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The tidal properties of a neutron star are measurable in the gravitational waves emitted from inspiraling
binary neutron stars, and they have been used to constrain the neutron star equation of state. In the same
spirit, we study the dimensionless tidal deformability of dark-matter-admixed neutron stars. The tidal Love
number is computed in a two-fluid framework. The dimensionless tidal Love number and dimensionless
tidal deformability are computed for dark-matter-admixed stars with the dark matter modeled as ideal
Fermi gas or self-interactive bosons. The dimensionless tidal deformability shows a sharp change from
being similar to that of a pure normal matter star to that of a pure dark matter star, within a narrow range of
intermediate dark matter mass fraction. Based on this result, we illustrate an approach to study the dark
matter parameters through the tidal properties of massive compact stars, making use of the self-similarity of
the dimensionless tidal deformability–mass relations when the dark matter mass fraction is high.
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I. INTRODUCTION

Most of the mass in the Universe is believed to be dark
matter (DM). However, almost all properties of DM are
still unknown, and the existence of DM is only supported
by indirect evidences [1]. Different ways to study DM are
conducted, such as measurements of rotation curves of
spiral galaxies [2], the cosmic microwave background [3],
and gravitational lensing [4,5]. Searching for DM particles
is also ongoing in different experiments [6–8]. The recent
observation of excess events reported by the XENON1T
experiment [8] may be the first direct detection of DM, and
if so, it may open up a window for discovering physics
beyond the Standard Model. Understanding the nature of
DM would be a significant advance of physics.
Since so far only observations through gravity reveal the

existence of DM, perhaps gravity is the only interaction
between the DM and Standard Model particles, or normal
matter (NM). Due to the weak coupling strength of
gravitational interaction, it would be difficult to investigate
the DM through its interaction with NM. It may be easier if
we study the DM on the cosmological scale, where the DM
contributes a large part of gravity. Another possibility is to
focus on high-density regions, as gravity plays a significant
role there. Compact stars, such as neutron stars, can be a
possible natural laboratory to study DM.
Due to the high matter density at a neutron star’s core,

the physics in this region is still not well understood. It is
thus important and interesting to study the properties of
neutron stars, which can be used to constrain the unknown
nuclear matter equation of state (EOS). For example, the
mass-radius relation and tidal deformability of neutron stars

have been studied extensively (see, e.g., Refs. [9–11] for
reviews). Although calculating the nuclear matter EOS
from first principles is still not possible, nuclear physics
experiments and neutron star observations have given
constraints on the EOS. The recent accurate measurement
of the neutron skin thickness of 208Pb has constrained the
density dependence of the symmetry energy near saturation
density [12]. The observations of neutron stars with masses
≈2 M⊙ [13,14] have already ruled out many soft EOS
models. The tidal deformability of neutron stars has also
been constrained by the observation of the first gravita-
tional-wave event GW170817 from a binary neutron star
system [15], and implications on the EOS models have
been studied (e.g., Refs. [16–22]). A 2.6 M⊙ compact
object recently observed in gravitational-wave event
GW190814 [23] will also be a challenge to our under-
standing of dense nuclear matter if that object is a neutron
star (see, e.g., Refs. [24–28] for various proposals), though
the probability that it is a black hole is high according to
recent studies [29,30]. The more recent mass-radius mea-
surements of pulsars PSR J0030þ 0451 [31,32] and PSR
J0740þ 6620 [33,34] obtained by the NICER x-ray tele-
scope have also yielded important information about the
EOS. With the prospect of seeing more neutron-star
observations in both the electromagnetic and gravita-
tional-wave channels, we should be able to gain a much
better understanding of the unknown nuclear matter EOS in
the coming decade. Furthermore, neutron stars may also be
used to probe the nature of DM and help to answer one of
the fundamental questions in physics as mentioned above.
Compact objects with DM admixture have been studied

previously, such as supernova progenitors [35,36] and
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neutron stars (see, e.g., Refs. [37–49]). With its relevance to
the gravitational-wave signals from binary neutron stars,
the tidal deformability of neutron stars with a small amount
of DM admixtures has also been studied in Ref. [42], and it
was suggested that a 5% DMmass fraction in a neutron star
can already alter the conclusion about ruling out neutron
star EOSs. The tidal properties of boson stars [50] and pure
DM stars [51] have been studied as well. The tidal
properties of compact stars can be a tool to discover
new classes of compact stars. In this work, we assume
that the DM and NM only couple through gravity. The
mass-radius relation and tidal properties of DM-admixed
neutron stars are studied with a two-fluid treatment.
The plan of the paper is as follows: In Sec. II, we

describe the formulation to calculate the hydrostatic equi-
librium and the tidal Love number of DM-admixed stars.
We also discuss the EOS models employed for the NM and
DM. Our numerical results are presented in Sec. III, and our
conclusions are summarized in Sec. IV. Unless otherwise
noted, we use units where G ¼ c ¼ 1.

