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We solve coupled momentum-dependent Boltzmann equations for the phase space distribution of
cosmic relic particles, without resorting to approximations of assuming kinetic equilibrium or neglecting
backscattering or elastic interactions. Our method is amendable to precision numerical computations. To
test it, we consider two benchmark models where the momentum dependence of dark matter distribution
function is potentially important: a real singlet scalar extension near the Higgs resonance and a sterile
neutrino dark matter model with a singlet scalar mediator. The singlet scalar example shows that the kinetic
equilibrium may hold surprisingly well even near sharp resonances. However, the integrated method may
underestimate the relic density by up to 40% in extreme cases. In the sterile neutrino dark matter model, we
studied how the inclusion of previously ignored elastic interactions and processes with initial state sterile
neutrinos could affect the nonthermal nature of their resulting distributions. Here the effects turned out to be
negligible, proving the robustness of the earlier predictions.
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I. INTRODUCTION

Current cosmological observations can be accommo-
dated within the cold dark matter (CDM) paradigm [1].
This hypothesis is appealing within our present under-
standing of the structure of ordinary matter: extending the
Standard Model (SM) of elementary particles and their
interactions with dark matter particle degrees of freedom
allows the abundance of CDM to be created by thermal
production and decoupling of the dark matter particles in
the expanding early Universe. The standard treatment for
calculating this abundance of CDM particles relies on the
Zel’dovich-Okun-Pikelner-Lee-Weinberg (ZOPLW) equa-
tion [2,3].
The ZOPLW equation is obtained from the Boltzmann

equation by integrating over the phase space of the
dark matter under the assumptions of detailed balance
and kinetic equilibrium distributions [4–6]. However, the
momentum distribution of dark matter may contain essen-
tial information that is neglected in this treatment. For
example, if the dark matter production takes place at a

resonance region, where the DM annihilation rate is
strongly momentum dependent, the elastic reactions might
not be fast enough to keep kinetic equilibrium. In this
setting the true annihilation rate and hence the final DM
abundance may deviate from the value obtained under the
equilibrium assumption [6–8]. Another example concerns
warm dark matter (WDM) whose momentum distribution
may directly influence the cosmic structure formation by
reducing the number of DM halos at small scales compared
to CDM. In kinetic equilibrium, the suppression of the
matter power spectrum can be well approximated via a
single scale given by the WDM mass [9]. However, if the
DM particle is not in kinetic equilibrium, the resulting
suppression may be more complicated [9–12].
Earlier calculations accounting for the DM momentum

distributions tend to rely on simplifying approximations.
For example, in the analysis of [10,11], the elastic inter-
actions of the initial state DM particles have been neglected.
In this paper, we complement these earlier analyses by
presenting a numerical method based on discretization of the
momentum space that allows for a completely general
solution of the Boltzmann equations for the momentum
distributions of multiple number of particle species, any
number of which can be out of equilibrium. We note that
advanced momentum-dependent methods have also been
developed and used to treat neutrino oscillations in the early
Universe [13–16].
We demonstrate our method in the context of the

dark matter production near a sharp resonance, com-
paring our results with the ZOPLW approach and with
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the momentum-dependent method of [7], which uses a
generalized relaxation time approximation for the numeri-
cally expensive backreaction terms. Our results validate the
approximation scheme of [7] to its expected accuracy.
Furthermore, we find that this scheme slightly overesti-
mates the effect of elastic scattering channels, and this
seems to be the case also with the truncated derivative
methods used in [6,8]. We also apply our method in a sterile
neutrino DM model including a singlet scalar mediator,
first analyzed with simplified evolution equations in
[10,11]. We find that neither including elastic interaction
channels, nor adding new collision terms induced by a
symmetry breaking changes the results appreciably. This
verifies that the approximations used in [10,11] are robust
and their results remain valid in the full solution.
The paper is organized as follows: In Sec. II we describe

the discretization of the collision integrals. We then apply
the developed methodology to two benchmark models:
first, in Sec. III to the model where SM is extended with a
real singlet scalar and then in Sec. IV to the model where
the additional fields are a real singlet scalar and a sterile
neutrino. In Sec. V we present our conclusions and outlook
towards further work. Many details of the computations can
be found in the Appendixes.

II. THE KINETIC EQUATION

In an expanding homogeneous and isotropic universe,
the Boltzmann equation can be written as

∂fðp; tÞ
∂t −Hp

∂f
∂p ¼

X
Ccoll½f�; ð1Þ

where Ccoll are the collision terms describing the chemical
and kinetic balances, H ¼ _a=a is the Hubble parameter,
and aðtÞ is the scale factor. Expansion of the Universe is
best quantified by integrating along the curves of constant
comoving momentum, k ¼ ap. Then, writing the Liouville
operator in terms of k, the momentum derivative vanishes
and we have

dfðk; tÞ
dt

¼
X

Ccoll½f�; ð2Þ

where we identified fðp; tÞ ¼ fðk=aðtÞ; tÞ≡ fðk; tÞ. It is
more natural to work with temperature instead of time, thus
we define a dimensionless variable x≡m0=T, where m0

is some reference scale, and T is photon temperature.
To evaluate the Jacobian of this transformation, we
use the adiabatic radiation era time-temperature relation
_s=s ¼ −3H, where s ¼ 2π2heffT3=45 is the entropy den-
sity of the Universe, H ¼ ð4π3geff=45Þ1=2T2=MP, and
geffðTÞ and heffðTÞ are the effective number of relativistic
energy and entropy degrees of freedom. This implies

_T
T
¼ −

ffiffiffiffiffiffiffi
4π3

45

r
heffðTÞ
g1=2� ðTÞ

T2

MP
; ð3Þ

where

g1=2� ðTÞ≡ heffðTÞ
g1=2eff ðTÞ

�
1þ T

3heff

dheff
dT

�
: ð4Þ

We want to replace also the momentum with a dimension-
less variable. Using again the adiabaticity condition, one
finds ða=a0Þ3 ¼ T3

0heffðT0Þ=T3heffðTÞ, which suggests to
define

ξ≡ k
T0aðtðT0ÞÞ

¼
�
heffðT0Þ
heffðTÞ

�
1=3 p

T
; ð5Þ

where k is the comoving momentum, p is the physical
momentum, and a0 is the scale factor evaluated at some
reference temperature T0, which we set equal to the
reference mass: T0 ≡m0.
The Boltzmann equation in dimensionless variables

becomes

dfðξ; xÞ
dx

¼
ffiffiffiffiffiffiffi
45

4π3

r
g1=2� ðm0

x Þ
heffðm0

x Þ
xMP

m2
0

X
Ccoll½f�: ð6Þ

This Boltzmann equation, written in comoving variables,
can be solved numerically by discretizing in variables x and
ξ. Given such a discretization, the role of the parametersm0

and T0 is to tune the dimensionless variables to probe the
desired temperatures and physical momenta. Before
describing this process in detail, we must first carefully
describe the structure of the collision terms Ccoll.

