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Axionlike particles (ALPs) can in principle be produced in very hot and dense astrophysical
environments, escape from the extreme object where such conditions are met, and then be converted in
gamma rays in the magnetic fields intervening between the event and the Earth. This process potentially
offers a new window on both the physics of the axions, and the inner working of the astrophysical objects
where they are produced. Interestingly, while this process has been studied for core-collapse supernovae and
other extreme astrophysical events, no estimate exists for neutron star mergers, objects recently identified
through the detection of gravitational waves. In this work we study the production of ALPs in neutron star
mergers, finding that for a large region of the ALP parameter space its magnitude at the source is such to
produce a sizable gamma-ray signal at Earth. We show detection forecasts for such events placed in nearby
galaxies, finding that they are potentially observable with the Fermi-LAT, thus opening a new window into
both the astrophysics of these cataclysmic events, and of new particles beyond the standard model.

DOI: 10.1103/PhysRevD.105.123007

I. INTRODUCTION

Axionlike particles (ALPs) can in principle be produced in
the peculiarly hot and dense environments of extreme
astrophysical objects. This process has been studied for
magnetars [1,2], pulsars [3], neutron stars [4], compact
binaries [5], black holes [6], gamma-ray bursts [7–10], active
galactic nuclei [11–14], and supernovae (SNe) [15–33].
The actual observation of a neutron star merger (NSM)

through gravitational waves [34] produced in the event has
prompted the exploration of a realm of extreme densities
and temperatures, as addressed in [35–43].
The physical conditions achieved in such an extreme

environment are comparable with those achieved in some
of the objects listed above, and it therefore makes sense to
address the study of ALPs in NSMs. In such a unique
environment, the bremsstrahlung process of neutrons
N þ N → N þ N þ a could be an efficient way of pro-
ducing ALPs, a process that has been studied in the context
of core-collapse SNe [23,26,44–47], leading to constraints
on the ALP properties from the nonobservation from the
SN1987A [15,18,19,21,48,49], and to forecasts on future
SN detections [30,31,33].
The possibility that ALP production could take place in

NSMs has been addressed in [50,51], where the authors
address the potential cooling of the object, caused by ALPs
streaming through the dense material of the merger, whose
structure could hence be modified.
Here we address a complementary question: whether the

flux of ALPs generated in the whole merger—within the

limitations arising from current observations of gravita-
tional waves—is such to be potentially observable at Earth.
Namely whether there is a region of the ALP parameter
space—still allowed by observations—where ALP emis-
sion from NSM is sizable, and if so whether any obser-
vational signature would be left by ALPs being converted
into photons in the magnetic field intervening between us
and the merger. In Sec. III, we independently identify the
region of ALP parameter space which is unconstrained by
present SN observations, shown in Fig. 2.
In Sec. IV, we comment on our main finding, namely that

for a sizable fraction of this region the merger structure is
preserved, and a signal in soft gamma rays is potentially
observable with the Fermi-LAT detector [52], thus offering
the possibility of a simultaneous identification with the
gravitational waves produced in the merger. This opens a
new exciting window for physics beyond the standard
model, and in the multimessenger study of NSMs.

II. ALP FLUXES FROM NEUTRON
STAR MERGERS

We consider ALPs produced via nucleon-nucleon ALP
bremsstrahlung, a process that has been thoroughly studied
in the literature [26,46,47,51]. Since strong interactions in
dense nucleon environments are poorly known, they are
often treated at the level of one-pion exchange (OPE): with
this approach, Ref. [51] determines the ALP emissivity in
the hypermassive neutron star which forms for a short time
at the end of a NSM. Recently, Ref. [26] has shown that
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going beyond the OPE approximation can lead to a
reduction by roughly an order of magnitude in the ALP
emissivity. For this work we adopt the emissivity from [51],
noting that this procedure does not change the qualitative
conclusions of our work nor the implications on detect-
ability, as discussed in detail in Sec. III. We use the
emissivity for the full phase-space calculation for non-
relativistic neutrons, assuming a density equal to the
saturation density of neutrons. For relativistic neutrons
and for higher densities the emissivity would be larger, our
choice is thus conservative.
Furthermore, Ref. [51] only considers the ALP produc-