II. METHOD

A. Hydrostatic configuration

The tidal deformability of a nonrotating compact star is
determined by perturbative calculations starting from the
unperturbed background solution described by a spheri-
cally symmetric and static metric

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ð1Þ

The equilibrium structure of a nonrotating compact star is
determined by the Tolman-Oppenheimer-Volkoff (TOV)
equation [52]:

dp
dr

¼ −
mþ 4πr3p
r2ð1 − 2m=rÞ ðρþ pÞ; ð2Þ

dm
dr

¼ 4πr2ρ; ð3Þ

dν
dr

¼ 2ðmþ 4πr3pÞ
r2ð1 − 2m=rÞ ; ð4Þ

where ρ and P are the energy density and pressure,
respectively. The function mðrÞ is defined by e−λðrÞ ¼
1–2mðrÞ=r. The TOV equation is closed by providing
an EOS pðρÞ. The conditions at the star center are
mðr ¼ 0Þ ¼ 0 and ρðr ¼ 0Þ ¼ ρc, with ρc being a given
central density. The TOV equation will be solved from
r ¼ 0 to R, where R is the radius of the star defined by
pðRÞ ¼ 0. The total mass of the star M will be mðRÞ.
Taking the proper limit of the right-hand side of Eq. (2), we
have dp=dr → 0when r → 0. The metric function νðrÞ has
the boundary condition eνðRÞ ¼ 1–2M=R at the surface.

In order to study two-fluid DM-admixed stars, some
modifications are needed for the TOVequation. The energy
density in general will depend on the number densities of
both NM and DM. We may express the energy density as

ρðNn; NdÞ ¼ ρnðNnÞ þ ρdðNdÞ þ ρinteractðNn; NdÞ; ð5Þ

where Ni is the number density, and i ¼ n, d denotes the
NM and DM components, respectively. The total energy
density is the sum of the contributions of each component
and the interaction part ρinteract. In this study, we assume
that the NM and DM only interact through gravity.
Therefore, ρinteract ¼ 0, and ρ can be separated into two
individual parts, each depending only on one of the
components. Thus, the pressure can also be separated into
two parts, and we can define them as the pressure of the
NM and DM. From the analogy to the Newtonian situation,
we can construct a set of equations by considering that
the pressure of one component will not support the other
component. We have a two-fluid version of the TOV
equation [37,47]:

dpi

dr
¼ −

mþ 4πr3p
r2ð1 − 2m=rÞ ðρi þ piÞ; ð6Þ

dmi

dr
¼ 4πr2ρi; ð7Þ

dν
dr

¼ 2ðmþ 4πr3pÞ
r2ð1 − 2m=rÞ ; ð8Þ

where i ¼ n or d. Variables with a subscript denote the
quantities of the corresponding component, and variables
without a subscript denote the sum of the two components
(i.e., m ¼ mn þmd and p ¼ pn þ pd). The conditions at
the star center aremiðr ¼ 0Þ ¼ 0 and ρiðr ¼ 0Þ ¼ ρc;i. The
pressures of the two components in general drop to zero at
different r. The radius of the star R is defined to be the
outermost one, where the pressure of both components
vanishes. The original TOV equation will be recovered if
we add up the two components. The above set of hydro-
static equilibrium equations can in fact be derived from a
general relativistic two-fluid formalism [53], assuming that
the two fluids only interact via gravity (see the Appendix).

B. Tidal Love number and dimensionless
tidal deformability

The deformation of a compact star due to the tidal effect
created by a companion star is characterized by the tidal
deformability λtid, which is defined by Qij ¼ −λtidEij,
where Qij is the traceless quadrupole moment tensor of
the star and Eij is the tidal field tensor. The computation of
λtid for nonrotating neutron stars is well established. Here
we only summarize the main equations and refer the reader
to Refs. [54–56] for more details. The linearized metric and
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fluid equations yield the following equation for determin-
ing a perturbed metric variable yðrÞ:

ry0 þ y2 þ yeλ½1þ 4πr2ðp − ρÞ� þ r2Q ¼ 0; ð9Þ

where primes denote radial derivatives and the function
QðrÞ is given by

Q ¼ 4πeλ
�
5ρþ 9pþ ρþ p

dp=dρ

�
−
6eλ

r2
− ðν0Þ2: ð10Þ

The boundary condition at the center is yð0Þ ¼ 2. After
matching the interior and exterior solutions of Eq. (9) at the
surface, one can obtain the so-called (quadrupolar) tidal
Love number k2:

k2 ¼
8

5
β5ð1 − 2βÞ2½2 − yR þ 2βðyR − 1Þ�

× f2βð6 − 3yR þ 3βð5yR − 8ÞÞ
þ 4β3½13 − 11yR þ βð3yR − 2Þ þ 2β2ð1þ yRÞ�
þ 3ð1 − 2βÞ2½2 − yR þ 2βðyR − 1Þ� logð1 − 2βÞg−1;

ð11Þ

where β ¼ M=R is the compactness parameter and yR ¼
yðr ¼ RÞ. The tidal deformability is then given by

λtid ¼
2

3
k2R5: ð12Þ

It is also convenient to define the dimensionless tidal
deformability Λ ¼ λ=M5. In this paper, we only focus
on the dimensionless tidal deformability Λ, but not λtid. The
weighted average of Λ a binary neutron system can be
inferred from the gravitation waves emitted during the
inspiral phase of the system [50,57]. Also, Λ is studied in
the I-Love-Q relation [58], an EOS-insensitive universal
relation found for neutron stars.
For the two-fluid case, some modifications of Eqs. (9)

and (10) are needed. The energy density, pressure, and
mass can be replaced by the two components’ sums. The
term with dp=dρ requires some calculations. We follow the
general relativistic two-fluid formalism in Ref. [59] and
derive the modification needed in the Appendix:

ρþ p
dp=dρ

→
X
i

ρi þ pi

dpi=dρi
: ð13Þ

It should be noted that this is valid only if the NM and DM
do not interact microscopically in the sense that the energy
density function can be decomposed as in Eq. (5) with a
vanishing interaction part (i.e., ρinteract ¼ 0, assumed in this
paper). For the more general case, ρinteract ≠ 0, one can
employ the formulation in Ref. [59], which was originally

developed for two-fluid superfluid neutron stars (see
also Ref. [60]).

