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The internal composition of neutron stars is still an open issue in astrophysics. Their innermost regions
are impervious to light propagation and gravitational waves mostly carry global aspects of stars, meaning
that only indirect inferences of their interiors could be obtained. Here we assume a hypothetical future
scenario in which an equation of state softening due to a phase transition is identified and estimate the
observational accuracy to differentiate a sharp phase transition from a smoother one (which we take to be
associated with a mixed phase/state due to the unknown value of the surface tension of dense matter) in a
region of a hybrid star by means of some electromagnetic and gravitational wave observables. We show that
different transition constructions lead to similar sequences of stellar configurations due to their shared
thermodynamic properties. In the most optimistic case—a strong quark-hadron density jump phase
transition—radius observations require fractional uncertainties smaller than 1%–2% to differentiate mixed
states from sharp phase transitions. For tidal deformabilities, relative uncertainties should be smaller than
5%–10%. However, for masses around the onset of stable quark cores, relative tidal deformability
differences associated with strong sharp phase transitions and mixed states connecting the two pure phases
could be much larger (up to around 20%–30%). All the above suggests that 2.5- and third-generation
gravitational wave detectors and near-term electromagnetic missions may be able to start assessing some
particular aspects of phase transitions in neutron stars. In addition, it points to some limitations on the
equation of state recovery using typical neutron star observables and the impact of systematic uncertainties
on modelings of the equation of state of hybrid stars. Finally, we briefly discuss other observables that may
also be relevant for the probe of mixed states in stars.
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I. INTRODUCTION

It has long been hypothesized that neutron stars (NSs)
contain exotic phases of matter, which are possible to exist
solely due to unique conditions—density and pressure,
particle fractions—present in their interiors [1]. The change
from “normal” (nucleonic) matter to “exotic” matter (e.g.,
deconfined quarks) is thought to occur through a phase
transition (or, in more general terms, state transition) process.
Its detailed structure—sharp first order between the two pure
phases or via a mixed state of the two phases—is still an
open issue [2,3], due to the complexity of direct quantum
chromodynamics (QCD) calculations [4], or the lack of
direct experimental observations of dense matter at high
chemical potentials and low temperatures. The above clearly
shows that the most promising laboratories for studying
dense matter aspects are NSs [5–8]. In general, a state
transition between distinct phases of matter results in a
softening of the pressure-density relation in the equation of

state (EOS), which in turn results in more compact NSs
(in terms of stellar parameters, this is quantified by larger
values of the compactness parameter GM=Rc2, with M
denoting the gravitational mass, andR the stellar radius), and
a lower maximum mass Mmax than in the case of stars
without state transitions, due to transitional deficit in
pressure increase related to the softening. While a direct
access to the interiors of NS is impossible, one can draw
conclusions from astrophysical measurements of the stellar
mass M and radius R with the use of electromagnetic
observables (see, e.g., [9–13]), as well as the tidal deform-
abilities Λi of the components of a binary system during its
last orbits before the merger by means of gravitational wave
(GW) signals ([14–20], see also [21] for a review), due to
their dependence on the EOS; hence, one can expect
potentially measurable imprints of dense-matter state tran-
sitions on these NS observables. For recent reviews on the
dense-matter state transitions in NSs, see, e.g., [22,23].
Here we study a hypothetical future scenario in which a

dense-matter softening is identified by means of global NS
parameters, e.g.,M, R and Λ. We model it by assuming that*jpereira@camk.edu.pl
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a detailed behavior of the microscopic quantities in the
EOS, in the range of EOS where the softening occurs is de
facto unknown, and—for simplicity—assume that the
transition from a nucleonic outer part of an NS to an inner
(possibly exotic) core happens via either a sharp boundary
between pure phases (“density jump” phase transition), or
via a transition through a “mixed phase” (mixed state)
region.
In addition we assume that the low-density part of the

EOS (a “nucleonic matter crust and outer core”) and the
high-density part of the EOS (an “exotic inner core”) are
the same for given realisations of sharp phase transitions
and mixed-state transitions that will be compared, i.e., we
will study the state transition masquerade problem, similar
to the one first discussed in [24]. This setup realistically
captures, in our opinion, the crucial observational difficulty
we will encounter in the future. A key observation in this
regard is a demonstration that the sequences of M, R, Λ
labeled by central stellar parameters (e.g., central pressure
or central energy density) outside the range of values
corresponding to the state-transition region depend very

weakly on the exact details of the EOS behavior within the
state-transition region, a feature demonstrated in Sec. IVA
and in the exemplary Fig. 1. All the above also suggests
possible limitations for the EOS recovery with the use of
common observables and characterizing on what level, in
terms of accuracy, such a recovery should happen is a
relevant issue.
A softening of the EOS could also be related to higher

order phase transitions. Recent models of this type can be
found in [7,25], who consider a crossover type transition
between hadronic and quark matter with a continuous
speed of sound. The softening in the EOS, obtained in the
quarkyonic matter model for the transition between hadrons
and quarks, keeps continuous the second derivative of the
speed of sound [26]. Also, there are other transitions to
exotic states of hadronic matter involving a condensation of
pions [27,27–29] or kaons [30]. Depending on the choice of
parameters for the strong interaction Lagrangian, the soft-
ening of the EOS due to the boson condensed state may be
associated with a second order phase transition or a first
order one where a mixed state can be contemplated. Here,

FIG. 1. Examples of polytropic EOSs and resulting sequences of NS parameters (solutions of TOVequations): sharp phase transition
(solid blue curves), and three mixed state realizations (dash-dotted orange curves with n1 ¼ 0.375 fm−3, dashed green curves with
n1 ¼ 0.4 fm−3 and dotted red curves with n1 ¼ 0.425 fm−3). The sharp phase transition EOS parameters are γ1 ¼ 3.5, γ2 ¼ 6, density
jump (in terms of the baryon density n) between n0 ¼ 0.475 fm−3 and n02 ¼ 0.76 fm−3. The leftmost panel contains the mass-radius
MðRÞ sequences (the inset plot presents a closeup of the region around the maximum mass), the middle panel is the chemical potential-
pressure μðPÞ relation, the upper right panel is the pressure-density PðρÞ relation, whereas the lower right one is the mass-tidal
deformability MðΛÞ relation. Green and red dots mark the beginning and the end of the mixed-state region in the case of the
n1 ¼ 0.4 fm−3 EOS; correspondingly, stellar configurations in the other panels have central parameters equal to the beginning (green
dot) and the end (red dot) of the mixed state. The inset in the μðPÞ plot shows the definition of Δp—marked by an arrow—on the
example of the n1 ¼ 0.4 fm−3 EOS, marked by the green dashed line. Pðμ0Þ is denoted by P0. Note that the for theMðRÞ sequences the
mixed state curves are below the sharp one in the vicinity of the phase transition point, butMmax is larger for the mixed state EOSs. For
the n1 ¼ 0.4 fm−3 EOS, the mixed state and the sharp transition EOSs have the same mass and radius parameters at M ≈ 1.68 M⊙ and
≈10.92 km, marked by a magenta cross.
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however, we interpret the softening of the EOS as due to a
mixed state of hadronic and quark matter (or a sharp phase
transition) because it is directly connected with the surface
tension at the phases’ interface [31].
The main motivation of this work is to study phase-

