;Ωp; fÞ:

Γ̂ij ¼ ð∂iĥj∂jĥÞ: ð2:25Þ

Let us also define a prior range on a Fisher parameter θi by
δθi, and a modified Fisher matrix Γ̃,

Γ̃ij ¼ max

�
Γ̂ij;

δij
ðδθiÞ2

�
: ð2:26Þ

Then NB can be approximated as the following integral
over the Fisher variables:

SCIENCE POTENTIAL FOR STELLAR-MASS BLACK HOLES AS … PHYS. REV. D 105, 123018 (2022)

123018-5



NB ¼
Z

dDθ
ffiffiffiffiffiffiffiffiffiffiffi
Det Γ̃

p
; ð2:27Þ

Eq. (2.27) can be evaluated using the Monte-Carlo inte-
gration method where the input Fisher parameter θi is
distributed over the prior range δθi [43]:

Z
dDθ

ffiffiffiffiffiffiffiffiffiffiffi
Det Γ̃

p
≃
V
N

X
β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Det Γ̃β

q
: ð2:28Þ

Here Det Γ̃β is the determinant of the of the matrix Γ̃ for
sample β, N is the number of samples, and V is the volume
of the search space.

3. Results

We first examine the threshold SNR for a detection of
GWs from the Sgr A* EMRI. As explained in Sec. II C 2,
for detection purpose, we only need to consider the
waveform containing seven free parameters. In addition,
as the cost of searching over amplitude is negligible,
we consider only the last six parameters in Eq. (2.20).
The volume of search space is then V ¼
δθ̄spδϕ̄spδαp;0δλpδΩpδf. To evaluate Eq. (2.28), we apply
Monte-Carlo sampling by distributing the direction of spin
and angular momentum uniformly over the 2-sphere, αp;0
between 0 to 2π, and dimensionless spin parameter
between 0.01 to 1. The lower end of spin is set to be
nonzero as the Fisher matrix tends to me more singular for

FIG. 2. Histogram distribution of 1-σ errors on the polar angle
of location of Sgr A* EMRI (Δθs) with respect to the heliocentric
coordinates, computed with Fisher analyses with Monte-Carlo
simulations. Vertical red line is the median of distribution which
is about 0.033 radians.

FIG. 3. Histogram distribution of 1-σ errors on the azimuthal
angle of location of Sgr A* EMRI (Δϕ̄s) in the heliocentric
coordinates, computed with Fisher analyses with Monte-Carlo
simulations. Vertical red line is the median of distribution which
is about 0.022 radians.

FIG. 4. Histogram distribution of SNRs obtained from Fisher
analyses with Monte-Carlo simulations. The blue vertical line
shows the threshold SNR for detecting a signal: ρthr ≃ 9.8. The
red vertical line shows the median SNR which is 11.7. About
80% of the samples satisfy ρ ≥ ρthr.

FIG. 5. Histogram distribution of relative errors in measure-
ment of precession orbital frequency Ωp obtained from Fisher
analyses with Monte-Carlo simulations. The vertical red line
denotes the median value of ΔΩp=Ωp which is approximately
0.02.
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small spins, which affects the accuracy in computing the
determinant of the Fisher matrix. We distribute the fre-
quency f uniformly between 1.7 × 10−5 Hz to 2 × 10−5 Hz,
corresponding to a range of orbital separation a ¼ 85M1

to a ¼ 95M1. As a consistency check, We implement two
independent sets of 100 samples to perform the integration
in Eq. (2.28) and find a consistent threshold SNR
ρthr ≈ 9.8.
In order to estimate the statistical distribution of meas-

urement errors, we perform a separate Monte-Carlo study
with the waveform containing all 9 parameters in
Eq. (2.20). We distribute θ̄sp, ϕ̄sp, αp;0, f, and λp in a
similar manner as in the case of threshold SNR computa-
tion. However, we distribute the magnitude of dimension-
less spin parameter from 0 to 1 uniformly as the calculation

of determinant is not needed here. For each set of Monte-
Carlo samples we compute the Fisher matrix, and collect all
the data in histograms.
For the M2 and range of a assumed in this fiducial

model, we find 80% of the samples produce SNR greater
than the threshold SNR ρthr, while the median SNR is about
12 (see Fig. 4). Note that the SNR linearly scales as M2 if
it is different from 20 M⊙, and its dependence on a is
discussed in [32]. We also present a histogram distribution
of the relative errors in measuring Ωp in Fig. 5, which
shows that we can constrain Ωp (and hence the magnitude
of spin) with a median relative error of 2%. The direction of
spin can also be measured to percent level accuracy, as
shown in Fig. 6 and 7. This level of accuracy is more than
an order of magnitude better than the spin measurement

FIG. 6. Histogram distribution of 1-σ error bars on the polar
angle corresponding to the direction of spin (Δθ̄sp), normalized
by π. Vertical red line shows the median of the distribution which
is approximately 0.026.