C. Equation of state for dark matter

There are many candidates for DM particles, such as
axions, sterile neutrinos, and different possible WIMPs [1].
Since the nature of DM is uncertain at this point, we
consider both fermionic and bosonic DM particles and use
only simple models to represent the DM EOS. The two
types of EOS we use are zero-temperature ideal Fermi gas
and self-interactive bosons with a quartic term of the scalar
field in the Lagrangian density. Both models can be
approximated by polytopic EOSs in some limits. The free
parameters will be the particle mass, or a combination of
the particle mass and strength of self-interaction.

1. Fermionic dark matter

The first DM model we will use is the zero-temperature
ideal Fermi gas. Stars supported by electron degeneracy
pressure form a successful model for white dwarfs. For a
better treatment, the EOS for white dwarfs may also include
the contribution from the Coulomb force. The first model-
ing of neutron stars was done similarly by using a zero-
temperature ideal neutron gas EOS [52]. Although we now
know that the neutron star EOS is much more complicated,
this attempt still gives the right orders of magnitude for
different properties of neutron stars.
We assume there is only one type of spin-1

2
DM particles.

The zero-temperature ideal Fermi gas EOS [52] is

ρ ¼ Kðsinh t − tÞ; ð14Þ

p ¼ 1

3
K

�
sinh t − 8 sinh

1

2
tþ 3t

�
; ð15Þ

with

K ¼ πμ4

32π3ℏ3
; ð16Þ

t ¼ 4 ln½yþ ð1þ y2Þ1=2�; ð17Þ

where

y ¼
�
3π2ℏ3n

μ3

�
1=3

; ð18Þ

μ is the particle mass, and n is the number density. In the
nonrelativistic and ultrarelativistic limits, the EOSs become
polytopic with indices 3

2
and 3, respectively.

2. Bosonic dark matter

Unlike the fermionic case, bosons do not have degen-
eracy pressure. To have a bosonic DM component which
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can be supported against the gravity, self-interaction for the
bosonic DM is assumed, which can be modeled in a simple
way. We follow the method in Refs. [61,62], which add an
additional quartic term of the scalar field in the Lagrangian.
When the ratio am2

Planck=4πμ
2 is large, an effective EOS for

this self-interacting bosonic DM [61] is

p ¼ 4

9
ρ0

��
1þ 3

4
ρ=ρ0

�
1=2

− 1

�
2

; ð19Þ

where

ρ0 ¼
μ4

4aℏ3
; ð20Þ

μ is the particle mass, a is a dimensionless constant
describing the strength of the self-interaction, and mPlanck
is the Planck mass,

mPlanck ¼
ffiffiffiffiffiffi
ℏc
G

r
: ð21Þ

In the low- and high-density limits, the EOS reduces to the
following polytropic forms:

p ¼ ρ2

16ρ0
for low density; ð22Þ

p ¼ 1

3
ρ for high density: ð23Þ

D. Equation of state for normal matter

From the gravitational-wave signals of the GW170817
event, nuclear matter EOS is constrained and “soft” EOSs
such as the APR EOS are favored over “stiff” ones [16].
However, the APR EOS cannot account for the 2.6 M⊙
object of the GW190814 event [23], if it is a neutron star.
So, we use the APR EOS [63] for NM and study how the
DM admixture may affect the result. For comparison, the
Skyrme model parametrizations [64] of LNS EOS [65] and
KDE0v1 EOS [66] are used for the NM as well. These two
EOSs have a maximum stellar mass (Mmax) less than 2 M⊙,
and they would be ruled out by the 2 M⊙ observational
constraint [13,14]. However, DM-admixed neutron stars
constructed with these EOSs may reach a larger Mmax than
the usual pure NM neutron stars, as the DM component is
included.

E. Properties of pure NM neutron stars
and pure DM stars

Before studying the properties of DM-admixed neutron
stars, we consider the structures of pure NM neutron stars
and DM stars for our EOS models. For the fermionic
DM, the particle mass is chosen to be on the order of