transition parametric EOSs together with their correspond-
ing sequences of NS parameters, in order to establish how
much the a priori unknown state-transition imprints on the
global NS parameters (M, R, Λ), and to find possible
characteristic features of either sharp or a mixed-state
transitions in these observables. Specifically, we assess
the critical accuracy of the current and planned observing
infrastructures, necessary to falsify specific dense-matter
models. In order to come up with optimistic upper limits for
the accuracies, we focus on the most extreme phase
transition case (strong phase transition [32]), directly
related to the existence of the third family of stars
[31,33–36]. This is so because it would imply that NSs
with similar masses could have very different radii, which
is a direct result of a destabilization of stellar configurations
for a range of central pressures larger than the one marking
a state transition. (“Weak” phase transitions would produce
smaller differences in the NS parameters.)
In the near future it will be possible to constrain masses

and radii of NS (see, e.g., [37,38]) and tidal deformabilities
with uncertainties of a few percent, the latter with the third-
generation GW detectors events with high signal-to-noise
ratios (see, e.g., [39] and references therein), with a real
possibility of assessing the nature of an observed soft interval
in the EOS.Whilewe do not directly focus on stability issues
associated with the mixed state. For an analysis in this
direction, see [31]. Stability should be easily identified from
theMðRÞ sequenceswith the configurations to the right (left)
of their maxima (minima); in general, ∂M=∂ρc ≥ 0, where ρc
is the central density, see, e.g., [40] and references therein.
Studies on the stability of rotating hybrid stars with mixed
states and sharp phase transitions indicate that rotation does
not change the global property of the (non)existence of the
second branch of stable configurations [41].
Given our partial ignorance of the EOS around and

above the nuclear saturation density, we explore here many
models by means of parametrizations of the EOS (for the
high-density part and also for the mixed state). We vary the
parameters in a way to cover our expectations (for strong
phase transitions and mixed states) and some available NS
constraints. Clearly, this model is phenomenological, and
could encompass many microscopic descriptions for the
softening of the EOS by means of different parameter
choices. We draw conclusions about the accuracies needed
for distinguishing a sharp phase transition from a mixed
state from these analyses. Naturally, this study is not
exhaustive but rather indicative of the relevant cases to
better focus on more precise future works.
The article is composed as follows: in Sec. II we describe

two parametric models of the EOSs (model of Abgaryan

et al. 2018 [42] in Sec. II A, and a piecewise-polytropic
model in Sec. II B), which will be used in Sec. III as an
input to the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions [43,44] to produce sequences of M, R and Λ as
functions of central pressure P and chemical potential μ.
Specifically, Sec. IV discusses how the EOS difference
between the “sharp” or “mixed” state transitions regions
impacts theMðRÞ andMðΛÞ sequences, as well as the value
of the maximum mass Mmax, and assess the regions of
astrophysical parameters, for which the “sharp” and
“mixed” state transitions result in potentially observable
differences (a state-transition masquerade problem).
Section IV contains also a discussion of these results from
the point of view of a current and planned capabilities of the
EM missions (NICER [45], Athena [46], eXTP [37,38])
and the GW detectors (Advanced LIGO [47], Advanced
Virgo [48], KAGRA [49], NEMO [50], Einstein Telescope
[51], Cosmic Explorer [52]) in terms of measurements
errors. Section V contains a relevant discussion, conclu-
sions and an outlook. Section VI gives a detailed summary
of our analysis.

II. PARAMETRIC MODELS OF THE EOS

The mixed phase/state in a hybrid star can be approxi-
mated in a variety of ways. Under the theoretical viewpoint,
a macroscopically smoother phase transition (leading to the
presence of an intermediate-mixed phase/state) in a star—
besides a sharp phase transition—is thermodynamically
possible. Indeed, pasta phases [53,54] for dense matter,
where nuclei exist in nonspherical shapes, could be present
in the bottom layer of an NS crust. In addition, there is
plenty of room in models for hybrid stars where third
families of NSs [31,33–36] are very distinct from purely
hadronic stars, meaning that it would make observational
sense to contrast a sharp transition with one having an
intermediate state.
Here, in Sec. II A, we present the construction put forth

by [42] (for further applications, see [55]). Their main idea
is to build on the Maxwell’s construction (sharp phase
transition) and phenomenologically take into account
certain properties of other (microscopic) mixed state con-
structions. In Sec. II B we present a simple sharp/mixed
state transition based on the use of relativistic poly-
tropes ([56]).

A. Mixed state construction of Abgaryan et al. (2018)

Here we quickly review the mixed state construction as
put forward by [42]. We denote by μ0 the baryon chemical
potential at the quark-hadron phase transition coming from
the Maxwell construction. One expects the presence of a
mixed state to increase the phase transition pressure P at μ0,
P0 ≡ Pðμ0Þ. The reason for that is the larger density of the
mixed state with respect to the base of the hadron phase.
The relative increase of pressure may be assumed to be
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given, as motivated by first principle constructions, and will
be denoted by Δp. For the connection of Δp with micro-
scopic parameters of the pasta phase, see [36]. In addition,
assume that the pressure in the mixed state, Pm, in the
simplest case is given by (parabolic expansion)

PmðμÞ ¼ ð1þ ΔpÞP0 þ α1ðμ − μ0Þ þ α2ðμ − μ0Þ2; ð1Þ

where α1 and α2 are free parameters to be found by
demanding certain thermodynamic constraints. In particu-
lar, we impose the continuity of the mixed state pressure
and its first derivative with respect to the baryon chemical
potential (baryon number) at the hadronic (μ ¼ μh) and
quark (μ ¼ μq) interfaces:

PmðμhÞ ¼ PhðμhÞ; PmðμqÞ ¼ PqðμqÞ; ð2Þ

and

nmðμhÞ ¼ nhðμhÞ; nmðμqÞ ¼ nqðμqÞ; ð3Þ

with μh and μq free adjustable quantities, Ph the hadronic
EOS and Pq the quark EOS. Put in the above way, given a
Δp, one has a system of four equations (2), (3) to four
unknowns (μh; μq;α1; α2) to solve, and its solution should
be unique. Obviously, the physically relevant solution
should present μh < μ0 < μq. After solving the TOV
equations for a given central density, one can find the
extension of the mixed state by means of the knowledge of
μH and μQ. In addition, the continuity of the baryon number
density at both borders of the mixed state implies that the
energy density is also continuous there for hadronic and
quark barotropic EOSs.
The speed of sound, cs, on the other hand, is in general

discontinuous at the hadronic and quark borders for the
model given by Eq. (1). The reason is simply because it
involves a second derivative of the pressure (with respect to
μ), which is not guaranteed to be continuous at the borders
of the mixed state for the parabolic mixed state construc-
tion. With the above prescription, it is not controllable and
causality should be checked a posteriori. Given the
causality of the speed of sound for both hadronic and
quark phases and the expected EOS softening due to the
mixed state, one would expect c2s to also be causal there.

