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We present an investigation on the production of light dark gauge bosons by the nucleon bremsstrahlung
processes in the core of neutron stars. The dark vector is assumed to be aUð1ÞB−L gauge boson with a mass
much below keV.We calculate the emission rate of the dark vector produced by the nucleon bremsstrahlung
in the degenerate nuclear matter. In addition, we take into account the photon-dark vector conversion for the
photon luminosity observed at infinity. Combining with the observation of J1856 surface luminosity,
we find that a recently discovered excess of J1856 hard x-ray emission in the 2–8 keV energy range by
X-ray Multi-Mirror Mission-Newton and Chandra x-ray telescopes could be consistently explained by a
dark vector with gauge coupling e0 ¼ 5.56 × 10−15, mixing angle ε ¼ 1.29 × 10−9, and mass
mγ0 ≲ 10−5 eV. We also show that the mixing angle ε > 7.97 × 10−9 for mγ0 ≲ 3 × 10−5 eV and the

gauge coupling e0 > 4.13 × 10−13 for mγ0 ≲ 1 keV have been excluded at 95% confidence level by the
J1856 surface luminosity observation. Our best-fit dark vector model satisfies the current limits on hard x-
ray intensities from the Swift and INTEGRAL hard x-ray surveys. Future hard x-ray experiments such as
the Nuclear Spectroscopic Telescope Array may give a further test on our model.
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I. INTRODUCTION

One of the significant puzzles in particle physics that
demand new theory beyond the Standard Model (SM) is the
nature of dark matter (DM), whose existence has been
confirmed from various cosmological and astrophysical
observations [1]. The most popular class of DM candidates
is the weakly interacting massive particles (WIMPs) [2,3]
with a mass at around the electroweak scale and a coupling
strength similar to the weak coupling. However, the WIMP
hypothesis has suffered stringent constraints due to the null
results from both direct [4] and indirect [5] DM detection
experiments. As an alternative candidate of DM, a hidden
sector consisting of very low-mass particles has drawn
more attention in recent years. One of the simplest
extensions of the SM is to include an additional Uð1Þ
gauge group [6,7], which can naturally arise from the
breaking of grand unified theory groups [8,9] or the string
theory [9–16]. The gauge boson associated with the new

Uð1Þ group, dubbed the dark photon (which mixes with the
SM photon), may play the role of a mediator between the
SM and dark sectors or as a dark matter candidate [17].
Supernovae serve as a powerful factory for the emission

of dark photons with masses ≲100 MeV [18–25]. With a
sufficiently weak interaction, dark photons generated
within the core of a supernova can escape the progenitor
star before their decays and will contribute to the stellar
energy transport. The supernova cooling would be accele-
rated if the dark photons could transport energy out of the
core more efficiently than the standard supernovae cooling
via the emission of neutrinos. Thebounds ondark photons by
using the measurements of Supernova 1987A have recently
been updated in Refs. [22–24], with the consideration of
plasma effects for the production of dark photons. The Sun,
horizontal branch (HB) stars, and red giants, on the other
hand, can serve as important laboratories for dark photons in
the mass range of ≲keV. For instance, Refs. [26,27] show
that the measured luminosity of the Sun, L⊙ ¼ 3.83 × 1026

W, has constrained the dark photon parameter space to the
range of εmγ0 < 4 × 10−12 eV [27].
In this work, we will focus on the production of dark

gauge bosons in the core of neutron stars (NSs), which are
the remnants of the supernova explosion and have long
been recognized as excellent laboratories to search for
axionlike particles [28–41]. The core of a NS is composed
of highly degenerate nuclear matter that has an average
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density of ∼3 × 1014 g=cm3, which corresponds to an
average distance of ∼1 fm between nucleons. Dark gauge
bosons can be produced through bremsstrahlung of proton
and neutron scattering in the NS cores. In the previous
literature [22–24], the nondegenerate limit has been
assumed to obtain the dark vector emission rate, as well
as the constraints on the dark vector from the supernova,
where the plasma is thought to be diluted and nonrelativ-
istic. However, the nuclear matter in the NS core is in fact
highly compressed, and therefore, in this work, we will
present the calculation of the production of the dark vector
in the NS core in the degenerate limit.
The in-medium effects can lead to a suppression on the

dark vector production rate if the dark vector, which
couples coherently to the charged SM plasma, has a mass
much below the stellar plasma frequency [22,23]. In
additional to the electromagnetic (EM) current through
mixing, the new gauge boson could couple to the B − L
current in the well-known theory of Uð1ÞB−L extension of
the SM [42–47]. For such a theory, the new vector boson
will dominantly be produced by the neutron bremsstrah-
lung in the NS core. This is because, for one thing, neutron
is the dominant component of the NS, and for another, the
vector boson emitted by the neutron in the initial or final
state is not suppressed by the plasma effects. In this work,
we will assume that the dark gauge boson is the B − L
gauge boson with a mass much below keV, the core
temperature of the NS, and the gauge coupling e0 is
sufficiently small.
Recently, a significant excess of hard x-ray emission in

the 2–8 keV energy range was found by analyzing the data
from the X-ray Multi-Mirror Mission and Chandra x-ray
telescopes [48] observing on the nearby magnificent seven
(M7) x-ray dim isolated NSs. The excess was interpreted as
the emission of axions by the NS in Ref. [38] and was
found to be consistent with the current constraints. In this
work, we explore the interpretation of a dark vector
scenario for the J1856 hard x-ray excess. We calculate
the dark vector emission rate in the NS core and simulate
the evolution of the NS based on the modified NSCool code
[49], including the dark vector emissivity. Due to the strong
magnetic field of the magnetospheres surrounding the NSs,
the dark vectors produced in the NS cores may convert into
x-rays when they propagate outwards [50]. We present an
analytical formula of the dark vector-photon conversion
probability for dark vector with mass mγ0 ≲ ðTs=RsÞ1=2,
where Ts and Rs are the surface temperature and radius of
the NS, respectively. We also calculate the surface lumi-
nosity observed at infinity by taking into account the
photon-dark vector conversion. Based on the Bayesian
inference, the analysis of J1856 hard x-ray data, as well as
surface luminosity observation, are carried out by the
UltraNest package [51]. We find that the dark vector scenario
is favored by the hard x-ray excess, and we also derive 95%
upper limits on the model parameters from the data.

The structure of this paper is arranged as follows.
Section II defines the dark gauge boson model considered
in this work and sets up the required notations. In Sec. III,
we calculate the production of dark vectors from nucleon
bremsstrahlung, including the squared matrix element and
emission rate. In Sec. IV, we briefly review the neutrino and
photon luminosities for the NS cooling. We also calculate
the photon surface luminosity observed at infinity that
includes photon-dark vector conversion. In Sec. V, we
describe the NS simulation based on the modified NSCool

code in detail. In Sec. VI, we compute the hard x-ray
spectrum from the dark vector-photon conversions. The
statistical analysis of data based on the Bayesian inference
is carried out in Sec. VII, and the 95% upper limits on the
dark vector model are derived in Sec. VIII. Finally, in
Sec. IX, we summarize our findings. The plasma effects on
dark vector’s production are discussed in Appendix A. The
dark vector-photon conversion probability is derived in
Appendix B. In Appendix C, we show the analytical results
for the dark vector-photon conversion probability. The
detailed calculations of the dark vector emission rate are
given in Appendix D. Discussions on the one-pion approxi-
mation are presented in Appendix E.

II. THE MODEL

We are interested in the extension of the SM with an
additional Uð1Þ gauge symmetry, having a new gauge
boson AD

μ called the dark vector. The relevant effective
Lagrangian at low scales is written as

Leff ¼ −
1

4
F0
μνF0μν −

1

2
m2

γ0A
0
μA0μ þ ε

2
FμνF0μν þ e0AD

μ Jμ;

ð1Þ

where we assume the dark vector has a Stueckelberg mass
mγ0 , Fμν ¼ ∂μASM

ν − ∂νASM
μ and F0

μν ¼ ∂μAD
ν − ∂νAD

μ are,
respectively, the field strengths of the SM photon and dark
gauge boson, and ε represents the mixing angle between the
SM photon and dark vector. The parameter e0 denotes the
coupling between AD

μ and the current Jμ, which in this work
is assumed to be the SM B − L current arising from a
Uð1ÞB−L symmetry, as widely investigated in the literature
[42–47]. The kinetic terms of gauge boson in Eq. (1) can be
diagonalized by rotating the gauge fields as