FIG. 7. Histogram distribution of 1-σ error bars on the
azimuthal angle corresponding to the direction of spin (Δϕ̄sp),
normalized by 2π. Vertical red line shows the median of the
distribution which is approximately 0.016.

FIG. 8. Histogram distribution of 1-σ errors in the measurement
of opening angle (Δλp) normalized by π obtained from Fisher
analyses with Monte-Carlo simulations. The vertical red line
shows the median value of Δλp=π which is approximately 0.03.

FIG. 9. Histogram distribution of 1-σ error bars in the meas-
urement of initial precession angle (Δαp;0) normalized by 2π.
Vertical red line shows the median value of the distribution which
is approximately 0.03.
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accuracy of radio interferometry, which has to account for
all the modelling uncertainties of the accretion flow. In
addition, Figs. 2 and 3 show that the LISA resolution
uncertainties for the sky angles are on the level of
Δθ̄s ∼ 0.033, Δϕs ∼ 0.022 radian, or ΔΩ=4π ∼ 6 × 10−5.
This means that the chance of having a double white dwarf
source having similar signal strength (less than parsec scale
distance) and sky locations is negligible. The expected
measurement error of the opening angle λp and initial
precession angle αp are shown in Figs. 8 and 9. On the
other hand, the frequency can be measured very precisely
with an error bar of the order 10−10 Hz.

III. PROBING DARK MATTER

Massive black holes like Sgr A* can harbor dark matter
clouds around them, and one way to probe the nature of
such clouds is through GW observations. When a compact
object travels through the cloud, a dark matter overdensity
may form and create a friction force. Such friction force
changes the frequency evolution of the binary. The cloud’s
gravitational potential also applies a torque on the compact
object, giving rise to an orbital precession. This section will
focus on detecting such effects with Sgr A* EMRI, with
both cold dark matter and axionic dark matter scenarios
considered.

A. Cold dark matter

Dark matter may accumulate around a massive black
hole like Sgr A*, forming overdensities or spikes [44,45].
The change to GW phase due to the dynamical friction may
be used to probe the dark matter profile around the central
massive object, which has been explored in the case of
intermediate-mass-ratio inspirals (IMRIs) [46–48]. In the
analysis below we comment on its application on EMRIs,
especially the Sgr A* EMRIs.
Let us denote the frequency evolution as _f, which is

small and can be treated perturbatively with respect to the
frequency of GWs at the beginning of observation period:
f0. Using the energy-balance law, _f can be found as [46,47]

_f ¼ 96π8=3f11=30 M1M2

5M1=3 þ 12M2ξðvÞρDM0 lnðΛÞ
M1

: ð3:1Þ

The first term on the right side of above equation is the
frequency evolution due to the emission of GWs, while the
second term is the contribution coming from dynamical
friction. Here Λ is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1=M2

p
and ξðvÞ is the

fraction of dark matter moving slower than the orbital speed
v. The dark matter density at the moving object’s location at
time t ¼ 0 is ρDM0 :

ρ0DM ¼ ρsp

�
asp
a0

�
γsp
; ð3:2Þ

with a0 denoting the orbital separation at t ¼ 0. The size of
the spike is asp and ρsp is the density of dark matter at
distance r ¼ asp. The parameters (asp, ρsp, γsp) depend on
the initial dark matter halo where the supermassive black
hole was formed. If we consider the initial profile to be an
NFW profile, γsp is usually taken as 7=3. Using Eq. (3.2)

to Eq. (3.1), we find that the contribution to _f from the
dynamical friction scales asf14=90 . As f0 for SgrA*EMRIs is
smaller than that of ordinaryEMRIsdetectedbyLISAby two
orders of magnitude, the darkmatter inducedmodification to
_f and GW phase (which scales as _fT2

obs) is supposed to
be two orders of magnitude smaller as well. We expect such
dark matter induced corrections to be more significant for
ordinary EMRIs with smaller separation, higher orbital
frequency and thus better detection prospects.
For a quantitative assessment of the modification to GW

frequency evolution due to dynamical friction, let us first
derive the parameters ðasp; ρspÞ for the cloud profile around
Sgr A*. For the initial NFW profile, DM density ρ at a
distance r from Sgr A* is [49]

