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The stability and equation of state of quark matter are studied within both two-flavor and (2þ 1)-flavor
Nambu-Jona-Lasinio (NJL) models including the vector interactions. With a free parameter α, the
Lagrangian is constructed by two parts, the original NJL Lagrangian and the Fierz transformation of it, as
L ¼ ð1 − αÞLNJL þ αLFierz. We find that there is a possibility for both ud nonstrange and uds strange
matter being absolute stable, depending on the interplay of the confinement with quark vector interaction
and the exchange interaction channels. The calculated quark star properties can reconcile with the recently
measured masses and radii of PSR J0030þ 0451 and PSR J0740þ 6620, as well as the tidal deformability
of GW170817. Furthermore, the more strongly interacting quark matter in the nonstrange stars allows a
stiffer equation of state and consequently a higher maximum mass (∼2.7 M⊙) than the strange ones
(∼2.1 M⊙). The sound velocities in strange and nonstrange quark star matter are briefly discussed
compared to those of neutron star matter.
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I. INTRODUCTION

Thanks to the new generation of space and terrestrial
facilities, the ever-increasing data from nuclear physics
experiments and astrophysical observations have incited an
intense research activity toward understanding the dense
matter equation of state (EoS) and the composition of
compact stars. The longstanding important fundamental
questions may have the possibility to be answered within a
few decades. One of the crucial questions related to the
dense matter EoS is whether strange quark matter exists or
not. After decades of speculation [1,2], it is still completely
speculative, known as the Bodmer-Witten hypothesis.
Strange quark matter is a bulk quark matter phase

consisting of u, d, and s quarks in β-equilibrium in
approximately equal proportions (plus a small fraction of
electrons), with a density comparable to that of atomic
nuclei. Quark matter may exist in lumps ranging in size
from a few fermis up to possible self-bound quark stars.
The possibility that ordinary atomic nuclei could be only a
metastable state with respect to the true ground state of
baryonic matter at zero pressure was first discussed by
Bodmer (1971) [1], and it was pointed out that the possible
existence of uds matter was not in conflict with the
experimental data. Quantitative studies [2–5] were then

carried out a few years after the Bodmer paper using the
MIT bag model [6].
In the bag model, all important quark interactions are

assumed to be represented by the perturbative quantum
chromodynamics (QCD) vacuum energy density B, namely
the excess of the energy density of the QCD vacuum (inside
the bag) over the energy density of the ordinary vacuum
(outside the bag). The energy density in the bag model is,
therefore the sum of the bag constant, the kinetic energy of
quarks and their interaction energy, and the interaction
energy is usually calculated from the perturbative schemes
of the QCD. The EoS, namely the energy-density-pressure
relation, is almost linear in the bag model [7]. Since the
perturbative QCD is inadequate for the treating of the quark
matter EoS, there have been numerous attempts to include
nonperturbative effects in more advanced models, such as
the Dyson-Schwinger equation approach [8–10], the
Nambu-Jona-Lasinio (NJL) model (for review see
Refs. [11–14]), the density-dependent quark masses [15–
19], and the quark-meson coupling model [20–25] as an
incomplete list. According to the Bodmer-Witten hypo-
thesis, i.e., the absolute stability of quark matter with
strangeness, the energy per baryon of uds quark matter
could be smaller than that of an 56Fe nucleus
E=AðP ¼ 0Þ ¼ ð56mN − 56 × 8.8 MeVÞ=56 ¼ 930 MeV.
Therefore all compact objects would be strange quark stars
instead of neutron stars, despite the timescale for the
conversion might be extremely long. The physics of strange
quark matter is reviewed in e.g., Refs. [26–29].
Furthermore, although it was usually regarded that the
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uds matter should always be energetically preferable over
the ud matter due to the extra Fermi well by the strange
quarks, a recent study [30] showed that ud matter could be
in general more stable than uds matter when taking the
flavor-dependent feedback of the quark gas on the QCD
vacuum into account. In this case, ud matter, instead of the
originally-proposed uds matter, would be the true ground
state of cold, dense baryonic matter at zero pressure,
i.e., absolutely stable (see, e.g., Refs. [31–35] for recent
discussions of nonstrange quark stars).
The NJL model is an important and valid effective

quark theory, which serves as a suitable approximation to
QCD in the low-energy and long-wavelength limit by
assuming that gluon degrees of freedom can be frozen
into effective pointlike interactions between quarks. Its
Lagrangian is constructed in such a way that the basic
symmetries of QCD, which are observed in nature, are
part and parcel of it. Moreover, the NJL model is found to
work rather well in describing phenomenologically the
interaction responsible for the quark flavor dynamics at
intermediate energies [11–13]. Recently, to improve the
description of the strong interaction matter at large
chemical potential, and as an attempt to resolve the huge
contradictions between the results drawn from the quark-
gluon degrees of freedom and the expected results derived
from the hadron degrees of freedom, Ref. [36] proposed a
modified NJL model containing both the original model
Lagrangian and the Fierz transformation of it with the
parameter (1 − α) and α adjusting the weight of these two
parts, respectively. Namely, α can be adjusted in the range
of 0 to 1 to be consistent with finite-density constraints.
It is a more general version of the NJL-like models
compared to the specific one of α ¼ 0.5 introduced in
Ref. [11]. The modified version of NJL model has been
applied to investigating the color superconductivity [37],
the location of the QCD critical endpoint [38], as well as
the QCD phase diagram at finite chemical potentials and
finite temperature [39]. In the present work, we use the
modified NJL model to study both ud and uds quark
matter and the corresponding self-bound stars. For this we
need further extend the model [40] to include the vector
interactions shown as necessary for the study of dense
stellar matter and compact stars [15,41–49]. This is
also one of the first studies to evaluate systematically
the stability of both strange and nonstrange quark matter,
in connection with available multimessenger stellar
observations.
This paper is organized as follows. In Sec. II, we

introduce the two-flavor and (2þ 1)-flavor modified
NJL models for describing the quark matter, including
the vector interactions. Section III discusses the results on
quark matter EoS and quark stars, along with the
observational constraints. Our results are summarized
in Sec. IV.

