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Observations have shown that spatially extended “TeV halos” are a common (and potentially generic)
feature surrounding young and middle-aged pulsars. However, their morphology is not understood. They
are larger than the “compact” region where the stellar remnant dominates the properties of the interstellar
medium, but smaller than expected in models of cosmic-ray diffusion through the standard interstellar
medium. Several explanations have been proposed, but all have shortcomings. Here, we revisit a class of
models where the cosmic-ray gradient produced by the central source induces a streaming stability that
“self-confines” the cosmic-ray population. We find that previous studies significantly underpredicted the
degree of cosmic-ray confinement and show that corrected models can significantly inhibit cosmic-ray
diffusion throughout the TeV halo, especially when similar contributions from the coincident supernova
remnant are included.
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I. INTRODUCTION

TeV halos are a distinct class of galactic γ-ray emission
sources characterized by their hard γ-ray spectrum,
spatially extended and roughly spherically symmetric
morphology, and coincidence with middle-aged pulsars.
Building on initial observations by the High Altitude
Water Cherenkov (HAWC) telescope of two TeV halos
surrounding the Geminga and Monogem pulsars [1,2],
subsequent observations by HAWC, the High-Energy
Steroscopic System (H.E.S.S) and Large High-Altitude
Air Shower Observatory (LHAASO) have identified
at least 8 TeV halo systems [3–9]. Dozens of other
systems have been discussed as possible TeV halos, or
TeV Halo/Pulsar Wind Nebulae (PWN) composite sys-
tems [3,7,10,11], a distinction which primarily depends on
the definition used to distinguish standard PWNe from the
more extended and diffuse TeV halos [7,12].
The size and morphology of TeV halos is unexpected.

Early theoretical models by Aharonian and collaborators
[13,14] predicted that energetic pulsars could produce an
extended halo of TeV electrons. However, these studies
utilized standard values for galactic diffusion, leading them
to conclude that the resulting halos would be extremely
large and have a surface brightness too dim to observe..1

Current observations indicate that the morphology of TeV
halos is diffusive—matching predictions from [13,14].
However, the diffusion coefficient that was calculated from
these observations lies approximately two orders of mag-
nitude below the standard value for galactic diffusion
[2,11,18–21]. This puzzling feature is not explained, and
produces halos with a high surface brightness and typical
extension between 20–50 pc at TeV energies.
A number of models have been posited to explain the

relatively compact morphology of TeV halos—all of which
have significant drawbacks: The first assumes that TeV
halos occupy regions of space with unusually small
preexisting diffusion coefficients [2,22–24] that are not
necessarily correlated with the pulsar or associated super-
nova remnant. While such a model was reasonable when
only Geminga and Monogem had detected halos, it
becomes less credible as more TeV halos are detected.
The second utilizes anisotropic diffusion models which
indicate that diffusion is primarily confined to one dimen-
sional flux tubes on small distance scales that orient particle
diffusion in the direction along the line-of-sight between
the pulsar and Earth [25]. This restricts the spatial extension
of γ-ray emission perpendicular to the source, but should
produce highly asymmetric sources that are not observed in
most cases. A third model exploits the transition between
rectilinear propagation and diffusion to temporarily ori-
ented high-energy cosmic-rays toward Earth so that they
can begin cooling before diffusing [26]. However, the
efficiency of diffusion in these scenarios requires the
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pulsars be significantly more energetic than indicated by
radio observations [27].
Finally, some models argue that the pulsar (or associated

supernova explosion) generates turbulence that drives
down the local diffusion coefficient through a streaming
instability [28,29]. This model mirrors similar studies of
inhibited diffusion near supernova remnants [30], which
indicate that the net contribution of all supernova remnants
may even dominate cosmic-ray diffusion throughout the
Milky Way halo [31]. In particular, the steep cosmic-ray
gradient produced by a bright source generates Alfvén
waves that propagate outward along the cosmic-ray gra-
dient. Once excited, these Alfvén waves dominate the
turbulence spectrum at the scattering scale because they are
naturally resonant with the injected cosmic rays. The idea
of self-generated turbulence by cosmic ray streaming is not
new and is often taken into account to model cosmic ray
acceleration in supernova remnant shocks and propagation
in the galactic halo [32–34]. While in the context of cosmic
ray acceleration in supernova remnant shocks, nonresonant
modes of the streaming instability might be dominant [35],
but the nonresonant modes can be safely neglected in the
case of galactic propagation of cosmic rays [34].
Unfortunately, early models of cosmic ray propagation

around pulsars with self-generated turbulence indicated that
the pulsar is not energetic enough to inhibit diffusion on
such large scales [28,29]. Additional contributions from the
coincident supernova could potentially boost this effect.
However, mature pulsars such as Geminga have often
moved far from their parent SNR making it difficult to
explain why the TeVemission then remains centered on the
quickly moving pulsar [29].
In this paper we revisit models of cosmic-ray self-

confinement. We first correct an error that affected previous
results from Ref. [28]. In our corrected models, both the
amplitude and duration of cosmic-ray self-confinement is
significantly increased, making pulsars more than capable
of powering cosmic-ray self-confinement in 1D simula-
tions. We show that these models remain robust even when:
(1) additional turbulence damping terms are included,
(2) the pulsar spectrum is softened, or (3) the radius of
the 1D flux tube is increased. In simulations where the
initial diffusion coefficient is unsuppressed in three dimen-
sions, the effect of cosmic-ray self-confinement decreases
too rapidly with increasing radius. However, models that
include additional contributions from the coincident SNR
confine cosmic-rays on 10 pc scales. While fully consistent
models of cosmic-ray self-confinement lie beyond the
scope of this work, our models indicate that pulsars are
energetically capable of confining their own cosmic-ray
populations on Myr timescales.

II. MODEL OF THE PULSAR SOURCE

We model the pulsar as a point-source that begins
injecting electrons at time t ¼ 0. Throughout this paper

we use “electrons” to refer to eþe− pairs unless otherwise
specified. The spindown power (LðtÞ) of the pulsar is
assumed to be

LðtÞ ¼ Lðt ¼ 0Þð1þ t=τÞ−2 ð1Þ

where Lðt ¼ 0Þ is the spindown power at t ¼ 0, t is the
time and τ is the spindown timescale of the pulsar. The
pulsar source function for 1D or 3D spherically symmetric
propagation of cosmic rays is taken to be, respectively:
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where me is the electron mass, σ is the source size, η is the
spectral index, pm is the momentum cutoff beyond which
the source injection exponentially falls, R is the flux tube
radius for the case of 1D diffusion and Q0 is a normali-
zation constant. For the reference case considered in this
paper, we set σ ¼ 1 pc in both models and R ¼ 1 pc in the
1D case.
The normalization Q0 is determined such that the total

power in electrons integrated over momenta is equal to the
simultaneous spindown power of the pulsar. In reality, this
term is modified by some efficiency factor that determines
the fraction of the spindown power that is channeled to
electrons. Observations of TeV halo luminosities indicate
that both young and middle-aged pulsars convert a sizable
fraction, Oð9–30%Þ, of their spindown power into elec-
trons [11,18,36,37]. For our reference case of the Geminga,
we take Lð340 kyrÞ ¼ 3.7 × 1034 erg=s [38] setting the
age to 340 kyr and τ ¼ 10 kyr. We set the efficiency
parameter to α ¼ 0.1, corresponding to a 10% electron
injection efficiency.