Oð0.1Þ GeV, so that the constructed pure DM star will have
a mass on the order of solar mass. For the bosonic DM,
ρ0ℏ3 is chosen to be on the order of Oð10−4Þ GeV4, which
also generates a pure boson star on a solar mass scale. Note
that our choices of EOSs and parameters for NM and DM
are just limiting cases to illustrate the situation before
admixing the two components. Readers may refer to
Refs. [51,67] for more discussion of the nuclear matter
and DM EOSs. The pure DM stars generated with these
parameter values have radii and masses comparable to
typical neutron stars. The mass-radius relations for various
EOSs are shown in Fig. 1. We find that the ideal Fermi gas
and the self-interactive boson EOSs behave self-similarly
under different choices of parameters, as there are dimen-
sionless solutions for these EOSs [51]. Results scale with
some combination of the DM parameters. For pure fer-
mionic DM stars,Mmax ∝ μ−2, andMmax ∝ ρ−1=20 ∝

ffiffiffi
a

p
μ−2

for pure bosonic DM stars [51]. So, the Mmax of fermionic
DM stars depends sensitively on the DM particle mass,
increasing by around 1 M⊙ when μ is decreased from
0.6 GeV to 0.5 GeV.
The tidal Love number and dimensionless tidal deform-

ability of the stars shown in Fig. 1 are plotted against the
total massM in Figs. 2 and 3, respectively. These plots give
us some understanding about each EOS. Indeed, the Λ −M
relation normalized by the Mmax of each curve is indepen-
dent of the particle mass, for both fermionic and bosonic
DM. The dimensionless tidal deformability is sensitive to μ
(ρ0) for the fermionic (bosonic) DM EOS, as the horizontal
axis of theΛ −M relation scales withMmax, which depends
on μ (ρ0). For example, a 2.6 M⊙ DM star may have a Λ

FIG. 1. Mass-radius relations for different compact stars. Pure
NM neutron stars (black lines) are modeled by the APR,
KDE0v1, and LNS EOSs. Fermionic DM stars (green lines)
modeled by the ideal Fermi gas EOS are labeled by the particle
mass μ (in GeV). Bosonic DM stars (red lines) are labeled by
ρ0ℏ3 (in 10−4 GeV4).
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around a few hundred if the Mmax is around 2.6 M⊙, but it
will become a few thousand if the Mmax is 2.9 M⊙ instead.

III. RESULT

A. DM-admixed neutron stars with various
DM mass fractions

After considering our models of pure NM neutron stars,
fermionic, and bosonic DM stars, we now study more
generally the properties of DM-admixed compact stars
using a two-fluid description. In Fig. 4, we show the mass-
radius relation of two-fluid stars with different DM mass
fractions, constructed with the APR EOS and 0.5 GeV
fermionic DM particle mass. The DM mass fraction f is
defined as the ratio of the DM mass to the total mass of the
star. The shape of the line for f ¼ 0.1 in Fig. 4 is similar to
that of a pure NM star, except for a segment showing a

different trend for mass smaller than 1.3 M⊙. The f ¼ 0.1
curve starts to deviate to a larger radius. This tail behaves
more similarly to the pure DM (f ¼ 1) curve, with a more
gentle slope. It is found that kinks on a curve appear when
the two components have the same radius. This property
may play a role in the tidal properties of a star as they are
related to the compactness of the star [58,68], which is the
ratio of the total mass to the outer radius. Similar results are
observed when the bosonic EOS is used (Fig. 5). In Fig. 5,
there are two kinks for f ¼ 0.1 and 0.2. For f ¼ 0.1, the
two kinks are near R ¼ 10 km. For f ¼ 0.2, one of the
kinks is near R ¼ 10 km and the other is near R ¼ 16 km.
The segment in between the two kinks concaves down-
ward, similarly to the pure DM (f ¼ 1) curve, but not
the pure NM (f ¼ 0) curve, which concaves upward.

FIG. 2. Tidal Love number against total mass for the same
EOSs and parameters as those in Fig. 1.

FIG. 3. Same as Fig. 2, but for the dimensionless tidal
deformability.

FIG. 4. Mass-radius relations of DM-admixed compact stars
constructed with the APR EOS and μ ¼ 0.5 GeV fermionic DM
EOS for different DM fractions f. The dashed line is the black
hole limit.

FIG. 5. Same as Fig. 4, but with the APR EOS and ρ0ℏ3 ¼
2.93 × 10−4 GeV4 bosonic DM EOS.

TIDAL DEFORMABILITY OF DARK MATTER ADMIXED … PHYS. REV. D 105, 123010 (2022)

123010-5



The segments separated by a kink have similar shapes to
those of either the pure NM or pure DM limit. A segment of
the mass-radius curve is similar to that of the component
with the larger radius. For larger f, only one kink is
observed near M ¼ 0.3 M⊙ of each curve. The configu-
rations on the flat tails have NM components that are more
extended than those of the DM. The shapes of the tails are
all similar to that of the pure NM limit, whereas the pure
DM case has no flat tail. This indicates that these flat tails
exist because of the extended NM component. The con-
figurations on the flat tails have very low mass and large
radius, or very low compactness. Therefore, these configu-
rations are not in the range of our interest even if they
are stable. Similar results can also be observed for other
EOSs. We will see later that the relative sizes of the two
components play an important role in admixed stars.
In Figs. 6 and 7, we plot the NM and DM density profiles

of two particular star models in Fig. 5 as an illustration.

They have the same compactness β ¼ 0.255 but different f.
For the model in Fig. 6, the DM radius is smaller than the
NM radius, and the DM mass only contributes 10% of the
total mass. However, the DM of the model in Fig. 7 is
the larger component and has a higher density near the core.
We expect these configurations to show different tidal
properties. The tidal properties of a star may indicate the
existence of a second admixed fluid.
In Figs. 8 and 9, the mass-radius relations are generated

by the same NM EOS, but with different DM EOSs. The
NM EOS is LNS, while the DM EOS is an ideal Fermi gas,
with a DM particle mass of 1.0 GeV (Fig. 8) or 0.6 GeV
(Fig. 9). The Mmax of pure DM stars for μ ¼ 0.6 GeV
(1.0 GeV) is greater (smaller) than that of the NM EOS
(see Fig. 1). In both cases, the additional component does
not increase Mmax, which occurs in either the pure DM or
the pure NM stars. This is also true for other EOSs we have

FIG. 6. Density profile of a configuration in Fig. 5, where
β ¼ 0.255 and f ¼ 0.1.