ρNFWðrÞ ¼
ρs

ðr=asÞð1þ r=asÞ2
; ð3:3Þ

where ρs and as are characteristic density and radius
respectively. as is usually defined to be the radius within
which the average DM density becomes 200 times the
critical density of the universe ρc. Then ρs is related to ρc
according to

ρs
ρc

¼ 200

3

c3200
F ðc200Þ

; ð3:4Þ

where F ðxÞ ¼ lnð1þ xÞ − x=ð1þ xÞ [50]. c ¼ r=as is the
concentration parameter, and DM mass within r ¼ as is
approximated by

M200 ¼ 4πρsa3sF ðc200Þ: ð3:5Þ

We consider the low red shift approximation for parameter
c200 which is [50]

log10c200 ¼ 0.905 − 0.101log10

�
M200h

1012 M⊙

�
; ð3:6Þ

where h is the dimensionless Hubble constant and M200 is
related to Sgr A* mass M1 as [51]

M1

107 M⊙
≈
�

M200

1012 M⊙

�
1.65

ð3:7Þ

Using Eqs. (3.4)–(3.7),we achieve as ¼ 19.6 kpc and
ρs ¼ 3 × 10−28 g=cm3.
Next, following [52] we take the spike size asp to be 0.2rh

where rh is thegravitational influence radius of SgrA*which

SHAMMI TAHURA, ZHEN PAN, and HUAN YANG PHYS. REV. D 105, 123018 (2022)

123018-8



is 1.67 pc. Then matching Eq. (3.3) to spike profile ρDM ¼
ρspðasp=rÞ7=3 at r ¼ asp we obtain ρsp ≃ 262 M⊙=pc3.
Finally, Let us define the second term in Eq. (3.1) as

_fDF ¼ 12M2ξðvÞρDM0 lnðΛÞ
M1

ð3:8Þ

Plugging ρsp and asp in above equation, and considering
static dark matter case (ξ ¼ 1) for simplicity, we obtain
_fDF ¼ 4 × 10−21s−2. This is more than two orders of
magnitude smaller compared to the frequency evolution
due to GW emission which we find as 1.3 × 10−18s−2. We
present a comparison of _fDF between the cold DM case and
axion DM case in the next subsection.

B. Axion dark matter

Axion or axionlike particles are well motivated from
string theory [53,54] and standard model extension
[55–58] as dark matter candidates [59–63]. Axion fields
close to spinning BH can extract angular momentum from
the BH, leading to superradiance. In this subsection, we
consider the effect of a bosonic cloud around Sgr A* on the
orbit of the stellar mass BH. Axion dark matter density
profile can achieve extremely high concentration near the
central SMBHB, as compared with the cold dark matter
scenario. Additional conservative dynamical effect may
become significant because of the high mass density. For
example, the Newtonian potential of the cloud can exert a
torque on the orbiting object and induce orbital precession.
We first study such precession effect in case of an Sgr A*
EMRI, and then we analyze the change in GW frequency
evolution induced by the dynamical friction of axion dark
matter.

1. Newtonian potential of the cloud

To study the nonrelativistic description of the super-
radiant cloud, we will work in spherical coordinate systems
ðr; θ;ϕÞ and Cartesian coordinate ðx; y; zÞ with Sgr A*
located at the origin. We consider a free complex scalar
field, in which case the cloud is axisymmetric around the
direction of spin of Sgr A* [13,64]. In the nonrelativistic
limit, the axion field can be expressed as

Ψðr; tÞ ¼ Be−iωtRnlðrÞYlmðθ;ϕÞ: ð3:9Þ

ðn; l; mÞ label the stationary eigenmodes of the field and ω
is the eigenfrequency. The radial function Rnl takes the
form of that of hydrogen atom, which we can conveniently
write as

Rnlðx̃Þ ¼
��

2αμ

n

�
3 ðn − l − 1Þ!
2nðnþ lÞ!