III. COSMIC RAY TRANSPORT MODELING

The coherence length of the galactic magnetic field is
expected to be somewhere between Lc ∼ 1–100 pc
[24,39,40]. It likely varies substantially throughout the
galaxy, with shorter coherence lengths in regions with
higher stellar and gas densities. Cosmic ray diffusion on
distance scales smaller than the coherence length can be
approximated by 1D diffusion in a flux tube. On larger
scales, it is more appropriate to utilize 3D diffusion models.
In this paper, we separately consider cosmic ray transport
for both 1D and 3D geometries, ignoring the transition
from 1D to 3D propagation for diffusion distances near Lc.
In this section, we first detail a 1D treatment of diffusion,
and then subsequently discuss several adjustments needed
to consider particle propagation in 3D.
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A. Diffusion equation in 1D

Particle diffusion in a cylindrically symmetric 1D flux
tube can be described by the following transport equation:

∂f
∂t ¼ Qeðp; z; tÞ − uA

∂f
∂z þ

∂
∂z

�
Dðp; z; tÞ ∂f∂z

�

þ ∂u
∂z

p
3

∂f
∂p −
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∂
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�
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dp
dt

f

�
ð3Þ

where f is the phase space distribution function, uA is the
advection speed, which we assume to be the Alfvén
velocity given by vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πmini

p
(B0 is the background

magnetic field, mi, ni represent the mass and number
density of ions in the plasma), and Dðp; z; tÞ diffusion
coefficient, which varies in momentum, space and time.

B. Energy loss terms

The last term, which includes dp
dt , takes into account the

energy losses of eþe− pairs. The energy loss rate is due to a
combination of synchrotron radiation and inverse Compton
scattering [41] and is given by:

−
dp
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where σT is the Thomson cross section, ρmag is the
magnetic field energy density and the sum over in the
expression with ρi is carried out over the various radiation
backgrounds consisting of the cosmic microwave back-
ground (CMB), infrared radiation (IR), ultraviolet emission
(UV) and starlight. We choose ρCMB ¼ 0.260 eV=cm3,
ρIR ¼ 0.6 eV=cm3, ρstar ¼ 0.6 eV=cm3 and ρmag ¼
0.025 eV=cm3 for a background magnetic field of B0 ¼
1 μG [18]. At very high energies, inverse Compton
scattering is further suppressed by Klein-Nishina effects
[encoded in SiðEÞ] which have also been taken into account
following the analytic formalism of [42], the accuracy of
which has recently proven insufficient for the 1% mea-
surements of electron spectra by AMS-02 [43,44], but is
more than sufficient for our purposes here.

C. Self-generated turbulence and nonlinear damping

The confinement of cosmic rays in our model
depends on the generation of magnetic turbulence by the
sharp gradient produced in the cosmic-ray population.
Specifically, the diffusion coefficient (D) is related to the
spectral power W as given in Ref. [45]

Dðp; z; tÞ ¼ 4

3π

rLðpÞvðpÞ
kresWres

ð5Þ

where rLðpÞ is the Larmor radius and vðpÞ is the particle
speed, which we assume to be equal to the speed of light c.

kres ¼ 1=rLðpÞ is the resonant wave number andWres is the
spectral power computed at the resonant wave number. The
evolution of W can then be calculated by:

∂W
∂t þ vA

∂W
∂z ¼ ðΓCR − ΓDÞW þ ΓNLD;BGWBG ð6Þ

where the wave growth rate ΓCR for 1D propagation is
given by:

ΓCR ¼ 16π2

3B2
0

vA
kWðkÞ

�
p4vðpÞ ∂f∂z

�
pres

ð7Þ

with ΓCR being the growth rate of Alfvén waves due to the
resonant streaming instability [45].
The turbulence will also be damped by a combination of

several different processes. Our default models focus on
nonlinear wave damping (NLD) terms, which have been
found to be the dominant damping term in regimes with
similar magnetic field strengths and gas densities as
observed near Geminga [28]. However, in the next section
we will also discuss the impact of additional damping
terms. For the NLD term, we follow the prescription of [46]
and set:

ΓNLD ¼ ð2cKÞ−3=2jvAjk3=2W1=2 ðKolmogorovÞ
¼ ð2cKÞ−3=2jvAjk2W ðKraichnanÞ ð8Þ

where cK ¼ 3.6. Equation (8) is equivalent to having a
Kolmogorov or Kraichnan description of the cascade given
by ∂

∂k ðDkk
∂W
∂k Þ in the limit where the cascade damping

timescale is faster than any other damping timescales [47].
We note that it was this term in Ref. [28] which included a
numerical error, where cK was accidentally set to be 0.21
(though the value was correctly listed in the paper). The
error in this value significantly increased (by more than an
order of magnitude) the rate of nonlinear damping, sig-
nificantly decreasing both the duration and the maximum
inhibition of cosmic-ray diffusion throughout that work.
Finally, in the absence of a cosmic ray gradient, the
turbulence level needs to have the average background
ISM value. For ensuring this, a compensatory background
term, ΓNLD;BGWBG has been added.
Finally, we note that nothing in the above model prevents

the diffusion coefficient from moving to arbitrarily low
values, including values that fall below the Bohm limit,
where the quasilinear approximation should fail. Thus,
throughout this work, we set the minimum diffusion
coefficient in any temporal, spatial, and energy bin to
the corresponding Bohm value at that energy. We find that
this does not have a significant role in our standard results
(calculated at a pulsar efficiency of 10%), except in a
narrow slice of energy near 1 TeV, but does have some
effect on parameter space scans that include large pulsar
eþe− efficiencies.
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D. Additional damping processes