FIG. 7. Same as Fig. 6, but with f ¼ 0.3.

FIG. 8. Same as Fig. 4, but with the LNS EOS and
μ ¼ 1.0 GeV.

FIG. 9. Same as Fig. 4, but with the LNS EOS and
μ ¼ 0.6 GeV.
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used. Gravity is contributed by both fluids, but the pressure
of each fluid can only support the corresponding fluid
itself. It is not surprising that a two-fluid star cannot support
as much total mass as the one-fluid limit.
It was suggested in Ref. [69] that the stability of DM-

admixed neutron stars can be deduced from the M − ρc
relation for a fixed f in the same way as for one-fluid stars.
The turning point on a given mass-radius relation repre-
sents the maximum stable mass configuration. The stars
beyond the turning point (on the branch of smaller R) are
unstable against radial perturbations.
A kink similar to those in Figs. 4 and 5 is observed in the

tidal Love number against total mass curve, and is more
significant. Figure 10 shows the results for the LNS EOS
with μ ¼ 0.6 GeV as an example. We can see that the tidal
Love number may drop to one half or even less as f is
increased for a fixed total mass. Relations between k2 and
M for neutron stars modeled by different nuclear matter
EOSs were studied in Ref. [68]. For f ¼ 0.1, the change in
k2 relative to a pure NM neutron star is not significant
compared with the differences arising from different
neutron star EOSs. So, for such a small amount of DM
admixed, it would be difficult to distinguish a DM-admixed
neutron star from a traditional neutron star without DM
through the tidal Love number. However, the situation
is different for f ¼ 0.2. For M < 1.25 M⊙, k2 decreases
significantly compared to the pure NM result, by more
than 50%. The kink on the k2 −M relation induces a large
change in k2, which may be a possible signature of
DM-admixed neutron stars. These kinks will be significant
only for some range of f, possibly due to the fact that the
two components may have the same radius only for some f.
Similar results can be observed with other choices of EOS,
but the positions of the kinks, the range of f in which the
kinks are present, and the change in the value of k2 are
sensitive to the EOS.

It is interesting to understand why and how the tidal Love
number changes when DM is admixed. For better com-
parison, we plot the tidal Love number against compactness
in Fig. 11. There are kinks on the lines with f ¼ 0.2
(around β ¼ 0.19) and f ¼ 0.3 (around β ¼ 0.24). These
kinks are located near the configuration with the same NM
and DM radii. The k2 − β curves are similar for f ¼ 0, 0.1,
and the right half of f ¼ 0.2. Before the DM component
takes up a larger radius than the NM’s, the effect of the DM
admixture simply shifts the k2 − β curve but preserves
its general shape. For f > 0.5, the tidal Love number
decreases when the compactness increases monotonically.
This trend has also been observed for polytropic star
models [56]. As our DM EOSs are similar to the polytropic
EOS, it is not surprising that our results for high DM
fraction show a similar trend.
Interestingly, when β is around 0.05 to 0.20 and f is

around 0.2 to 0.4, the tidal Love number is significantly
lower than that of the pure NM case. Several NM EOSs
were studied in Ref. [56], and it was shown that the tidal
Love number for a pure NM neutron star typically peaks at
around 0.1 to 0.15. By considering the profile of yðrÞ
defined in Eq. (9) and its value at the surface yR, we find
that the low-density region of a star plays a role in the
suppression of the tidal Love number when DM is
admixed. We have studied the configurations around the
kink (β ¼ 0.18) on the f ¼ 0.2 line in Fig. 11. In Fig. 12,
we plot the profiles of yðrÞ for β ¼ 0.18 and different f. For
f < 0.2, the V-shaped curves are shifted to a smaller radius
when f increases, while yR remains more or less the same.
However, for f > 0.2, the V-shaped curves have a much
longer extension of the positive-slope side, and they also
shift upwards as f increases. Thus, the values of yR for
f > 0.2 are much larger than those of f < 0.2. Although
the tidal Love number k2ðβ; yRÞ is a complicated function
of β and yR, in the region we are interested in, k2 decreases

FIG. 10. Same as Fig. 9, but for the tidal Love number against
total mass.