II. FORMALISM

In this section, we write down the NJL models to
describe the effective interactions between quarks. As
mentioned in the introduction, our calculations on interact-
ing quark matter are done for both ud quark matter and uds
quark matter.

A. Two-flavor NJL model

The Lagrangian of the two-flavor NJL model reads:

L2f
NJL ¼ L0 þ L2f

int; ð1Þ

where L0 ¼ ψ̄ðiγμ∂μ −mþ μγ0Þψ is the relativistic free
(Dirac) Lagrangian which describes the propagation of
noninteracting fermions. ψ is the quark field operator with
color, flavor, and Dirac indices. μ is the flavor-dependent
quark chemical potential. m is the diagonal mass matrix
for quarks in flavor space m ¼ diagðmu;mdÞ, which con-
tains the small current quark masses and introduces a small
explicit chiral symmetry breaking. Here, we takemu ¼ md.
The effective NJL-type interactions are four-fermion

interactions, which simplify the gauge interaction coupling
the quarks to the gluon dynamics in QCD. The second term
in Eq. (1) describes the four-fermion contact interactions
between quarks, composing of scalar and vector interaction
L2f
int ¼ L4

σ þ L4
V :

L4
σ ¼ G½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð2Þ

L4
V ¼ −GVðψ̄γμψÞ2; ð3Þ

which emerge as the simplest way to write an interaction
with only quark degrees of freedom that satisfies
the flavor symmetries characterized by the group
SUð2ÞV × SUð2ÞA ×Uð1ÞB. The standard two-flavor
NJL Lagrangian with interaction terms in the scalar and
pseudoscalar channels is given by Eq. (2). The Lagrangian
L4
V in Eq. (3) is the phenomenological vector interaction,

which produces universal repulsion between quarks, and
the finite-density environment brings a significant contri-
bution to this channel. The scalar and vector contact
interaction coupling constants, G and GV we consider
here, can be interpreted to encode all the gluonic contri-
bution of the strong interaction.
In the following, we further consider the effect of a

rearrangement of fermion field operators. As a purely
technical device to examine the exchange channels influ-
ence that occur in quartic products at the same space-time
point [11,12], the Fierz identity of the four-fermion
interactions in the two-flavor NJL model is

F ðL2f
intÞ ¼ F ðL4

σÞ þ F ðL4
VÞ; ð4Þ
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where

F ðL4
σÞ ¼

G
8Nc

½2ðψ̄ψÞ2 þ 2ðψ̄iγ5τψÞ2 − 2ðψ̄τψÞ2

− 2ðψ̄iγ5ψÞ2 − 4ðψ̄γμψÞ2 − 4ðψ̄iγμγ5ψÞ2
þðψ̄σμνψÞ2 − ðψ̄σμντψÞ2�; ð5Þ

and

F ðL4
VÞ ¼

GV

2Nc

�
ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2 − 1

2
ðψ̄γμψÞ2

−
1

2
ðψ̄γμγ5ψÞ2 þ ðψ̄τψÞ2 þ ðψ̄ iγ5τψÞ2

−
1

2
ðψ̄γμτψÞ2 − 1

2
ðψ̄γμγ5τψÞ2

�
: ð6Þ

Here Nc is the number of color which is given by Nc ¼ 3
and we only consider the contribution of color singlet terms
for simplicity.
From the comparison of Eq. (2) [Eq. (3)] to Eq. (5)

[Eq. (6)], one can see that, with the help of the Fierz
transformation, all exchange interaction channels of the
original Lagrangian are released. In Eq. (5), the Fierz
transformed Lagrangian contains not only the scalar and
pseudoscalar interactions, but also vector and axial-vector
interaction channels.
Because the Fierz transformation is just a mathematical

technique, we can combine the original Lagrangian and
Fierz transformed Lagrangian, using a weighting factor α, at
any proportion. The factor α reflects the competition
between the original interaction channels and the exchange
interaction channels. Then the effective Lagrangian
becomes

L2f
eff ¼ ψ̄ðiγμ∂μ −mþ μγ0Þψ þ ð1 − αÞL2f

int þ αF ðL2f
intÞ:

ð7Þ
Under the mean-field approximation, the mass gap

equation and the effective chemical potential can be
obtained as follows:

M ¼ m − 2

�
ð1 − αÞGþ αG

12
þ αGV

6

�X
f¼u;d

σf

¼ m − 2

�
ð1 − αÞ þ α

12
þ αRV

6

�
G
X
f¼u;d

σf

¼ m − 2G0 X
f¼u;d

σf; ð8Þ

μ� ¼ μ −
�
2ð1 − αÞRV þ α

3
þ αRV

6

�
G
X
f¼u;d

ρf

¼ μ −
12RV þ 2α − 11αRV

6
G
X
f¼u;d

ρf; ð9Þ

where RV ¼ GV=G, G0 ¼ ð12 − 11αþ 2αRVÞG=12. The
quark condensate hψ̄ψi and quark number density hψþψi
are denoted as σ and ρ, respectively, which are the average
values of operators, ψ̄ψ and ψþψ , in the ground state.
Equation (8) displays the mechanism of spontaneous

chiral symmetry breaking in the NJL model, through which
quarks acquire a dynamical mass proportional to the chiral
condensates, plus a small contribution due to the bare quark
mass. Equation (9) demonstrates the effects of vector
interactions that quarks obtain an effective chemical poten-
tial μ� which is shifted to a lower value than the physical
chemical potential μ. From Eqs. (8) and (9), it is clear that
the introduction of Fierz transformed identity contributes to
the chemical potential and the dynamical quark mass,
because the scalar and vector interactions in the exchange
channels in Eqs. (5) and (6) under mean-field approxima-
tion is nonzero at finite chemical potential.