�
AD
μ

ASM
μ

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ε2
p

�
1 0

−ε
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
��

cos θ − sin θ

sin θ cos θ

�

×
�
A0
μ

Aμ

�
; ð2Þ

where ðAD
μ ; ASM

μ ÞT and ðA0
μ; AμÞT are the so-called inter-

action eigenstates and mass (propagating) eigenstates,
respectively. For a massive dark vector, the rotation angle
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θ is locked at zero [17]. We see that the mixing leads to the
interactions between the dark vector and the SM charged
particles, such as electron, proton, and charged pions, with
a coupling strength εe. Furthermore, due to the mixing,
the dark vector can convert to a photon during their
propagation.
In the plasma of supernovae, the visible photon develops

a nonzero mass that is determined by the plasma frequency
ω2
p ¼ 4παEM

P
i ni=EF;i, where the sum goes over the

charged particles with a number density ni and a Fermi
energy E2

F;i ¼ m2
i þ ð3π2niÞ2=3. The nonzero plasma

mass of the photon can lead to inequivalent effective
couplings to the charged particles in the plasma and in
the vacuum (the Lagrangian parameter). The effective
coupling between the SM fermions and A0

μ in the medium
is given by [25]

efeff ¼ e0ðq0eqf − q0fqeÞ þ ðεe − q0ee0Þqf
m2

γ0

m2
γ0 − πT;L

; ð3Þ

where f denotes the SM fermions with an electric charge qf
and a dark gauge quantum number q0f in units of e and e0,
respectively. The proton and neutron have the electric
charges qp ¼ 1 and qn ¼ 0 and the dark gauge quantum
numbers q0p ¼ q0n ¼ 1. The EM and dark gauge quantum
numbers for the electron are qe ¼ q0e ¼ −1. The visible
photon mass is encoded in the polarization tensor πT;L
given in Appendix A.
From Eq. (3), the effective couplings of electron, proton,

and neutron to A0
μ in a dense medium (i.e., with

πT;L ≫ T2; m2
γ0) are explicitly given by

eeeff ¼
ðεeþe0Þm2

γ0

πT;L
; epeff ¼−

ðεeþe0Þm2
γ0

πT;L
; and eneff ¼ e0:

ð4Þ

We observe that the dark vector couplings to the electrically
charged fermions are suppressed by both the mixing term in
the Lagrangian and medium-induced effects, while the
interaction of A0

μ to the neutrons is not suppressed by the
plasma effects. As a result, there exists a suppression from
the plasma effect in the emission of dark vectors from the
electron and the proton currents. On the other hand, the
production of dark vectors via the neutron current does not
have such a suppression, and the emission rate from
neutrons in the medium can be approximated by that in
the vacuum.
For a NS of interest here, because of the large number of

neutrons in a NS core, the dark vectors can be copiously
produced via the bremsstrahlung process involving the
neutron current. Furthermore, since we are concerned with
the case of low dark vector masses, the contributions from
the electron and proton bremsstrahlung processes in the

crust can and will be neglected. Note that the nucleon
superfluidity in the NS core is still under debate. At
temperatures below the critical temperature of Cooper pair
formation, the nucleon bremsstrahlung rate may be sup-
pressed by nucleon superfluidity. However, recent studies
[52] on NS cooling indicate that neutron superfluidity in the
middle-aged NS core is weak, and the critical temperatures
are possibly too low to be relevant for our analyses. Thus,
following Ref. [38] the nucleon superfluidity effect will be
ignored in our work.
There exists oscillations between dark vector and photon

due to the mixing term in our model. In the presence of an
inhomogeneous external field, the approximation for the
dark vector-photon conversion probability in the weak-
mixing limit is given by

Pγ0→γ ¼ ε2
����
Z

r

r0

dr0Δðr0Þ exp
�
i
Z

r0

r0

dr00½Δðr00Þ − Δγ0 �
�����

2

:

ð5Þ

The integral starts from the stellar surface r0 ¼ Rs since the
x-ray photons produced inside the NS would be absorbed.
The parameters and detailed calculations for Eq. (5) are
presented in Appendix B. Formγ0 ≲ ðTs=RsÞ1=2, we find an
analytical formula of Eq. (5), which can be found in
Appendix C. We will see that the NS is an excellent test
bed for the dark vector hypothesis since the conversion
probability can be largely enhanced under a strong mag-
netic field. For the approximation to make sense, mγ0

cannot take the vanishing limit, and the numerical value
for ε should be sufficiently small to satisfy the weak-mixing
condition.
A few remarks are in order. The traditional Uð1ÞB−L

model is gauge-anomaly free if right-handed neutrinos are
introduced. While anomaly free at higher energies, the
effective Lagrangian (1) is anomalous due to the mixing
term at low energies. And it is the phenomenology of this
low-energy effective Lagrangian (1) that we want to discuss
in this work. We also note that the constraints on e0 that we
obtain from NS cooling in this work do not depend on
the mixing term and can be applied to the traditional
Uð1ÞB−L model.

III. DARK VECTOR PRODUCTION

In this section, we calculate the emission rate of dark
vectors from the neutron bremsstrahlung in the NS core.
Supplements for the calculations are given in Appendix D.

A. Dark vector emission rate

The dark vector energy emission rate per unit volume for
the process N1 þ N2 → N3 þ N4 þ γ0 (N ¼ n, p) in a
strongly degenerate nuclear matter is given by [30,37]
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Qγ0 ¼
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3
d3p3

ð2πÞ3
d3p4

ð2πÞ3
d3ω
ð2πÞ3

SjMj2
25E�

1E
�
2E

�
3E

�
4ω

ωf1f2ð1 − f3Þð1 − f4Þ

× ð2πÞ4δðE�
1 þ E�

2 − E�
3 − E�

4 − ωÞδ3ðp1 þ p2 − p3 − p4 − pγ0 Þ; ð6Þ

where the symmetry factor S ¼ 1=4 for the identical
particles in the initial and final states and S ¼ 1 for mixed
processes, the squared matrix element jMj2 ¼ P

spins jMj2
sums over initial and final spins, ω is the energy of emitted
dark vector, pk is the momentum associated with the
nucleon Nk (k ¼ 1, 2, 3, 4), and pγ0 is the momentum
of the dark vector. In the presence of a nuclear mean field
UN , the energy dispersion relation of the nucleon is
modified to be

EN ¼ E� þUN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2�

q
þUN; ð7Þ

where m� is the effective nuclear mass, and E� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2�

p
is the effective energy. Note that the nuclear

energies that enter the energy δ-function and the denomi-
nator on the right-hand side of Eq. (6) are the effective
energies [37]. The fermion phase-space distribution func-
tion is given by

fk ¼ ðeðEk−μkÞ=T þ 1Þ−1; ð8Þ

where μk is the nuclear chemical potential of Nk. With
Eq. (7) we have Ek − μk ¼ E�

k − μ�k, where μ
�
k ¼ μk −UN .

The occupation numbers f1;2 and the Pauli blocking factors
ð1 − f3;4Þ are for the incoming and outgoing nucleons. The
dark vector are assumed to escape freely so that a Bose
stimulation factor, as well as its absorption, are neglected.
In the nonrelativistic (NR) limit, the nucleon effective

massm� is much larger than all other energy scales, such as
the temperature or Fermi energies, so that the energy taken
by the nucleon is E� ≃m� þ Ekin, where Ekin ¼ p2=2m� is
the nuclear kinetic energy. In a bremsstrahlung process, the
radiation typically carries the momentum jpγ0 j ≃ Ekin ≪ jpj
and, therefore, the outgoing nucleons carry essentially all of
the momentum and the radiation momentum can be
neglected. With these approximations, we show in the
next section the scattering matrix element of the nucleon
bremsstrahlung, and in Appendix D we calculate the
emission rate (6) in the degenerate limit.

B. Squared matrix element

As shown above, the effective couplings of A0
μ to electron

and proton in the medium are suppressed in the limit of
light mγ0 . The emission of dark vector from the neutron-
neutron bremsstrahlung is the primary production mecha-
nism in the inner core of a NS. The nucleon-nucleon
interaction in the nucleon-nucleon bremsstrahlung was

treated by the one-pion-exchange (OPE) approximation
in Ref. [53] and was used in the calculation of the axion
emission rate from the nucleon-nucleon bremsstrahlung
[30]. For our present work, it is sufficiently reliable to
calculate the dark vector emission rate using the OPE
approximation (see also Ref. [19]). Conservatively, we also
include a factor of 1=4 [54] in the emission rate to account
for the overestimation in the OPE approximation at lower
temperatures [55]. Additional remarks on the OPE approxi-
mation are provided in Appendix E.
We show the Feynman diagrams for the process nþ n →

nþ nþ γ0 (where γ0 ≡ A0) in Fig. 1. The dark radiation is
induced by the neutron in the initial and final states in the
scattering via the exchange of a neutral pion. The squared
matrix element is given by [19]

jMj2nn ¼
64m2�jkj2
ω2m4

π

�
Ckjkj4

ðjkj2 þm2
πÞ2

þ Cljlj4
ðjlj2 þm2

πÞ2

þ Cklðjkj2jlj2 − 2jk · lj2Þ
ðjkj2 þm2

πÞðjlj2 þm2
πÞ
	
; ð9Þ

where mπ is the pion mass, the momenta k ¼ P2 − P4,
l ¼ P2 − P3, with Pk being the four-momenta associated
with nk (k ¼ 2, 3, 4), and k ¼ p2 − p4 and l ¼ p2 − p3.