FIG. 11. Same as Fig. 10, but for the tidal Love number against
compactness.
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when yR increases. Thus, we get a much lower tidal Love
number for f > 0.2. Moreover, the V shape in the yðrÞ
curve is confined to the low-density region of the star. In
Fig. 13, we plot the total energy density profiles for the star
models corresponding to the results presented in Fig. 12. It
is noted that the minima of the V-shaped curves in Fig. 12
are located near the positions where the density is very low
and its slope has a drastic change. For f < 0.2, the NM is
still the larger component, and the DM component only
affects the surface distribution of NM slightly, resulting
in only small changes in yðrÞ, yR, and therefore k2. For
f > 0.2, the DM becomes the larger component and
contributes to much larger yðrÞ, yR, and therefore lower
k2. Similar results are observed by fixing f but varying β.
Let us now focus on the case in which the Mmax of the

DM EOS is larger than that of the NM EOS. Figure 14 is

similar to Fig. 10, but for the dimensionless tidal deform-
ability against total mass. Unlike the previous results in
Figs. 4 and 10, the curves are generally smooth. For
f < 0.2, the Λ −M curves are similar to each other. For
example, for M ¼ 1.25 M⊙, the dimensionless tidal
deformability of the f ¼ 0.2 case is around 70% smaller
than that of a pure neutron star, and it is around 85%
smaller for 1.4 M⊙. This result agrees with that in Ref. [42],
which shows that a M ¼ 1.4 M⊙ neutron star will have a
smaller Λ when a small amount of DM is admixed. The
DM-admixed Λ −M curves are shifted to smaller stellar
mass compared with that of the pure NM case, and thus, Λ
is decreased for a fixed stellar mass but larger f. This seems
to be a general property regardless of the mass of the star.
The dimensionless tidal deformability starts to increase

for f > 0.4 in Fig. 14. The curves for f ¼ 0.5 to 0.7 are
steep. The separations between the curves are larger than
those with f < 0.5. This indicates that Λ is very sensitive
to M and f. Λ increases rapidly when f increases in this
range. A change in f will shift the curve horizontally on the
graph, which gives a rapid change in Λ. The large range of
possible Λ values may save some NM EOSs from being
ruled out by observations with f as an extra degree of
freedom. However, it will also be difficult to distinguish
and select the NM EOSs and constrain the DM parameters
in this range of DM fractions, for which a DM halo is
formed. A similar rapid increase in Λ is also observed for
the DM halo models studied in Ref. [45]. Qualitatively
similar results can be observed for other choices of the
EOS. For example, the APR EOS with a 0.4 GeV fermionic
DM particle mass shows similar results, but Λ starts to
increase at around f ¼ 0.1 instead. Note that we have only
considered the cases where the DM EOS has a largerMmax
than that of the NM. For the opposite situation, where the
DM EOS has a smaller Mmax than that of the NM EOS,
we consider the KDE0v1 EOS with μ ¼ 1.0 GeV as an

FIG. 12. Profiles of yðrÞ for β ¼ 0.18 and different f from 0.05
to 0.40. Same setting as Fig. 11.

FIG. 13. Total energy density profiles for β ¼ 0.18. Same
setting as Fig. 11.

FIG. 14. Same as Fig. 10, but for the dimensionless tidal
deformability.
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example, and the corresponding Λ −M relation is shown in
Fig. 15. The curves are almost vertical for f > 0.5. TheΛ is
thus sensitive to M. Qualitatively similar results can be
observed for other choices of the EOS.
In all the results we have shown, the properties of two-

fluid stars show continuous change between the limits of
pure NM and pure DM stars, with an abrupt transition at an
intermediate DM mass fraction. The Λ −M curves become
steep at some intermediate DM fractions, implying that Λ
will be very sensitive to the M and f. Also, for a DM EOS
with smallerMmax, the slope of the Λ −M curve is steeper,
so thatΛ is sensitive toM. For a DMEOSwith largerMmax,
the separation between the curves at intermediate DM
fractions is large, so that Λ is sensitive to f.
In Fig. 16, we plot Λ against M=Mmax for different f.

The normalized relation is less sensitive to f when f is high
(> 0.8 in this example). This result is similar to the fact that

properties of DM stars for the DM EOSs we considered are
self-similar and scale with Mmax for different DM param-
eters. The large separation between the curves in Fig. 14
indicates that Λ is very sensitive to both f and M in this
range. However, we may utilize the result that the Λ −M
relations are self-similar for large f, so that we can reduce
the relations to a single one forM=Mmax. So, we may study
the relation betweenMmax and f, instead of that of Λ and f.
Also, although f ¼ 0.7 is not perfectly fitted, it is still
approximately the same as the others, except for a few-
percentage shift along M=Mmax. Similar behavior can be
observed with other choices of EOS when the DM EOS has
a greater maximum mass than that of NM.
Also, except for f > 0.8, where the Λ −M=Mmax curves

are similar, theΛ −M=Mmax curves of smaller f are always
on the left of those for higher f, and there is no crossing
between the curves. This is different from Fig. 14, where
the Λ −M curves move back and forth along the horizontal
direction and cross with others. The transition from pure
NM to pure DM is clearer after we normalize M by Mmax.
This suggests that Λ should be studied as a function of
both M and M=Mmax.