1. At (zero-temperature) zero chemical potential

In the present section, we focus on how to obtain the
quark condensate and the quark number density, as well as
the regularization procedure we used.
At zero temperature and zero chemical potential, the

quark condensate has the following form:

σf ¼ hψ̄ψif ¼ −
Z

d4p
ð2πÞ4 Tr½iSfðp

2Þ�; ð10Þ

where the trace “Tr” is taken in Dirac and color spaces and
the quark propagator of flavor f is

Sfðp2Þ ¼ 1

γμpμ −Mf
: ð11Þ

Note that this is the key equation for the present model
because it determines the values of the chiral condensate
hψ̄ψif and the constituent quark mass Mf. Then from
evaluating the trace we can obtain:

σf ¼ −Nc

Z þ∞

−∞

d4p
ð2πÞ4

4iMf

p2 −M2
f

: ð12Þ

We mention here that the previous calculations are usually
performed in Minkowski space. To perform the present
calculations, we employ a Wick rotation from Minkowski
space to Euclidean space and find correspondingly:

σf ¼ −Nc

Z þ∞

−∞

d4pE

ð2πÞ4
4Mf

ðpEÞ2 þM2
f

: ð13Þ

Because of the fact that we simplified the interactions as
four-fermion contact pointlike interactions (or six-fermion
interactions as well in the case of uds quark matter) in the
Lagrangian, the NJL model cannot be renormalized, and
the condensate will be divergent, as one can observe in
Eq. (13). Consequently, it must be interpreted as an
effective field theory, which is only valid up to a certain
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cutoff energy scale Λ. For the purpose of the present study,
the energy cutoff should be far beyond the baryon chemical
potential possibly reached in some massive quark stars
Λ ≫ μB, with μB ≲ 1.5 GeV from our calculations (see
below). The parameterΛ can also be interpreted as the scale
at which the strong interaction vanishes, a crude approxi-
mation for the property of asymptotic freedom of QCD.
Then, to avoid the ultraviolet (UV) divergence and make
the integral finite, a certain regularization scheme is
inevitable. We note that this is an acceptable procedure
when the chemical potential μq we considered is less than
the cutoff Λ so as to get a reliable result. There are several
regularization procedures that can be used to deal with the
UV divergence, such as the three momentum cutoff in
3-momentum space, which is mathematically convenient.
Still, this method is a sharp cutoff and has the disadvantage
of being not covariant. Here, we adopt the proper-time
regularization (PTR) with a UV cutoff, which can not only
allow the momentum integral up to infinity but also avoid
the UV divergence with a soft cutoff. Furthermore, PTR
also has the features that it is invariant and has an Oð3Þ
symmetry for μ ≠ 0, while for the limit μ → 0, the Oð4Þ
symmetry is restored.
By definition, the PTR is equal to replace the ultraviolet

divergent integrand 1=An as an integral of its exponential
function, that is

1

An ¼
1

ðn − 1Þ!
Z

∞

0

dττn−1e−τA

⟶
UV cutoff 1

ðn − 1Þ!
Z

∞

τUV

dττn−1e−τA; ð14Þ

where ΛUV is the parameter related to ultraviolet cutoff.
The lower cutoff τUV ¼ 1=Λ2

UV induces the dumping factor
into the original propagator, therefore high frequency
contribution is dumped, so the original divergent integral
turns out to be finite. Then, we obtain:

σf ¼ −Nc

Z þ∞

−∞

d4pE

ð2πÞ4
4Mf

ðpEÞ2 þM2
f

¼ −
3Mf

4π2

Z
∞

τUV

dτ
e−τM

2
f

τ2
: ð15Þ

2. At (zero-temperature) finite chemical potential

In Euclidean space, introducing the chemical potential at
zero temperature is equivalent to perform a transformation
[12,50]: p4 → p4 þ iμ�f. Then, after integrating over p4

first and applying proper-time regularization, one can
obtain the analytical results of quark condensate as follows:

σf ¼ −Nc

Z þ∞

−∞

d4pE

ð2πÞ4
4Mf

ðpEÞ2 þM2
f

¼ −Nc

Z þ∞

−∞

d4pE

ð2πÞ4
4Mf

ðp4 þ iμ�fÞ2 þ p2 þM2
f

¼ −
3Mf

π3

Z þ∞

0

dp
Z þ∞

−∞
dp4

p2

ðp4 þ iμ�fÞ2 þM2
f þ p2

¼

8>>><
>>>:

− 3Mf

π2

Rþ∞ffiffiffiffiffiffiffiffiffiffiffiffi
μ�2f −M2

f

p dp
½1−Erfð

ffiffiffiffiffiffiffiffiffiffiffi
M2

fþp2
p ffiffiffiffiffiffi

τUV
p Þ�p2ffiffiffiffiffiffiffiffiffiffiffi

M2
fþp2

p ; Mf < μ�f

3Mf

4π2

�
M2

fΓð0;M2
fτUVÞ − e

−M2
f
τUV

τUV

�
; Mf > μ�f

ð16Þ

where Γða; zÞ ¼ Rþ∞
z dtta−1e−t and ErfðxÞ ¼ 2ffiffi

π
p

R
x
0 dte

−t2 .
At zero temperature and finite chemical potential, the

quark number density is

ρf ¼ hψþψif ¼ −
Z

d4p
ð2πÞ4 Tr½iSfðp

2Þγ0�

¼ 2Nc

Z
d3p
ð2πÞ3 θðμ

�
f −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q
Þ

¼
(

1
π2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2f −M2

f

q
Þ3; μ�f > Mf

0: μ�f < Mf

; ð17Þ

Since there is a step function on the right-hand side of
Eq. (17), it is obvious that the quark number density of

flavor f will vanish when the effective quark chemical
potential μ�f is smaller than a threshold value (see later
in Fig. 2).