tion due to neutron-neutron ALP bremsstrahlung. As
suggested in Ref. [53], neutron stars could also contain
a population of protons and pions. An analogous situation
for SN leads to an enhanced axion emissivity via the
process π−p → na [54]. This component would also be
harder, with ALPs produced mostly with hundreds of MeV.
Furthermore, in the presence of protons, neutron-proton
ALP bremsstrahlung would also contribute to the emis-
sivity. For this work, we conservatively do not consider
these components, because of the large uncertainties in the
concentrations of pions and protons within the NSM.
Following Ref. [51], we define the interaction

Lagrangian for neutrons and ALPs as

LaN ¼ GaN∂μaN̄γμγ5N; ð1Þ

where GaN is the coupling constant. For future conven-
ience, we parametrize the ALP emissivity (measured in
erg cm−3 s−1) as a function of the temperature T as
QðTÞ ¼ ðGaN

GSN
Þ2QSNðTÞ, where GSN ¼ 7.8 × 10−10 GeV−1

and QSNðTÞ is extracted from Fig. 7 of [51]; GSN is the
maximum coupling allowed by the observation of
SN1987A based on energy-loss arguments.
The ALPs produced are assumed to freely escape, as

shown in [51]. For their spectral distribution we follow the
Fermi surface approximation of [55] in the degenerate
neutrons limit, which gives a slightly modified blackbody
spectrum. We have also tested a simpler blackbody emis-
sion finding no significant differences in the final result.
For the total number of ALPs emitted by the source we
normalize this spectrum to the emissivity QðTÞ and
integrate over the volume of the source. The temperature
profile of the object is quite uncertain. The curve we use,
shown in Fig. 1, is a spherically symmetric broken power
law, adapted to reproduce the order of magnitude of the
profile in Fig. 4, left panel of Ref. [56]. The two profiles
roughly bracket the upper and lower temperature envelope
to the order of magnitude. This profile was obtained by a
simulation after 25 ms from the start of the merger. At
shorter times even larger temperatures could be reached
(as shown in Fig. 3 of [56]).
The duration of the event is also quite uncertain. Studies

on the NSM connected with the gravitational wave

GW170817 conclude that the supermassive neutron star
at the center survived for about 1 s [51,57], and simulations
report the temperature profiles for times up to about 25 ms
after the burst beginning. Here we assume a duration of 1 s.
The duration of the burst may actually be shorter, and/or the
temperature profile we have adopted—and on which the
emissivity depends crucially—may not hold for the entire
duration of the burst. This would of course affect our
conclusions: a duration of the burst of only 10 ms (100
times shorter than the one shown in the plots) would make
only a burst in the large magellanic cloud (LMC) visible
with Fermi-LAT. It is however unlikely that all conditions
above would conjure for reducing the flux as much, also
given that our other assumptions are conservative: in
particular, we are using a constant density for the nuclear
matter, whereas it might reach larger values near the center
of the hypermassive neutron star. Therefore, we present our
results according to this choice, which was also similarly
reported in Ref. [58].
WithGaN ¼ 1 × 1010 GeV−1, the total energy injected for

an event duration of 1 s into ALPs varies between 3 ×
1051 erg to 1 × 1052 erg for the two temperature profiles
adopted. For comparison, the energy radiated in gravitational
waves was estimated in [34] to be larger than 4 × 1052 erg.