FIG. 1. Feynman diagrams for the bremsstrahlung process
nþ n → nþ nþ γ0.
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In the NR limit, the nucleon mass is much larger than the
temperature, the dark vector mass, and the transferred
momenta, i.e., m2� ≫ k2; l2. Furthermore, the four-
momenta transferred among the nucleons are much larger
than the momentum carried by the dark vector, i.e.,
k2; l2 ≫ p2

γ0 ;ω
2; m2

γ0 . For the model considered in this
work, the coefficients are given by

Ck ¼ f4nnðg2α þ g2βÞ; Cl ¼ f4nnðg2α þ g2β − 2gαgβÞ;
Ckl ¼ f4nnðg2α þ g2β − 2gαgβÞ; ð10Þ

where fnn ¼ f, and f ≃ 1.05 is the pion-neutron coupling;
the parameter gα ¼ gβ ¼ e0 ≡ gn is the coupling between
A0 and neutron. We see that only the coefficient Ck is
nonzero.
The Feynman diagrams for the process nþ p → nþ

pþ γ0 are depicted in Fig. 2. The squared matrix element
for this process is given by

jMj2np ¼ 64m2�jkj2
ω2m4

π

�
Ckjkj4

ðjkj2 þm2
πÞ2

þ Cljlj4
ðjlj2 þm2

πÞ2
	
; ð11Þ

where Ck ¼ Cl ¼ f4npg2n, with fnp ¼ ffiffiffi
2

p
f as required by

isospin invariance. Due to the plasma effects, we have
neglected the diagrams where the dark vector is emitted
from an electron or proton.

C. Dark vector luminosity

Given the emission rate, to compute the luminosity of
dark vectors from the NS core we need to know the NS
equation of state (EOS), which determines the matter
distribution in the NS, the chemical potential of the matter,
and the profiles of neutron and proton Fermi momenta. In
our analysis, we employ the Akmal-Pandharipande-
Ravenhall (APR) EOS [56] to model the uniform nuclear
matter in the NS core and assume a NS mass of 1.4 M⊙,
which corresponds to a NS core radius of 11.0 km. It is
expected that the nucleon bremsstrahlung in the NS core
dominates the production of dark vectors. For the weak
coupling theory, the mean free path of dark vector in the

medium is much larger than the size of the NS. So in the
calculation, we have neglected the dark vector reabsorption
effect.
The differential dark vector luminosity is given by

integrating the differential emissivity over the volume of
the NS,

dLγ0

dω
¼ 4π

Z
r0

0

drr2
dQγ0

dω
: ð12Þ

Integrating the differential luminosity over ω, we obtain the
total dark vector luminosity. With the APR EOS for the NS
and a light dark vector with mass mγ0 ≪ keV, the dark
vector luminosity from the NS core can be estimated as

Lγ0 ≃ ð3.0 × 1037 erg · s−1Þ
�

e0

10−12

�
2
�

Tc

109 K

�
4

; ð13Þ

where Tc is the core temperature of the NS. The emission of
dark vectors can result in NS cooling. Since the standard
NS cooling scenario, in terms of neutrino and photon
emissions fits rather well to the observation of the NSs, the
stellar cooling can be used to constrain the dark vec-
tor model.
In Fig. 3, we plot the dark vector “energy emission rate”

Qγ0=I, where I is given by Eq. (D5), as a function of the NS
radius, with mγ0 ¼ 10−5 eV and e0 ¼ 10−12. The dashed
and dot-dashed curves represent the results for the process
nþ n → nþ nþ γ0 and nþ p → nþ pþ γ0, respectively.
As expected, the neutron-neutron bremsstrahlung domi-
nates the emission of dark vectors. The nearly constant
emission rate extends to the radius r≲ 8 km and decreases
sharply when approaching the surface. We show the
differential luminosity of dark vectors as a function of
dark vector energy in Fig. 4, again withmγ0 ¼ 10−5 eV and
e0 ¼ 10−12. As shown in the left plot of Fig. 4, the

FIG. 2. Feynman diagrams for the bremsstrahlung process
nþ p → nþ pþ γ0.

FIG. 3. The Qγ0=I profile as a function of the radius in the core
of the NS, with e0 ¼ 10−12 and mγ0 ¼ 10−5 eV.
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differential luminosity of dark vectors is nearly a constant
for ω≲ Tc and cuts off at ω ∼ Tc, due to the factor e−ω=Tc

in the differential luminosity. In the right plot of the figure,
we observe that both the constant regime and the cutoff
point of dLγ0=dω increase with the NS core temperature.

IV. NEUTRINO AND PHOTON LUMINOSITIES

One of the most fascinating stars known in the Universe
is the NS, whose birth in supernova explosions is accom-
panied by the most powerful neutrino outburst. The
standard NS cooling scenario based upon the pioneering
works [53,57–60] includes several neutrino emission proc-
esses (see [61] for a review). The direct Urca cooling
process consists of beta decay and electron capture that can
induce a huge sink of energy in the NS core. However, a
sufficiently small separation between the Fermi levels of
protons and neutrons is required to activate this mode,
which generally requires a minimum mass of the NS,
denoted by MD, that is significantly larger than the
canonical NS mass of 1.4 M⊙ [62,63]. For the NS with
mass less than MD, the modified Urca cooling mode can
take place everywhere and dominate the NS cooling
process. The modified Urca process is similar to the direct
Urca, but involves an additional nucleon spectator,

nþ n → pþ nþ eþ ν̄e; nþ pþ e → nþ nþ νe;

ð14Þ

pþ n → pþ pþ eþ ν̄e; pþ pþ e → nþ pþ νe:

ð15Þ

The modified Urca by the neutron branch is shown by
Eq. (14). Its neutrino emission rate in the NS core is given
by [53]

Qn
ν ≃ ð7× 1020 erg · s−1 · cm−3ÞRM

�
ρ

ρ0

�2
3

�
Tc

109 K

�
8

; ð16Þ

where ρ is the NS mass density profile, ρ0 ¼ 2.8 × 1014 g ·
cm−3 is the nuclear saturation density, Tc is the NS core
temperature, and the suppression factor RM ≤ 1 appears
with the onset of superfluidity. Cooper pair cooling could
become dominant if the superfluidity occurs. However, as
argued above, the critical temperature for the Cooper pair
formation is possibly too low to be relevant for this work.
We thus do not take the superfluidity into account.
The proton branch, Eq. (15),was first analyzed inRef. [64]

by using the same formalism as that in Ref [53]. The
expression for the neutrino emissivity in the proton branch
can be approximated by the following rescaling relation [61]:

Qp
ν ≃

�
mp

�
mn�

�
2 ðpF;e þ 3pF;p − pF;nÞ2

8pF;epF;p
ΘFQn

ν ; ð17Þ

where mp
� and mn� are the effective masses of proton and

neutron, respectively, and pF;e, pF;p, and pF;n are the Fermi
momenta of electron, proton, and neutron, respectively. Note
that ΘF ¼ 1 for pF;n < 3pF;p þ pF;e; otherwise, ΘF ¼ 0.
As an example, take pF;e ¼ pF;p ¼ pF;n=2, we have
Qp

ν ≃ 0.5Qn
ν , i.e., the proton branch is nearly as efficient

as the neutron branch. In addition to the Urca processes, the
neutrino’s emission processes can also be induced by the
bremsstrahlung in nucleon-nucleon collisions, which, how-
ever, are subdominant for theNScooling (a summary of these
processes can be found in Figs. 11 and 12 of Ref. [61]).
Summing up all of the processes, the total neutrino emission
rate can be estimated as Qν ≃ RQn

ν , with a rescaling factor
R ≃ 1.5 [61]. With the neutrino emission rate, we can then
determine the neutrino luminosity by the integration

FIG. 4. The dark vector spectrum dLγ0=dω as a function of frequency ω, with e0 ¼ 10−12 and mγ0 ¼ 10−5 eV. We fix the core
temperature at Tc ¼ 50 keV in the left plot. The dot-dashed, dashed, and solid lines in the right plot represent the total spectrum with the
core temperature Tc ¼ 10, 50, 100 keV.
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Lν ¼ 4π

Z
r0

0

drr2Qν; ð18Þ

where r0 ¼ 11 km is the NS core radius. For the APR EOS,
the neutrino luminosity is then given by