A. Collision integral

The collision term for generic two-particle interactions
12 ↔ 34 is given by

Ccoll½f1� ¼
1

2E1

Z
dPS234Λðf1; f2; f3; f4ÞjM12→34j2; ð7Þ

where the integration measure over the phase space is

dPSijk ¼ ð2πÞ4δð4Þðp1þp2 −p3−p4Þd3p̃id3p̃jd3p̃k; ð8Þ

with d3p̃ ¼ d3p=½ð2πÞ32E�. We always assume that labels
i ¼ 1, 2, 3, 4 denote all internal degrees of freedom
associated with a given distribution function fi. The phase
space factor Λðf1; f2; f3; f4Þ is defined as

Λðf1; f2; f3; f4Þ ¼ f3f4ð1� f1Þð1� f2Þ
− f1f2ð1� f3Þð1� f4Þ; ð9Þ
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with þð−Þ corresponding to the boson (fermion) case.
Finally, jM12→34j2 is the matrix element squared, summed
or integrated over the internal degrees of freedom asso-
ciated with the labels i ¼ 2, 3, 4. The matrix element
squared is also assumed to contain all relevant symmetry
factors for the initial and final states. The collision integral
Ccoll naturally splits into the backward and forward terms,
given by

CBW≡ 1

2E1

Z
dPS234f3f4ð1�f1Þð1�f2ÞjM12→34j2 ð10Þ

and

CFW ≡ −
1

2E1

Z
dPS234f1f2ð1� f3Þð1� f4ÞjM12→34j2:

ð11Þ
The phase space integration of the collision integrals has

been studied in the context of neutrino astrophysics for
massless neutrinos in [17] and later for nonzero neutrino
masses in [18]. Similar methods were also developed,
e.g., in [15,19–22]. Here we follow the strategy of [18] to
reduce the fully general, initially nine-dimensional colli-
sion integrals down to four dimensions. The momentum
dependence of the matrix elements prevents making further
analytic simplifications.
Different from [18], we treat the forward and backward

collision processes separately. This makes the numerical
implementation more stable by avoiding the need to
interpolate the unknown phase space distribution functions
fðp; tÞ in between the integration grid points. Full details of
the reduction are given in Appendix A. The final result
for the reduced backward term (10) is given by (A11) and
for the forward term (11) by (A15).

B. Discretization

We solve Eq. (6) numerically by discretizing the
momentum grid ξ → ξj, j ¼ 1;…; Nξ, with uniform spac-
ing in logarithmic scale. If the production processes spread
over several orders of magnitude in temperature, this allows
one to cover a sufficient range of momenta to reach the
required accuracy. After discretization, the Boltzmann
equation (6) becomes an initial value problem consisting
of a coupled set of ordinary differential equations for
faðx; ξjÞ≡ fajðxÞ, over some temperature range x, that
must be solved simultaneously1 for each degree of freedom
a and the momentum mode ξj,

d
dx

fajðxÞ ¼ αðxÞ
X
coll:

CajðxÞ: ð12Þ

Here αðxÞ is the prefactor given in the rhs of Eq. (6), and the
sum runs over all collision terms that contribute to
evolution of faj. Here we separated the degrees of freedom
(labeled by a) from the discretized momentum variable.
Indeed, each different particle species, and each helicity or
polarization state within a species, in general has its own
independent unknown distribution function, which the
collision terms couple with each other. Some hierarchies
between the interaction rates may allow simplifying the
equation network, such as helicity equilibrium due to rapid
helicity flips. This can be easily incorporated by imposing
the degeneracies and introducing the corresponding aver-
aged matrix elements. We will typically assume that
initially faj ¼ 0 for the dark sector particle distributions.
This is justified when we start early enough in time, i.e.,
high enough temperature, and it allows us to track to which
degree each species thermalizes before it decays or its
distribution freezes.
As an example, on collision term discretization we show

how the backward term (10) is implemented. Although
the Boltzmann equation (6) is solved in dimensionless
momentum ξ, the collision term reduction in Appendix A
is done in terms of the physical momentum p. The physical
momentum pj corresponding to dimensionless momentum
ξj at a given temperature T ¼ m0=x is then obtained by
inverting Eq. (5),

pjðxÞ ¼ ξj
m0

x

�
heffðm0

x Þ
heffðT0Þ

�
1=3

: ð13Þ

Then, backward term (10) can be reduced to (A11), given in
discretized form as

CBW1j ðxÞ ¼ 1

16E1j

X
k

X
l

Δpkp2
k

2π2E3k

Δplp2
l

2π2E4l
F1jklðxÞΛBW

1jklðxÞ;

ð14Þ

where the discretized backward phase space factor is

ΛBW
1jklðxÞ ¼ f3kðxÞf4lðxÞ½1� f1jðxÞ�½1� f2jklðxÞ� ð15Þ

and F1jklðxÞ is the angular integral over the matrix element
squared defined in Eq. (A12). Here the superscripts 1;…; 4
denote the particle species (in the sense described above)
involved in the 12 ↔ 34 process, faiðxÞ is the value of
distribution function of the particle “a”with momentum ξi at
temperature T ¼ m0=x and energy Eai ¼ ðp2

i þm2
aÞ1=2.

The label j refers to the species 1, whose collision term
we are computing and it is not summed over. The momen-
tum space matrix structure f2jkl of species 2 follows from the
four-momentum conservation.
It is essential to note that the all matrices F1jklðxÞ can be

precalculated and replaced by numerical fit functions for all
relevant processes before solving the Boltzmann equations.

1This makes the problem highly vectorizable but not easily
parallelizable. We use MATLAB and, in particular, its stiff ode15s
routine.
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This fitting procedure can be done very accurately and it is
pivotal for the efficiency of the numerical code. The general
flow of our implementation then is as follows:
(1) Define theory, whose masses and couplings may

depend on temperature.
(2) Create grids and define the entropy and energy

degrees of freedom functions heff ; geff ; g�.
(3) Determine relevant interactions and compute their

matrix elements and cross sections.
(4) Precalculate the F1ijkðxiÞ matrices for all species

involved following Appendix A.
(5) Define the initial conditions for all distributions

involved in the network, Eq. (12).
(6) Solve the Boltzmann system numerically using a

suitable ordinary differential equation solver.
This formulation is generic enough to allow for dyna-

mical changes that modify the parameters of the theory
during the evolution, such as phase transitions. In the next
sections, we show in detail the results of this implementa-
tion in simple hidden sector models connected with the SM
via the Higgs portal.