�
1=2

× e−
x̃
n

�
2x̃
n

�
l
L2lþ1
n−l−1

�
2x̃
n

�
: ð3:10Þ

Here we introduce the parameter x̃ ¼ α2r=M1 with α ¼
M1μ and μ is the mass of the scalar field. L2lþ1

n−l−1½2x̃n � is the
generalized Laguerre polynomial of degree ðn − l − 1Þ.1
We choose the constant B in Eq. (3.9) such that the total
mass of the cloud Mc is normalized to αM1, namely,Z

d3xρ ¼ Mc ∼ αM1; ρ ¼ μΨ�Ψ: ð3:11Þ

Such an approximation is reasonable when α ≪ 1 and the
initial BH spin is close to the maximal spin [64]. Using
Eq. (3.11) we then find B ¼ M1.
In the next step we derive the gravitational potential

generated by the bosonic cloud. Since the potential satisfies
the Poisson equation, we decompose it in terms of spherical
harmonics in the following manner [65,66]:

Φc ¼
X
lm

4π

2lþ 1

�
qlmðt; rÞ

Ylmðθ;ϕÞ
rlþ1

þplmðt; rÞrlYlmðθ;ϕÞ
�
; ð3:12Þ

with

qlmðt; rÞ ¼
Z

r

0

slρlmðsÞs2ds; ð3:13aÞ

plmðt; rÞ ¼
Z

∞

r

ρlmðsÞ
slþ1

s2ds: ð3:13bÞ

We further define the harmonic components of the density
ρ as

ρlmðt; rÞ ¼
Z

ρðr; θ;ϕÞY�
lmðθ;ϕÞdΩ: ð3:14Þ

For simplicity we restrict ourselves to the fastest growing
mode, which corresponds to n ¼ 2, l ¼ 2, and m ¼ 1. For
this particular mode, using Eq. (3.9) and Eq. (3.11) to
Eq. (3.14), nonzero contributions to cloud density ρ come
from

ρ00 ¼
M2

1x̃
2e−x̃α3μ4

48
ffiffiffi
π

p ; ð3:15aÞ

1We implement the convention where La
nðxÞ satisfies the

differential equation xy00 þ ðaþ 1 − xÞy0 þ ny ¼ 0.
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ρ20 ¼ −
M2

1x̃
2e−x̃α3μ4

48
ffiffiffiffiffiffi
5π

p : ð3:15bÞ

Finally, using Eqs. (3.15) and (3.13) to Eq. (3.12), we
obtain the gravitational potential of the cloud as

Φc ¼ P1ðx̃Þ þ P2ðx̃Þ cos 2θ; ð3:16Þ

with

P1 ¼
α3e−x̃

32x̃3
ð48 − 48ex̃ þ 48x̃ − 8x̃2 þ 32ex̃x̃2

− 16x̃3 − 6x̃4 − x̃5Þ; ð3:17Þ

and

P2 ¼
α3e−x̃

32x̃3
ð144 − 144ex̃ þ 144x̃þ 72x̃2

þ 24x̃3 þ 6x̃4 þ x̃5Þ: ð3:18Þ

2. Axion dark matter induced precession

It is convenient to express the components of the torque
applied on Sgr A* EMRI orbit using the Cartesian
coordinates ðx; y; zÞ. Implementing the Newtonian poten-
tial in Eq. (3.16), the torque on object M2, is

τ⃗ ¼ −M2r⃗ × ∇⃗Φc

¼ −4M2P2ðx̃Þfsin θ cos θ sinϕ;− sin θ cos θ cosϕ; 0g:
ð3:19Þ

Such a torque will cause the orbit of M2 to precess around
the direction of spin of Sgr A*. However, since the
precession frequency is expected to be much smaller than
the orbital frequency, we are interested in the torque
averaged over one period. In this case the point mass
can be replaced by a constant density ring of the same
radius to receive the gravitational torque. Let us choose the
z-axis to be along the direction of spin and the x-axis to be
along the ascending node of the binary. We also assume at
t ¼ 0 objectM2 is located along x-axis. The position ofM2

can be expressed as

x¼ acosΩt; y¼ acosλp sinΩt; z¼ asinλp sinΩt:

ð3:20Þ

Here Ω is the orbital angular frequency and λp is the angle
between z-axis and the orbital angular momentum.
Applying above equation to Eq. (3.19) and averaging over
one orbital period we obtain

hτ⃗i ¼ f−P2ðx̃ðaÞÞM2 sin 2λp; 0; 0g: ð3:21Þ

Next, we can express the precession frequency as a small
change of precession angle ΔΘ over small time Δt as

Ωp ¼ ΔΘ
Δt

≃
tanΔΘ
Δt

¼ ΔL⃗
L sin λpΔt

¼ jhτ⃗ij
L sin λp

: ð3:22Þ

Using Eq. (3.21) to above equation leads to a precession
frequency of

Ωp ¼ 4Ω1=3P2 cos λp
M2=3

1

; ð3:23Þ

which depends on α through P2. We need to choose a
suitable range for α, which we discuss next.
To allow a detectable effect for Sgr A* EMRI, the growth

period of the superradiant cloud needs to be much smaller
than the Hubble time. In the limit of α ≪ 1, the growth
period of the cloud is given by the Detweiler’s approxi-
mation [64,67]:

τg ≃ 24ða=M1Þ−1α−ð4lþ5ÞM1: ð3:24Þ

If we set τg to be Oð108Þ years, above equation suggests
α ≃ 0.04, which we will consider as a lower limit on α. On
the other hand, the cloud may deplete due to GW radiation
if the field is real-valued. Notice that in this case the
calculation for precession rate still applies, as the cloud
rotates faster than the precession rate, and a rotation-
averaged density profile for real-valued field is the same
as that for complex-valued field. Taking into account the
GW radiation, the lifetime of the cloud can be approxi-
mated by the following expression which is valid for
α < 0.1 [64]:

τc ≃ 109 years

�
M

105 M⊙

��
0.1
α

�
15

: ð3:25Þ

Ifwe choose anα of 0.1,which is the limit of validity of above
expression, the cloud survives about 1 billion years for the
Sgr A* EMRI. Hence it is reasonable to assume 0.1 as the
upper bound on α. A range of α ∈ ½0.04; 0.1� corresponds to
the mass of the scalar field μ ∈ ½13; 32.6� × 10−19 eV.
In Fig. 10 we presentΩp as a function of α for λp ¼ π=4,

and also compare it with spin induced precession with same
opening angle and a spin of S ¼ 0.5M2

1. We find that the
dark matter induced precession frequency is overall smaller
than that of spin-induced precession, although they are
almost comparable near α ¼ 0.1. Nevertheless, since in
both cases the precession happens around the direction of
spin, the modification to GW phase is similar and in
principle it is not possible to distinguish the two effects.
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3. Modification to frequency evolution
due to dynamical friction

In addition to the orbital precession caused by the
Newtonian potential of the axion cloud, a dynamical
friction force is also applied on object M2, which can be
expressed as [62,68]

F ¼ 1

v2
4πM2

2ρCΛ: ð3:26Þ

In case of Sgr A* EMRI where the orbit is circular, the
velocity v of M2 relative to the wave function can be
approximated as the orbital velocity, and CΛ has a
simplified form [13]

CΛðkrÞ ≃
Z

2kr

0

1

s
ð1 − cos sÞdsþ sin 2kr

2kr
− 1; ð3:27Þ

where k ¼ μv with μ representing the mass of the scalar
field. We again restrict ourselves to the n ¼ 2, l ¼ 1, and
m ¼ 1 mode and use Eq. (3.27) and ρ ¼ Ψ�Ψ to Eq. (3.26)
to obtain the rate of change of energy loss due to dynamical
friction as _EDF ¼ Fv. Similar to Sec. III A, energy loss due
to dynamical friction and GW emission in this case can be
taken as small and constant, which enters the GW phase as
δφ ¼ _fπt2. The waveform we consider in this case is

hðtÞ¼
ffiffiffi
3

p

2
AðtÞcos ½2πf0tþ _fπt2þφpðtÞþφDðtÞ�; ð3:28Þ

where φpðtÞ is the polarization phase and φDðtÞ is the
Doppler phase as in Sec. II A, and

_f ≃
96π8=3f11=30 M1M2

5M1=3 þ 3f1=30 M1=3F0v0
π2=3M1M2

: ð3:29Þ

Quantities with subscript “0” are evaluated for a circular
binary with a ¼ 90M. The second term on the right side is
the contribution to frequency evolution from dynamical
friction: _fDF.
In Fig. 11 we present _fDF as a function of α for a Sgr A*