B. Mixed state polytropic EOSs

Here we put forth an effective, parametric multipolytrope
model for both the sharp and mixed state transitions. Basic
intensive thermodynamic properties of relativistic poly-
tropes [56] are defined as

PðnÞ ¼ Knγ;

ρðnÞ ¼ nεþ P
γ − 1

;

μðPÞ ¼ εþ γ

γ − 1

P
n
; ð4Þ

where P is the pressure, ρ the mass-energy density, μ the
chemical potential, ε the energy per baryon at P ¼ 0 in a
given phase, K is the polytropic “pressure” coefficient and
γ is called the adiabatic index. Pressure and energy-density
are functions of the baryon number n, but later we will
focus on the direct relation between the chemical potential
and the pressure, μðPÞ.1 A sharp phase transition may be
defined as a “Maxwell construction” at the first order phase
transition point (P0, n0) between two polytropes (K1, γ1,
ε1) and (K2, γ2, ε2), accompanied by the baryon number
density jump n0 ¼ n01 → n02, by the following condition
resulting from the mechanical and chemical equilibrium of
the associated phases:

ε̄1 þ
γ1

γ1 − 1
¼ ε̄2 þ

γ2
γ2 − 1

1

λ
; ð5Þ

where

ε̄i ¼
εin0
P0

and λ ¼ n02
n01

¼ n02
n0

: ð6Þ

For the mixed state we assume a polytropic EOS given
by Eq. (4) with parameters (Km, γm, εm). Assuming the
appearance of the mixed phase at a pressure P1 < P0 (and
the baryon density n1 < n0), the parameters γm and εm of
the “mixed state” polytrope are given by the solutions to the
following relations:

�
1

γ2 − 1
−

1

γm − 1

�
λγ2ðγm−1Þ=ðγ2−γmÞ

× n̄ðγ2−1Þðγ1−γmÞ=ðγ2−γmÞ1 þ γm
γm − 1

n̄γ1−11

¼ γ2
ðγ2 − 1Þ

1

λ
−

γ1
γ1 − 1

ð1 − n̄γ1−11 Þ; ð7Þ

where n̄1 ¼ n1=n0 < 1. The mean “mixed” value of the
parameter ε results from

ε̄m ¼ ε̄1 þ
�

γ1
γ1 − 1

−
γm

γm − 1

�
n̄γ1−11 ; ð8Þ

whereas the end point of the mixed state (P3, n3) is
determined by

1The γ ¼ 1 case needs a separate treatment [logarithmic
dependence of ρðnÞ=n] and is not considered here.
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P̄3

n̄3
¼ n̄γ2−13

λγ2
¼ ε̄m − ε̄2

γ2=ðγ2 − 1Þ − γm=ðγm − 1Þ ; ð9Þ

where P̄3 ¼ P3=P0.
Relativistic polytropes are used to define the dense

(n > ncc, where the subscript cc denote the crust-core
transition) part of the EOS. For the low-density part (the
crust) we use the Douchin and Haensel SLy4 EOS [57]. The
SLy4 crust extends up to the pressure Pcc, densities ncc, ρcc
and chemical potential μcc. At P ¼ Pcc, we define a smooth
crust/core transition to the polytrope P ¼ K1nγ1 with one
free parameter γ1, and the other two parameters (K1, m1)
defined by

K1 ¼
Pcc

nγ1cc
and ε1 ¼ μcc −

γ1
γ1 − 1

: ð10Þ

At (P0, n0), a first-order phase transition between the
polytropes (K1, γ1, ε1) and (K2, γ2, ε2) (“Maxwell con-
struction”) is defined by the parameters in Eqs. (5) and (6).
A polytrope with selected γ2 and (K2, m2) resulting from
the equilibrium conditions is given by

K2 ¼
P0

ðλn0Þγ2
and ε̄2 ¼ ε̄1 þ

γ1
γ1 − 1

−
γ2

γ2 − 1

1

λ
: ð11Þ

The mixed state is defined between P1 and P3, asso-
ciated with the baryon numbers n1 and n3, respectively,
with the point P1ðn1Þ being a free quantity to choose. With
Eqs. (7)–(9) one obtains the parameters of the mixed-phase
polytrope and the point (P3, n3). In general, for the mixed
state,

Pm ¼ P1

�
n
n1

�
γm

and Km ¼ P1=n
γm
1 : ð12Þ

Note that the model described in Sec. II A in the mixed
region is also a specific case of a polytrope (γm ¼ 2) with
an additional pressure term, equal to ð1þ ΔpÞP0 − α21=
ð2α2Þ. In addition, this polytropic model is physically
different from a hadron-quark crossover [58] because the
speed of sound is not continuous on both borders of the
mixed state in general. Although one would expect that to
have a small impact on global stellar parameters, it might be
important for other observables, such as oscillation modes.
Also, the crossover nature of an EOS might even lead to its
stiffening [58], not generally the case for our current
construction. We plan on extending our mixed state
polytropic model to cover such possibilities in future
works.

III. TIDAL DEFORMABILITY

TheMðRÞ sequences associated with the EOSs of Sec. II
come from the solution of the TOV system of equations
assuming spherically symmetric spacetimes (see, e.g., [1]).

For each background configuration, we have also calcu-
lated its tidal deformability. We have assumed perfect fluids
all along. Although some phases of NSs—especially the
mixed states—should be elastic, we do not take into
account this fact in this first study. The equation that we
solve related to tidal deformations is [59,60]

H00
0 þA1H0

0 þA0H0 ¼ 0; ð13Þ

where

A0 ≡ ν00 −
6eλ

r2
−
ðν0Þ2
2

þ 3λ0 þ 7ν0

2r

−
ν0λ0

2
þ ρ0

P0
ν0 þ λ0

2r
; ð14Þ

and

A1 ≡ 2

r
þ ν0 − λ0

2
; ð15Þ

where ν and λ are related to the metric functions as gtt ≡
−eνðrÞ and grr ≡ eλðrÞ, respectively.
Tidal deformations/deformabilities themselves (dimen-

sionless) are defined as Λ≡ 2=3ðM=RÞ−5k2, where the
Love number k2, in terms y≡ RH0