III. FIRST BENCHMARK MODEL: THE
SINGLET SCALAR EXTENSION

An extension of the SM by a real singlet scalar S,
coupled with the SM Higgs doublet via the renormalizable
operator jHj2S2, the “Higgs portal,” provides a simple
paradigm for a dark sector. Since its early introduction
[23,24] this type of model building has started to gain more
attention as benchmarks for experimental searches of
particle dark matter [25–28]. Therefore, this model is a
natural starting point for the tests of the computational
method we have developed. Since the existing literature on
this model is large and its phenomenology has been
thoroughly exposed already, our discussion here will be
brief; we will introduce only the necessary formulas and
focus on the comparison of our approach with other
approximate computation schemes. The singlet model is
defined by the Lagrangian

LSSM ¼ 1

2
ð∂μSÞ2 − VðS;HÞ þ LSM; ð16Þ

where the scalar potential is given by

VðS;HÞ ¼ −μ2HjHj2 − 1

2
μ2SS

2

þ λHjHj4 þ λS
4
S4 þ λHS

2
jHj2S2; ð17Þ

and the gauge interactions of the Higgs doublet H are
contained in LSM. The stability of the potential requires that
the quartic couplings λS and λH of the singlet and the Higgs
fields are positive, but the portal coupling could be
negative, as the stability of the potential requires just that

λHS > −2
ffiffiffiffiffiffiffiffiffiffi
λSλH

p
. However, here we will only consider

positive values of λHS.
If the singlet scalar mass ms is just below half of the

Higgs mass mH ¼ 125.25� 0.17 GeV [29], the Higgs
mediated inelastic processes are resonantly enhanced but
elastic processes maintaining the kinetic equilibrium are
not, so one would expect the nonequilibrium effects to be
relevant. Indeed, if the singlet S is required to constitute all
of the dark matter and remain compatible with the current
direct detection experiments, its mass is constrained to
ms ∈ ½56; 62.5� GeV [28], where precision computations
are required to address the dark matter phenomenology [7].
In our current, fully momentum-dependent setup, solv-

ing the singlet scalar relic density in this region entails
solving the following Boltzmann equation:

∂xfsðξ; xÞ ¼ CIss↔jj þ CIh→ss þ CEsf↔sf; ð18Þ

where s refers to the singlet, j ¼ fτ; c; b; t; h;W; Zg, and
f ¼ fτ; c; bg. In this case we only need a dynamical
equation for s, since all SM particles can be assumed to
be in thermal equilibrium. To correctly include kinematics
when the Higgs mediator in CIss↔jj becomes on shell, we
have included the on-shell Higgs decay CIh→ss as a separate
contribution and take all Higgs mediators in CIss↔jj to be off
shell as described in Appendix C. Resonant inelastic
processes deplete and overpopulate specific momentum
states, which tends to bring the distribution function fs out
of kinetic equilibrium. Elastic interactions, on the other
hand, tend to restore the kinetic equilibrium, and if they are
sufficiently fast, the standard thermal averaged treatment
[4,5,28] suffices. However, the Higgs resonance is par-
ticularly sharp,2 and one cannot a priori assume that the
elastic processes can maintain the kinetic equilibrium to
high accuracy. The issue has already been studied using
momentum-dependent methods [6,7], however, using some
approximations in the treatment of the collision integrals.
In left panel of Fig. 1, we show the contours of Ωsh2 ¼

0.1193 in the singlet mass and the portal coupling plane
using different approximations. The results from the full
computation implemented in this work are shown by the
red crosses, while the standard thermal averaged result
is shown by the solid blue line. The yellow circles corres-
pond to the calculation using the momentum-dependent,
generalized relaxation approximation (GRA) method of
Ref. [7], and finally, the calculation in Ref. [6], using
truncated expansions for the elastic collision integrals, is
shown by the black dots. The GRA calculation is similar to
the one described in this paper, except for the numerically
expensive elastic backward term Csf←sf, given by (10).

2Γh ≃ 4 MeV, so the width of the resonance in the
ffiffiffi
s

p
variable

is
ffiffiffiffiffiffiffiffiffiffiffi
mhΓh

p
≃ 0.7 GeV.
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In the GRA method, this is treated in a simplifying
approximation; for more details, see Ref. [7].
When displayed in the logarithmic scale, all calculations

appear to roughly agree. Plotting on linear scale (right panel
in Fig. 1) reveals the significance of the deviations.
The cause for the difference between the full and the
GRA calculations is seen in Fig. 2, which shows the elastic
collision integrals computed exactly (red solid line) and
in the GRA (yellow dashed line). At high temperatures,
the GRA method works well, but around the freeze-out
temperature x ∼ 10 it starts to overestimate the elastic
integral that enforces the kinetic equilibrium. Eventually
the error becomes of order ∼2, but only well after the

freeze-out x ∼ 40. This tendency was already noted in [7],
and by construction the GRA scheme is not expected to
work to a high precision for distributions that already are
very close to thermal equilibrium. However, when one is
close to equilibrium, the absolute magnitude of the error is
already small, and GRA slightly improves on the thermal
approximation. The results using a truncated expansion for
the elastic collision integral from [6] are roughly compa-
rable with the GRA.
Overall, we confirm that the effect of kinetic decoupling

in the singlet model is not as dramatic as one might have
initially guessed. All methods agree in the absence of
resonant enhancement as they should. Even in the resonant
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FIG. 1. Left: fixed relic densities Ωsh2 ¼ 0.1193 from three different methods: momentum-independent thermal averaging (solid blue
line), momentum-dependent generalized relaxation approximation [7] (yellow circles), and complete momentum-dependent compu-
tation with full backreaction terms (red crosses). Black dots are the full Boltzmann solution [30] corresponding to the method introduced
in Ref. [6], for the case “QCD ¼ A.” Right: relative difference in Ωh2 when λHS is fixed by the full calculation to yield Ωsh2 ¼ 0.1193
(red crosses on the left). Yellow circles correspond to relaxation approximation [7], blue squares to the momentum-independent method,
and black dots correspond to the results of Ref. [6].
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FIG. 2. Elastic integrals ðp2=2π2ÞCelðpÞ evaluated at three different temperatures x ¼ ms=T. The dashed yellow line shows the elastic
integral resulting from generalized relaxation approximation used in [7]. The red solid line shows the correct elastic collision integral
containing the full backward collision term given by Eq. (A11).
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region, by far the most important effect is to use the
thermally averaged annihilation rate in the ZOPLW equa-
tions, first pointed out in [5]. The elastic interactions with
the Standard Model particles are surprisingly efficient in
keeping thermal equilibrium as observed in [7]. However,
should a DM particle be identified in the resonance region,
a precision calculation of its abundance requires a full
momentum-dependent calculation with an exact collision
integral.
Finally, let us note that the use of Maxwell-Boltzmann

(MB) statistics in the inelastic collision integral causes
about a 10% error [31] in final abundance. This is the case
for all results in Fig. 1. We have checked that the corres-
ponding error in elastic collision integrals only affects the
final abundance by ≲1%.
To our knowledge, this is the first analysis of the singlet

scalar in Higgs resonance with full elastic backreactions.
This is undoubtedly due to the heavy numerical cost of the
method. On average, we found that the computation times
in this particular example (tested using a 6-core i7 laptop
with 16 GB of RAM) scaled as follows in different approxi-
mations: thermal averaging runs took Oð1Þ s, generalized
relaxation approximation runs Oð1 − 10Þ min, and the
complete calculation with backreaction≳10 h per ðms; λhsÞ
pair. Even faster and yet accurate methods of solving the
ZOPLW equations exist [28] for the use of large scale
parameter scans. Taking this hierarchy into account is
obviously of paramount importance when making a choice
of what method to use for a given problem.