Lν ≃ ð8.1 × 1039 erg · s−1Þ
�

Tc

109 K

�
8

: ð19Þ

Previous literature has obtained the constraints on new
physics models, e.g., the axion coupling, by requiring that
the emissivity of the new particle should not exceed that of
the neutrino, i.e., Lγ0 < Lν [65]. Otherwise, the evolution of
the NS will be strongly altered by the new physics, which is
in conflict with the observations. As shown above, in
addition to the NS density profile, the luminosities of dark
vector and neutrino strongly depend on the core temper-
ature, which, however, cannot be determined by the EOS or
by direct measurements. The core temperature may be
inferred from the NS surface temperature observations but
suffers from large uncertainties [38]. In Fig. 5, we depict
the relation between core temperature and surface temper-
ature at infinity using NSCool code [49] (with the default NS
model). We observe that the relation is independent of the
new gauge coupling e0 (with ε ¼ 0). However, as we will
show below, the luminosity at infinity cannot be solely
determined by the luminosity at NS surface if there are
conversions between photon and dark vector during their
propagation toward the observer. In this case, there is no
direct relation between core temperature and surface
temperature at infinity. Furthermore, in the standard NS

evolution, the additional heating effects can be neglected
for the middle-aged NS, and the evolution of NS core
temperature with the time is expected to follow a power law
Tc ≃ ð109 KÞðt=yrÞ−1=6 [63]. Such a relationmay also break
down in new physics if the cooling of the NS is strongly
affected by the emissions of new weakly-interacting par-
ticles. In this work, we will perform numerical simulations
of NS cooling based on the modified NSCool code that
includes additional energy loss via the dark vector emission.
In this way, we determine the core temperature and the
surface luminosity for the NS with a given age. This will be
described in detail below.
In the standard NS cooling model, the emissions of

neutrinos and photons lead to the NS cooling. In the early
stage, the neutrino emission is the dominant mode for the
NS cooling. As the stellar temperature drops, the NS
cooling by photon emissions becomes significant since
the neutrino luminosity decreases much faster than that of
photon. For NSs with age t≳ 100 kyr, the photon emission
will exceed the neutrino one [65] and thus dominates the
NS cooling process.
We now turn to the photon emission of NSs. The NS

cooling due to the emission of photons is directly measured
by the NS surface photon luminosity, which is given by

Lγ ¼ 4πR2
sσT4

s ; ð20Þ

where σ is the Stefan-Boltzmann constant, Rs is stellar
radius, and Ts is stellar surface temperature. Without
photon-dark vector conversions, the observed surface
photon luminosity at infinity is accordingly redshifted as

L∞
γ ¼ e2ϕsLγ; ð21Þ

where ϕs is the gravitational potential at the stellar surface,
and

eϕs ¼
�
1 −

2GM
Rsc2

�
1=2

≃ 0.79; ð22Þ

where G is the gravitational constant, and M is the
stellar mass.
However, the observed surface photon luminosity will be

changed if the photons and dark vectors can convert into
each other during their propagation to the Earth. For the NS
with age ∼106 yr that is concerned in this work, we will
show that the surface luminosity of the NS will be
dominated by the photon emissions. For the parameter
space we are interested in, the dark vectors’ luminosity is
always a subdominant component and, therefore, their
contributions to the observed photon luminosity will be
neglected. In this case, the surface photon luminosity
observed at infinity is given by

FIG. 5. We determine the relation between the core temperature
and the surface temperature at infinity by the NSCool code. The
black and red lines represent the results with e0 ¼ 10−12 and
10−13, respectively, and coincide with each other in the figure.
The dashed and solid lines denote the results with and without
taking into account the pair breaking formation (PBF) processes,
respectively. We take the γ − γ0 mixing angle ε ¼ 0 in this plot.
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L∞
γ ¼ e2ϕs

Z
∞

0

dωð1 − Pγ→γ0 ðωÞÞ
dLγ

dω
; ð23Þ

where Pγ→γ0 ðωÞ ¼ Pγ0→γðωÞ is the photon-dark vector con-
version probability, which will be given in Appendix B.
Since the Stefan-Boltzmann law (20) can be obtained by
integrating the Planck’s law over ω, the differential surface
luminosity of the photon is given by

dLγ

dω
¼ 4πR2

s
T3
s

4π2
x3

ex − 1
; with x ¼ ω

Ts
: ð24Þ

We will show in Appendix C that the γ − γ0 conversion
probability can be written as Pγ→γ0 ðωÞ ¼ P0ω

2 for dark
vector in the mass range mγ0 ≲ ðω=RsÞ1=2 ∼ 3 × 10−5 eV,
with ω ∼ Ts ∼ 50 eV. With these, we finally obtain the
observed surface photon luminosity at infinity by taking
into account the γ − γ0 conversion,

L∞
γ ¼ e2ϕs

�
Lγ −

2π4P0As

63
T6
s

�
; ð25Þ

where As ¼ 4πR2
s . The surface temperature at infinity is

then given by

T∞
s ¼ eϕs

�
T4
s −

2π4P0

63
T6
s

�
1=4

: ð26Þ

Using these results, we can determine the observed surface
luminosity and temperature by including the redshift by the
gravitational potential, as well as the γ − γ0 conversion,
once we know the values of Lγ and Ts at the NS surface.
The validation of Eqs. (25) and (26) should be further

clarified. One may be concerned that the approximation
of the probability requires ω≳m2

γ0Rs. However, we have
integrated over ω in the range of ð0;∞Þ for Pγ→γ0dLγ=dω.

It is easy for the reader to confirm that there is nearly no
difference between the integration over ω in the ranges of
ð0;∞Þ and ð0.9Ts;∞Þ, which means that the small values
of ω≲ 0.9Ts make negligible contributions to the integra-
tion. We thus conclude that Eqs. (25) and (26) are valid
for our calculations provided that mγ0 ≲ 3 × 10−5, with
ω ∼ Ts ∼ 50 eV.
In Fig. 6, we show the variation of the surface luminosity

observed at infinity L∞
γ with the mixing angle ε. We assume

the surface luminosity Lγ ¼ 8.4 × 1031 erg=s and temper-
ature Ts ¼ 47.1 eV for the NS. As shown in this figure, the
γ − γ0 conversion strongly reduces the observed surface
luminosity when the mixing angle reaches values of ∼10−8.

V. NS COOLING SIMULATION

In this work, we employ the NSCool code [49] for the
numerical simulation of the thermal evolution of the star.
The current version of the NSCool code incorporates all
the corresponding neutrino cooling reactions, including
direct and modified Urca processes, nucleon-nucleon
bremsstrahlung, as well as the thermal Cooper pair break-
ing and formation (PBF). We modify the code to include
the emissivity of the dark vector so that it can take part in
the NS cooling along with the neutrino emission processes.
For the core of the NS, we adopt the APR EOS with a mass
1.4 M⊙ (Prof_APR_Cat_1.4.dat). For the crust
EOS, we use the default profile implemented by the file
Crust_EOS_Cat_HZD-NV.dat.
We focus on the observations from one of the M7

members, RX J1856.5-3754 (J1856 for short), which
locates at a distance 123� 13 pc away from us and has
an age around ð4.2� 0.8Þ × 105 yr [66,67] (a summary
can be found in Refs. [52,68]). Recent studies [52] on NS
cooling indicate that the critical temperature is very low and
the neutron superfluidity is very weak for the middle-aged
NS. We thus turn off the PBF processes in the simulations
with NSCool, as is done in Ref. [38]. We find that the results
from the standard NS cooling without including the PBF
processes can account for the surface luminosity observa-
tions on J1856 quite well. However, the simulation includ-
ing the PBF processes predicts a much lower surface
luminosity than the observation.
In Fig. 7, we depict the neutrino (blue), dark vector

(dark), as well as photon (yellow) surface luminosities as a
function of NS age. In the simulations, we assume
e0 ¼ 10−13; 5 × 10−13, and 10−12, and the results are
represented by the solid, dashed, and dotted curves,
respectively. The blue, dark, and yellow curves represent
the neutrino, dark vector, and photon surface luminosities,
respectively. The red point represents the observation of the
J1856 surface luminosity. It is shown by the simulations
that the photon luminosity is the dominant component for
J1856. We find that the model with a new gauge coupling
e0 ≲ 10−13 predicts the same age-luminosity profile as the
standard NS cooling model since in this case the cooling by

FIG. 6. Surface luminosity observed at infinity as a function of
ε, with Lγ ¼ 8.4 × 1031 erg=s and Ts ¼ 47.1 eV.
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the dark vector emission is negligible. There is a significant
deviation in the photon luminosity from the observation
when e0 increases to 5 × 10−13 and, therefore, e0 should be
constrained by the observation. We will show the con-
straints on the model by fitting to the observations below.