EMRI in the equatorial plane θ ¼ π=2, as well as the 1-σ
upper bound on _fDF obtained from Fisher analyses. The
Fisher analysis is performedwith the parameters ln A, θ̄s, ϕ̄s,
θ̄L, ϕ̄L, f0, and _fDF. Here (θ̄L; ϕ̄L) is the direction of orbital
angular momentum of Sgr A* EMRI, for which we consider
(π=4; 3π=4) as a fiducial value. The error of _fDF is not
sensitive to the fiducial value of _fDF. We find the 1-σ upper
bound on _fDF is approximately 3.47 × 10−18 s−2, which
roughly corresponds to α ¼ 0.095, which means an effect
to the waveform phase coming from α ∈ ½0.095; 0.1� or
μ ∈ ½3.1; 3.3� × 10−18 eV can exceed the statistical uncer-
tainty. The chance that axion mass lies within such narrow
range is small. Figure 11 also shows that the dynamical
friction due to cold DM spike around Sgr A* can produce
_fDF which is comparable to the axion DM case only when
α ≤ 0.054. Note that this is an overestimate, as we assumed
static cold dark (ξ ¼ 1) while in reality ξ is expected to be

FIG. 11. Dynamical friction induced frequency evolution ( _fDF)
as a function of α (shown by blue solid line) for a Sgr A* EMRI in
equatorial plane θ ¼ π=2. The horizontal dashed red line shows
the 1-σ upper bound on _fDF achieved from Fisher analyses,
which roughly corresponds to Δ _fDF ¼ 3.47 × 10−18 s−2. The
green dotted line indicates the frequency evolution due to
emission of GWs (1.3 × 10−18 s−2), while the magenta dash-
dotted line represents _fDF in the case of a cold dark matter spike
around Sgr A* (4 × 10−21 s−2) discussed in Sec. III A.

FIG. 10. Axion dark matter induced precession orbital fre-
quency Ωp as a function of α ¼ M1μ according to Eq. (3.23),
which is denoted by the blue curve. Here M1 is the mass of Sgr
A* and μ is the mass of the complex scalar field which describes
the axion dark matter. The angle between spin and orbital angular
momentum vector is taken to be π=4. The red horizontal dotted
line shows the orbital frequency of spin induced precession with
same opening angle and S ¼ 0.5M2

1.

SCIENCE POTENTIAL FOR STELLAR-MASS BLACK HOLES AS … PHYS. REV. D 105, 123018 (2022)

123018-11



smaller [46,47]. On the other hand, _fDF in axion DM case
can be greater than theGW radiation induced _f if α > 0.087.

IV. DISCUSSION

A. Multibody effect

We now explore the case where the Sgr A* EMRI
experiences the Kozai-Lidov effect due to the presence of a
tertiary stellar-mass object, and determine whether or not
such effects would be detectable. Let us denote the mass of
the third body by M3, which orbits around the center of
mass of the Sgr A* EMRI consisting of massesM1 andM2.
We assume aout ≫ ain where ain and aout are semimajor
axes of the inner and outer binary respectively. We also
assume the eccentricities of inner and outer binaries are ein
and eout respectively. The outer perturber M3 induce time-
dependent evolution of the orbital elements of the inner
binary, such as the eccentricity, inclination, argument of
periapsis, and longitude of ascending nodes.
The orbital evolution of the Sgr A* EMRI in such a

hierarchical triple system happens in a typical rate t−1LK,
where tLK is Kozai-Lidov time scale [69,70]:

t−1LK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þM2

a3in

s �
M3

M1 þM2

��
ain

aout
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2out

p �
3

: ð4:1Þ

In this case, M3=ðM1 þM2Þ ∼Oð10−5Þ, together with the

fact that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM1 þM2Þ=a3in

q
∼Oð10−5Þ Hz, suggests that

t−1LK ∼Oð103Þ year, i.e., the Kozai-Lidov time scale is
much longer than our observation period. Therefore the
multibody effect is negligible for the Sgr A* EMRIs
considered here.