IV. SECOND BENCHMARK MODEL: SINGLET
SCALAR AND FERMION EXTENSION

As a second example, we consider an extension of the
SM by a singlet scalar (S) and a singlet Dirac fermion (N).
The Lagrangian of the model is

L ¼ LSM þ iN̄=∂N þ 1

2
ð∂μSÞ2 − VðS;HÞ þ ySN̄N; ð19Þ

where we denote the SM Higgs doublet by H. Its gauge
interactions are contained in the SM LagrangianLSM, while
the potential terms are contained in the extended scalar
potential VðS;HÞ given by Eq. (17). In this model, the
fermion N is a phenomenologically interesting candidate
for cold DM [32,33]. We are interested especially in the
keV mass range, where the nonequilibrium dynamics can
be relevant [10,11], and the resulting nonthermal momen-
tum distribution of DM may affect the formation of large
scale structures. We focus on the question of whether
highly nonthermal momentum distributions found in
[10,11] survive when all elastic processes are included
in the analysis.
We will assume a mass hierarchy mN ≪ mS, with mN ∼

keV and mS ∼Oð10–1000Þ GeV. The N-fermion mass
gets a contribution from nonzero vacuum expectation value

(VEV) of the singlet scalar mN ¼ μN þ yhSi. As the VEV
can be quite large, we need to assume the Yukawa coupling
to be tiny, y ≪ 1, to keep mN around keV scale. The
vacuum structure is determined by the scalar sector of the
theory. The field H is the usual weak doublet

H ¼
�
ϕþ

ϕ0

�
≡ 1ffiffiffi

2
p

�
ϕ1 þ iϕ2

ϕ3 þ iϕ4

�
; ð20Þ

which has a VEV, denoted by v, along the neutral direction,
ϕ3 ¼ vþ ϕ. The VEV of the singlet field S is denoted by
hSi≡ w and we write S ¼ wþ σ. Inserting these para-
metrizations into Eq. (19), setting the field fluctuations to
zero and extremizing the full scalar potential leads to

w

�
−μ2S þ

1

2
λHSv2 þ λSw2

�
¼ 0; ð21Þ

v

�
−μ2H þ 1

2
λHSw2 þ λHv2

�
¼ 0: ð22Þ

We use these conditions to eliminate μ2S and μ2H. This leads
to the mass matrix for neutral scalars σ and ϕ,

M2 ≡
�
2λHv2 λHSvw

λHSvw 2λSw2

�
; ð23Þ

which is diagonalized by the transformation to the mass
eigenbasis. We denote the mass eigenstates by h1 and h2, so
the explicit relation is

�
h1
h2

�
¼

�
cos θ − sin θ

sin θ cos θ

��
ϕ

σ

�
: ð24Þ

We identify h1 with the SM Higgs field and h2 is a heavier
scalar. Consistency with LHC data on Higgs couplings then
requires sin θ ≲ 0.23 [34,35]. We therefore set m2 > m1 ¼
125.25 GeV and consider the physical masses m1 and m2

to be input parameters. We then solve the couplings λH
and λS and the mixing angle θ in terms of the physical
masses, the vacuum expectation values, and the portal
coupling λHS as

λH ¼ m2
1cos

2θ þm2
2sin

2θ

2v2
; ð25Þ

λS ¼
m2

2 cos
2 θ þm2

1 sin
2 θ

2w2
; ð26Þ

sinð2θÞ ¼ 2λHSvw
ðm2

2 −m2
1Þ
: ð27Þ

Requiring sinð2θÞ to be positive implies that 0 ≤ λHS ≤
m2

2
−m2

1

2vw ≡ λmax
HS .
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The Feynman rules following from the Lagrangian (19)
are tabulated in Appendix B. In the special case of w ¼ 0,
the treatment is more straightforward, as the fields σ and ϕ
are directly the mass eigenstates of the mass matrix.
Without going into further details, we simply note that
the Feynman rules of Appendix B can be directly applied
also in this case by letting θ; w → 0. In the limit of
vanishing Yukawa coupling and singlet scalar VEV,
y; w → 0, the model reduces to the singlet scalar model
from previous section.
With a slight abuse of notation, we denote the mass

eigenstates by ϕ and σ, as this allows us to include the cases
w ≠ 0 and w ¼ 0 simultaneously. Then we can summarize
the above construction as follows: we have taken the
masses m1 ≡mϕ, m2 ≡mσ , the portal coupling λHS, and
the vacuum expectation values w and v as the input
parameters, and express other Lagrangian parameters in
the scalar sector in terms of these. Furthermore, we fix
v ¼ 246 GeV. Thus, the free parameters in this theory
are fmσ; λHS; w; y;mNg.

A. DM production processes and coupled
Boltzmann system

The Lagrangian (19) allows for various production
processes for the N and σ. Processes of order Oðy2Þ
are negligible and the relevant contributions under our
assumptions are summarized in Table I. Because of non-
zero Yukawa coupling and assumed mass hierarchy, even-
tually all produced σ scalars will decay into N fermions,
which remains as a stable relic. Production of σ scalars
is determined by the portal coupling λHS. Direct produc-
tion of N fermions from a SM heat bath is allowed by a
nonzero mixing angle sin θ between the scalars, but
remains subdominant for the allowed small mixing angles.
Therefore, the production of N fermions proceeds mostly
via σ-scalar decays, which is itself produced from a SM
heat bath and whose number density can freeze (either via
freeze-in or freeze-out mechanism) before it fully decays.

To obtain the momentum distribution function for σ
scalar and N fermion we must solve the following set of
coupled Boltzmann equations:

∂xfσðξ; xÞ ¼ CIσσ↔jj þ CIϕ→σσ þ CIσ→NN

þ CINσ↔Nϕ þ CEσf↔σf þ CENσ↔Nσ; ð28Þ

∂xfNðξ; xÞ ¼ CIσ↔NN þ CIϕ↔NN þ CENσ↔Nϕ

þ CENσ↔Nσ þ CENϕ↔Nϕ þ CENf↔Nf; ð29Þ

where again the SM states are denoted as j ¼ fτ; c; b; t;
ϕ;W; Zg and f ¼ fτ; c; bg. The form of this equation
shows one obvious fact about solving the momentum-
dependent kinetic equations: most of the work involved
goes to definition and computation of the various collision
integrals. The ϕ and σ propagators in the inelastic 2 → 2

collision integrals CIσσ↔jj are taken to be off shell, as the on-
shell contributions are already included separately in CIϕ→σσ

and CIσ→NN . There are several different suggestions in
literature as to how this real intermediate state (RIS)
subtraction should be done, e.g., [36,37]. Here we are
following the treatment of [38,39]; see Appendix C for
more details and discussion.
Different from previous treatments, we have also

accounted for the three- and four-body final states from
virtual boson decays usingmethods described in [28], aswell
as the one-loop corrections for quarks in the σσ ↔ jj
channel. Accounting for virtual boson decays and QCD
one-loop corrections describe the SM states more accurately
and slightly increase the CIσσ↔jj contributions in Eq. (29).
This is good to keep in mind when comparing our results to,
e.g., Ref. [11], as in the case of σ freezing out this slight
increase causes the σ to follow the SM heat bath a bit longer
and slightly suppresses the final fermion distribution.