B. (2 + 1)-flavor NJL model

For (2þ 1)-flavor NJL model, the Lagrangian is

L3f
NJL ¼ L0 þ L3f

int; ð18Þ

where the interaction term is written as: L3f
int ¼ L4

σþ
L6
σ þ L4

V . The phenomenological vector interaction term
L4
V is the same as in Eq. (3) and
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L4
σ ¼

X8
i¼0

G½ðψ̄λiψÞ2 þ ðψ̄iγ5λiψÞ2�: ð19Þ

The six-fermion interaction term is written as:

L6
σ ¼ −Kðdet ½ψ̄ð1þ γ5Þψ � þ det ½ψ̄ð1 − γ5Þψ �Þ: ð20Þ

It represents the effects of the instanton-induced QCD axial
anomaly, which is a determinant in flavor space and breaks
the Uð1ÞA axial symmetry of the QCD Lagrangian. G and
K are the four-fermion and six-fermion interaction coupling
constants, respectively. λiði ¼ 1 → 8Þ is the Gell-Mann
matrix in flavor space. λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I0 (I0 is the identity

matrix).
The Fierz identity of the interaction terms in the (2þ 1)-

flavor NJL model is

F ðL3f
intÞ ¼ F ðL4

σÞ þ F ðL6
σÞ þ F ðL4

VÞ: ð21Þ

Applying the Fierz transformation to four-fermion scalar
and pseudoscalar interaction term F ðL4

σÞ and only con-
sidering the contributions of color-singlet terms, the Fierz
identity can be obtained as follows:

F ðL4
σÞ ¼ −

3G
2Nc

½ðψ̄γμλ0iψÞ2 − ðψ̄γμγ5λ0iψÞ2�: ð22Þ

The Fierz identity of the phenomenological vector inter-
action F ðL4

VÞ is the same as Eq. (6). Note that the six-
fermion interaction term does not change after the Fierz
transformation, because that Fierz transformation of six-
fermion interaction can be defined as transformation that
leaves the interaction invariant under all possible permu-
tations of the quark spinors ψ occurring in it [11]. That is to
say:

F ðL6
σÞ ¼ L6

σ: ð23Þ

Then the effective Lagrangian becomes:

L3f
eff ¼ ψ̄ðiγμ∂μ −mþ μγ0Þψ þ ð1 − αÞL3f

int þ αF ðL3f
intÞ:
ð24Þ

Under the mean-field approximation, we can obtain the
mass gap equations and the effective chemical potential μ�f
of flavor f as follows:

Mf ¼ mf − 4

�
ð1 − αÞ þ 1

6
αRV

�
Gσf þ 2Kσjσk

¼ mf − 4G0σf þ 2Kσjσk; ð25Þ

μ�f ¼ μf −
�
2ð1 − αÞGV þ 2

3
αG

� X
f0¼u;d;s

ρf0 −
1

3
αGVρf

¼ μf −
�
2ð1 − αÞRV þ 2

3
α

�
G

X
f0¼u;d;s

ρf0 −
1

3
αRVGρf:

ð26Þ

where we define G0 ¼ ð6 − 6αþ αRVÞG=6 and f, j, k are
the even permutations of u, d, s. At finite chemical
potential and zero temperature, the expressions of the
quark condensate σf and quark number density ρf are
the same as Eqs. (16) and (17), respectively.

C. Parameter fixing in the NJL models

From Eqs. (8), (9), and (25)–(26), it is clear that the
introduction of Fierz transformed identity contributes to the
renormalized chemical potential and the gap equation.
After defining the new coupling constant G0, and keeping
the expression of gap equation the same as the widely used
one in Eqs. (8) and (25), at a zero temperature and chemical
potential, apart from α and RV , the fixing of the model
parameters is the same with the original version of the NJL
model [13]. According to the latest edition of the Review of
Particle Physics Ref. [51], the current quark mass mu and
ms are predicted to be m̄ ¼ ðmu þmdÞ=2 ¼ 3.5þ0.5

−0.2 MeV
and ms ¼ 95þ9

−3 MeV respectively. Similar to the procedure
in Ref. [13], after fixing the masses of the up and down
quarks by equal values, the other parameters ms, ΛUV, G0,
K are chosen to reproduce the experimental data of the
pion decay constant and pion mass for fπ ¼ 92 MeV,
Mπ ¼ 135 MeV, MK0 ¼ 495 MeV, Mη ¼ 548 MeV,
Mη0 ¼ 958 MeV.
The description still contains two undetermined param-

eters: α and RV . The free parameter α, important to the
determination of the chemical potential and the dynamical
quark mass, is found to affect the EoS of quark matter and
can be possibly constrained from the stellar properties
composed of the matter. As for the parameter RV, there are
many uncertainties. In Ref. [41], a ratio around RV ¼ 0.2
between the vector and scalar coupling was obtained from
an evaluation of only the Fock contributions of the scalar
channels. Values in the range 0.25 < RV < 0.5 were
derived by a Fierz transformation of effective one-gluon
exchange interaction, withGV depending on the strength of
the UAð1Þ anomaly in the two-flavor model [11,52]. Other
attempts to estimate GV are based on the fitting of the
vector meson spectrum [14]. However, the relation between
the vector coupling in dense quark matter and the meson
spectrum in vacuum is expected to be strongly modified by
in-medium effects (see discussions in Refs. [53–55]). As a
result, presently, the coupling strength of the direct term
cannot be fixed, so the total effects of the vector interactions
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are still unknown. Because of the uncertainties discussed
above, in the present study, we treat both α and RV as free
parameters and aim to seek information on them from the
astronomical observations of compact stars (see below in
Sec. III).
The employed model parameters are collected in Table I.