In our default models, we consider only the NLD
processes for turbulent damping. However, several addi-
tional dynamic processes can counteract the generation of
magnetic turbulence and relax the diffusion coefficient to
standard ISM values. Most notable is the ion neutral
damping (IND) mechanism which occurs in partially ion-
ized plasmas [48,49]. The IND mechanism dissipates wave
energy through a viscosity term produced by charge-
exchange interactions between ions and neutral atoms
which cause neutral particles to begin participating in
hydromagnetic phenomena.
The damping rate depends on how the wave frequency

ωk¼vAk νin¼ 8.4×10−9× ðnn=cm−3Þ× ðT=104 KÞ0.4 s−1,
where nn is the neutral atom number density and T is the
plasma temperature. The IND damping rate also depends
on the ratio of ion to neutral densities fi ¼ ni=nn. In the
limit fi ≫ 1, which best describes interstellar regions that
lie outside of dense molecular clouds, the IND damping
rate is well approximated by Ref. [50]:

ΓIND ≃
νin
2

ω2
k

ω2
k þ f2i ν

2
in
: ð9Þ

For our default model, we assume ni ¼ 1 cm−3 and
nn ∼ 10−2 cm−3, representing a neutral fraction of 1%.
These values are well motivated by observations indicating
the absence of Hα emission from Geminga’s bow shock
nebula, which indicate that the neutral fraction surrounding
the pulsar is less than 1% [51]. In this case, we find that the
IND damping timescale at 10 TeV is 1

ΓIND
> 106 kyr, a value

that significantly exceeds the NLD damping timescale of
1

ΓNLD
∼Oð100 kyrÞ, which can be derived using Eq. (8) and

noting that:

W ¼ 4

3π

rLðpÞvðpÞ
kD

∼ 2 × 1015 cm ð10Þ

at an energy of 10 TeV for diffusion coefficients that are
suppressed by approximately two orders of magnitude from
the standard Kolmogorov value. Based on this line of
reasoning, the IND term was ignored in Ref. [28] and is
similarly ignored in our default analysis.
However, we note that the IND term can be significantly

more important at low energies, or in regions with higher
neutral gas densities. In order to determine the diffusion
coefficient over the full energy range, we thus include IND
damping for some simulations using neutral fractions of 1%
and 10%, finding that such models significantly increase
the diffusion coefficient at low energies.
In addition to the NLD and IND damping mechanisms,

additional damping terms such as nonlinear Landau damp-
ing (NLLD) and linear turbulent damping (also known as
the Farmer-Goldreich: FG damping), have been considered
in the literature, but are not included in this analysis. NLLD

damping effectively converts wave energy into heat
[52,53]. If this damping term dominates, the turbulent
cascade is suppressed and the NLD cascade damping does
not develop. However, the effectiveness of this damping
term in a turbulent plasma is not clear. The functional form
for the damping [52,53] is obtained from a simplified
system where two Alfvén waves (with slightly different
wavelengths) travel in opposite directions, forming beat
waves that interact with the thermal ions and absorb the
wave energy. A critical assessment of the role of this
mechanism, using for example, particle-in-cell (PIC) sim-
ulations, is still missing [54]. Additionally, we note that if
NNLD damping were dominant through the Galactic
volume, then the turbulence injected by Supernova rem-
nants would be inefficient to explain the diffusion coef-
ficient observed in the Galaxy [46].
The turbulent or FG damping term is given by

ΓFG ∼ vAffiffiffiffiffiffiffiffiffi
LinjrL

p , where vA is the Alfvén speed and Linj is

the injection scale of the turbulence [55]. For reasonable
magnetic field strengths around Geminga, B ∼ 1 μG [56],
the timescale associated to this damping term is ∼500 kyr
for p ∼ 10 TeV particles, which is generally longer than the
damping timescales associated to the NLD damping.
Therefore, for the models considered in this paper, FG
damping is expected to be subdominant. We note, however,
that FG damping may become relevant for TeV halos
formed in regions with larger interstellar magnetic fields.

E. Adjustments for diffusion in 3D

As noted earlier, for cosmic ray diffusion on distance
scales larger than the galactic coherence length, the
diffusion is expected to be better represented by particle
propagation in 3D—although diffusion can be more com-
plicated in the transition region where TeV halos may
reside. In this subsection, we consider several adjustments
to our model which are necessary to consistently model
diffusion in a regime where particle propagation in all three
spatial dimensions is initially unsuppressed. We addition-
ally note that TeV halo observations indicate that the halo is
roughly spherical (or at least, not a linear tube), which
strengthens the case for considering 3D diffusion models.
We first note that in Eq. (2), we have provided the pulsar
morphology in both the 1D and 3D spherically symmetric
case, but find that these differences do not significantly
impact the results of our study.
More importantly, spherically symmetric particle diffu-

sion in 3D space is governed by the 3D diffusion equation,
given by:

∂f
∂t ¼ Q3D

e ðp; r; tÞ − vA
∂f
∂r þ

1

r2
∂
∂r

�
r2Dðp; r; tÞ ∂f∂r
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p2

dp
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Finally, in addition to changes in the diffusion term, the
wave growth rate in a spherically symmetric 3D geometry
is given by:

Γ3D
CR ¼ 16π2

3B2
0

vA
kWðkÞ

�
p4vðpÞ ∂f∂r

�
pres

ð12Þ

where essentially the ∂f
∂z in Eq. (7) is replaced by the

gradient in 3D spherical geometry [57].

F. Contributions from a supernova remnant

Finally, we study a scenario where, in addition to
electrons injected by the pulsar, a supernova remnant
(SNR) also injects protons into the interstellar medium
(see [29]). In this case, the self-generation of waves is
governed by the combined distribution function of both
protons and electrons. The SNR source term is taken to be

QSNRðr; p; tÞ ¼ Q0ðtÞ
�

p
mp

�
−ηSNR

e−
p
pc
exp ð−r2=2σ2SNRÞ
ð2πσ2SNRÞ3=2

ð13Þ

where Q0 is given by:

Q0ðtÞ ¼
ξCRESN

TSNI
ð14Þ

where TSN is the time over which the SNR provides
injection power. For this paper, we assume TSN ¼
1000 yr with the SNR injection stopping after this time.
I is a constant obtained by equating the total energy in
protons to the fraction of SNR kinetic energy transmitted to
protons. ξCR is the fraction of the supernova kinetic energy
transmitted to cosmic rays.
Protons and electrons are treated separately and for each

component, the propagation equation [Eq. (11)] is solved.
Protons are assumed to have zero energy losses while
electrons are taken to lose energy according to Eq. (4).