B. Massive DM-admixed neutron stars

In the future, more gravitational-wave events similar to
GW190814 may be observed. Although the tidal properties
were not measured for the GW190814 2.6 M⊙ compact
object, we will use it as an example to study compact
objects in the mass gap.
The nature of the 2.6 M⊙ object is still unknown. It may

be the lowest-mass black hole ever observed, or the
largest-mass neutron star. The pure NM neutron stars
constructed from the EOSs we use, as well as those from
many other EOSs, cannot reach 2.6 M⊙. The 2.6 M⊙
object could be a DM-admixed neutron star or even a pure
DM star, and if so, we may constrain the range of DM
parameters. It is found that even admixed with DM, a two-
fluid star will only reach its maximum mass at either the
pure NM or pure DM limits. So, the DM-admixed neutron
star allows a maximum mass of 2.6 M⊙ only if the DM
EOS can reach 2.6 M⊙. Indeed, Mmax ¼ 2.6 M⊙ can be
reached if μ < 0.535 GeV for fermionic DM and ρ0ℏ3 <
3.69 × 10−4 GeV4 for bosonic DM. A much higher mass
limit for the DM EOS can be achieved if we consider a
smaller DM particle mass. However, the radius and Λ of
such a DM star will also increase significantly. Other
constraints may be applied, such as that the radius of the
DM component should be within the binary system, and
the star should be stable against tidal disruption during the
inspiral phase.
Furthermore, if the tidal properties of the binary system

are measured, we may narrow down the DM parameter
space. When the DM fraction is high, we have shown that
the Λ −M relations are similar to those of the pure DM
stars if they are normalized by Mmax. This indicates that

FIG. 15. Same as Fig. 14, but for the KDE0v1 EOS with
μ ¼ 1.0 GeV.

FIG. 16. Same as Fig. 14, but with the total mass normalized by
the Mmax of each curve.
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they share approximately the same dimensionless
function—i.e., the relations can be written as

ΛðM=MmaxðfÞ; σÞ ≈ ΛðM=Mmaxðf ¼ 1Þ; σÞ; ð24Þ

where σ denotes the parameter for the DM EOS. Also, as
mentioned, the DM EOSs we use are self-similar, which
means that they share the same dimensionless function that
is independent of the parameter:

ΛðM=Mmaxðf ¼ 1Þ; σÞ ¼ ΛðM=Mmaxðf ¼ 1ÞÞ: ð25Þ

Therefore, all these Λ −M relations share approximately
the same dimensionless function. All the information is
described by the normalizing factor, which is the maximum
mass of a Λ −M relation, with a given NM EOS, fixed DM
parameters, and a fixed DM fraction f. By considering the
maximum mass with different combinations of parameters,
we may give constraints to the parameter space.
We demonstrate the approach with an example. Assume

we have observed a star with mass in between [2.55,
2.65]M⊙ with Λ in between [1000, 2000]. We assume NM
EOS to be APR EOS and DM EOS bosonic. In Fig. 17, we
can limit the range of the M=Mmax by Λ. Although the
Λ −M relations with a high DM fraction are not perfectly
fitted on the dimensionless form, they behave like shifting
along the axis with a few-percentage deviation. So, we may
include this approximation in the range of mass. Thus, the
range of M=Mmax lies within approximately [0.90, 0.97],
and the maximum mass will be within ½2.63; 2.94� M⊙.
Figure 18 shows a contour plot for the maximum mass as a
function of the DM fraction and ρ0ℏ3. The parameter space
is then constrained. Although the NM EOS is still
unknown, this approach can be carried out with different
NM EOSs, and then the results combined. This graph only

shows a range of parameters. It is possible to extend the
axis of ρ0ℏ3 to even lower values, but there may be some
constraints, as mentioned before. We have not ruled out the
low DM fraction part, but that is the case that this approach
cannot be directly applied to. Also, the way to define a
“high” DM fraction needs further work.

IV. DISCUSSION

We have studied the static configurations and tidal
properties of DM-admixed neutron stars. We observe
drastic changes (kinks) in the tidal Love number as a
function of compactness or stellar mass when the NM and
DM components have the same radius. For small (large) f,
the tidal Love number behaves similarly to that of a pure
NM (DM) star, as expected. However, for intermediate
values of f, such as around 0.3, the tidal Love number is
much reduced relative to that of a pure NM star. We find
that in such cases, the DM component has a low-density tail
engulfing the NM component, which leads to a significant
decrease of the tidal Love number. Also, we have studied
the dimensionless tidal deformability Λ. For small f, where
the star configuration is similar to a pure NM star, Λ will
tend to decrease when more DM is admixed. For large f,
where the star configuration is similar to a pure DM star, the
Λ −M curves can be scaled to those of the pure DM stars.
Further study about the similarity of ΛðM=MMaxÞ for
different f may help to relate the properties of pure DM
stars to those for stars with large f. The tidal properties of
stars with intermediate DM fractions are much more
sensitive to the DM parameters.
The existence of the DM component hardly helps to

increase the total mass of the star unless the DM fraction is
high. However, this means that the two-fluid star is more
like a DM star instead of a neutron star. A pure DM star can

FIG. 17. Λ −M relation for bosonic DM EOSs, with M
normalized by the maximum mass. Black lines indicate the
range of variables of the example.