From solving the mass gap equations of Eq. (8) [Eq. (25)]
for two-flavor and (2þ 1)-flavor NJL models, we can the
obtain the dynamical quark masses as functions of the
quark chemical potential, which are reported in Fig. 1.

When μ�f < Mf, the quark condensate is independent of the
quark chemical potential [see Eq. (16)], correspondingly
there is a plateau in Fig. 1 for both two-flavor and (2þ 1)-
flavor cases. And there is no strangeness at low chemical
potential simply due to the relatively large mass of the
strange quarks. In addition, as the chemical potential
increases, the vector interactions make the dynamical quark
mass decrease slightly slowly, in comparison with the
standard NJL model without vector interactions (RV ¼ 0.0,
α ¼ 0.0). Let us focus on the lower panel of Fig. 1 for
(2þ 1)-flavor NJL model. When μu;d < 207 MeV, or
μs < 210 MeV, the constituent quark mass stays the same
as in the vacuum case where quarks are strong interacted
and confined. With the increase of the chemical potential,
the constituent masses of u and d quarks decrease more
quickly than the s quarks. In particular, when
μ < 320 MeV, the decrease of the dynamical quark mass
for the s quarks is due to a flavor-mixing effect and related
to the drop of Mu and Md. Above 320 MeV, this
contribution can be neglected, and Ms starts to decrease
again when the number density of the strange quarks ρs
becomes nonzero. Furthermore, we can see that when
μu;d > 500 MeV, the constituent mass of the u and d
quarks change much more slowly than before and not
change at large chemical potential, and the quark mass
restores to its current mass, with quarks weakly interacting
and deconfined. As for the two-flavor case in Fig. 1,
the constituent quark mass holds its vacuum value when
μ < 210 MeV and changes much more slowly near
μ > 500 MeV.
After deriving the constituent quark masses of the u, d,

and s quarks, following Eq. (17), one can immediately
obtain the quark number density for each flavor of quarks.
To show the contribution of the Fierz identity at finite
chemical potential, we set RV ¼ 0 in both two-flavor and
(2þ 1)-flavor NJL model Lagrangian, that is to say, only
considering the standard NJL model and the contribution
from the exchanging channels. Namely, L2f

eff ¼ ψ̄ðiγμ∂μ−
mþμγ0Þψþð1−αÞL2f

σ þαF ðL2f
σ Þ, and L3f

eff ¼ ψ̄ðiγμ∂μ−
mþ μγ0Þψ þ ð1 − αÞðL4

σ þ L6
σÞ þ αF ðL4

σ þ L6
σÞ. Then

we report the quark number densities as functions of the
quark chemical potential in Fig. 2.
As previously expected, the quark number density stays

zero when μq is smaller than the constituent quark mass
Mu;d and Ms. Once μq is above some threshold μc, the
quark number density becomes a monotonically increasing
function of μq. Let us again focus on the results of the
(2þ 1)-flavor NJL model in the lower panel of Fig. 2. One
can see that the threshold for which the quark number
densities turn to be nonzero for the u and d quarks is around
205 MeV; The threshold for the s quarks is larger due to
their larger vacuum mass. When we increase the contri-
bution of the exchange channels, namely increasing α, the
threshold for which the quark number density stars to

FIG. 1. Constituent quark mass of u, d and s quark versus quark
chemical potential μq for two-flavor and (2þ 1)-flavor NJL
models. The results for three representative sets of (RV , α)
parameters are shown: (RV ¼ 0.0, α ¼ 0), (RV ¼ 0.0,
α ¼ 0.7), (RV ¼ 1.0, α ¼ 0.7).

TABLE I. NJL model parameters satisfying the constraints on
the current quark masses mu and ms from the recent Review of
Particle Physics [51]. The units of the coupling constants G0 and
K are MeV−2 and MeV−5, respectively, and the other parameters
have the units of MeV.

mu ms ΛUV G0 K

Two flavor 3.3 / 1330 2.028 × 10−6 /
2þ 1 flavor 3.4 104 1330 1.51 × 10−6 2.75 × 10−14
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appear is pushed to even higher chemical potential, due to
the strong vector repulsion at large α.

III. QUARK MATTER AND QUARK STARS

In this section, we compute the EoS of quark matter, as
well as the global properties of self-bound strange and
nonstrange quark stars, based on the two-flavor and
(2þ 1)-flavor NJL models described in Sec. II.

A. QCD vacuum pressure and the bag constant

The study of the partition function is at the crux of
equilibrium statistical field theory. The thermodynamic
properties of a system, such as the EoS, are completely
determined by the partition function. At finite chemical
potential and zero temperature, the pressure-versus-
chemical-potential relation for quark matter can be strictly
proved with the functional path integrals of QCD [56,57] as
the expression shown below:

Pðμ;MÞ ¼ Pðμ ¼ 0;MÞ þ
Z

μ

0

dμ0ρðμ0Þ: ð27Þ

Here the first term Pðμ ¼ 0;MÞ is the pressure at μ ¼ 0,
which is density-independent quantity and represents the
vacuum pressure.M is a solution of the gap equation shown
before. The second term contains all the nontrivial μ-
dependence. Note that the formula of Eq. (27) is formally
model-independence. At present, it is difficult to calculate
the Pðμ ¼ 0;MÞ from the first-principles QCD, therefore
when applying Eq. (27) to calculate the EoS of the QCD
matter, one has to make use of various nonperturbative
QCD models.
Since the vacuum pressure Pðμ ¼ 0;MÞ is not a meas-