IV. NUMERICAL MODELING

The diffusion of particles and growth/damping of tur-
bulence represent a set of coupled differential equations
which we solve using an explicit finite-difference scheme.
The timestep Δt and spatial gridstep Δx are chosen such
that the system is stable. In this paper we choose Δt ¼
0.05 yr and Δx ¼ 1 pc. The momentum grid has 120
logarithmic gridpoints between pmin ¼ 1 GeV and
pmax ¼ 106 GeV. The results have been confirmed for a
range of spatial and momentum grids. The validity of the
results has also been tested in an unconditionally stable
semiexplicit Crank Nicolson scheme.
For our 1D fiducial model, we use α ¼ 0.1, B0 ¼ 1 μG,

σ ¼ 1 pc and set the background turbulence to have a

Kolmogorov spectrum with D¼3.466×1028p1=3
GeV cm

2s−1.
We take the background ion number density ni ¼ 1 cm−3.
We set the momentum dependence of the electron injection
spectrum to be ∝ p−3.5 expð− p

100 TeVÞ over a range between
1GeVand 107 GeV.The flux tube radius,R is assumed to be
1 pc. This choice of the flux tube radius is motivated by
studies of anisotropic diffusion coefficients parallel and
perpendicular to themeanmagnetic field [25,58],which find
that particles can typically propagate many tens of parsecs
along local directions of preferential diffusion while
being confined to diffuse only a few parsecs in directions
perpendicular to the localmagnetic field direction. The outer
boundary of the flux tube is taken to be zb ¼ 500 pc, an
unrealistically large number chosen such that boundary
conditions do not affect our result near the pulsar. We set the
electron distribution, f, to be 0 at the outer boundaries of the
flux tube. The initial condition is set to be fðz; pÞ ¼ 0
at t ¼ 0.
For the 3D fiducial model, we keep most parameters to

be the same as the fiducial 1D model, but set the default
pulsar efficiency to be α ¼ 1.0. The spatial gridstep is set to
be Δr ¼ 1 pc. The 3D boundary condition is set so that the
electron distribution f is zero at the outer boundary of the
spherical volume considered, at rb ¼ 500 pc. The inner
boundary of the simulation is set at rin ¼ 0.1 pc, instead of
r ¼ 0 to avoid singularities. For the inner boundary
condition, we set fðr0; pÞ ¼ fðr1; pÞ, where r0 and r1
denote the first two points of the radial grid.
For 3D models that include an SNR, we set the SNR

kinetic energy to be ESN ¼ 1051 erg, the SNR size,
σSNR ¼ 1 pc, SNR spectral index, ηSNR ¼ 4.2 and fraction
of energy transmitted to protons, ξCR ¼ 0.2. The electron
distribution function (fe) and proton distribution function
(fp) are evolved separately with identical boundary con-
ditions in each case.

V. RESULTS

A. 1D model

In Fig. 1, we show the time evolution of the diffusion
coefficient for models utilizing the Kolmogorov and
Kraichnan wave-damping phenomenology in our 1D sim-
ulation. We note that the initial turbulence spectrum is set to
the Kolmogorov values in each case. We show results for
values of the magnetic field strength ranging between
0.5–2 μG. The injection efficiency assumed for this plot
α ¼ 0.1. The result is plotted at an electron energy of
10 TeV and at a distance 10 pc from the pulsar, roughly
corresponding to the energy and distance scales corre-
sponding to HAWC observations of the Geminga TeV halo
[1]. For both the Kolmogorov and Kraichnian cases, the
diffusion coefficient decreases by more than 2.5 orders of
magnitude compared to the background ISM value, reach-
ing minimum values between 100–300 kyr, consistent with
the ages of the Geminga and Monogem halos. Notably, the
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suppressed diffusion coefficient persists throughout the
1 Myr timescale of our simulation.
The suppression of the diffusion coefficient is governed

by the growth of Alfvén waves governed by ΓCR, which
induces a period of highly inhibited diffusion. The sub-
sequent increase in the diffusion coefficient at late times is
governed by the relaxation term ΓD. Our models indicate
that the diffusion coefficient does not return back to ISM
values within the 1 Myr timescales of our simulation for
either the Kolmogorov of Kraichnan models, with
Kraichnan models having an even longer relaxation time-
scale [28].
Our results are markedly different from those obtained in

Ref. [28] (See Fig. 1 of Ref. [28] for a direct comparison.)
While both studies found that cosmic-ray self-confinement
could inhibit diffusion throughout the halo by 2.5–3 orders
of magnitude at 10 TeV, our study requires only a 10%
conversion of the pulsar spindown power into electron pairs
to achieve this effect, while Ref. [28] required a 100%
conversion of the pulsar power. More importantly, our
models indicate that the diffusion coefficient requires more
than 1 Myr to rebound to ISM values, while the relaxation
time in Ref. [28] was much shorter and the diffusion
coefficient returned to ISM values within 100 kyr. We have
confirmed with the authors that the discrepancy between
these results is due to an error in the relaxation term
computed in Ref. [28]. The results presented here have
been checked against a corrected version of the code used
in [28], finding good agreement.

In Fig. 2, we show the evolution of the diffusion
coefficient as a function of time at a constant distance of
10 pc, but for different source injection efficiencies. In our
fiducial model, using a 10% efficiency, the diffusion
coefficient for 10 TeV electrons is suppressed by more
than two orders of magnitude at 340 kyr. For values of the
injection efficiency as low as 3%, we still obtain a
significant (factor of ∼5) suppression in the diffusion
coefficient, indicating that even relatively weak pulsars
could significantly affect local cosmic-ray propagation. We
note that these effects are nonlinear. A model with a 10%
pulsar efficiency produces a decrease in local diffusion that
is 50 × larger than a model with a 1% pulsar efficiency.
This is due to the fact that larger cosmic-ray gradients lead
to suppressed diffusion, which in turn causes more cosmic-
rays to pile-up (leading to larger gradients). As a result,
relatively small increases the pulsar power can significantly
affect the resulting model.
For models with injection efficiencies exceeding ∼30%,

i.e α ¼ 0.3, the diffusion coefficient at 10 pc and 10 TeV
falls below the Bohm limit. We note that the assumptions of
resonant diffusion off of turbulent waves breaks down in
such an environment. Thus, in our default models we set
the minimum diffusion coefficient in any spatial and energy
bin to be equal to the Bohm value at that energy. We note
that even if the curve Fig 2 does not show a value at the
Bohm limit, the simulation may still be affected by this
parameter choice if the Bohm limit is being reached in a
radial bin closer to the pulsar.

FIG. 1. The diffusion coefficient at a radius of 10 pc and an
energy of 10 TeV as a function of the pulsar age in the 1D case.
Two example scenarios, of Kolmogorov and Kraichnan turbu-
lence, are shown. The shaded bands show results for magnetic
field strengths ranging from 0.5–2 μG. In both cases, a strong
suppression of the diffusion coefficient (∼2–3 orders of magni-
tude) is observed. The suppression is seen to persist over the Myr
timescale in our simulation.