VI. X-RAY FROM DARK
VECTOR-PHOTON CONVERSION

Recent analyses of the data from the XMM-Newton and
Chandra x-ray telescopes [48] show a significant excess of
hard x-ray emissions, in the energy range of 2–8 keV, from
the nearby M7 x-ray dim isolated NSs. In particular, it has
been shown in Ref. [48] that the NS J1856 hard x-ray
spectrum has a ∼5σ excess, which is the most significant
hard x-ray excess among the M7 members. The fact that the
hard x-ray excess is observed in some NSs but not others
depends on the experimental measurements, as well as the
NS properties [38]. Observations by the Roentgen Satellite
(ROSAT) All Sky Survey [69] have shown that all the M7
members have soft spectra that are well described by
near-thermal distributions with surface temperatures
∼50–100 eV and, therefore, they are expected to produce
negligible hard x-ray flux. The explanation of the hard
X-ray excess in the context of an axion model has been
explored in Ref. [38] and is found to be consistent with the
current constraints. In this work, we explore the interpre-
tation for the excess in the dark vector scenario.
The conversion probability between dark vector and

photon is proportional to the square of the magnetic field
strength. Observations show that all the M7 NSs have
strong magnetic fields with a characteristic dipole magnetic

field strength around ∼1013 G. Therefore, the NSs provide
an excellent place to test the γ0 − γ oscillations. Having
calculated both the differential luminosity of dark vectors
(12) and the dark vector-to-photon conversion probability
Pγ0→γ in Appendix B, the differential flux of hard x-ray
photons produced from dark vector-photon conversion is
given by

FγðωÞ ¼
Pγ0→γ

4πd2
dLγ0

dω
; ð27Þ

where d is the distance between the NS and Earth. The
probability depends on the dipole magnetic field orienta-
tion θ. In this work we adopt the θ-averaged conversion
probability P̄γ0→γ ¼ 1

2π

R
2π
0 dθPγ0→γðθÞ as an approximation

for our calculations. In the limit of small dark vector mass,
mγ0 ≲ ðω=RsÞ1=2 ∼ 10−4 eV for energy ω ∼ 1 keV and NS
radius Rs ≃ 11 km; P̄γ0→γ becomes independent of mγ0 (see
Eq. (C3) in Appendix C). Note that in order to compare
with the observed hard x-ray spectrum, the differential flux
FγðωÞ is calculated at energy ω ¼ Eobs=eϕs, where Eobs is
the observed photon energy. Then the differential flux
observed at infinity is given by F∞

γ ðEobsÞ ¼ e3ϕsFγðωÞ.
Compared with the photon differential luminosity dLγ=dω,
whose maximum value is obtained at energy ω ≃ 2.82Ts ∼
141 eV with a surface temperature Ts ∼ 50 eV, the hard x-
ray spectrum FγðωÞ from γ0 → γ conversion has its maxi-
mum value at a much higher energy ω ≃ 3.31Tc ∼ 6.6 keV,
with a core temperature Ts ∼ 2 keV (the surface-core
temperature relation can be found in Fig. 5). We thus expect
the flux from γ0 − γ conversion canmake contributions to the
hard x-ray excess in the energy range 2–8 keV and, at the
same time, reproduce the correct spectrum shape.

VII. STATISTICAL ANALYSIS

Our starting point for the statistical analysis of the
J1856 data in the context of the dark vector model is the
Bayesian inference [70]. For the model consisting of a set
of parameters θ⃗ ¼ fθ1; θ2;…; θng, the Bayes’ theorem is
given by

Pðθ⃗jdataÞ ¼ Pðdatajθ⃗Þ · Pðθ⃗Þ
PðdataÞ ; ð28Þ

where PðdataÞ is the data probability, Pðθ⃗Þ is the prior
probability that indicates the degree of belief one has before
observing the data, and Pðθ⃗jdataÞ is the conditional
probability-density function that is a posterior probability
representing the change in the degree of belief one can have
after giving the measurement data. Note that Pðdatajθ⃗Þ ¼
Lðθ⃗Þ links the posterior probability to the likelihood of the
data, where the likelihood function Lðθ⃗Þ takes the form of

FIG. 7. The NS surface luminosities from the simulations with
e0 ¼ 10−13 (solid line), 5 × 10−13 (dashed line), and 10−12 (dotted
line). The blue, dark, and yellow lines represent the neutrino, dark
vector, and photon surface luminosities, respectively. The red
point denotes the value of L∞

s =e2ϕs , where L∞
s is the observed

surface luminosity of J1856 at infinity, and e2ϕs is the redshift
factor.
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Lðθ⃗Þ ¼ exp ð−χ2ðθ⃗Þ=2Þ; ð29Þ

where

χ2ðθ⃗Þ ¼
Xm
i

ðλexpi − λthei Þ2
σ2i

; ð30Þ

where λexpi denotes the experimental value with an uncer-
tainty in the measurement σi, m represents the number of
data points, and λthei denotes the predicted value for a
given model.
For the dataset, we take into account the J1856 x-ray spec-

trumobservations in 2–8keV [48],T∞
s [38],L∞

γ [71–73], and
the distance measurements [66,67]. Noting that L∞

γ inferred

from the observations is in a narrow band ð0.05–0.08Þ×
1033 erg=s, we take L∞

γ ¼ 0.065 × 1033 erg=s as the central
value and assume a Gaussian distribution for the luminosity.
The parameter set is θ⃗ ¼ fd; e0; εg, where the distance d
enters the spectrum function. We fix the mass of dark vector
mγ0 ¼ 10−6 eV to establish the approximation of conversion
probability, i.e., Eq. (C3). Note that our analysis is indepen-
dent ofmγ0 as long asmγ0 ≲ ðTs=RsÞ1=2 ∼ 3 × 10−5 eV, with
surface temperature Ts ∼ 50 eV.
The performance of the Bayesian statistical analysis is

carried out using the UltraNest package [51], which imple-
ments a nested sampling Monte Carlo technique [74]. It
computes the (log-)likelihood, as well as the marginal
likelihood (“evidence”) Z to perform model comparison.

TABLE I. Summary of the fit results for the parameters.

Parameter Prior range Best-fit Mean=1σ range Median=1σ range

d [kpc] [90, 160] 122.870 123.119=½110.550; 135.688� 123.124=½110.248; 135.894�
e0 × 10−15 [1.3, 12.6] 6.653 5.559=½4.055; 7.62� 5.585=½4.083; 7.430�
ε × 10−9 [0.1, 20.0] 0.641 1.285=½0.478; 3.459� 1.282=½0.457; 3.890�

FIG. 8. Corner plot of the posterior distributions of the parameters.
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Meanwhile, the posterior probability distributions on
model parameters are constructed to describe the parameter
constraints of the data. We assume a uniform prior
distribution for the distance and a log-uniform prior
distribution for e0 and ε. We choose the number of live
points to be 20000, and the total number of the samples
called in the fitting is 225802.
In each running, we simulate the NS cooling based on

the modified NSCool code that includes the dark vector
emissivity. We then determine the surface luminosity, as
well as the surface temperature at the age of J1856. We
obtain a minimum value (corresponding to the maximum
value of the likelihood) of the reduced chi-square
χ2min=DOF ¼ 1.02=3 in the fitting to the data. On the other
hand, when the emissivity of dark vector is turned off in the

fitting, we obtain a value of χ20=DOF ¼ 9.38=6 with the NS
standard cooling model. We thus conclude that we have
made the fitting much better by taking into account the
emission of dark vectors. Therefore, the data supports the
existing of a dark vector with couplings summarized in
Table I.
The corner plot in Fig. 8 shows the posterior distributions

of the parameters. In Fig. 9, we show the predictions of the
model for the J1856 x-ray spectrum. The black curve
denotes the prediction of the model with the median values,
while the black band represents the 1σ confidence interval.
Figure 10 depicts the evolution of the surface luminosity
and temperature observed at infinity with the NS age. In
this plot, we take the parameters to their best-fit values. As
indicated in these figures, the x-ray spectrum, as well as the
luminosity observations, can be well interpreted in the
B − L dark vector model. We note that all of the PBF
processes have been turned off in our simulations.
Including these processes would lead to much lower
surface luminosities than the observations.

VIII. MODEL CONSTRAINTS

The likelihood ratio test [75] is used to determine the
limit on and the significance of a possible dark vector
contribution to the J1856 observations. To do this, we fix e0
and determine the “nuisance parameter” d by minimizing
the chi-square. Upper limits at the 95% confidence level on
ε are derived by increasing the chi-square from its mini-
mum value of the model until it changes by 2.71,
χ2uppðεÞ ¼ χ2minðε̄Þ þ 2.71, with ε̄ denoting the parameter
that minimizes the chi-square at fixed e0. The black curve in
Fig. 11 represents the constraints on e0 − ε, and the grey
region is excluded by the constraint. The green and yellow
regions represent the parameter spaces that are favored by
the observations at 1σ and 2σ confidence intervals. The
conclusions inferred from this figure are summarized as
follows:

FIG. 9. Bands of the model predictions for the spectrum as
calculated from the chain. The black curve denotes the prediction
of the model with the median values, the black band represents
the 1σ (q ¼ 0.341) confidence interval, and the grey band
represents the confidence interval with a quantile value
q ¼ 0.49. The red points are the data of the J1856 x-ray spectrum.

FIG. 10. L∞
s (left plot) and T∞

s (right plot) as a function of age. The blue curve represents the best-fit result, and the red data point
denotes the observation.

PROBING DARK GAUGE BOSON WITH OBSERVATIONS FROM … PHYS. REV. D 105, 123017 (2022)

123017-11



(i) There is an upper limit on the mixing angle
ε < 7.97 × 10−9, which is independent of the gauge
coupling e0 and dark vector mass mγ0 (as long as
mγ0 ≲ 3 × 10−5 eV). This is because the observed
surface luminosity would be strongly suppressed by
the γ − γ0 conversion when ε≳ 10−8, as illustrated in
Fig. 6. This constraint can also be applied to the dark
photon model.