III. CONSTRAINTS ON ALP
PARAMETER SPACE

Before showing our results on the gamma-ray fluxes
expected from a NSM, in this section we report the present
constraints on ALP properties from SN1987A. We noticed
that similar constraints have been derived also elsewhere;
here we independently and self-consistently obtain them
within our setup, and report them for reference and

FIG. 1. Temperature profile of the NSM. We show the band of
spherically symmetric temperature profiles adopted for our
calculation as a function of the radius. The profiles have been
obtained as a broken power-law spectrum adapted from those
shown in Fig. 4, left panel of [56].
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consistency. This allows us to show that the expected
gamma-ray flux from nearby NSMs is sizable, for a
wide region of the parameter space as yet permitted by
observations.
Constraints from the nonobservation of gamma rays by

EGRET at the time of SN1987A have been drawn on
the coupling gaγ [27–29]. These depend only on the
Primakoff production of ALPs. Here we focus on ALP
production via nucleon bremsstrahlung, which can only
constrain the product gaγGaN, since GaN determines the rate
of ALP production and gaγ determines the conversion in
galaxy. This approach is followed in Ref. [33], where
the constraints on gaγ are determined for a fixed value
of GaN ¼ 5.33 × 10−10 GeV−1.1

To ensure consistency, we independently compute the
95% constraints on gaγ from the nonobservation of gamma
rays from SN1987A by EGRET, requiring that the photon
fluence in the interval from 25 to 100 MeV from SN1987A
was smaller than 0.6 cm−2 [29]. We show the correspond-
ing constraint in Fig. 2 as a dot-dashed line, to be compared
with the cyan exclusion region obtained in Ref. [33]. The
blue curve is stronger by about a factor of 3: since the
energy fluence is proportional to g2aγ , this implies a factor of
10 difference in the gamma-ray fluxes, which coincides
with what we expected for the different emissivities
adopted.
We also show in the same figure the threshold values of

gaγ (for the reference value GaN ¼ 5.3 × 10−10 GeV−1)
which would lead to a detection of the gamma-ray signal
from ALP conversion at Fermi-LAT for a NSM happen-
ing in the near galaxies M33 and LMC. These are
obtained by requiring the minimum gamma-ray flux
determined in Sec. IV to be above the Fermi-LAT sensi-
tivity. Since the gamma-ray flux is determined by the
product gaγGaN, a different choice of GaN would simply
correspond to a proportional scaling of the limits in
Fig. 2.

IV. ALP FROM NSM: GAMMA-RAY FLUX
AT EARTH

In [51] the effects of the cooling via ALP production on
the neutron star merger were emphasized. A complemen-
tary possibility for detectability is the observation of the
ALPs after their conversion into gamma rays in the galactic
magnetic field (we conservatively neglect the intergalactic
magnetic fields, whose strength is largely uncertain).
During the propagation in the Milky Way ALPs can

convert into gamma rays via two-photon coupling with
the galactic magnetic field. The interaction term in the
Lagrangian is

Laγ ¼ −
1

4
gaγFμνF̃μνa; ð2Þ

where a is the ALP field, Fμν is the electromagnetic field
tensor, F̃μν is the dual field tensor, and gaγ is the coupling
constant. To estimate the probability of conversion of ALPs
to gamma rays Pa→γðE; b; lÞ (as a function of the ALP
energy E, and of the galactic coordinates b and l identifying
the chosen line of sight), we solve perturbatively the
transport equations in Ref. [33], using the Jansson-Farrar
12c model [61,62] for the galactic magnetic field.
The gamma-ray fluence emitted over the entire duration

of the event is shown in Fig. 3 (top panel) for the NSM,
with a temperature profile taken from Ref. [26]. The ALP
couplings GaN and gaγ have been chosen so as to saturate
the bounds from SN1987A observations by EGRET shown
in Fig. 2. The result is insensitive to the ALP mass when the

FIG. 2. Projected constraints on ALP parameter space by future
observations of SN. Constraints from the nonobservation of
gamma rays from ALP conversion from SN1987A, from liter-
ature and as independently obtained for self-consistency in this
work. We choose the value of GaN ¼ 5.3 × 10−10 GeV−1. For the
same reference value ofGaN, we also show the threshold values of
gaγ leading to a detectable gamma-ray signal in a NSM happening
in M33 (dashed) and LMC (dotted), for ma < 10−10 eV
(see Sec. IV).