FIG. 2. The inhibition of the diffusion coefficient at an energy
of 10 TeV and a distance of 10 pc from the location of the pulsar
as a function of time. Curves correspond to different efficiencies
in the conversion of the pulsar kinetic energy into eþe− accel-
eration. Models with high efficiencies produce diffusion coef-
ficients that fall below the Bohm limit, at which point our
diffusion model may no longer be valid. In our models, we do not
allow the diffusion coefficient to drop below the Bohm limit at
any gridpoint.
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In Fig. 3, we show the diffusion spectrum generated by
our default model (α ¼ 0.1) over the full energy range of
our simulation. We immediately note several key results:
(1) the diffusion coefficient is highly suppressed below
energies of ∼100 TeV, (2) the minimum value of the
diffusion coefficient is reached on timescales of ∼100 kyr
across a wide-energy range, (3) the diffusion coefficient
rises rapidly above ∼10 TeV, due to the significantly
decreasing pulsar power (and highly efficient electron
cooling) at higher energies. This result is potentially
testable with upcoming HAWC and LHAASO observa-
tions, (4) the diffusion coefficient below ∼10 TeV is nearly
energy-independent between 100–300 kyr, closely match-
ing observations of energy-independent diffusion in the
Geminga TeV halo that were first noted by [18]. Notably,
these spectral features may help differentiate cosmic-ray
self confinement models from alternative explanations for
inhibited diffusion within TeV halos.
In Fig. 4 we show the energy density of the eþe−

population that produces the turbulence responsible for the
inhibited diffusion in our model. At low energies, this eþe−
population rises steeply, matching the hard E−1.5 injection
spectrum, while at higher energies, the eþe− energy density
falls rapidly due to synchrotron and ICS cooling. The
critical energy that transitions between these two regimes
decreases with increasing time, as expected based on the
energy dependence of lepton energy loss processes.
In Fig. 5, we show a two-dimensional representation of

the diffusion coefficient at our standard energy of 10 TeVas

a function of both time (after pulsar formation) and distance
(from the pulsar) for our default simulation (with α ¼ 0.1).
At time t ¼ 0, the diffusion coefficient is high throughout
the simulation volume, but it drops quickly in regions near
the pulsar, achieving a minimum value of ∼1027 cm2 s−1 at
an age of ∼100 kyr. The diffusion coefficient can continue
to be significantly inhibited and much larger radii—falling
below a value of ∼1028 cm2 s−1 (70 × lower than the
standard ISM) out to a radius of ∼35 pc. Such a model
matches (and even exceeds) the inhibition of diffusion
observed near the Geminga and Monogem TeV halos [2],
indicating the potential impact of cosmic-ray self-confine-
ment in these simulations. Finally, we note that in our
model, the diffusion coefficient increases by a factor of∼10
between 10–50 pc, which differs from the assumption of [2]
where the diffusion coefficient is assumed to be small
everywhere, but is similar to two-zone diffusion models of
the Geminga TeV halo that have been proposed by (e.g.,
[11,18]) and which have been shown to provide a better fit
to local TeV cosmic-ray data [59]. We note that, due to the
rapidly decreasing surface brightness (and large statistical
errors) in HAWC observations of the TeV halo γ-ray flux at
distances exceeding ∼20 pc, all of these models remain
consistent with current TeV data.

B. Robustness of results

Our 1D models indicate that the diffusion coefficient
near pulsars: (1) can be suppressed by 2–3 orders of
magnitude at critical energies near 10 TeV, (2) will remain
suppressed on 1 Myr timescales consistent with the

FIG. 3. The diffusion spectrum as a function of energy for
different time snapshots for our default model with an injection
efficiency of α ¼ 0.1. The gray dashed line indicates the Bohm
limit. The diffusion coefficient is highly suppressed below
∼100 TeV and the suppression persists till 1 Myr. The diffusion
coefficient rises rapidly for very high energy electrons above
∼10 TeV due to a combination of the exponential cutoff in the
pulsar spectrum and very fast cooling of high-energy electrons.

FIG. 4. The eþe− energy density at 10 pc from the pulsar center
as a function of particle energy for five different time slices in our
analysis. We note that at low energies (where electron cooling is
inefficient) our models predict an increasing power-law consis-
tent with the E−1.5 injection spectrum, while at larger energies, the
eþe− distribution function becomes increasingly suppressed due
to electron cooling.
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observation of TeV halos around mature pulsars, (3) can be
suppressed even if only ∼10% of the pulsar spindown
power is converted into electrons. The surprising efficiency
of cosmic-ray self-confinement indicates that these models
are likely to remain robust even if less optimistic input
parameters are considered.
In Figure 6 we show the diffusion coefficient as a

function of time in a model where the pulsar electron
injection spectrum has a momentum index p−4.2, which is
significantly softer than our default value of p−3.5. Our
default value is more consistent with observations of the
Geminga and Monogem TeV halos [18], while a softer
value may be motivated by GeV observations of Geminga
[21] as well as the spectrum of diffuse emission from the
TeV halo population [10]. However, we stress that our
choice of a p−4.2 momentum spectrum is even more
pessimistic than advocated by the results of [10,21], as
we assume that the soft cosmic-ray injection spectrum
continues all the way to 1 GeV, while previous models have
utilized a broken power-law to decrease the electron power
below energies of ∼500 GeV. Even in this extremely
pessimistic case, we find that the diffusion coefficient at
10 TeV can be inhibited by 2–3 orders of magnitude so long
as the electron efficiency is increased to offset the softened
spectrum.
In Fig. 7, we show the diffusion spectrum for models that

additionally include ion-neutral damping (IND). The total
damping term is taken as the sum of the IND and NLD
terms, as defined in Sec. III. We find that the IND term
generally has no effect at TeV energies, but can consid-
erably affect diffusion in the GeV range. This result is
intriguing, as it indicates that TeV halos in regions with low

neutral gas densities (such as Geminga) may also produce
GeV halos [21], while TeV halos in dense regions of the
ISM may lack GeV counterparts. This observation appears

FIG. 5. Left: a heatmap of the diffusion coefficient as a function of distance from the pulsar and age for our default 1D scenario with
α ¼ 0.1. The diffusion coefficient is found to be suppressed by ∼2–3 orders of magnitude within 10–20 pc of the pulsar. The resulting
morphology of the halo is consistent with HAWC observations. However, the diffusion remains inhibited out to more than 100 pc from
the pulsar, where the 1D approximation likely breaks down. Right: the same figure, but zoomed out to show the full 1 Myr simulation
timescale, which depicts the slow return of our model to the background turbulence levels in the 1D simulation.