(ii) There is an upper limit on the gauge coupling
e0 < 4.13 × 10−13, which is independent of the
mixing angle ε and dark vector mass mγ0 (as long
as mγ0 ≲ 1 keV). This is because the surface lumi-
nosity would be strongly reduced due to the cooling

of the NS by the dark vector emissivity with
e0 ≳ 5 × 10−13, as shown in Fig. 7.

(iii) For the gauge coupling in the range of
6 × 10−15 ≲ e0 ≲ 10−13, the x-ray spectrum data
dominates the contributions to chi-square. We have
shown that the model with parameters around the
mean values e0 ¼ 5.56 × 10−15 and ε ¼ 1.29 × 10−9

can explain the x-ray spectrum excess in the energy
band 2–8 keV. Since the x-ray spectrum from the
new physics is proportional to ðe0εÞ2, constraints on
ε become stronger with the increase of e0.

In Fig. 12, we compare our constraints with those limits
from cosmological, astrophysical, as well as terrestrial
observations. In the left plot of the figure, we summarize
the constraints on the mixing angle ε in the low mass range
≲10−4 eV. The oscillation between the ordinary photon
and the massive dark photon γ → γ0 induces deviations on
the black body spectrum in the cosmic microwave back-
ground, which has been constrained by the COBE/FIRAS
experiment [76–79] (light-green region). The constraints
from detecting modifications of Coulomb force by the new
gauge force in atomic and nuclear experiments are depicted
by the orange region [80]. Using the phenomenon of light
shining through a wall for dark photons, the grey region has
been bounded by the experiment CROWS [81] at CERN.
We observe that our constraint (light-blue region) on ε from
J1856 surface luminosity observation is much stronger than
the above constraints by about an order of magnitude.
In the right plot of Fig. 12, we summarize the constraints

on the gauge coupling e0. The exchange of light bosons,
such as gauge bosons, scalar axions, and dilatons among
others, generates a Yukawa potential, which is tested by the
fifth force experiments [83–85]. Furthermore, light boson
states emitted from the Sun may be probed in the DM direct

FIG. 11. The black curve denotes the constraint from J1856
observations at 2σ (95%) confidence level, the grey region on the
e0 − ε plane is excluded by the constraint. The green and yellow
regions represent the parameter spaces that are favored by the
observations at 1σ and 2σ confidence intervals.

FIG. 12. Left: constraints on the mixing angle ε as a function of mγ0 . Our constraints from J1856 surface luminosity observations are
depicted by the blue region. The light-green, orange, and grey regions denote the constraints from COBE/FIRAS [76–79], Coulomb
[80], and CROWS [81] experiments, respectively. Right: constraints on the gauge coupling e0 as a function ofmγ0 . The blue, red, orange,
light-green, and light-grey regions represent the constraints from J1856 (our work), the Sun [23], HB [23], XENON1T [82], and the fifth
force experiments [83–85], respectively. The colored regions are excluded by the constraints.
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detection experiments [82,86,87]. We compare our NS
cooling constraint from J1856 (blue region) with the
constraints given by the Sun (red) [23], HB (orange)
[23], XENON1T (green) [82], and the current fifth force
experiments (light-grey) [83–85]. We observe that the fifth
force experiments give the most stringent constraints for
2 × 10−5 eV≲mγ0 ≲ 3 eV. Constraints from J1856 sur-
face luminosity observation are much stronger than those
given by the Sun luminosity observations and the DM
direct detections for the dark vector with mass ≲1 eV. In
summary, we conclude that the 2σ parameter space with
mγ0 ≲ 10−5 eV, for explaining the hard x-ray excess,
remains available when various observation constraints
on the dark vector model are taken into account.
In Table II we summarize the current limits on hard x-ray

intensity for NSs near the galactic plane (J1856, J0806,
J0720, and J2143) from the 105-month Swift Burst Alert
Telescope all-sky hard x-ray jbj ≤ 17.5° survey [88] and the
14-year INTEGRAL galactic plane survey [89]. We also
adopt the projected sensitivity (provided in the supple-
mentary materials of Ref. [38]) at 95% confidence level for
a 400 ks NuSTAR observation of J1856 in two energy
bands. The third column provides the predicted intensities,
assuming the median values of the parameters for the dark
vector model. We observe that the predicted intensities are
far below the current limits from Swift and INTEGRAL,
and future observations on M7 by the NuSTAR experiment
may be useful to test the dark vector model.

IX. SUMMARY AND CONCLUSIONS

The NS is recognized as one of the most excellent
astrophysical laboratories for searching for new light
particles that couple weakly to SM particles. In this work,
we have presented the emission of light dark vectors from
the nucleon bremsstrahlung processes in the core of the NS.
The dark vector is assumed to be a B − L gauge boson and
to have a mass much less than about keV, the core
temperature of the NS. The dominant production mode
of dark vector in the NS core is the neutron bremsstrahlung
since the production of dark vector by the charged particles

in the NS core is suppressed by a factor of m2
γ0 from the in-

medium effect. Since the plasma is thought to be dilute and
nonrelativistic in the Sun and supernova, the nondegenerate
limit was employed to determine the dark vector emissivity
and obtain constraints in previous literature. In the current
work, we present the calculation of the emission rate of
dark vectors from the nucleon bremsstrahlung processes in
the degenerate limit, which is the case for the strongly-
compressed circumstances in the NS core. In addition, we
also calculate the photon luminosity observed at infinity by
taking into account the photon-dark vector conversion
during their propagation.
In this work, we attempt to interpret the J1856 hard x-

ray spectrum excess in terms of the dark vector model,
while taking into account the J1856 surface luminosity
and temperature observations. The thermal photon spec-
trum makes negligible contribution to the hard x-ray
observations since the energy of the thermal spectrum
peak is determined by the surface temperature Ts ∼ 50 eV.
On the other hand, the peak of the spectrum from γ0 → γ
conversion is obtained at a higher energy that is deter-
mined by the core temperature Tc ∼ 2 keV. Therefore, we
expect that the dark vector emission can lead to the hard x-
ray excess. The evolution of the NS with time would be
altered if its energy loss was dominated by the production
of dark vectors rather than the standard neutrino emission.
We perform numerical simulations of NS cooling based on
the modified NSCool code that includes additional energy
loss via the dark vector emission, assuming the APR EOS
for the NS core with a canonical mass of 1.4 M⊙. In this
way, we determine the surface luminosity, as well as the
surface temperature, for the NS with a given age. Then we
calculate the hard x-ray spectrum from γ0 → γ conversion
and consider the inverse conversion for the surface
luminosity observed at infinity. We carry out the
Bayesian statistical analysis of the J1856 data using the
UltraNest package and employ the likelihood ratio test to
construct 95% confidence level upper limits on the
parameters of the dark vector model. Our findings are
summarized as follows:

(i) The fit to the J1856 hard x-ray excess data favors the
dark vector model with e0 ¼ 5.56 × 10−15 and
ε ¼ 1.29 × 10−9. Furthermore, the 2σ parameter
space with mγ0 ≲ 10−5 eV for the interpretation of
the hard x-ray excess does not conflict with any of
the currently observed constraints.

(ii) Due to the γ → γ0 conversion, there exists an upper
limit on the mixing angle, ε < 7.97 × 10−9, for
mγ0 ≲ ðTs=RsÞ1=2 ∼ 3 × 10−5 eV from the J1856
surface luminosity observation. This constraint is
independent of the gauge coupling e0 and can be
applied to the dark photon model.

(iii) The emission of the dark vectors accelerates the NS
cooling and reduces the surface luminosity of J1856,
which leads to an upper limit on the gauge coupling,

TABLE II. The energy is in units of keV and the intensity is in
units of erg=cm2=s. The third column shows the current limit
(Swift and INTEGRAL) and future sensitivity [Nuclear Spectro-
scopic Telescope Array (NuSTAR)] on the x-ray intensity,
whereas the fourth column lists the predicted intensities, assum-
ing the median values of the parameters for the dark vector model.

Experiment
Energy
band

Intensity
limit

Predicted
intensity Reference

Swift 14–195 7 × 10−12 3.56 × 10−16 [88]
INTEGRAL 17–60 1.3 × 10−11 1.74 × 10−16 [89]
NuSTAR 6–10 3 × 10−15 1.03 × 10−15 [38]
NuSTAR 10–60 2 × 10−14 8.59 × 10−16 [38]
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e0 < 4.13 × 10−13, at 95% confidence level for
mγ0 ≲ 1 keV.