0ðRÞ=H0ðRÞ, is [59–62]

k2 ¼ 8C5ð1− 2CÞ2½2þ 2Cðy− 1Þ− y�
=ð5f2C½6− 3yþ 3Cð5y− 8Þ�
þ 4C3½13− 11yþCð3y− 2Þ þ 2C2ð1þ yÞ�
þ 3ð1− 2CÞ2½2− yþ 2Cðy− 1Þ� lnð1− 2CÞgÞ; ð16Þ

with C≡M=R is the compactness of the background star.
Therefore, it is clear that one needs to find the interior
solution to H0 and evaluate it on the surface of the star to
obtain Λ.
The boundary (interface) conditions that we use here are

the continuity of H0 and H0
0 at the borders of the mixed

state (with the quark and hadronic phases). This is the case
since there is no density jumps when the mixed state is
taken into account, due to Eqs. (2) and (3) and the
thermodynamic relation μ ¼ ðPþ ρÞ=n. At the center
and on the surface of the star, a regular solution and the
absence of energy jumps are considered, respectively (for
further details, see [63,64] and references therein). For the
tidal deformation calculations in stars with sharp phase
transitions, a nontrivial boundary condition at the hadron-
quark interface for H0

0 should be taken due to the
discontinuity of the energy density there [see, e.g.,
Eq. (41) of [63] ].
We stress that Eq. (13) is valid only for perfect fluids in

the adiabatic limit. In terms of a binary coalescence, it
would be related to the inspiral phase. If parts of the star are
elastic, Eq. (13) must be replaced by a set of coupled
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equations that take into account their shear moduli (see,
e.g., [63,64]). Such equations are much more involved and
lead to the intuitive result that tidal deformations of elastic
stars are smaller than their perfect-fluid counterparts. In
most cases, however, the differences are negligible and in
general stars with elastic phases have smaller tidal defor-
mations than their perfect-fluid counterparts [63,64].
Therefore, even though the mixed state should be elastic,
we assume in this work it can be approximated by a perfect-
fluid and any allowed EOS in the perfect-fluid case will
also be allowed in the more realistic case with elasticity.

IV. RESULTS

Exemplary sequences of sharp- and mixed-state EOSs,
based on the polytropic approach of Sec. II B, are presented
in Fig. 1. The parameters of the EOSs are given in its
caption. In the following, we will first discuss the origin of
the similarity of the Mmax and RMmax

for both types of state
transitions, and then estimate the sizes of the differences
using the EOS approximations from Secs. II B and II A.

A. Equality ofMmax and other global stellar parameters

The radial dependence of the baryon chemical potential
(Gibbs energy per baryon) is obtained from [65]:

d ln μ
dr

¼ m
r2
ð1þ 4πr3P=mÞ

1 − 2m=r
; ð17Þ

while the quantity m can be can be calculated using

dP
dm

¼ m
4πr4

ð1þ 4πr3P=mÞð1þ P=ρÞ
1 − 2m=r

: ð18Þ

For the central pressure larger than the pressureP3, atwhich a
mixed state is fully present in the interior of the star, its region
is represented by a shell of thickness Δrmixed ¼ rðP1Þ −
rðP3Þ and a mass Δmmixed ¼ mðP1Þ −mðP3Þ. Global
parameters of this mixed shell, as well as a shell containing
the sharp phase transition between (μ1, P1) and (μ3, P3) are
calculated fromEqs. (17) and (18), andweakly depend on the
kind of the EOS (i.e., sharp or mixed) in this region.
Equation (13) from [65] can be used to estimate the thickness
of the mixed state region; however it should be stressed that
the parameters neglected for the crust (r3P=m, the change of
mass in the considered region) aremore important in our case
(P=ρ ≃ 0.1). As a result, themass-radius relations for the first
order phase transition and themixed state are almost identical
it the regions above (P3, μ3). This is exemplified in the next
section with the use of many polytropic EOSs.

B. Results for polytropic EOSs

In order to decide which cases might be observationally
relevant, we make use of already existing and future mass,
radius and tidal deformation measurement accuracies.

NICER measurements already allow the constraint of
masses and radii of NSs with relative uncertainties around
5% (for combined observations), and around 10% for
single observations (see, e.g., [11] and references therein)
at 1σ level. Future missions, such as eXTP or Athena are
expected to measure the above quantities with even smaller
fractional uncertainties, around a few percent (say, 1%–2%
in the most optimistic cases; at the 90% credible interval,
uncertainties would increase accordingly). When it comes
to tidal deformations, current relative uncertainties are still
large (∼50%–100%), but future measurements (e.g., with
third-generation GW detectors) could deliver uncertainties
as small as 2% at the 90% credible level in the most
optimistic cases [39]. For 2.5-generation detectors and less
optimistic cases, relative uncertainties of 5%–10% are
expected [39]. When translated to radius constraints, they
could also be around a few percent (1%–2%) for the most
optimistic cases at the same credible level as above [39].
The effectiveness of the approximation from Sec. IVA is

demonstrated by comparing a large set of sharp phase
transition EOSs with their corresponding mixed-state
EOSs. The prescription is based on the polytropic approxi-
mation of Sec. II B, where the values of polytropic indices
and baryon densities, denoting the beginnings and ends of
the phases, cover the following ranges: γ1 ∈ ð2.75; 3.75Þ,
γ2 ∈ ð4.5; 6.5Þ, n0 ∈ ð0.4;0.5Þ fm−3, n02=n0 ∈ ð1.45; 1.65Þ
(we only consider here strong phase transitions, i.e., large
quark-hadron density jumps in order tomaximize observable
differences), n1 ∈ ð0.325; 0.4Þ fm−3; γm and n3 were sol-
utions to the thermodynamic conditions and roughly varied
in the intervals (0.5, 2.5) and ð0.5; 1.0Þ fm−3, respectively.
These parameter intervals lead to observationally reasonable
NS parameters, and also reflect expectations regarding the
densities phase transitions might take place in stars (see [32]
for further details). For final comparisons, we select only
those microscopic models that lead to Mmax > 2 M⊙,

FIG. 2. Mass differences of hybrid stars with mixed states and
sharp phase transitions for the maximum masses for several
polytropic equations of state as a function of Δp.
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μmðn3Þ=μmðn02Þ < 1.15, μmðn1Þ=μðn0Þ > 0.85 (see [36] for
the reasonableness of these limits). In addition, we take into
account the tidal deformability and mass constraints coming
from GW170817 [66].2 We keep all γm fulfilling the above
conditions in order to better explore the region of parameters
of the mixed state and also to check consistency, given that
low mixed phase adiabatic indices would be a rough proxy
for sharp phase transition EOSs. Figures 2–4 show the
differences (sharp phase transitions and mixed states) for
themaximummass, andFig. 5 shows the radiusdifferences at
the maximummass, as a function of several parameters: Δp,
Pmðn3Þ − Pmðn1Þ and μmðn3Þ − μmðn1Þ. Each point in
Figs. 2–5 is the result of the comparison of two EOSs (sharp
phase transition and mixed state) that only differ in the
pressure interval P1 < P < P3. For illustration and clarity,
we have color marked only the γms of the mixed state EOSs.
One can clearly see that the fractional differences are very
small: around 10−1% for the maximum mass and 10−3% for

the associated radius. The larger scatter inFig. 5 is simply due
to the general flattening of the mass-radius relation around
the maximum mass. In general, smaller values of γm lead to
smaller differences, as consistency would demand.
Regarding Δrmixed and Δmmixed, Figs. 6 and 7 show how

aspects of a mixed state compare with aspects of a sharp
phase transition for a region between P1 and P3 in the case
of hybrid stars with the same mass (usually different central
pressures), taken representatively here as 1.4 and 1.8 M⊙.
Naturally, in order to do so, we have only taken stars whose
P3 are smaller than their central pressures for given
reference masses. One can see that for almost all cases,
fractional changes of the mass and the thickness for sharp
phase transitions and mixed states are at most of a few
percent, and the difference decreases, for a given
Pmðn3Þ − Pmðn1Þ, when the mass of the star increases.