B. Results and discussion when w= 0

We first set the VEVof the singlet scalar to zero, so that
the scalars do not mix. This leaves us with processes on the
left column of Table I. This setting is equivalent to the one
studied in Ref. [11], except that we have included the
elastic processes σf ↔ σf, σσ ↔ σσ, and Nσ ↔ Nϕ,
which tend to suppress the nonthermal component in the
momentum distribution of N fermion. The two first
processes can also lengthen the freeze-out time of σ field,
thus allowing it to be Boltzmann suppressed more before it
freezes out and decays, which can reduce the late time
production of N fermions. The two-peaked nonthermal
momentum distribution found in [11] results from N being
produced at two separate temperature scales (see Ref. [12]
for a comprehensive study). Hence, reducing the produc-
tion at either temperature scale could prevent the momen-
tum distribution from forming the double peak structure.
The last two processes tend to restore the kinetic equilib-
rium by reducing the nonthermal component momentum

TABLE I. Relevant tree-level production processes for singlet
fermion N and singlet scalar σ in the model (19) assuming y ≪ 1.
Each s, t, and u channel reaction can be mediated via both scalar
fields: singlet σ and SM Higgs ϕ. Here V ¼ fW;Zg labels vector
bosons and f ¼ fτ; c; b; tg labels SM fermions.

Always open Open if w > 0

σσ ↔ ϕϕ ϕ → NN
σσ ↔ VV Nσ ↔ Nσ
σσ ↔ ff Nϕ ↔ Nϕ
ϕ → σσ Nf ↔ Nf
σ → NN
σf ↔ σf
σσ ↔ σσ
Nσ ↔ Nϕ
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distribution. In practice, we find their effect to be
negligible.
Figure 3 shows our solution for the momentum distribu-

tion function of the fermion N for parameter values fmσ¼
60GeV;mN¼20keV;λHS¼4×10−6.86;y¼10−8.69;w¼0g.
These values are chosen to correspond to the case presented
on the right-hand panels of Fig. 5 in Ref. [11] and we have
included their final result as black crosses in our Fig. 3.
Clearly the elastic processes are not sufficiently fast to
suppress the formation of the nonthermal momentum dis-
tribution. The reason is quite clear a posteriori: The second
peak at high momenta forms only when σ production from
the SM heat bath has already stopped and the remaining
scalars decay into N fermions. At this point, the SM Higgs
field is also heavily Boltzmann suppressed. The elastic
channel Nσ ↔ Nϕ, which would most effectively thermal-
ize the momentum distribution of N fermions, is therefore
suppressed due to absence of both scalars in the thermal bath.
We have also checked the other light (mσ < mh=2) and

heavy (mσ > mh=2) scalar (corresponding to feebly and
weakly interacting massive particles) scenarios as discussed
in [11] and found that our results agreewith theirs to the same
extent as in the above example. In summary, we find that the
model presented in [11] is indeed inherently nonthermal in
parts of its parameter space when assumptions y ≪ 1 and
w ¼ 0 hold. Our numerical results for the distribution
fNðξ; xÞ differ noticeably from [11], but the difference does
not come from elastic interactions, but from our more
accurate evaluation of the inelastic interaction rates.

C. Results and discussion when w > 0

We now let the singlet obtain a nonzero VEV w > 0. The
nonzero mixing angle induced by the broken symmetry is

given byEq. (27). It increases the σ andN particle production
rates and opens new elastic channels for the N field. All
relevant reaction channels are given in Table I, where also the
channels on the right column now contribute.
In Fig. 4 we compare our results in the w > 0 case with

the previous w ¼ 0 case (shown with the green curve) to
see the effect of additional channels and the increased
interaction rates on the nonthermal double peak structure of
the momentum distribution of N fermions. We have chosen
conservative values for the singlet VEV: w ¼ 2 × 103 GeV
(blue curve) and w ¼ 2 × 106 GeV (red curve). In both
cases, we find a strong suppression on the amplitude of the
nonthermal second peak, which strongly increases for
increasing w. However, this is again not due to elastic
processes being effective in redistributing the quanta, but
due to the fact that the inelastic interactions between the σ
scalar and SM heat bath strongly increase for increasing
values of w, as illustrated in Fig. 5. As a result, the number
density of σ particles becomes more and more Boltzmann
suppressed before they finally decay to N fermions. This
then suppresses or removes the high-momentum out-of-
equilibrium tail from the N distribution. The mechanism is
clearly illustrated in Fig. 6, where we show the integrated
yields of the singlet scalar fields (dotted lines) as a function
of m0=T for the same choices of parameters as in Fig. 4.
The effect on integrated neutrino distributions (dashed
lines) is much smaller than to their momentum dependence,
but it shows the right tendency as function of the σ-field
abundance.
We found that the elastic interactions had negligible

effect on the N distribution in comparison with the
Boltzmann suppression discussed above. Increasing the
VEV of the singlet does result in stronger elastic rates for
the fermion N, but they still fail to restore the thermal
equilibrium. This is partly because the having w > 0 also

FIG. 3. Momentum distribution functions of singlet fermion
obtained from our implementation versus the results in Fig. 5
of [11] (black crosses). Note that our convention to λHS differs
from [11] by a factor of 4. Darker colors refer to later times and
the black solid curve is the final frozen-in form. The low-end
momentum tail is produced at temperatures much higher than the
electroweak phase transition temperature, T≫TEWPT¼150GeV.
The temperature grid range is log10ðxÞ ∈ ½−3.5; 3� and we used
m0 ¼ T0 ¼ mh as the reference scales in (5) and (6).
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FIG. 4. Frozen-in momentum distributions for the fermion N
for varying w. The green solid line corresponds to the case in
Fig. 3, and the blue dotted line shows an example of forced
thermalization when the elastic rates are increased by hand,
which we show only as a proof of concept to show that the
kinematics work as indented and the system then tends towards
thermal distribution.
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increases the overall production of N fermions via inelastic
and decay channels, which is the root cause for the non-
thermal distributions. We then find that even in the w > 0
case the elastic processes are never sufficiently fast to
thermalize the fermion momentum distribution and the
model (19) is inherently nonthermal when y ≪ 1 and
mN ≪ mS. However, if a phase transition takes place in
the singlet sector before the singlet field freezes out, the
predictions for the amplitude of the out-of-equilibrium
component inN distribution change dramatically for a given
set of parameters, in comparison to thew ¼ 0 case studied in
[11]. However, this change is not due to increased elastic
interactions, but due to change in inelastic rates, and to
discover this effect the high-accuracy Boltzmann codes
developed in this work are, in fact, not necessary.
The inefficacy of the elastic rates in the examples studied