urable quantity, one can only evaluate the vacuum pressure
difference with respect to a reference ground state. The
reference ground state should, in principle, be a trivial
vacuum of the strong interaction system that we are
studying. In the NJL-type models, people usually denote
the trivial vacuum as Pðμ;mÞ, where m is the current quark
mass, and use the parameter B to describe the pressure
difference between the trivial and the nontrivial vacuum
(Nambu vacuum, reflecting the spontaneous symmetry
breaking of the vacuum). Thus the vacuum pressure B,
as a dynamical consequence of the interaction, can be
calculated consistently in the NJL-type models [12].
However, such a procedure of determining the bag

constant is somewhat unsatisfying, since the pressure
computed within the NJL-type models at vanishing density
is used in a regime where the model cannot be trusted due
to its lack of confinement. Therefore, following the
previous studies [58,59], we take Pðμ ¼ 0;MÞ as a phe-
nomenological parameter corresponding to −B (vacuum
bag constant), which preserves the confinement of quarks.
Namely, the bag constant is introduced similarly as in the
MIT bag model: Pðμ ¼ 0Þ ¼ −B. Then, from a known
quark number density ρðμÞ of each flavor, which matches
the phenomena of QCD, one can obtain the pressure that
satisfies the behavior of QCD at finite chemical potential μ.
Equation (27) tells us that, when μ < μc, the pressure P
equals −B, thus for P > 0, the chemical potential starts
from a nonzero value. It should be stressed that the EoS of
the strong-interaction matter depends not only on the
Nambu solution but also on the vacuum pressure, reflecting
the nonperturbative vacuum nature of QCD. The non-
perturbative vacuum plays a vital role in the study of the
compact star structures, as shown in many previous studies
(see recent discussions in, e.g., Refs. [60–62]).

B. Stability of self-bound quark matter
and the equation of state

Quark matter is in equilibrium with respect to the weak-
interaction processes,

d → uþ eþ ν̃e; uþ e → dþ νe;

s → uþ eþ ν̃e; uþ e → sþ νe;

sþ u ↔ dþ u:

FIG. 2. Quark number density ρf (f ¼ u, d, s) versus quark
chemical potential within both two-flavor and (2þ 1)-flavor NJL
models. The calculations are done for representative cases of
α ¼ 0.0, 0.7, 0.9 at RV ¼ 0.0.
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The β-stable conditions,

μs ¼ μd ¼ μu þ μe; ð28Þ

should be fulfilled. One has to require also the charge-
neutrality of the quark matter,

2

3
ρu −

1

3
ρd −

1

3
ρs − ρe ¼ 0; ð29Þ

and the baryon number conservation,

1

3
ðρu þ ρd þ ρsÞ ¼ ρB; ð30Þ

is satisfied with ρB being the baryon number density. Since
the electrons are highly relativistic, their particle number
density is simply ρe ¼ μ3e=ð3π2Þ. The baryon chemical
potential is μB ¼ μu þ 2μd and μB ¼ μu þ μd þ μs, respec-
tively, for ud and uds matter. Due to the constraints of β
equilibrium and charge-neutrality, there is only one inde-
pendent chemical potential left. Here, we choose μu,
and the other chemical potentials, namely μd, μs and μe
can be treated as a function of μu. See Fig. 3 for typical
compositions of ud and uds quark matter.
The energy density and pressure of the system have the

thermodynamic relation of

ε ¼ −Pþ
X

i¼u;d;s;e

μiρiðμiÞ: ð31Þ

The energy per baryon of quark matter are shown in Fig. 4
under various NJL model parameters. In general, for larger
B, α as well as RV , the energy per baryon E=A (or ε=ρB)
all becomes larger. The crucial importance of the vacuum
bag constant B can be seen from the comparison
of the following two cases: When keeping other parameters
unchanged, the quark matter is stable for B ¼ ð102 MeVÞ4
in the two-flavor case [B ¼ ð109 MeVÞ4 in the

(2þ 1)-flavor case], but unstable for a larger value of
B ¼ ð125 MeVÞ4 in both two-flavor and (2þ 1)-flavor
cases. The effect of B is straightforward since, by defi-
nition, it is the energy excess between the perturbative and
the nonperturbative vacuum; The effects relating to the α
and RV terms can be understood from their repulsive nature
at finite chemical potential [see Eq. (9)]. Nevertheless,
resulting from the opposite effects of B and RV terms on the
energy, E=A actually becomes smaller with increasing
RV in the two-flavor case when maintaining the
absolute binding of the matter at large values of α (see
Fig. 5 below).
Since we are interested in studying stellar properties

composed of self-bound quark matter, we introduce in
detail the stability conditions for limiting our NJL model
parameters as follows:

(i) For self-bound udsmatter, (1) ðE=AÞuds ≤ 930 MeV
to ensure the hypothesis of strange matter to be
valid; (2) Atomic nuclei should be stable with
respect to the formation of droplets of the ud matter,
that is, nonstrange quark matter in bulk should
have an energy per baryon higher than that of the
confined phase: ðE=AÞud ≥ 930 MeV; Altogether,
ðE=AÞuds ≤ 930 MeV ≤ ðE=AÞud.

(ii) For self-bound ud matter, ðE=AÞud ≤ 930 MeV ≤
ðE=AÞuds.