Our best-fit dark vector model predicts much lower hard
x-ray intensities than the current limits from the Swift and
INTEGRAL hard x-ray surveys. Future hard x-ray obser-
vations of J1856 by NuSTAR, in particular, may constrain
or provide additional evidence for the best-fit dark vector
from this work. NSs are promising targets for testing the
weakly-interacting light dark vector particle. The con-
straints on the dark vector model can be further improved
with more hard x-ray observations of NSs from future
telescopes.
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APPENDIX A: IN-MEDIUM EFFECTS FOR
(DARK) PHOTONS

This appendix briefly reviews the results of photon self-
energies in plasmas given in Refs. [90,91]. To leading order
in the EM coupling constant α, the EM polarization tensor
Πμν that determines the effects of a plasma on the
propagation of photons is given by [90]

ΠμνðKÞ ¼ 16πα

Z
d3p
ð2πÞ3

fe þ fē
2E

×
P ·KðPμKν þKμPνÞ−K2PμPν − ðP ·KÞ2gμν

ðP ·KÞ2 − ðK2Þ2=4 ;

ðA1Þ

where fe and fē are the Fermi distribution function for
electron and positron, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

e

p
, Kμ ¼ ðω;kÞ,

Pμ ¼ ðE;pÞ, K2 ¼ ω2 − k2, and P · K ¼ Eω − p · k. The
integration over the angular parts can be performed by
ignoring the K4 term. Taking into account the degenerate
ðT ≪ μ −meÞ and relativistic (T ≫ me or μ ≫ me) limits,
one obtains the transverse and longitudinal polarization
functions,

ΠT ¼ ω2
p

�
1þ 1

2
Gðv2�k2=ω2Þ

	
≡ πT; ðA2Þ

ΠL ¼ ω2
p
k2

ω2

1 − Gðv2�k2=ω2Þ
1 − v2�k2=ω2

≡ k2

ω2 − k2
πL; ðA3Þ

where v� denotes the typical electron velocity in the
plasma, ωp is the plasma frequency, which is dominated
by the electrons,

ωp ¼
�
4παne
EF;e

�
1=2

with E2
F;e ¼m2

eþð3π2neÞ2=3: ðA4Þ

Under the high density circumstance in the NS
core, the electron Fermi momentum pF;e ¼ ð3π2neÞ1=3 ∼
Oð100Þ MeV ≫ me; T. Finally, the function,

GðxÞ ¼ 3

x

�
1 −

2x
3
−
1 − x
2

ffiffiffi
x

p ln
1þ ffiffiffi

x
p

1 −
ffiffiffi
x

p
�
: ðA5Þ

In the Coulomb gauge, the transverse and longitudinal
components of the effective propagator for the EM field are
given by

Di;j
T ðω; kÞ ¼ 1

ω2 − k2 − ΠT

�
δij −

kikj

k2

�
; ðA6Þ

D0;0
L ðω; kÞ ¼ 1

k2 − ΠL
: ðA7Þ

With the explicit expression of the photon propagator, one
can find that the emission of dark vectors is given by the
vacuum matrix element for the emission of massive
photons and multiplied by the effective coupling given
by Eq. (3) [25], i.e.,

MT;L ¼ efeffJf;μϵ
μ
T;L: ðA8Þ

This equation shows that the dark vector produced by the
EM charged current is suppressed by the dark vector mass.
While for neutral currents, the effective coupling eneff ¼ e0,
thus the dark vector produced from this process in medium
is the same as that in the vacuum, and the production is not
suppressed [25].

APPENDIX B: CONVERSION PROBABILITY

The dark vectors emitted from the neutron bremsstrah-
lung processes may be converted into x-ray photons as they
propagate outwards through the magnetosphere around the
magnetized NS. The stellar magnetic field is assumed to be
dipolar,

BðrÞ ¼ B0

�
r0
r

�
3

; ðB1Þ

where B0 is the magnetic field at the surface of the NS, and
r0 is the NS radius. The evolution of the photon and the
dark vector in the presence of an external magnetic field can
be described in terms of the following system of first-order
differential equations [50,92]:

�
i∂r þ ωþ

� Δ εΔ
εΔ Δγ0

�	�
A

A0

�
¼ 0; ðB2Þ

where the term Δγ0 ¼ −
m2

γ0
2ω (ω being the energy of the

fields) is due to the finite dark vector mass. The condition
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mγ0 ≪ ω is required to satisfy the weak-dispersion limit
[32]. These equations can describe the propagations of both
the perpendicular modes and the parallel modes. Strong-
field QED effects in vacuum give rise to the term [93]

Δ ¼ 1

2
qω sin2 θ; ðB3Þ

where θ is the angle between the direction of propagation
and the magnetic field, and q is a dimensionless function of
b ¼ BðrÞ=Bc (where the critical QED field strength
Bc ≡m2

ec3=ðeℏÞ ¼ 4.414 × 1013 G) given by [92,94]

q⊥ ¼ 4α

45π
b2q̂⊥; with q̂⊥ ¼ 1

1þ 0.72b1.25 þ 0.27b2
;

ðB4Þ

qk ¼
7α

45π
b2q̂k; with q̂k ¼

1þ 1.25b
1þ 1.33bþ 0.56b2

; ðB5Þ

where⊥ and k denote the perpendicular and parallel modes
of the dark vectors, respectively. These formulae have the
correct b ≫ 1 and b ≪ 1 limits. Since the observer is far
away from the source, we take the latter limit, in which we
have q̂⊥=k ≃ 1. Note that these results are only valid for
photon energies below the electron mass me ∼ 500 keV,
which is applicable for dark vector photon with energies in
the hard x-ray frequency regime.
We follow Ref. [92] to resolve differential equations (B2)

in the weak-mixing limit. Equation (B2) can be rewritten as
a “Schrödinger equation”:

i∂rA ¼ ðH0 þH1ÞA; ðB6Þ

where A⊤ ¼ ðA; A0Þ and the “Hamiltonian” matrices are

H0 ¼
�
ωþ Δ 0

0 ωþ Δγ0

�
and H1 ¼

�
0 εΔ
εΔ 0

�
:

ðB7Þ
The Schrödinger equation in the interaction representation
is given by

i∂rAint ¼ HintAint; ðB8Þ

where

Aint ¼ U†A and Hint ¼ U†H1U: ðB9Þ

The “transformation operator” is defined as

UðrÞ ¼ exp

�
−i

Z
r

r0

H0ðr0Þdr0
�
; ðB10Þ

where r0 is the initial position. The solution at order nþ 1
can be obtained order by order,

Anþ1
int ðrÞ ¼ −i

Z
r

r0

dr0Hintðr0ÞAn
intðr0Þ; ðB11Þ

with the zero-order solution A0
intðrÞ ¼ Aðr0Þ. For the first-

order solution, we have

A1
intðrÞ ¼ −iMðrÞAðr0Þ; ðB12Þ

where the matrix

MðrÞ ¼
� 0

R
r
r0
εΔðr0Þei½I1ðr0Þ−I2ðr0Þ�dr0R

r
r0
εΔðr0Þei½I2ðr0Þ−I1ðr0Þ�dr0 0

�
; ðB13Þ

with

I1ðr0Þ ¼
Z

r0

r0

Δðr00Þdr00 and I2ðr0Þ ¼
Z

r0

r0

Δγ0dr00: ðB14Þ

The dark vector-photon conversion probability at the first-
order (in the interaction representation) is

Pγ0→γ ¼ jM12j2

¼ ε2
����
Z

r

r0

dr0Δðr0Þ exp
�
i
Z

r0

r0

dr00½Δðr00Þ − Δγ0 �
�����

2

:

ðB15Þ
Obviously, the conversion probability in the Schrödinger
representation equals to Eq. (B15) with transforma-
tions (B9).

APPENDIX C: ANALYTICAL RESULTS FOR
CONVERSION PROBABILITY

In this section, we show some analytical results for the
dark vector-photon conversion probability to directly see
how the probability is enhanced by a strong magnetic field.
Since both modes of dark vector obey the same equations of
motion (B2), we will focus on the parallel mode below. The
dark vector-photon conversion probability in the weak-
mixing limit is given by

Pγ0→γ ¼ ε2
����
Z

r

r0

dr0Δkðr0Þexp
�
i
Z

r0

r0

dr00½Δkðr00Þ−Δγ0 �
�����

2

≃ ε2
����
Z

r

r0

dr0Δkðr0Þexpfi½ðΔγ0 þ y=10Þr0−Δγ0r0�g
����
2

;

ðC1Þ
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where y ¼ 7α
45π ðB0

Bc
Þ2ω sin2 θ. We plot Pγ0→γ as a function of

mγ0 and θ in Fig. 13. In both plots, we take B0 ¼ 1014 G and
ε ¼ 10−12.As shown in the left plot of Fig. 13, theprobability
Pγ0→γ is a constant in the limit of low dark vector mass,mγ0 ≲
ðω=RsÞ1=2 ∼ 10−4 eV at frequencies ω ∼ 1 keV and NS
radius Rs ≃ 11 km. Due to the term Δγ0r0 in the exponent
of Eq. (C1), as mγ0 further increases, the probability is
suppressed and oscillates around a constant, which is
represented by the dashed line in the left plot. In the right
plot we show the probability as a function of θ, the angle
between the direction of propagation and the magnetic field,
with mγ0 ¼ 10−5 eV.
For small values of mγ0 , the oscillation term Δγ0r0 can be

neglected and the conversion probability is approximated
as

Pγ0→γ ≃
�

7α

450π

�
B0

Bc

�
2

εωr0sin2θ

	
2

: ðC2Þ

Averaged over θ, the probability can be parametrized as

P̄γ0→γ ¼ 1.49 × 10−5
�

ε

10−12

�
2
�

B0

1014 G

�
4
�

r0
11 km

�
2

×

�
ω

1 keV

�
2

: ðC3Þ

Note that we have used the θ-averaged probability in our
calculations for the luminosity and spectrum. In the
presence of an inhomogeneous external field, the proba-
bility is proportional to ω2 for the dark vector-to-photon
conversion [50] but is inversely proportional to the fre-
quency in the zero background field limit [95–97].
Furthermore, when the external field is removed, the
conversion probability approaches zero in the limit of

low dark vector mass since, in this case, the probability
is proportional to m2

γ0 [95–97]. However, for the case of an
inhomogeneous external field, the dark vector-to-photon
conversion probability does not depend on mγ0 in the low
dark vector mass limit [50], which also appears in the
axion-photon conversion [38].