above results from the smallness of the adopted values for
the y coupling and this does not imply that elastic
interactions were irrelevant in general. Instead of construct-
ing a model just to make the elastic rates important, as a

proof of concept, we simply increase the elastic process
Nf ↔ Nf by hand to see how large it must be for
a significant thermalization by elastic channels to take
place. For fmσ ¼ 60 GeV;mN ¼ 20 keV;λHS ¼ 4× 10−6.86;
y¼ 10−8.69;w¼ 2× 103g we scaled the matrix element
MNf→Nf → 1011 ×MNf→Nf. The nonscaled result is
shown as a solid blue curve and the result after scaling
as a dotted blue curve in Fig. 4. Thus, in this case, at the
level of cross sections, the elastic rates are roughly ∼10−22
times too small to significantly thermalize the system.
Let us finally note that, while the introduction of the

phase transition changes the predictions significantly for a
given portal coupling, the same out-of-equilibrium distri-
bution can be obtained in the spontaneously broken case for
a different portal coupling. That is, there are degenerate
subspaces in the ðλHS; y;wÞ parameter space, where the
same nonthermal momentum distribution can be obtained.
In particular, for a fixed Yukawa y, essentially only the
interaction rate between the singlet scalar and SM heat bath
is important in determining the degree to which the
momentum distribution becomes nonthermal. As this rate
is determined by a combination of λHS and w, we can
always find such a ðw0; λ0HSÞ pair that the original non-
thermal behavior for ðλHS; y;w ¼ 0Þ parameters is obtained
with ðλ0HS; y;w0 > 0Þ. This is shown in Fig. 7, where we
plot the distributions with y ¼ 10−8.69 for the cases fw ¼
2 × 103 GeV; λHS ¼ 4 × 10−6.86g and fw ¼ 2 × 106 GeV;
λHS ¼ 4 × 10−8g, respectively. In each case, we find
exactly the same momentum distribution, apart from small
deviations in the very small momenta.

V. CONCLUSIONS

We have presented a computational method that is
generally applicable for solving the coupled set of
Boltzmann equations for phase space distribution functions
of cosmic relics. Similar techniques have been developed
earlier in the context of the neutrino astrophysics [13–16],
but until now they have not been carefully adapted to be

FIG. 6. Yields Y ≡ niðxÞ
sðxÞ for singlet scalar S (dotted lines) and

fermion N (dashed lines). m0 ¼ mH and colors show results from
different choices of the singlet VEV w ¼ f0; 2 × 103;
2 × 106g GeV. Crosses show data from Fig. 5 of [11] corre-
sponding to w ¼ 0 case.
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FIG. 7. The final frozen-in momentum distribution of the
fermion N depends on the parameters fw; λHSg so that increasing
one can be countered by decreasing the other.
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FIG. 5. Cross section between the singlet scalars S ¼ wþ σ
and SM particles plotted over a representative range of incoming
energies with varying singlet VEV w (mixing angle j sin θj).
Other parameters are fmS ¼ 60 GeV; λHS ¼ 4 × 10−6.86g.
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used in the dark matter abundance calculations. For earlier
implementations that use different levels of approximations
for the collision integrals, see Refs. [6,7]. One of the main
results is the compilation of these methods into a simple
and generic form that provides a suitable starting point for
their wider utilization in cases, where the standard thermal
averaging methods fail and more accurate predictions in
DM models are needed.
We demonstrated our method in two models known to be

sensitive to the momentum dependency of the phase space
distribution. Our first example concerned the freeze-out
of a singlet scalar dark matter coupled to SM via the Higgs
portal near Higgs resonance. In this case, the kinetic equili-
brium approximation required by the usual ZOPLWequation
cannot be assumed a priori. We performed full momentum
calculations, comparing our results to the ZOPLW approxi-
mation and two earlier momentum-dependent calculations,
where further approximations of the form of the elastic
collision integrals were made.
We found that the approximation methods of Refs. [6,7]

are in good agreement with our full results. Both methods
present some improvement over the ZOPLW results even
very near equilibrium, although they both slightly (the
former a little more) overestimate the elastic rates.
As another example, we considered the model presented

in [10,11]. Using our methodology we extended their
calculations to include the elastic processes and possible
mixing between the two scalar states as a result of a phase
transition in the singlet sector. We found that this could
significantly alter the predicted size of the nonequilibrium
distribution, the more so the larger the VEV of the singlet
field. However, this difference was mainly due to changes
in the inelastic rates, caused by the phase transition. Elastic
rates turned out to be inefficient and even when they were
included, the momentum distribution of the singlet fermion
remains inherently nonthermal. Overall, we find that, in a
vast majority of cases, the momentum averaged methods
work surprisingly well.
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Note added.—Recently, a paper presenting similar meth-
ods, also based on [18], appeared in [40]. Our results agree
qualitatively with theirs.

APPENDIX A: COLLISION TERM KINEMATICS

Here we give details of the integration of collision terms
following closely the treatment of Ref. [18]. Our goal is to

clearly isolate the general structures in the collision terms
that can be pre-evaluated prior to the solution of the
Boltzmann equation.

1. 2-2 Scatterings

a. Backward term

Different from [18], we treat the forward and backward
collision integrals separately. We start from the backward
term. In Eq. (10), we use the four-momentum conservation
to integrate over d3p2, which leaves out a delta function
δðp2

2 −m2
2Þ, where

p2
2 −m2

2 ¼ Qþ 2ðp3 · p4 − p1 · p3 − p1 · p4Þ; ðA1Þ

where Q ¼ m2
1 −m2

2 þm2
3 þm2

4. Measuring angles rela-
tive to the external momentum p1, we define the coordinate
system such that

p1 ¼ p1ð0; 0; 1Þ;
p3 ¼ p3ð0; sin θ; cos θÞ;
p4 ¼ p4ðsin α sin β; sin α cos β; cos αÞ: ðA2Þ

The remaining integrals can now be readily reduced to

d3p3 ¼ 2πp2
3dp3d cos θ;

d3p4 ¼ p2
4dp4d cos αdβ: ðA3Þ

The integral over β can be done [18] using

δðp2
2 −m2

2Þ ¼ δðfðβÞÞ ¼
X
i

jf0ðβiÞj−1δðβ − βiÞ; ðA4Þ

where f0ðβÞ ¼ 2p3p4 sin α sin θ sin β and βi are the roots of
fðβÞ ¼ 0. It is easy to see that the δ function is symmetric
in β, so we can multiply by 2 and integrate over ½0; π�. Thus,
cos βi ∈ ½−1; 1� which demands sin2 βi ≥ 0 for the root to
exist within the integration interval. This can be equiv-
alently written as

f0ðβiÞ2 ¼ ð2p3p4 sin α sin θ sin βiÞ2 ≥ 0; ðA5Þ

so that

Z
2π

0

dβδðfðβÞÞ ¼ 2jf0ðβiÞj−1Θðjf0ðβiÞj2Þ: ðA6Þ

Using the equation fðβiÞ ¼ 0, one can rewrite the deriva-
tive as

jf0ðβiÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a cos2 αþ b cos αþ c

p
; ðA7Þ

where, again paralleling the notation of [17,18],
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a ¼ p2
4ð−4κ þ 8ϵÞ; ðA8Þ