The obtained stability windows of ud and uds matter are
shown in Fig. 5 in the B1=4 − α plane, for two cases of
vector interaction: RV ¼ 0.0 and RV ¼ 1.0. In each case,
the two-flavor line and (2þ 1)-flavor line correspond to
ðE=AÞud ¼ 930 MeV and ðE=AÞuds ¼ 930 MeV, respec-
tively. It is evident that, in most cases (small α), the two-
flavor line is below the corresponding (2þ 1)-flavor one,
which defines the parameter spaces (in blue) for the stable
uds matter, satisfying ðE=AÞuds ≤ 930 MeV ≤ ðE=AÞud.
However, at large α, the two-flavor line is actually above
the (2þ 1)-flavor one, which leads to the parameter spaces

FIG. 3. Logarithmic relative fractions of different constituents ρi=ρB (i ¼ u, d, s, e) in chemically equilibrated, charge neutral
nonstrange (left panel) and strange (right panel) quark matter, calculated using the two-flavor NJL model (RV ¼ 0, α ¼ 0.82,
B1=4 ¼ 106.6 MeV) and (2þ 1)-flavor NJL model (RV ¼ 0, α ¼ 0, B1=4 ¼ 111 MeV), respectively. ρ0 ¼ 0.16 fm−3 is the nuclear
saturation density.
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(in pink) for the stable ud matter, satisfying ðE=AÞud ≤
930 MeV ≤ ðE=AÞuds.
In Fig. 5, the nearly horizontal behaviors of the two-

flavor and (2þ 1)-flavor lines (especially for relatively
small α) indicate the dominating role of the bag parameter
B to the stability of quark matter. And one observes again
the disfavor of the α increase to the binding of uds matter,
since the blue-shaded regions shrink with α. This results
from the decrease of the B value with the increase of α to
maintain the system’s binding in both the two-flavor and
(2þ 1)-flavor cases. Since the B decrease is faster in the
(2þ 1)-flavor case for larger α, the uds stability windows
finally disappear, and the ud stability windows grow with
α. The introduction of the vector interactions shifts down
the uds stability windows in the B1=4 − α plane, due to its

repulsive contribution to the energy of the system men-
tioned above. Furthermore, it slows the decrease of B with
α in both the two-flavor and (2þ 1)-flavor cases, resulting
in a larger uds stability window and a smaller ud stability
window. For example, the flip point is pushed from
α ¼ 0.82 in the case of RV ¼ 0 to α ¼ 0.95 in the case
of RV ¼ 1.0.
Hereafter, we employ ten representative NJL parameter

sets (five sets in each of the two cases; collected in Table II)
from the stability windows of Fig. 5 to perform the study of
strange and nonstrange stellar quark matter and quark stars.
To recap, once a particular set is selected, from Eqs. (17)

and (25)–(27), we are ready to obtain the pressure of
quark matter, given as a function of the baryon chemical
potential (or the baryon number density); Then the EoS
completely determines the structure of the general relativ-
istic stellar models through an integration of the Tolman-
Oppenheimer-Volkoff (TOV) equations [63,64].

C. Strange and nonstrange quark stars

Figure 6 shows the five EoSs for both nonstrange ud
matter and strange uds matter obtained within the present

FIG. 4. Energy per baryon versus density (in units of the nuclear saturation density ρ0) for various choices of the two-flavor and
(2þ 1)-flavor NJL model parameters for the study of their effects (see text for details). The horizontal lines in both panels refer to the
energy per baryon of the most stable nuclei known, E=Að56FeÞ ¼ 930 MeV.

FIG. 5. Stability windows of ud (pink shaded regions) and uds
matter (blue shaded regions) for two cases of vector interaction
RV ¼ 0.0 and RV ¼ 1.0. The two-flavor lines in red and (2þ 1)-
flavor lines in blue correspond to ðE=AÞud ¼ 930 MeV and
ðE=AÞuds ¼ 930 MeV, respectively. The regions above/below
each line have a binding energy per particle larger/smaller than
930 MeV, i.e., less/more bound than 56Fe. (0.82, 106.6 MeV) and
(0.95, 102 MeV) are the two intersection points for the two-flavor
and (2þ 1)-flavor lines.

TABLE II. Ten employed NJL parameter sets for the study of
quark stars in two-flavor and (2þ 1)-flavor cases, chosen
throughout the stability windows of Fig. 5.

Two flavor 1 2 3 4 5

RV 0.0 0.0 0.5 0.5 0.5
α 0.82 1.0 0.95 1.0 1.0
B1=4 (MeV) 106.6 100.0 102.0 100.0 102.0

2þ 1 flavor 1 2 3 4 5

RV 0.0 0.5 0.5 0.5 1.0
α 0.0 0.0 0.0 0.6 0.95
B1=4 (MeV) 111.0 107.0 111.0 107.0 104.3
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NJL models. It is seen that the obtained EoSs are generally
stiffer than the usual linear ones due to that the interaction
between quarks is strong within the description of the NJL-
type models (see more discussions below on the sound
velocity of the quark matter medium). As mentioned in the
previous section, the model parameters ðRV; α; B1=4Þ have
been varied throughout the stability window (see Fig. 5) to
get a comprehensive picture of the corresponding self-
bound stars. For each EoS case, the central densities of the
most massive stars, ∼3–5ρ0 for nonstrange quark stars and
∼4–7ρ0 for strange quark stars, are indicated with black
stars, respectively. And the EoSs of nonstrange quark stars
are generally stiffer than those strange quark stars, which
will be immediately reflected in the stellar mass-radius
relations, as depicted in Fig. 7.
In Fig. 7, the calculated mass-radius relations of the NJL

quark stars are shown together with the constraints from
both the LIGO/Virgo [69,70] and the NICER mission [65–
68]. Indeed the nonstrange quark stars are generally more
massive than those strange ones: Mud

TOV ¼ 2.76 M⊙ vs

Muds
TOV ¼ 2.1 M⊙ for the maximum mass. We mention here

that a maximummass around 2.1 M⊙ was previously found
for normal strange quark stars from the model calculations
of the bag-model EoSs [71] as well as the statistics analysis
[72,73]. As previously discussed, decreasing B, as well as
increasing α and RV , generally leads to a stiffer EoS,
resulting in a larger maximum mass for quark stars. We see
that a large set of parameters B, α, and RV could in principle
explain the data from LIGO/Virgo and NICER, whereas in
the nonstrange case, those of very massive quark stars
located on the right side of the GW170817 90% region.
This discrepancy might indicate the merging sources in
such a binary system are not nonstrange quark stars. In this
sense, more advanced detection techniques in the future,
rendering more precise measurements for masses and radii
of compact stars, hold promise for constraining their
composition (see recent discussions in, e.g., Refs. [73–75].