FIG. 3. Same as Fig. 2 but now taking into account the pressure
difference between the bottom and the top of the mixed state. The
fit in the plot has the form y ¼ apxp, with ap ¼ 2.911 × 10−2 and
p ¼ 1.5317.

FIG. 4. Maximum mass dependence on the chemical potentials
at the borders of the mixed state. The power-law fit of Fig. 2 gives
ap ¼ 2.573 × 10−4 and p ¼ 1.7316.

FIG. 5. Radius differences associated with the maximum
masses for stars with mixed states and sharp phase transitions
for several polytropic equations of state as a function of Δp. The
parameters for the power-law fit (y ¼ apxp) are ap ¼ 0.2557 and
p ¼ 1.930.

2We do not take into account all current observations because
that would be beyond the goal of the present paper. They already
have been done elsewhere and one of the outcomes is that strong
phase transitions are fully allowed [67]. Even if the radius
outcome of PSR J0740þ 6620 (M ¼ 2.08� 0.07 M⊙) is taken
into account [11], the possibility of strong phase transitions
would not be affected because the stiff EOSs used in [67] are
already compatible with such radius. We leave NICER con-
straints on NS radii (e.g., [9,11]) within our analysis for future
work. In it, also weak phase transitions will be taken into account,
which could be done simply by changing the parameters of our
polytropic model. For both strong and weak phase transitions,
though, relative changes in global NS parameters should not be
greatly affected by NS constraints because they mostly depend on
mixed state properties, which change little masses and radii of
NSs (see Sec. II B). Indeed, relative changes—due to our
assumption of the same low- and high-density EOSs—almost
disregard these contributions, and they are exactly the ones that
would mostly affect radii and masses of stars.
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(That would qualitatively explain why the differences are
so small for the maximum masses and associated radii of
stars.) The color maps also make it clear that differences
between mixed-state and sharp EOS aspects increase with
γm. This is reasonable given that a mixed-state EOS

becomes harder for larger γm.When it comes to the fractional
radius differences for a givenmass, Fig. 8 for 1.4 M⊙ (stable)
stars suggests that in some cases the differences could be
observed by near-term detectors. The largest differences
concern purely hadronic (one-phase) stars (whose phase-
transition masses are larger than 1.4 M⊙) being compared
with stars presentingmixed states. If, instead, one restricts the
comparison to1.4 M⊙ stars all having quark cores, the radius
changes decrease significantly, and are up to around 1%–2%.
Similar or even smaller upper-limit relative changes to the
radii also come for NS masses the range of ∼ð1–2Þ M⊙.
Thus, it suggests that theminimum radius precision detectors
should have in order to start differentiatingmixed states from
sharp phase transitions in general is indeed around 1%–2%.
For the mass precision, any small region of the MðRÞ
diagram could be interpolated as M −Mref ¼ const × ðR −
RrefÞ (“ref” stands for a reference value), meaning that
ΔM=M ¼ jð1 −Mref=MÞ=ð1 − Rref=RÞjΔR=R. For in-
stance, in the example of Fig. 1 for the hybrid branch, we
have that jð1 −Mref=MÞ=ð1 − Rref=RÞj ∼ ð0.8–1.5Þ. Thus,
relative mass accuracy should closely trail the radius accu-
racy. All the above also shows that mixed states and sharp
phase transitions between P1 and P3 almost share the same
macroscopic properties, despite being very different physi-
cally and encompassing non-negligible portions and masses
to stars in general. Indeed, the thicknesses occupied bymixed
states and their masses could be even larger than half of a star
radius and a third of its total mass, respectively, as shown in
Fig. 9 for 1.8 M⊙ stars.
The similarity between mixed state and sharp phase

transition regions in stars can be theoretically explained on
basis of Eqs. (17) and (18), and it could be more clearly

FIG. 6. Masses of the shells containing mixed states (within
pressures P1 and P3) subtracted by masses encompassed within
the same pressures in stars with sharp phase transitions, normal-
ized by the reference (“ref”) masses (either 1.4 or 1.8 solar
masses). For 1.4 M⊙ stars, the fit (y ¼ apxp) is such that ap ¼
1.506 × 10−2 and p ¼ 1.697. For 1.8 M⊙, it follows that ap ¼
5.020 × 10−3 and p ¼ 1.818.

FIG. 7. Thickness differences of the mixed states of stars with
respect to sharp phase transitions for given reference masses (and
for completeness the same central pressure Pc for a sharp EOS
and its associated mixed EOSs), normalized by the radius of stars
with sharp phase transitions (Rsharp

ref ). For 1.4 M⊙ stars, the fit
y ¼ apxp implies that ap ¼ 6.509 × 10−7 and p ¼ 2.812. For
1.8 M⊙, it follows that ap ¼ 4.185 × 10−7 and p ¼ 2.693. When
the central pressure of a star with a sharp phase transition and
another one with a mixed state is the same (their masses are not
the same; we choose Pcs in stars with mixed-state EOSs so their
masses are 1.8 M⊙), we have that ap ¼ 1.622 × 10−4 and
p ¼ 1.326.

FIG. 8. Relative radius differences for 1.4 M⊙ stars with mixed
states, sharp phase transitions and even purely hadronic (“had”)/
one phase. Here, 2% is a representative level of accuracy of near-
future electromagnetic/GW missions. The largest differences are
connected with the comparison of one-phase stars with those with
mixed states. The smallest differences [≲ð1–2Þ%], though, come
from stars with mixed states and those with sharp phase
transitions and quark cores.
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seen for stars with the same central pressure (larger than
P3). In this case, stellar configurations with mixed states
and sharp-phase transitions have the same boundary con-
ditions at P3 [rðP3Þ, mðP3Þ], and the thickness and the
mass of the region between P1 and P3 is approximately
given by Δμm ¼ μ3 − μ1 and ΔPm ¼ P3 − P1, respec-
tively. As a result, we get that the difference of the thickness
of regions between P1 and P3 for a sharp-phase-transition
and a mixed-state star with a same central pressure is much
smaller than when they have the same mass. This could be
seen in particular in Fig. 7 for stars with masses around and
exactly 1.8 M⊙ (green and orange curves, respectively),
where their maximum fractional changes differ by a factor
of ∼5. Notwithstanding, we have found that the maximum
relative changes of radii of stars with sharp phase tran-
sitions and mixed states with the same central pressure are
roughly similar to those with the same mass.
When tidal deformations are concerned, fractional