FIG. 6. The diffusion coefficient as a function of time at an
energy of 10 TeVand a distance of 10 pc from the pulsar. The plot
is shown for a softer pulsar spectral index, η ¼ 4.2 than the one
considered in Fig. 2, which uses η ¼ 3.5. We find that even with
an extremely soft spectral index, the diffusion coefficient de-
creases by ∼2 orders of magnitude for a pulsar efficiency of 30%,
i.e α ¼ 0.3. The pulsar efficiency needed to inhibit the diffusion
coefficient by 2 orders of magnitude is higher than our default
model with η ¼ 3.5 because the efficiency must increase to
compensate for the softer spectrum.
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unique to cosmic-ray self-confinement models and could
be tested by future Fermi-LAT data.
In Fig. 8 we show one of the most intriguing results of

our study, which indicates that the diffusion coefficient at

low-energies becomes energy-independent below ∼1 TeV
at a distance of ∼10 pc from the pulsar center. This is
substantially different from the Kolmogorov turbulence
which is used to seed the models, which includes a
diffusion coefficient that scales as E0.33. Intriguingly, this
result is similar to (but at a lower energy than) early models
of TeV halo activity [18], which found that the spectrum of
the Geminga TeV halo was best-fit when the diffusion
coefficient was energy-independent. We note that this
feature is not straightforward to analytically calculate,
and is instead produced through the coupling of the
cosmic-ray driven instability with the propagation of
cosmic-rays at various energies. In Fig. 9 we show the
same model (for Kolmogorov turbulence) calculated at a
distance of 5 pc from the PWN, at which point we still
observe considerable variance in the diffusion spectrum for
models with different cosmic-ray injection spectra. At
larger distances (e.g., 20 pc) from the PWN, we find that
the calculated diffusion coefficients become increasingly
more independent of the cosmic-ray injection spectrum.
Finally, in Fig. 10 we investigate models with signifi-

cantly wider flux tube radii. Within a 1D model, such a
change is degenerate with changing the efficiency (α) of the
pulsar, because the electrons are evenly distributed
throughout the radius of the flux tube. However, this
degeneracy breaks down when the pulsar efficiency
approaches unity. Further increases in the flux tube radius
cannot be compensated by changing the pulsar energetics,
and the degree of cosmic-ray self-confinement begins to
decrease. However, even for flux tubes with a radius of
5 pc, we can obtain a diffusion coefficient that is suppressed
by more than an order of magnitude at a distance 10 pc.

FIG. 7. Thediffusioncoefficient as a functionof energy in amodel
where we include IND damping. The result is shown at 300 kyr and
10 pc from a pulsar with an efficiency of α ¼ 0.1. The ion number
density,ni is set to 1 cm−3.We show results for neutral atomnumber
densities, nn ¼ 0.1, 10−2 and 10−3 cm−3 (corresponding to a 10%,
1% and 0.1% neutral fraction). For a 0.1% neutral fraction, IND
damping has a negligible impact on our model and the diffusion
spectrum at 300 kyr very similar to Fig. 3.When the neutral fraction
increases to 1%, the low energy (≲1 TeV) flux begins to be
significantly affected. However, the diffusion coefficient at
10 TeV is not impacted for any of the neutral fractions considered.

FIG. 8. Left: the diffusion spectrum as a function of energy at z ¼ 10 pc and α ¼ 0.1 and at 100 kyr. Results are shown for different
injection indices γ. Our default model corresponds to γ ¼ 1.5. We find that the diffusion coefficient is energy independent below
∼1 TeV. Right: a similar plot demonstrating energy spectrum of the diffusion coefficient but for Kraichnan coupling. Even for
Kraichnan coupling, we find that the diffusion coefficient has very weak energy dependence below ∼1 TeV. These two plots
demonstrate that the energy independence of the diffusion coefficient below 1 TeV at a distance of 10 pc from the PWN is robust.
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Such a model provides a hint regarding the transition from
1D to 3D models—indicating that in regimes where the
flux tube approximation begins to break down, the pulsar
may continue to significantly inhibit local diffusion.

In view of the results above, we conclude that, within the
context of 1D simulations, the self-generation mechanism
can be highly efficient in suppressing the diffusion
coefficient surrounding TeV halos by 2–3 orders of
magnitude at distances between 10–20 pc from the pulsar.
Moreover, the diffusion coefficient is maximally sup-
pressed on timescales of ∼100 kyr, consistent with the
observations of extremely suppressed ISM diffusion in the
TeV halos that surround multiple middle-aged pulsars [3–
9]. We also note that diffusion remains relatively efficiency
within the first ∼10 kyr, which may explain the lack of an
observed TeV halo around the Crab nebula and the
observation of only a dim halo around Vela (although
we note that the PWN, which is not modeled in this
analysis, also plays a significant role in electron propa-
gation at such an early stage).

C. 3D model

We note that in 1D models (where the volume increases
linearly with distance), the diffusion coefficient remains
inhibited more than 100 pc from the pulsar. Such a scenario
appears unphysical, as the correlation length of galactic
magnetic field turbulence likely falls below 100 pc, even in
particularly low-density regions of the galaxy [39,40].
Additionally, the spherically symmetric nature of several
TeV halo observations motivates the investigation of 3D
models.
In Fig. 11, we show the evolution of the diffusion

coefficient as a function of pulsar age for our 3D
case with two different model parameters. One is the 3D
fiducial parameters outlined in IV where the pulsar injec-
tion efficiency, α ¼ 1.0, B ¼ 1 μG, σ ¼ 1 pc, τ ¼ 10 kyr
and the background ISM diffusion coefficient is D ¼
3.466 × 1028p1=3 cm2 s−1. The momentum dependence
of the pulsar injection for this fiducial model is
∝ p−3.5 exp ð− p

100 TeVÞ. Additionally, we consider a “tuned”
model where we adjust several parameters to optimistic
values that give the maximum suppression in the diffusion
coefficient, namely B ¼ 0.5 μG, τ ¼ 5 kyr, a minimum
injection momentum pmin ¼ 10 GeV and a momentum
dependence of the pulsar injection ∝ p−3.0 exp ð− p

100 TeVÞ.
For both the cases, we plot the diffusion coefficient as a
function of time at both 5 pc and 10 pc from the pulsar. We
note that this plot is similar to Fig. 2 in the 1D case.
Focusing on the black solid and dashed plots that

correspond to the fiducial model, we find that the diffusion
coefficient at 10 pc is suppressed by less than a factor of 2
over the 1 Myr timescale of our simulation. However, at
5 pc, the diffusion coefficient is suppressed by more than
1.5 orders of magnitude until 1 Myr. We find that even our
extremely “tuned” model does not significantly inhibit
cosmic-ray diffusion at 10 pc (decreasing the diffusion
coefficient by only a factor of ∼3). However, it drastically
decreases the diffusion coefficient (by more than two orders
of magnitude) at 5 pc. Thus, our simulations indicate that in

FIG. 9. Same as Figure 8, but for a distance of 5 pc from the
PWN. At this distance, we find a significant energy-dependence
in the low-energy diffusion coefficient even at the late time of
100 kyr, indicating that the energy-dependence of the diffusion
coefficient happens dynamically as particles propagate away
from the PWN.