b ¼ p4ð−p1 þ ϵ=p1Þð8γ þ 4Qþ 8ϵÞ; ðA9Þ

c ¼ 4p2
3p

2
4 sin

2 θ − ð2ðγ þ ϵÞ þQÞ2; ðA10Þ

with γ ≡ E3E4 − E1E3 − E1E4 and ϵ≡ p1p3 cos θ and
κ ≡ p2

1 þ p2
3. Then, after a trivial dμ integral, the source

term becomes

CBW ¼ 2

ð2πÞ4
1

2E1

ZZ
dp3p2

3

2E3

dp4p2
4

2E4

Fðp1; p3; p4Þ

× f3f4½1� f1�½1� f2�; ðA11Þ

where fi ≡ fiðEiÞ with E2 ¼ E4 þ E3 − E1, and the func-
tion Fðp1; p3; p4Þ contains the squared matrix element
integrated over the angles and fixing kinematics,

Fðp1; p3; p4Þ ¼
Z

1

−1
d cos θ

Z
minð1;z−Þ

maxð−1;zþÞ
dz

×
jMðs; tÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðz − z−Þðz − zþÞp Θðb2 − 4acÞ;

ðA12Þ

where we set z ¼ cos α and z� ≡ ð−b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p
Þ=2a.

This function contains all process specific dynamical
information and since it is independent of the distribution
functions, it can be computed and fitted before solving the
Boltzmann equations. In general, thematrix element squared
is a function of s ¼ ðp3 þ p4Þ2 and t ¼ ðp1 − p3Þ2, which
depend on the angles and momenta as follows:

t ¼ m2
1 þm2

3 − 2E1E3 þ 2p1p3 cos θ;

s ¼ 2E1E3 þ 2E1E4 − 2p1p3 cos θ

− 2p1p4 cosαþm2
2 −m2

1: ðA13Þ

In the particular casewhere the matrix element in (A12) does
not depend on cosα (a pure t-channel process), the d cos
integral can be reduced to a one-dimensional integral,

Fðp1; p3; p4Þ ¼
Z

1

−1
d cos θjMðtÞj2 πffiffiffiffiffiffi

−a
p Θðb2 − 4acÞ:

ðA14Þ

b. Forward term

In the forward term, given by Eq. (11), we integrate first
over d3p4, which leaves us with the delta function
δðp2

4 −m2
4Þ. Paralleling the backward term reduction, we

eventually obtain

CFW ¼ −
2

ð2πÞ4
1

2E1

ZZ
p2
2dp2

2E2

p2
3dp3

2E3

F0ðp1; p2; p3Þ

× f1f2½1� f3�½1� f4�; ðA15Þ

wheref4 is evaluated atE4¼E1þE2−E3 andF0ðp1;p2;p3Þ
has an identical expression to the right-hand side of
(A12), where one replaces everywhere ða; b; cÞ →
ða0; b0; c0Þ with

a0 ¼ p2
2ð−4κ0 þ 8ϵ0Þ; ðA16Þ

b0 ¼ p2ðp1 − ϵ0=p1Þð8γ0 þ 4Q0 þ 8ϵ0Þ; ðA17Þ

c0 ¼ 4p2
2p

2
3 sin

2 θ − ð2ðγ0 þ ϵ0Þ þQ0Þ2; ðA18Þ

where Q0 ¼m2
1þm2

2þm2
3−m2

4 and, moreover, γ0 ¼ E1E2−
E1E3 − E2E3 and ϵ0 ¼ p1p3 cos θ and κ0 ¼ p2

1 þ p2
3.

Now the Mandelstam variables must be written as
s ¼ ðp1 þ p2Þ2 and t ¼ ðp1 − p3Þ2 so that

s ¼ m2
1 þm2

2 þ 2E1E2 − 2p1p2 cos α;

t ¼ m2
1 þm2

3 − 2E1E3 þ 2p1p3 cos θ: ðA19Þ

If the matrix element is again independent of cosα, the
result (A14) applies also as such, after replacing
ða; b; cÞ → ða0; b0; c0Þ. Note that the forward and backward
collision integrals (A11) and (A15) are valid for general
Bose-Einstein and Fermi-Dirac statistics.

2. Special case: Inelastic 2-2 scattering towards/from
equilibrium in MB statistics

As stated in the main text, we are using the MB statistics
throughout. This is not needed for our computation of
the elastic rates, but to keep the computation time asso-
ciated with the large number of inelastic interactions with
the SM states manageable. In this case, the final states are in
equilibrium, and we can reduce the nine-dimensional
integral down to one dimension. Overall, using the MB
statistics amounts to about 10% error in the overall
magnitude of the elastic collision integral [31], which
should have but a very small effect on the final abundance.
Indeed, we checked that scaling the elastic collision terms
by a factor 0.9–1.1 caused only a 0.7% change in the final
abundance. Then, working under the assumption f ≪ 1
and enforcing the detailed balance, we can write the phase
space factor (9) as

Λðf1; f2Þ ¼ feq1 f
eq
2 − f1f2: ðA20Þ

The collision can then be written as

CIðp1; tÞ ¼
1

2E1

Z
d3p̃2Λðf1; f2Þ

X
n

FIðsÞσðnÞI ðsÞ; ðA21Þ
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where n runs over different equilibrium states, σðnÞI ðsÞ is the
corresponding cross section, and FIðsÞ is the Lorentz
invariant flux factor,

FIðsÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 −m2

1m
2
2

q
;

¼ 2λ1=2ðs;m2
1; m

2
2Þ≡ 4E1E2vMϕl; ðA22Þ

where λða; b; cÞ ¼ ða − b − cÞ2 − 4bc is the Källén kinetic
function. As explained in [7], one can reduce the integral
over d3p̃2 to a single integral over s,

CIðp1; tÞ ¼
1

2π2

Z
∞

0

dp2p2
2Λðf1; f2Þ

X
n

½FIσ
ðnÞ
I �; ðA23Þ

where

½O�ðp1; p2Þ≡ 1

16p1p2E1E2

Z
sþ

s−

dsOðsÞ; ðA24Þ

with s� ¼ m2
1 þm2

2 þ 2E1E2 � 2p1p2. Again, this func-
tion can be evaluated and fitted for each collision channel
before one attempts to solve the dynamical Boltzmann
equations, which gives a dramatic boost in numerical
efficiency.