FIG. 18. A contour plot of maximum mass as a function of the
DM fraction and ρ0ℏ3. APR EOS are assumed for NM, and
bosonic DM are assumed.
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have a Mmax larger than those of the two-fluid stars.
Therefore, we may make use of the massive compact
object in GW190814 [23] as DM-admixed stars to limit the
DM parameter space, if such a star is believed to have a
high DM fraction. If the recently discovered 2.6 M⊙
compact object is a DM-admixed neutron star with a
high DM fraction, the fermionic DM would have
μ < 0.535 GeV, and the self-interacting bosonic DM
would have ρ0ℏ3 < 3.69 × 10−4 GeV4. Any more massive
compact objects that are not black holes, if detected, will
give even tighter constraints on these DM parameters,
provided that these star have a high DM fraction. For
compact objects in the mass gap, we have also illustrated a
method to limit the DM parameters and DM fraction if the
DM fraction is high.
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APPENDIX: DERIVATION FROM GENERAL
RELATIVISTIC TWO-FLUID FORMALISM

We follow the general relativistic two-fluid formalism
used in Refs. [53,69]. We will use a similar notation to
Ref. [69], except that the number density current for DM
will be denoted as dα and the master function will be
denoted as Φ. The master function plays the role of the
EOS in the two-fluid formalism and is defined by the
number density currents of the two fluids as discussed
below. The Einstein field equation and the hydrodynamics
equations reduce to the following equations by considering
a static and spherically symmetric spacetime [69]:

λ0 ¼ 1 − eλ

r
− 8πreλΦ; ðA1Þ

ν0 ¼ −
1 − eλ

r
þ 8πreλΨ; ðA2Þ

A0
0d

0 þ B0
0n

0 þ 1

2
ðBnþ AdÞν0 ¼ 0; ðA3Þ

C0
0d

0 þ A0
0n

0 þ 1

2
ðAnþ CdÞν0 ¼ 0; ðA4Þ

where the prime denotes a derivative with respect to r, and

A¼−
∂Φ
∂ðx2Þ ; B¼−2

∂Φ
∂ðn2Þ ; C¼−2

∂Φ
∂ðd2Þ ; ðA5Þ

A0
0 ¼ Aþ 2

∂B
∂ðd2Þ ndþ 2

∂A
∂ðn2Þ n

2 þ 2
∂A

∂ðd2Þ d
2 þ ∂A

∂ðx2Þ dn;

ðA6Þ

B0
0 ¼ Bþ 2

∂B
∂ðn2Þ n

2 þ 4
∂A

∂ðn2Þ ndþ ∂A
∂ðx2Þ d

2; ðA7Þ

C0
0 ¼ Cþ 2

∂C
∂ðd2Þ d

2 þ 4
∂A

∂ðd2Þ ndþ ∂A
∂ðx2Þ n

2; ðA8Þ

where n2, d2, and x2 are scalars defined by the NM nμ and
DM dμ number density currents:

n2 ¼ −nαnα; d2 ¼ −dαdα; x2 ¼ −nαdα: ðA9Þ

The master function Φ is in general a function of n2, d2,
and x2. The generalized pressure Ψ is given by

Ψ ¼ Φþ μnþ χd; ðA10Þ

where μ ¼ Bnþ Ad and χ ¼ Cdþ An are the chemical
potentials of NM and DM, respectively. With a given
master function and suitable boundary conditions, the
above equations can be used to construct a nonrotating
two-fluid star in general relativity [53,69].
Now, we make the assumption that NM and DM only

interact with each other through gravity. This means that
the two fluids affect each other only through the effect of
the metric. This assumption means that the master function
Φ does not depend on the cross term x2, so that Φ can be
separated into two parts:

Φðn2; d2; x2Þ ¼ Φnðn2Þ þΦdðd2Þ: ðA11Þ

With this assumption, many of the above coefficients can
be simplified:

A ¼ A0
0 ¼ 0; ðA12Þ

B ¼ −
1

n
∂Φn

∂n
; C ¼ −

1

d
∂Φd

∂d
; ðA13Þ

B0
0 ¼ Bþ ∂B

∂n
n; C0

0 ¼ Cþ ∂C
∂d

d: ðA14Þ

The generalized pressure Ψ can also be separated into two
parts as Ψ ¼ Ψnðn2Þ þ Ψdðd2Þ, where

Ψn ¼ Φnðn2Þ þ Bn2; ðA15Þ

Ψd ¼ Φdðd2Þ þ Cn2: ðA16Þ

It is noticed that

∂Ψn

∂n
¼ ∂ðΦn þ Bn2Þ

∂n
¼ Bnþ ∂B

∂n
n2 ¼ B0

0n: ðA17Þ
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We can substitute Eqs. (A12) to (A17) into Eq. (A3) to get

dΨn

dr
¼ −

1

2
ð−Φn þΨnÞν0: ðA18Þ

The same result is also obtained for the DM part. By setting
one of the components to have zero contribution, the
standard TOV equation shall be obtained. We shall replace
the generalized pressure Ψi with the usual pressure pi, and
the master function Φi with the negative energy density
−ρi. The set of two-fluid equations is then obtained in the
form of the standard TOV equation. We can also check the
relation between Φi and Ψi to see if they fulfill the same
relation between the energy density and pressure. From
thermodynamics, we have the following relation:

pn ¼ −
∂ðρn=nÞ
∂ð1=nÞ ¼ ∂ρn

∂n
n − ρn: ðA19Þ

From Eqs. (A13) and (A15), we have

Ψn ¼ −ð−ΦnÞ þ
∂ð−ΦnÞ

∂n
n: ðA20Þ

Similar results can be obtained for both fluids.
To compute the tidal Love number, we follow the

method in Refs. [59,60]. The modification for Eq. (10) is

ρþ p
dp=dρ

→ −
μ2C0

0 þ χ2B0
0 − 2μχA0

0

A0
0
2 − B0

0C
0
0

¼ μ2

B0
0

þ χ2

C0
0

¼
X
i

ρi þ pi

dpi=dρi
: ðA21Þ
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