FIG. 10. The diffusion coefficient as a function of time for
different flux tube radii R and source injection fractions α.
Increasing the flux tube radius lowers the suppression of the
diffusion coefficient by increasing the propagation volume. This
can initially be compensated for by increasing the injection
fraction α. For example, the black and yellow solid lines
correspond to flux tube radii of 1 pc and 3 pc respectively,
but have an identical diffusion coefficient because the increasing
radius is compensated by increasing α from 0.1 to 0.9.
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3D models, the pulsar can significantly inhibit cosmic-ray
diffusion on ∼5 pc scales, but is insufficiently powerful to
inhibit diffusion on the 10–20 pc scales that are consistent
with TeV halo observations [2].

D. 3D model with supernova remnant

Because cosmic-rays from the pulsar appears to be
insufficient to significantly decrease the diffusion coeffi-
cient on 10–20 pc scales, we consider the possibility that
protons from the coincident supernova may additionally
contribute to lowering the diffusion coefficient through a
similar process. We note that SNR contributions to the
cosmic-ray streaming instability surrounding the pulsar
may be difficult to realize in practice, owing to the large
pulsar proper motion and observations indicating that TeV
halos are relatively symmetric around the current pulsar
position. However, we aim to show that the addition of an
SNR component make the production of inhibited dif-
fusion by combined SNRþ PWN sources energetically
feasible in a fully 3D model.
Utilizing an identical pulsar model as described for the

“default” 3D model (α ¼ 1.0), we add an SNR with a total
kinetic energy of 1051 erg. The momentum dependence of
the proton injection spectrum by the SNR is taken to be
∝ p−4.2 expð− p

107 GeVÞ. Protons from the SNR are treated

identically as the electrons in our default model, with the
exception that they do not cool (because hadronic losses are
inefficient on these time- and density scales).
In Fig. 12, we show the results for this model at our

default radius of 10 pc and energy of 10 TeV for different
assumptions regarding the fraction of the SNR kinetic
energy that is converted into TeV protons. In all cases, we
find that the SNR significantly increases the suppression of
the local diffusion coefficient. However, a relatively high
conversion (40% of the total SNR) power must be con-
verted into cosmic-ray protons to produce the factor of 30
suppression in the diffusion coefficient that begin to make
these models consistent with TeV halo observations. The
full two-order of magnitude suppression of the diffusion
coefficient is only possible if the entire kinetic energy of the
SNR is converted into protons.
Finally, in Fig. 13, we show a two-dimensional heatmap

of the diffusion coefficient as a function of time and
distance from the pulsar in our 3D model with a supernova
contribution. We set the conversion efficiency of proton
kinetic energy into protons to ξp ¼ 0.4. These results
demonstrate two key (and intuitive) differences between
our 1D and 3D models: (1) in 3D models that include a
significant SNR components, the diffusion coefficient near
the source becomes extremely small, saturating the Bohm
limit for regions that are within 5 pc of the pulsar on
timescales exceeding 100 kyr. In addition to demonstrating
that SNR activity can significantly affect local diffusion—
this indicates that our simulation may not be robust, as it is

FIG. 11. Evolution of the diffusion coefficient as a function of
the pulsar age for 3D diffusion models. We assume a 100% pulsar
injection efficiency (α ¼ 1.0). Results are shown at 5 pc and
10 pc for two models: the fiducial 3D model and a “tuned”model
adjusted to have extreme parameters. The fiducial model has B ¼
1 μG and a spectral index η ¼ 3.5. The tuned model has a
spectral index of η ¼ 3.0, a magnetic field of B ¼ 0.5 μG and a
minimum pulsar power of 10 GeV. The 3Dmodel produces a very
low suppression (less than a factor of 3) of the diffusion
coefficient at 10 TeV for 10 pc distance. However, this model
is capable of producing very inhibited diffusion coefficients
within the inner ∼5 pc.

FIG. 12. The diffusion coefficient as a function of pulsar age at
10 pc and 10 TeV for the case of 3D propagation with SNR
proton injection. Results for different SNR injection power into
protons (denoted by SNRp) are shown. We set B ¼ 1 μG and the
SNR spectral index, ηSNR ¼ 4.2. In order to suppress diffusion at
10 pc by more than one order of magnitude, the SNR must
convert 4 × 1050 erg (or 40% of the SNR kinetic energy) into
protons, which exceeds standard SNR models.
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difficult to utilize our diffusive model under such extreme
conditions, and (2) unlike the case of 1D diffusion, the
quickly expanding volume of 3D diffusion localizes the
effect of cosmic-ray induced self-confinement to a region
within ∼10 pc of the central source. The diffusion coef-
ficient rapidly returns to standard ISM values by ∼20 pc
from the pulsar.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have reexamined models of cosmic-ray
induced self-confinement. We have corrected an error in the
previous study of Ref. [28], which utilized an unphysically
large nonlinear damping term. The net effect of this change
demonstrates that pulsars are significantly more capable of
inhibiting cosmic-ray diffusion by more than a factor of
100, consistent with TeV halo observations. Moreover,
once diffusion is suppressed by pulsar activity, it remains
inhibited on nearly Myr timescales, consistent with the
observation of TeV halos around mature pulsars. These two
findings paint a much more optimistic picture regarding the
potential for pulsars to confine their own cosmic-ray
population, compared with previous work.
Excitingly, our models indicate several testable features

that are unique to the self-confinement scenario. These may
be used to distinguish self-confinement models from
alternative models with preexisting low diffusion coeffi-
cients [1,22–24], anisotropic diffusion models [25] and
models incorporating the transition from rectilinear to
diffusive propagation [26]. First, our model predicts that
in the absence of IND damping, the diffusion coefficient
will be roughly energy independent for p≲ 1 TeV, and the

diffusion coefficient will rapidly rise near the exponential
energy cutoff of the pulsar (Fig. 3). Second, the presence of
stronger IND damping in dense regions of the ISM will
prevent the observation of GeV emission from TeV halos
(Fig. 7)—producing a bifurcation of TeV halo observations
that depends on the local gas density. Third, our models
indicate that standard TeV halos should not form around
systems much younger than ∼10 kyr. Fourth, our models
indicate that TeV halo formation should be inefficient
above electron energies of ∼50 TeV due to electron cool-
ing, producing more extended TeV halo features at the
highest γ-ray energies. All of the above predictions are
exclusive to this mechanism and are potentially testable
with future TeV observations.