APPENDIX D: DARK VECTOR EMISSION IN
STRONG DEGENERATE PLASMA

For the nucleon-nucleon bremsstrahlung emission of dark
vectors in the NS core, we can safely assume a degenerate
limit because of Tc ≪ OðMeVÞ in the core of the NS. Let us
first consider the process nþ p → nþ pþ γ0, the dark
vector energy emission rate is given by the formula (6).
Multiply the equation by one in the form [37]

1 ¼
Z

∞

0

dp1dp2dp3dp4δðp1 − pFnÞδðp2 − pFpÞ

× δðp3 − pFnÞδðp4 − pFpÞ

¼ 1

p2
Fpp

2
Fn

Z
dE1dE2dE3dE4E�

1E
�
2E

�
3E

�
4δðp1 − pFnÞ

× δðp2 − pFpÞδðp3 − pFnÞδðp4 − pFpÞ; ðD1Þ

wherepk ≡ jpkj andpFn andpFp are the Fermimomenta for
neutron and proton, respectively, and pkdpk ¼ E�

kdE
�
k has

been used. The squared matrix can be expanded as

jMj2 ¼ aðk; lÞω−ξ; ðD2Þ

where ξ ¼ 2 for matrix (9) and (11). The energy emission
rate (6) can be written as

FIG. 13. Left: the conversion probability Pγ0→γ as a function ofmγ0 , with θ ¼ π=3. The dashed curves denote the constants at which the
probabilities oscillate around. Right: the conversion probability Pγ0→γ as a function of θ, with mγ0 ¼ 10−5 eV. In both plots, we assume
B0 ¼ 1014 G and ε ¼ 10−12.
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Qγ0 ¼
S

214π10p2
Fpp

2
Fn

AI; ðD3Þ

where the energy integral is

I ¼
Z

dωω2−ξ
Z

dE1dE2dE3dE4δðE1þE2−E3−E4−ωÞ

×f1f2ð1−f3Þð1−f4Þ; ðD4Þ

after using E1 þ E2 − E3 − E4 ¼ E�
1 þ E�

2 − E�
3 − E�

4. In
the strong degeneracy limit μj=T → ∞, which is a good
approximation for the processes taking place in the NS core,
the energy integral is given by [31]

I ¼ T6−ξ

6

Z
∞

0

dx
x3−ξðx2 þ 4π2Þ

ex − 1
¼ 11π4

90
T4: ðD5Þ

The angular integral is given by

A ¼
Z

d3p1d3p2d3p3d3p4δ
3ðp1 þ p2 − p3 − p4Þ

× δðp1 − pFnÞδðp2 − pFpÞδðp3 − pFnÞ
× δðp4 − pFpÞaðk; lÞ: ðD6Þ

The dark vector momentum pA0 has been neglected in the
momentum-conserving δ-function. Since the squared
matrix element is in general a function of the momentum
transfer k and l, we can convert the integral to k and l by
inserting the unity [41]

1 ¼
Z

d3kd3lδ3ðk − p2 þ p4Þδ3ðl − p2 þ p3Þ ðD7Þ

into the right-hand side of Eq. (D6). We can eliminate p2,
p3, and p4 one by one with the aid of the three 3-
momentum-conserving δ-functions. Then,

A ¼
Z

d3pd3kd3lδðjpj − pFnÞδðjpþ kþ lj − pFpÞ

× δðjpþ kj − pFnÞδðjpþ lj − pFpÞaðk; lÞ; ðD8Þ

where we have relabeled p1 as p. In order to evaluate the
integration, we choose the spherical coordinates to expand
the three vectors as

p ¼ pð0; 0; 1Þ;k ¼ kðsin θk; 0; cos θkÞ;
l ¼ lðsin θl cosϕl; sin θl sinϕl; cos θlÞ: ðD9Þ

Namely, p lies along the z axis, k lies in the x–z plane, and l
points in an arbitrarily direction. Then we have

jpþ kj2 ¼ k2 þ 2kp cos θk þ p2; ðD10Þ
jpþ lj2 ¼ l2 þ 2lp cos θl þ p2; ðD11Þ

jpþ kþ lj2 ¼ p2
Fp þ 2kl sin θk sin θl cosϕl

þ 2kl cos θk cos θl: ðD12Þ

The δ-functions in Eq. (D8) indicate jpj ¼ p ¼ pFn, and

k · l ¼ kl sin θk sin θl cosϕl þ kl cos θk cos θl ¼ 0: ðD13Þ

We see that the term proportional to k · l does not
contribute. This is the consequence of a strong degeneracy
limit.
The δ-functions in Eq. (D8) can be written as

δðjpþ kj − pFnÞ ¼
δðxk − x0kÞ

k
; ðD14Þ

δðjpþ lj − pFpÞ ¼
pFpδðxl − x0l Þ

lpFn
; ðD15Þ

δðjpþ kþ lj − pFpÞ ¼
pFpδðxϕ − x0ϕÞ

kl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2kÞð1 − x2l Þ

q ; ðD16Þ

with the definitions xk ¼ cos θk, xl ¼ cos θl, and
xϕ ¼ cosϕl, and

x0k ¼ −
k

2pFn
; x0l ¼

p2
Fp − p2

Fn − l2

2lpFn
;

x0ϕ ¼ −xkxlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2kÞð1 − x2l Þ

q : ðD17Þ

Using the above relations, the integration (D8) can be
simplified as

A¼ 32π2p2
Fpp

2
Fn

Z
dk

×
Z

dl
laðk; lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4l2p2
Fn − l2k2 − ðp2

Fp −p2
Fn − l2Þ2

q ; ðD18Þ

with the constraints on the parameters −1 ≤ xk; xl; xϕ ≤ 1

and k, l > 0.
Similarly, for the process nþ n → nþ nþ A0, the

angular integral is given by

A ¼ 32π2p4
Fn

Z
dk

Z
dl

aðk; lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2

Fn − k2 − l2
p : ðD19Þ

APPENDIX E: REMARKS ON
OPE APPROXIMATION

In order to realistically determine the production rate of
new bosons (e.g., axion or dark vector) from nucleon-
nucleon bremsstrahlung processes, the simplified treatment
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based on one-pion exchange and the use of the Born
approximation for the nucleon-nucleon interaction was
originally introduced in Refs. [28,30,53,98,99]. It has been
realized in the literature [21,36,55,100,101] that such a
simplified method ignores some relevant effects, such as
the multiple nucleon scatterings, and leads to a larger
emission rate and thus a stronger constraint on the coupling.
One way to go beyond the OPE approximation has been

performed in Refs. [55,100] by including a nonperturbative
treatment of the two-nucleon scattering in the soft-radiation
approximation. It was found that for the range of conditions
encountered in a NS, this treatment results in an approxi-
mate modification of the axion emissivity by a factor of 1=4
when compared with the OPE results [54]. Using the soft-
radiation approximation, Ref. [21] calculated the dark
vectors emissivity from a supernova and found a factor
of 10 decrease in the emission rate. Reference [36] refined
the calculation based on the OPE approximation by
systematically taking into account the effects that had been
neglected previously, including the contribution of the

two-pions exchange, effective in-medium nucleon masses
and multiple nucleon scatterings. They found that the axion
emissivity from a supernova was reduced by ∼10 with
respect to the basic OPE calculation. From these results, we
observe that the reduction of emissivity depends on the
condition of matter. For the highly compressed matter in a
NS, the emissivity is reduced by a factor of 4 with respect to
the OPE approximation, while the factor can be up to 10 for
the dilute plasma in a supernova.
Further improvement of the soft-radiation approximation

can be made by including the many-body effects, such as
the Landau-Pomeranchuk-Migdal (LPM) suppression
[102,103] owing to multiple scatterings in the medium.
It has been shown in Ref. [104] that the LPM suppression
of soft radiations increases with temperature and becomes
relevant for T ∼ 5 MeV, above which the energy of the
emitted boson is less than the nucleon decay width. Thus,
the LPM effect is of particular importance for radiation in a
supernova, but it becomes insignificant for the isolated NSs
with a core temperature T ∼ 10 keV.
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