changes could be much larger and could exceed the rough
threshold of detectability for 3G GW detectors (uncertain-
ties as small as 2%) for certain cases, as clear from Fig. 10
for 1.8 M⊙ hybrid stars (naively speaking, they are more
likely to have quark cores due to larger central pressures
than 1.4 M⊙ stars and also are more likely to be detected
than 2 M⊙ stars in terms of tidal deformations). Indeed, the
above figure suggests that optimist minimum tidal defor-
mation precisions for starting differentiating sharp-phase
transitions from mixed states would roughly be 5%–10%.
This is also roughly the case for hybrid stars with masses
∼ð1.5–1.8Þ M⊙. Slightly higher upper limits arise for
masses larger than 1.8 M⊙ due to the possibility of larger
chemical potential differences at the base and top of the
mixed state. For masses smaller than ∼1.5 M⊙, due to the

smaller chemical potential range for the mixed state,
relative tidal deformation thresholds should be smaller
than a few percent, as also evidenced by Fig. 11 for
1.4 M⊙ when one only focuses on hybrid stars. When
purely hadronic stars are also compared with those having

FIG. 9. Relative thicknesses and masses of mixed states in
hybrid stars with 1.8 M⊙. Straight lines (y ¼ a1x) fit well the
data; for the relative thickness size of the mixed state,
a1 ¼ 0.1189; for its relative mass, a1 ¼ 0.1969. The size and
mass of the mixed state is non-negligible when compared to the
corresponding aspects of the star in general, and it increases with
the increase of γm.

FIG. 10. Relative tidal deformabilities of 1.8 M⊙ hybrid stars
(with mixed states and sharp phase transitions and quark cores) as
a function of the chemical potential difference at the beginning
and the end of the mixed state. The threshold of around 5%
precision is reached for chemical potential differences larger than
approximately 250 MeV and γm ≳ 1.5.

FIG. 11. Relative tidal deformabilities of 1.4 M⊙ stars relaxing
the constraint that they only have quark cores and central
pressures larger than the ones fully encompassing the mixed
state: here they can also be purely hadronic (“had”) or have mixed
states at their centers. The tidal deformability normalization has
been chosen to be those of 1.4 M⊙ stars either presenting sharp
phase transitions or being purely hadronic, which depends on the
phase transition masses due to their EOSs. The largest differences
are obtained when one compares an one-phase star with another
one having a mixed state (for a same mass), for large values of γm.
Fractional differences even exceeding 10% could happen for
several EOSs and γms. When stars only with sharp phase
transitions and mixed states are compared, maximum tidal
deformations are of a few percent (≲2%–3%).
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mixed states for a same mass, relative tidal deformabilities
ð1 − Λmixed=ΛhadÞ as high as around 40%–50% could
emerge, as clear from Fig. 11 for 1.4 M⊙. This suggests
that observationally identifying a softening of the EOS—
due to a phase transition—would in principle be simpler
and it should happen before we might be able to start
differentiating a sharp phase transition from a mixed state,
exactly as we have assumed.
From all the above, tidal deformations may be a relevant

observable for distinguishing sharp phase transitions from
mixed states in NSs. We come back to this issue later on.
The above figures also reveal that depending on where in
mass the quark phase appears, the sharp phase transitions
could lead to either larger or smaller tidal deformations than
mixed states. Therefore, for a given mixed-state EOS, there
should exist a critical mass (a “crossing mass”) above
which tidal deformations of stars with mixed states are
larger than their sharp-phase-transition counterparts, and do
not always chase the latter down from below. Figures 1 and
8 also show some aspects of this crossing, which happens at
different masses in the M − R and M − Λ diagrams, for a
particular EOS.
In our set of polytropic EOSs, accidentally, we have not

reached very small values for Δp (or any other parameter
difference between the top and the bottom of the mixed
state), due to the particular combination of parameters
required for that. However, it is more controllable to do so
using the parabolic construction of Abgaryan et al. As the
plots in the next section will show, when the mixed state
is very thin (Δp → 0þ), the observables converge to the
sharp-phase transition ones. That is very clear from the
EOS point of view (because they are basically the same),
which is the basis for any observable.

C. Results for the Abgaryan et al. (2018) construction

The analysis of the large set of polytropic mixed-state
EOSs from the previous section has given us many clues on
the relevant cases to focus on in terms of observations. Here
we particularize the analysis to the (parabolic) mixed state
construction of Abgaryan et al. to show that different
constructions roughly agree among themselves and to shed
some light on those parametric results. As a result of this
agreement, the conclusions about radius and tidal defor-
mation accuracies needed to start differentiating a mixed
state from a sharp phase transition as drawn before should
be relatively free of mixed-state EOS aspects. Another
consequence of this agreement would be that in future
analyses one might choose only a model to work with.
We have considered two exemplary EOSs for sharp

phase transitions with different density jumps η≡
ρ−=ρþ − 1, and use them to construct the mixed state
following the parabolic prescription Abgaryan et al. (2018)
for different Δps. Here we have defined ρ−ðρþÞ as the
density at the top (base) of the quark (hadron) phase in the
case of the Maxwell construction. The first EOS concerns a

sharp strong phase transition3 and we take the EOS of Fig. 1
as a reference. Just for completeness, the second EOS is
related to a sharp weak phase transition (see, e.g., [32] and
references therein). For simplicity and convenience, we
choose a simple baglike model for the quark core with
c2s ¼ 1. This is done because it is the stiffest EOS for the
core and hence would in general maximize the stellar
parameters and hence the differences between sharp and
mixed-state transition outcomes. It is joined to a polytropic
EOS for the inner crust and then, around and below
(smaller densities) the nuclear saturation density, the
SLy4 EOS. For further details, see [70].
In our forthcoming analysis we will focus on the

minimum relative uncertainties for radius and tidal deform-
abilities suggested by our polytropic studies and check if
they are also benchmarks for different mixed-state con-
structions. For the reference values, we mostly take the
ones close to the appearance of the quark phase in the
Maxwell construction since they maximize the departures
from a mixed state and a sharp phase transition.
In Fig. 12 we show a portion of the MðRÞ relation for

stars with η ¼ 0.71 (strong phase transition) and Δp from
around 7% (largest possible value as suggested from the

FIG. 12. Mass-radius relations around the appearance of a
quark phase for stars with and without the mixed state for η ¼
0.71 (same sharp-phase-transition EOS of Fig. 1). The dot-dashed
cyan curve is an enlargement of the correspondent curve in Fig. 1
for a polytropic construction of the mixed state (n1 ¼ 0.4 fm−3

EOS) around the appearance of the quark phase. The darker
(lighter) box corresponds to masses and radii with (representa-
tive) 1% (2%) fractional uncertainties, centered around the
critical point for the Maxwell construction (M ¼ 1.63 M⊙,
R ¼ 11.84 km).