A. Comparison of 1D and 3D models

While our results indicate that there are regions of
parameter space where cosmic-ray self confinement models
are robust to changes such as the presence of IND damping,
slope of the injection spectrum and the phenomenology of
wave damping, our results strongly depend on whether
particle diffusion is initially confined to 1D flux tubes, or
initially diffuses efficiently in all three spatial directions.
In 1D models, many details of the self-generation

mechanism are consistent with TeV halo observations:
(1) the diffusion coefficient is suppressed by 2–3 orders of
magnitude, (2) the diffusion coefficient reaches a minimum
value at ∼100 kyr after pulsar formation. Moreover, we
note that our 1D framework is a reasonable approximation
of reality, as propagation through 1D flux tubes likely
dominates diffusion on distances less than the 1–100 pc
coherence length of the galactic magnetic field [24,39,40].
On the other hand, these models may appear inconsistent
with data, because observations indicate that TeV halos are
roughly spherical sources.
However, we stress that our 1D diffusion models are very

different (and more consistent with data) than competing
flux-tube models (e.g., [25]) that do not use cosmic-ray
self-confinement. In previous models, the flux tube must be
oriented directly toward Earth (with an offset less than
∼5°), to ensure that the halo does not extend too far in the
transverse (observable) direction. Such models are difficult
to rectify with observations which indicate that many
pulsars produce observable TeV halos.
In our 1D models, the preferential direction for particle

diffusion is irrelevant. The diffusion coefficient is initially
inhibited in two spatial directions, with efficient diffusion
allowed only in one specified direction compared to the
pulsar source. The cosmic-ray self-confinement mechanism
then efficiently inhibits cosmic-ray propagation along this
direction until it is also inhibited. Notably, the degree of
inhibited diffusion (by a factor of ∼100) is similar to the
predicted efficiency of diffusion in directions perpendicular
to the standard 1D flux tubes [25]. The sum of these effects
produce a cosmic-ray population whose diffusion is

FIG. 13. Color map for D as a function of distance from the
pulsar and age. This plot assumes an optimistic ξCR ¼ 0.4. The
diffusion coefficient can be highly suppressed in the inner ∼5 pc.
The suppression is about an order of magnitude at ∼10 pc. The
diffusion coefficient quickly rises back to its ISM values
after 10 pc.
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inhibited in every direction. Therefore, it is critical to note
that the γ-ray emission morphology from our 1D models is
not yet known. It could potentially even be spherical, if
cosmic-ray self-confinement forces the diffusion coeffi-
cients in every direction toward similar values. The
interaction of cosmic-ray self-confinement mechanisms
with a multidimensional diffusion tensor, and the compari-
son of such a model with observed TeV halos, is important
work which we leave for future publications.
Finally, while 1D models predict that diffusion continues

to be inhibited on distance scales that are much larger than
the observed size of TeV halos, this result is likely
consistent with data for two reasons. First, the edges of
TeV halos are not well-defined and may be significantly
affected by the flux sensitivity of each γ-ray instrument.
Indeed subsequent HAWC observations of Geminga and
Monogem found significantly larger TeV halos, which was
consistent with the improved exposure of each source [2].
Second, we expect the flux tube approximation to break
down on larger distance scales, an effect which will quickly
terminate the region where diffusion is inhibited, as
demonstrated from our 3D models.
In 3D models, on the other hand, the pulsar is not

energetic enough to significantly inhibit cosmic-ray dif-
fusion—even when the model is strongly tuned to maxi-
mize the inhibition of diffusion near 10 TeV. To produce
reasonable models, we added a contribution from the
coincident SNR, which adds an additional 4 × 1050 ergs
of cosmic-ray energy into the local ISM (for our best-fit
ξCR ¼ 0.4 value). In this case, we find that diffusion is
significantly inhibited on ∼5 pc scales, reaching the Bohm
limit. However, the large volume of 3D simulations still
prevents our model from significantly affecting cosmic-ray
diffusion on 20 pc scales.
We note, however, that our 3D model is maximally

pessimistic for cosmic-ray self-confinement models. The
simulation begins with a diffusion coefficient that is unsup-
pressed in every direction around the central source, allowing
cosmic-rays to quickly be diluted as they move outward in
every direction. Models that include inhibited diffusion in
one direction (even on small distance scales), will force the
cosmic-ray flux to build up, producing larger gradients (and
thus significantly inhibited diffusion) throughout the simu-
lation volume. Notably, these effects can be strongly non-
linear, as shown by the significant changes in the diffusion
coefficient which result from relatively small changes in the
pulsar efficiency. Finally, we note that these models do not
include SNR shocks or other molecular dynamics that may
also significantly increase magnetic turbulence and inhibit
cosmic-ray diffusion.
To conclude, our 3D models where the self-confinement

scenario is ineffective at inhibiting cosmic-ray diffusion on
10–20 pc scales are models where the initial diffusion
coefficient is given by the standard ISM value in every

spatial direction surrounding the pulsar source. However,
any adjustments to this model, including diffusion coef-
ficients that are initially suppressed in one or more spatial
directions, or contributions from SNR/PWN activity that
lower the initial diffusion coefficient near the pulsar
source—will unambiguously act to strengthen the self-
confinement mechanism by allowing the particle density to
build up in compact regions. Thus, we conclude that in
realistic models, the cosmic-ray self-confinement mecha-
nism is capable of driving the inhibited diffusion coeffi-
cients observed out to 10–20 pc from pulsar sources.

B. Future improvements

Finally, we note a number of potential improvements
which lie beyond the scope of this model, but which may be
considered in upcoming work. First, we note that some
pulsars (including Geminga), have large proper velocities
which have significantly removed them from their natal
SNR by the ∼300 kyr observation time of their TeV halos.
Such models make the inclusion of turbulence from the
initial SNR less realistic—though the SNR may still act as
important seed to drive down the initial diffusion coef-
ficient. Future models must consider the impact of pulsar
proper motion through the ISM. Second, in our models, we
have not yet considered the potential interplay between 1D
and 3D diffusion on the boundary between different flux
tubes. However, our results (which indicate that pulsars
produce diffusion that is too inhibited in 1D simulations but
not inhibited enough in 3D simulations), strongly motivate
such an extension.
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