1Before comparing with Ref. [33], we note that the emissivity
we adopt here differs from that used in Refs. [26,33]. As
mentioned in Sec. II, this difference does not affect our con-
clusions on the detectability. In fact, the normalization of the ALP
flux depends on the coupling Gan, for which the main constraints
come from the ALP emission in SN1987A (either because of
cooling or because of ALP to gamma conversion). Therefore a
discrepancy in the emissivity is reabsorbed in a redefinition of the
coupling Gan: in other words, if the emissivity were 10 times
lower, the constraints on Gan would be a factor of 3 weaker, and
therefore the signal we obtain would still be allowed by the
present parameter space.
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latter is chosen to be sufficiently small, in particular when
ma ≪ 10−10 eV, which is the regime in which Fig. 3 has
been obtained. With this choice, a NSM in LMC, the same
position as SN1987A, would give rise to a signal detectable
by Fermi-LAT. For a NSM in the M33 galaxy, with a
distance of more than 1 order of magnitude larger than
LMC, the fluxes are correspondingly suppressed.
Nonetheless, the predicted signal is still within the reach
of Fermi-LAT, indicating that even accounting for the
uncertainties on the temperature profile does not jeopardize
a possible detection.
We do not include any background radiation produced

by the NSM. Actually, NSMs have long been associated

with short gamma-ray bursts, whose radiation can indeed
be prominent in the hundreds of MeV range. However, the
significant case of GW170817 led to a gamma-ray burst
detected almost two seconds later than the merger [63].
Therefore, the two signals could potentially be distin-
guished on temporal basis. In this regard, we mention that
the timing of the neutron star merger for ALP detection
would be entirely determined by the gravitational wave
signal, whose properties allow to identify the instant of
formation of the hypermassive neutron star from the
merger.
Finally, we comment on the observability of the diffuse

gamma rays emitted by the whole population of NSMs. The
rate of NSMs is much lower than that of core-collapse SNe,
so that the diffuse production associated to the NSM
population is much lower than that of SNs. The ALP-
induced diffuse gamma-ray production from a SN pop-
ulation has been studied in Ref. [33], where it is shown that
the constraints from individual SN1987A are much
stronger than the ones from diffuse production. We have
explicitly checked that this is true for diffuse production
from NSMs, due to their lower rate, as from the literature
[34,64–66].

V. CONCLUSIONS

High-energy astrophysical events are progressively
expanding our opportunities to explore physics beyond
the Standard Model. In this analysis, we focus on neutron
star mergers as a source of axionlike particles potentially
detectable at Earth after their conversion in gamma rays in
the intervening magnetic field. We focus on the nucleon-
nucleonALP bremsstrahlungmechanism for the production
of ALPs in NSMs, a possibility that has not been previously
discussed in the literature. We find that neutron star mergers
can be sources of axionlike particles potentially observable
in gamma rays within the ∼10–500 MeV range.
We find that a NSM in the nearby galaxies LMC and

M33—admittedly not likely given the known merger rates
and the small volume entailed—could lead to a signal
observable by the gamma-ray detector Fermi-LAT,
within the ALP parameter space still allowed by present
constraints.
We leave it to future studies to fully explore the ALP

parameter space, and to address the strategy and potential
of a joint detection of a NSM in both gravitational waves
and gamma rays. Here we limit ourselves to first notice and
soundly motivate this concrete possibility, and to point to
its potentially ground-breaking implications for astrophys-
ics of extreme environments and physics beyond the
standard model.
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Note added.—Recently, Ref. [58] appeared, discussing an
idea similar to ours: namely that dark photons may be
produced in neutron star mergers and be detected at Earth.
Whereas we are glad to notice that their “recipes” for the
local physics (NSM duration, temperature and density
profile) and their conclusions about the detectability are
similar to ours, our paper focuses on an entirely different
production mechanism via ALPs rather than dark photons.
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