3Strong phase transitions do not meet the Seidov criterion for a
stable hybrid star, η < 1=2ð1þ P0=ρþÞ [68], whereas weak ones
do. A Maxwell construction not fulfilling the Seidov criterion
would not lead to stable stars with infinitesimally small quark
cores [69], meaning that the hybrid MðRÞ branch is not
continuously connected with the purely hadronic one. The
minimum size of the quark core is determined through the
condition ∂M=∂R ¼ 0 around the phase transition mass.
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surface tension analysis [31]) to 1%, for masses and radii
around the sharp phase transition. The value Δp ¼ 6.7%
has been chosen for the parabolic construction because it
coincides with the particularities of the polytropic EOS
with a mixed state for n1 ¼ 0.4 fm−3 in Fig. 1. Figure 13
shows their associated tidal deformations as a function of
the stars’ masses. The boxes on the plots show the range of
possibilities for the observables taking into account the
minimum precision suggestions found in the previous
section and expectations of near-term and future detectors.
Figures 14 and 15 show similar relations for η ¼ 0.39
(weak phase transition) by making use of the baglike model
with c2s ¼ 1 for the quark core as described before. In this

case, the maximumΔp for which the parabolic construction
works is ∼5.3%.
From the above figures one can see that the benchmark

accuracies for distinguishing a sharp-phase transition from
a mixed state roughly agree for different constructions of
the mixed state. In the neighborhood of a strong phase
transition, one has a mass range of stable stars with sharp
phase transitions whose tidal deformabilities could differ
up to around 25% with respect to stars presenting mixed
states (see Fig. 13). However, differently from strong phase
transitions, twin stars (see, e.g., [71] and references therein)
may not even exist if Δp is large enough. If this is not the
case, then, depending on Δp, twin stars (one of them being
one phased and the other one with a mixed state) might
have any tidal deformability differences (they could be
either zero—continuous—or not, as in the cases of Δp ¼
3% andΔp ¼ 1%, respectively, in Fig. 13) around the mass
marking the appearance of the quark phase (differently
from the case of a given strong phase transition). In
addition, the relative tidal deformability difference between
a one-phase star and a hybrid star for a given mass could be
as large as 50%–60%, and that explains the large
differences for strong phase transitions found in our
analysis for polytropic EOSs in Sec. IV B.
Finally, similarly to Figs. 2–4, fractional changes to the

maximum mass for different η within the context of the
parabolic construction for the mixed state are also up to
Oð0.1%Þ. Radius differences associated with maximum
masses are also of Oð10 cmÞ; relative changes of the radii
are hence Oð10−3%Þ. All the above is expected based on
the fact that for the maximum masses and associated radii
the mixed state outcomes are almost indistinguishable from
sharp-phase transition star under the same pressures and
hence the particularities of an EOS construction are
partially masqueraded.

FIG. 14. Same as Fig. 12 but for η ¼ 0.391 (weak phase
transition). We centered uncertainty boxes atM ¼ 1.31 M⊙, R ¼
12.75 km (inflection point of the Δp ¼ 2% curve).

FIG. 15. Same as Fig. 13 but for weak phase transitions.
The uncertainty boxes are centered at the same mass of Fig. 14
and its associated tidal deformability. Maximum fractional tidal
differences here are much smaller than in the strong phase
transition case.

FIG. 13. Mass-tidal deformability relations around the appear-
ance of a quark phase for stars with and without the mixed state
for η ¼ 0.71. The dot-dashed cyan curve is also an enlargement of
the correspondent plot in Fig. 1 for the n1 ¼ 0.4 fm−3 EOS. The
darker (lighter) box corresponds to tidal deformability with
(representative) 5% (10%) fractional uncertainties. The mass
uncertainties are the same of Fig. 12. Around the onset of stable
quark phases (M ¼ 1.63 M⊙ and Λ ¼ 120), relative tidal de-
formability differences associated with strong sharp phase tran-
sitions and mixed states could be up to around 25%.
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V. DISCUSSION AND CONCLUSIONS

An interesting argument in favor of a phase transition at
intermediate densities (3–4 ρsat, ρsat ¼ 2.7 × 1014 g cm−3)
may be derived from the precise measurement of the
thickness of the neutron skin of 208Pb (see [72] and
references therein). The skin thickness being larger than
anticipated requires a stiffer EOS of neutron matter at ρ≲
ρsat [72]. If smoothly continued to intermediate supra-
nuclear densities, relevant for NSs of masses around
1.4 M⊙, this new EOS is too stiff to be reconciled with
measured values of R and Λ, which require a softer EOS in
this density region. This softening, followed by a stiffening
at large densities—to allow for 2 M⊙ NSs—is missing in
the smooth EOSs based on 208Pb skin measurements.
According to [72], the tension between the two EOSs
might indicate a phase transition at intermediate densities,
relevant for NSs but irrelevant for 208Pb.
Although expected under the theoretical point of view

when the surface tension is below a critical value, there is
not yet a direct observation for the presence of a mixed state
in an NS. In this work we have tried to identify some
observables that may evidence the mixed state. When it
comes to radius and mass observations in general, it seems
that only future missions with relative uncertainties smaller
than 1%–2%, may be relevant. Tidal deformabilities should
also have high accuracies, with fractional uncertainties
being smaller than 5%–10%. (These accuracies also sug-
gest the maximum systematic errors due to EOS modelings
of hybrid stars.) However, for a range of masses close to the
appearance of the quark phase in the case of strong phase
transitions, tidal deformations associated with sharp inter-
faces and mixed states may differ more significantly. For
instance, as evidenced by Fig. 13, the relative change
between a hybrid star with a stable quark core and another
one with a mixed state and the same mass could be up to
around 25%. Roughly, the above results agree for different
constructions of a mixed state. All of this may give us hope
to start probing the existence of the mixed state (or weakly
constrain the high-density part of the EOS of a star) in the
near future. In particular, the most promising region of the
M − R diagram for differentiating a sharp phase transition
from a mixed state is around the phase transition mass, and
in principle it could happen around and between the most
commonly observed masses for NSs (1.4 M⊙ and 1.8 M⊙
[73]). However, statistical studies also suggest that the
phase transition mass may be large, around 2 M⊙ [74]. If
this turns out to be the case, then tidal deformation
measurements (if possible) and significant differences of
them for less massive stars would hint that some of them
may have mixed states in their interiors. (A mixed state
should appear at a smaller pressure than the one marking
the appearance of a quark phase in a star with a sharp phase
transition. In addition, too massive stars may have tidal
deformations too small to be measured even with advanced
GW detectors.)