3. 1-2 decays and fusions

A similar reduction that was carried out above for the
2 ↔ 2 scatterings, can be performed for the 1 ↔ 2 proc-
esses. We shall assume that either the decaying particle or
the decay products are in thermal equilibrium.

a. Decay from (fusion to) equilibrium f eqA ↔ f 1f 2
Assume we are tracking the species labeled as “1,” while

the “2” species is arbitrary and “A” species follows the
equilibrium. Then,

CeqA−12ðp1; tÞ ¼
1

2E1

Z
dPSA2ΛðfeqA ; f1; f2ÞjMA−12j2;

ðA25Þ

where the phase space integration is denoted by

dPSA2 ¼ d3p̃Ad3p̃2ð2πÞ4δð4ÞðpA − p1 − p2Þ; ðA26Þ

and the distribution factor Λ is given by

Λ ¼ feqA ½1� f1�½1� f2� − f1f2½1� feqA �;
→ feq1 f

eq
2 − f1f2; ðA27Þ

where we again assumed that f ≪ 1 and applied the
detailed balance for the equilibrium state. A similar
procedure as in the previous section eventually gives

CeqA−12ðp1; tÞ ¼
jMA−12j2
16πE1p1

ðfeq1 χ½feq2 � − f1χ½f2�Þ; ðA28Þ

where we used the fact that the matrix element for the decay
process is a constant and defined

χ½f�≡
Z

∞

0

dp2

p2

E2

fðp2ÞΘð1 − j cos θ0jÞ; ðA29Þ

with

cos θ0 ¼
jm2

1 þm2
2 −m2

A þ 2E1E2j
2p1p2

: ðA30Þ

In this case, one only needs to compute the matrix element
as a function of the masses of particles involved.

b. Decay to (fusion from) equilibrium f 1 ↔ f eqA f eqB
Now assume we track the species 1, while the arbitrary

species A follows the equilibrium. After similar steps as
above, we get an even simpler expression

Ceq1→ABðp1; tÞ ¼
jM1−ABj2
16πE1

ðfeq1 − f1ÞvΘðv2Þ; ðA31Þ

where v ¼ λ1=2ðm2
1; m

2
A;m

2
BÞ=m2

1 and where we used the
fact that the matrix element squared (in tree level) is always
a constant.

APPENDIX B: FEYNMAN RULES

Here we summarize the Feynman rules that follow from
the Lagrangian in Eq. (19) for the new/modified interaction
vertices in the model with a singlet scalar S ¼ σ þ w and a
singlet fermion N,

λϕϕϕϕ ¼ −6iλHc4θ þ 6s2θðλHSc2θ þ λSs2θÞ;
λσσσσ ¼ −6iλSc4θ þ 6s2θðλHSc2θ þ λHs2θÞ;
λϕϕσσ ¼ −ði=4ÞðλHS½1þ 3c4θ� þ ð3λH þ 3λSÞ½1 − c4θ�Þ;
λϕϕϕ ¼ −6iλHvc3θ − 3sθðλHSwc2θ − λHSvsθcθ þ 2λSws2θÞ;
λσσσ ¼ −6iλSwc3θ þ 3sθðλHSvc2θ þ λHSwsθcθ þ 2λHvs2θÞ;
λϕϕσ ¼ −iλHSvc3θ − sθðλC2wc2θ − λC1vsθcθ þ λHSws2θÞ;
λϕσσ ¼ −iλHSwc3θ þ sθðλC1vc2θ þ λC2wsθcθ þ λHSvs2θÞ;
λϕVV ¼ −2iðM2

V=vÞsθgμν;
λσVV ¼ −2iðM2

V=vÞcθgμν;
λϕff ¼ −iðmf=vÞcθ;
λσff ¼ −iðmf=vÞsθ;
λϕNN ¼ −iðy=2Þsθ;
λσNN ¼ iðy=2Þcθ: ðB1Þ
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Here ϕ denotes the SM Higgs field with VEV v, and V and
f denote SM vector bosons and fermions; we used the
following shorthand notations: sθ ≡ sin θ, cθ ≡ cos θ,
where θ is the mixing angle between the two scalars ϕ
and σ, and finally λC1 ≡ 6λH − 2λHS and λC2 ≡ 6λS − 2λHS.

APPENDIX C: RIS SUBTRACTION

A well-known problem with Boltzmann equation net-
works concerns the double counting of pole contributions to
scattering processes. The problem arises from imposing the
on-shell limit for the dynamical two-point functions, when
deriving the Boltzmann theory from the Kadanoff-Baym
(KB) equations. In KB equations, where self-energies are
defined by the two-particle irreducible (2PI)-effective action,
the one-loop diagrams contain both on- and off-shell infor-
mation. However, the on-shell limit spoils the 2PI hierarchy
and removes the off-shell information at one-loop level. To
regain it, one has to introduce by hand higher-order 1PI-self-
energy diagrams, whose cuts then create most scattering
processes in Boltzmann theory. This division does not
automatically respect unitarity and, in particular, the poles
of the 2-2-scattering processes encode information already
included in the fusion processes onto and in the decays of the
unstable “on-shell” state. Removing this double counting is
usually dubbed real intermediate state subtraction.
To see how this works, we split the Breit-Wigner

propagator as follows:

iDðp2Þ≡ i
p2 −m2 þ imΓ

¼ iðp2 −m2Þ
ðp2 −m2Þ2 þm2Γ2

þ mΓ
ðp2 −m2Þ2 þm2Γ2

¼ iDHðp2Þ þAðp2Þ; ðC1Þ

where Γ is the decay width of the propagating particle with
mass m. The propagator is resonant at p2 ¼ m2 with a
resonance of width mΓ, isolated in the spectral function
Aðp2Þ. This observation clearly suggests to remove the on-
shell contribution from the propagator by simply dropping
the spectral part and retaining only the Hermitian part

iDðp2Þ → iDHðp2Þ ðC2Þ

in all scattering calculations. This corresponds to removing
the pole contribution at the level of the matrix element as
proposed in [38,39]. This is the approach taken in this paper.
Acommonpractice in the literaturehas been [36,37,41–46]

to subtract the divergence at the level of the matrix element
squared, according to prescription

jDðp2Þj2 → jDðp2Þj2 − πδðp2 −m2Þ
mΓ

: ðC3Þ

One can argue for this prescription by noting that, for a simple
matrix element with no mixing between different channels,

jMj2 ∼Dðp2ÞD�ðp2Þ ¼ D2
Hðp2Þ þA2ðp2Þ: ðC4Þ

To the lowest order in a small but finite Γ, the square of the
spectral function can be replaced by

A2ðp2Þ ≈ πδðp2 −m2Þ
mΓ

: ðC5Þ

The prescription (C3) is thus approximatively the same as
(C2). However, this argument fails in the presence of
interference terms and the prescription (C3) has been found
to give superficial negative cross sections [38], which never
happens in the subtraction scheme (C2). In Fig. 8we show the
split of the square of the propagator function into the on- and
off-shell contributions according to (C2) in a representa-
tive case.
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FIG. 8. Shown are the Breit-Wigner propagator split into on-
and off-shell part definitions used in [39]. The split is done for the
propagator and the resulting difference shown for the propagator
squared. Full propagator Dðp2Þ is shown with the black solid
line, the off-shell partDHðp2Þ by the dash-dotted line, and the on-
shell part Aðp2Þ by dash-dotted lines. The vertical lines mark the
resonance width p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �mΓ

p
, which coincides with the

maxima of the off-shell propagator.
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