B. Conclusion

We have investigated several possible applications of
Sgr A* EMRIs if they exist within 102 M distance from
Sgr A*. The detection threshold for these systems is
significantly smaller than that of ordinary EMRIs, thanks
to the known location of the source and much smaller
waveform parameter space. The primary application of an
Sgr A* EMRI is to measure the spin of Sgr A*, which
likely has the best accuracy compared to alternative
observation methods, such as using EHT. We have inves-
tigated the case of a cold dark matter cloud around Sgr A*
and have found that EMRIs that have higher orbital
frequency would be more efficient to probe such a scenario.
On the other hand, the presence of an axion cloud, if the
axion mass falls into the range with α ∈ ð0.04–0.1Þ, may
generate an additional precession effect for the EMRI orbit,
which is degenerate with the spin induced precession.
However, the degeneracy effect is only significant in a
narrow mass range of axion, so it will not likely pose serious
challenge for the Sgr A* spin measurement. Nevertheless,

we’d like to remove this “contamination” for the spin; on the
other hand, if the inferred dimensionless spin based on
precession rate is greater than one, it is a sign of the existence
of a dark matter cloud.
One may also imagine possible ways to break the

degeneracy. First, if there are multiple Sgr A* EMRIs
being detected at the same time, it is likely that they have
different orbital radii. Therefore the relative weight
expected from Lense-Thirring precession and cloud-
induced precession should be different, which may be
used to separately determine different components of
contributions. Second, if the relevant axion mass range
is ruled out by other measurements, e.g., using the spins of
other massive black holes inferred from x-ray reverberation
or iron line measurements [71,72], the possible degener-
ation can be obviously neglected. Third, as axion cloud
may have a mass of fraction of α of the Sgr A* mass, it may
influence the spacetime to the extent that EHT can probe
the difference. We don’t have a quantitative estimation for
this last point, but it may be worth further detailed study in
the future, along with the science goals of EHT in probing
dark matter.
There is also the possibility that we do not find the sign

of Sgr A* EMRI using LISA, which may be explained by
various reasons. In the disk migration channel, the accu-
mulation of stellar-mass black hole in the disk close to the
MBH is a result of that the migration timescale peaks where
the gravitational wave emission becomes dominant over the
effect of density waves, and the number of stellar-mass BH
accumulation mainly depends on the disk model and the
disk lifetime. As shown in [31], the peak of the migration
timescale in a β disk is rather mild and no more than two
black holes of 10 M⊙ assemble in the range of r ≤ 200M.
We therefore expect negligible amount of heavier BHs with
mass ≥ 20 M⊙ considering their even lower abundance.
In a α disk, a larger number (2–20) of 10 M⊙ BHs are
expected to accumulate in the range of r ≤ 200M depend-
ing on the disk lifetime ð108–106Þ yr [31]. For heavier
≥ 20 M⊙ black holes, the number should be lower by a
factor of a few again due to the lower abundance. In this
case, the nondetection of Sgr A* EMRIs may indicate that
the latest accretion episode is more than 1 Myrs ago such
that all nearby stellar-mass black holes detectable by LISA
have merged with Sgr A* due to GW emission. It is also
possibly due to the fact that the accretion disk direction is
random in each episode, and the lifetime of each episode is
less than 105 yr [31], such that the stellar-mass black holes
captured by the disk had not had enough time to migrate to
the vicinity of the MBH, so the assumption of “in-disk
migration” made in Fig. 7 of [31] breaks down. For the
mass segregation scenario, it could come from the paucity
of massive stellar-mass black holes within the nuclear star
cluster, or other relevant assumption of the calculation that
affects the final distribution in [26,27]. Lastly, if there is a
set of stellar-mass black holes at ∼102M but with mass
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several times smaller than 20 M⊙, we may still miss the
detection because of insufficient signal-to-noise ratio.
We have assumed circular obits in the analysis as disk-

driven migration efficiently damps out eccentricity, but
eccentric orbits are allowed in the mass segregation
scenario, or during the time that the disk has disappeared.
For eccentric orbits, higher harmonics of the orbital
frequency generically contribute to the waveform, which
may lead to high event SNR as the frequencies of higher
harmonics are closer to the sensitive band of LISA. The
waveform discussed in Sec. II A should include eccentricity
as another parameter, and Post-Newtonian effects such as
the periapsis shift should be consistently included. The
accuracy in constraining various system parameters may
also be improved thanks to the larger event SNR.
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