A promising way to disentangle sharp phase transitions
from mixed states is with a large sample of observations/
higher signal-to-noise ratios (SNRs) because it could put
radius uncertainties down [39]. We stress that the 1%–2%
precision for radii (and 5%–10% for tidal deformations)
would be meaningful when many observations (for differ-
ent masses) are available. In this case, a particular sharp-
phase transition EOS that could explain a few observations
may not explain many. As a result, we would be able to
better constrain some EOS aspects, in particular those with
phase transitions. When this large number of observations
will be available, one may also have an estimate for
∂M=∂R, which could also deliver some information about
the level of softening of the EOS.
Characterizing a mixed state seems a much more

complicated task than probing its existence. One of the
reasons for different constructions leading to similar
aspects is their sharing of key thermodynamic conditions,
and also the fact that the mixed state’s structure is only
relevant for a limited range of chemical potentials.
Importantly, in the range of masses where a sharp transition
would differ the most from another one with a mixed state,
different constructions for the mixed state are expected to
lead to very small systematic uncertainties. In the example
of Figs. 12 and 13, relative changes for the tidal deforma-
tions intrinsically associated with different models for the
mixed state are much less than 1%. Fractional changes to
the radius due to the mixed state modeling are much
smaller, up to around 0.2%. This would suggest that third-
generation GW detectors and future electromagnetic mis-
sions may characterize some aspects to the mixed state in a
rather model independent way.
At the macroscopic level relevant for NSs, the mixed

state of dense matter is electrically neutral. However, on the
microscopic scale, the space there is filled with structures of
normal and exotic phases of opposite electric charges
[75,76]. The Coulomb force is balanced out by the surface
tension σ between the two phases [75], which is one of the
key ingredients connecting strong interactions of the matter
constituents and the phenomenology of a mixed state
(0 < σ < σmax unknown) in a hybrid star. Coexisting
substructures of exotic and normal phases, e.g., droplets,
columns, plates and corresponding bubbly structures, are
electrically charged and to minimize the energy in the
mixed state, the equilibrium mixed state has a periodic
crystal ordering [76]. The mixed state resists deformation
via an elastic strain, which contributes to the matter stress
tensor. In this way, the hydrostatic equilibrium of an NS
becomes the hydroelastic one (e.g., [70]). A rough estimate
of the maximum ellipticity of a solitary hybrid NS,
supported by elastic strain of its mixed state was obtained
by [77]. It will be of interest to address this aspect of the
mixed state and in particular its imprint on Λ, and we will
do so in a follow up paper.
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Our analysis suggests that differentiating a weak (sharp)
phase transition from a mixed state will be much more
observationally challenging. In case of a lack of observable
differences between sharp and mixed EOS aspects might
put upper limits on the density change from a hadronic to a
quark phase (current multimessenger constraints are yet
loose [67,78,79]) and Δp. These upper limits could also be
translated into limits to σ given microscopic models. This
would be relevant due to our current ignorance on this
quantity. One may also roughly estimate the required SNR
to differentiate between a weak phase transition and a
mixed state. Figure 15 suggests that relative tidal defor-
mation uncertainties should be at most of the order of
1%–2%. Given that large SNRs scale inversely with
uncertainties [80], for a GW170817-like event one would
need an SNR ≈ 2000–3500 to distinguish a phase transition
with a mixed state from a weak (sharp) one. This is larger
than the most optimistic expectations for the Einstein
Telescope (see, e.g., [39,80] and references therein).
Other quantities worth exploring in order to single out

aspects of the mixed state would be the moment of inertia of
stars and their quadrupole moments. They would be
relevant due to the prospect of near future measurements
of the rate of advance of the periastron and ellipticities of
stars, respectively. Indeed, it will be possible to measure the
rate of the advance for some sources [81], and now we are
closer to measuring mountains in NSs with GWs (see, e.g.,
[82–85] and references therein). In the vein of GWs, an
elastic mixed state might be able to heighten mountains in
the crust, and details thereof should be better understood.
For third-generation detectors, it would also be of interest
to calculate the quasinormal modes of a hybrid star with a
mixed state because some modes might rise uniquely due to
it in the range of hundreds to some kHz. In this case, the
planned GW mission NEMO [50] might also be relevant. It
is a 2.5-generation GW detector that will sacrifice sensi-
tivity at low frequencies to obtain larger-than-current
sensitivities in the high frequency band. As a result, it
will be suitable for GWobservations of the late inspiral and
the postmerger phases of binary coalescences. Of particular
interest is when one of the compact systems is an NS,
because the detection of kHz GWs may unveil unique
aspects pertaining to hybrid stars [86,87]. In addition, when
combined to Advanced LIGO and many detections are
available, it may also be able to better constrain NS EOSs
due to tidal deformation measurements (larger impact on
the waveforms). The expected (fractional) radius precision
is not far off from the one we have estimated to start
evidencing the presence of a mixed state layer. Thus,
mostly when many observations are present, NEMO
may also have the potential of shedding light on some
aspects of phase transitions in NSs.
Finally, we stress that precise predictions associated

with a mixed state are not simple to be made when
using masses, radii and tidal deformations of stars in

general.4 Statistical results and high precision measure-
ments for these observables are needed to assess the
existence of a mixed state inside an NS. Estimating these
accuracies, as we have done, is important as a first step to
learn when one might run across limitations on the EOS
recovery with M, R and Λ measurements and also to learn
about the systematic uncertainties for EOS modelings with
phase transitions. Smoking-gun effects for mixed states
should be focused mostly on phenomena exclusively taking
place in such a phase, for instance oscillation modes that
could show up in the inspiral (premerger) and postmerger
waveforms of gravitational waves of NSs and also on some
electromagnetic measurements such as quasiperiodic oscil-
lations and light curves. We leave such studies for future
works.

VI. SUMMARY

Hybrid stars with sharp phase transitions and mixed
states may start being distinguished observationally in the
most optimistic case either (i) using data from the GW
detectors with tidal deformability uncertainties smaller than
5%–10%, suggesting that unless we witness rare nearby
events with high SNRs, we need to rely in general on
2.5- and third-generation GW detectors, or (ii) using
electromagnetic missions/GW detectors that could deliver
radius (and masses) uncertainties smaller than 1%–2%.
Measurements with higher uncertainties would lead to a
limitation on the EOS recovery by means of NS masses,
radii and tidal deformabilities. The above accuracies would
also suggest the level of systematic uncertainties EOS
models with phase transitions would have. The most
promising cases concern strong phase transitions (large
density jumps for the Maxwell construction) and mixed
states with large Δp (the relative pressure change at the
chemical potential related to the appearance of the quark
phase for a sharp phase transition). Sharp weak phase
transitions (smaller density jumps) seem more challenging
to be observationally differentiated from stars presenting
mixed states. In general, the mixed state would change
negligibly the maximum masses of stars and their asso-
ciated radii when compared to sharp phase transitions. The
range of NS masses, where changes between sharp phase
transition and mixed state observables may be noticeable
with near-term and future detectors, is around the appear-
ance of a quark phase, and particularities of the mixed state
construction are expected to lead to very small systematic
uncertainties. This suggests that constraints to the mixed
state might be possible and rather EOS free.

4However, in particular, measurements of radii and tidal
deformations near the phase transition mass might reveal the
presence of mixed states in the most optimistic cases, see Fig. 1.
If the softening of the EOS is identified, as we have assumed, then
one might in principle have an idea of the phase transition mass
and observations in this mass range could be made.
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