FIG. 6. Pressure versus density (in units of the nuclear
saturation density ρ0) for self-bound quark matter in the present
NJL models in both the nonstrange (upper panel) and strange
(lower panel) cases. For each case, the calculations are done for
five representative parameter sets chosen from stability window
(see Fig. 5). The central densities of the corresponding maxi-
mum-mass quark stars are indicated with black stars, respectively.

FIG. 7. Mass-radius relations for nonstrange (upper panel) and
strange (lower panel) quark stars in the framework of NJL-type
models, by using the same sets of parameters as in Fig 6. Shown
together are the available mass-radius constraints from the
NICER mission (PSR J0030þ 0451 [65,66] and PSR J0740þ
6620 [67,68]) and the binary tidal deformability constraint from
LIGO/Virgo (GW170817 [69,70]), at the 90% confidence level.
The horizontal lines in the two panels indicate M ¼ 2 M⊙.
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We subsequently show in Fig. 8 the mass density within
a 1.4 M⊙ star as a function of radial coordinate, composed
of entirely either nonstrange or strange quark matter. In the
same figure, we also include the results of neutron stars
constrained from combined data of LIGO/Virgo and
NICER within the Bayesian statistical approach [76].

One can see that the internal structure of quark stars is
very different from that of neutron stars. The quark stars, no
matter strange and nonstrange ones, have a huge surface
density ∼ρ0, and the central density is only a few times
higher than the surface one: ≲2.0 in the nonstrange case
and ≲2.5 in the strange case. It contrasts the 14 orders of
magnitude difference of neutron stars. Moreover, the more
massive nonstrange quark stars, compared to the strange
ones, are again reflected in their higher incompressibility.
We additionally calculate another important quantity

of the stellar matter: the sound speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dP=dε

p
, and

the sound speed squared are reported in Fig. 9 for
both nonstrange and strange cases. The conformal limit
of cs ¼ c=

ffiffiffi
3

p
is indicated with the horizontal lines. It is

seen that the sound velocity shows a monotonically-
increasing behavior in both nonstrange and strange cases,
except there are small local maximums at the beginning of
the plots in the strange cases, caused by the appearance
of the strange quarks. The conformal limit is reached earlier
in the nonstrange case than in the strange case, both at
about 1.5 − 3ρ0, then slightly exceeds the conformal limit
at high densities. Note that in the simple bag model, while
keeping consistency with the observational data, the sound
velocity is approximately a constant close to the conformal
limit [72,73], indicating the model only accounts for
weakly-interacting quarks; the current model calculations
within the NJL-type models are improved in the sense that
they incorporate some realistic interactions between
quarks, as well as the exchange interaction channels with
the mean-field approximation, beyond the basic nonper-
turbative phenomenon (i.e., the confinement). Finally, in
the neutron star case, the maximum sound velocity can
reach ∼0.8c [76] if one takes the observational constraints
into consideration (mainly the ∼2 M⊙ TOV-mass con-
straint [77–81]). Lately there are various studies [82–91]
regarding its complicated density-dependence at the den-
sity region of several times of the saturation density ρ0. We
mention here that the high peak value of the sound velocity

FIG. 8. Comparison of strange and nonstrange 1.4 M⊙ stars
(calculated under the same sets of NJL parameters as in Fig 6), as
well as neutron stars [76] constrained by the available LIGO/
Virgo and NICER data (see text for details).

FIG. 9. Sound speed squared c2s (in units of the speed of light squared c2) versus density for ud and uds stellar matter. The calculations
are done with the same sets of parameters as in Fig. 6. The horizontal lines in both panels indicate the conformal limit.
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in neutron star matter [92], compared to that in pure quark
matter, can naturally be understood as a correspondence of
low surface density that has been demonstrated previously
in Fig. 8.

IV. CONCLUSIONS AND SUMMARY

The supranuclear matter composition has long been a
challenging topic that is directly related to neutron star
physics. Although we have fair good knowledge on the
subnuclear matter below the neutron drip density
εd ∼ 1011 g=cm3), the phase state in the stellar interior
are complicated by the possible appearance of a various
exotic degree of freedom, such as hyperons, kaons, Delta
isobars or deconfined quarks. The compact stars may even
be self-bound with deconfined quarks constituting the
entire star, following the quantitative studies with the
bag model from the 1970s.
In the present study, in the framework of NJL models,

based on a novel self-consistent mean field approximation
by means of a Fierz transformation, we discuss the absolute
stability of strange and nonstrange quark matter and
compute the mass-radius relations of self-bound stars for
varying vector interactions and the exchange channels. The
obtained EoSs of interacting quark matter show a nonlinear
(sometimes polytropic) behavior, different from those in the
bag model. Both nonstrange and strange quark stars can, in
general, reconcile with the available mass and radius
constraints from observational data. The allowed maximum

mass of nonstrange stars is larger than the strange ones, up
to ∼2.7 M⊙ for an extremely low surface density close to
the nuclear saturation density ρ0. The hypothetic absolute
stability of quark matter, allowed by an ample parameter
space in the present model calculations, not only theoreti-
cally supports quark stars as viable alternative physical
model for neutron stars [33,71,93–99], but also could have
important consequences on various astrophysics and cos-
mological problems, such as supernovae [100–102],
gamma-ray bursts [103–108], fast radio bursts [109–111],
pulsar glitch [112,113], cosmic rays [114]. In future work,
we plan to include the diquark channels for quark super-
fluidity for improving the phenomenological models of
strong interactions at finite density, to advance the under-
standing of quark matter and make an attempt to tackle the
unresolved questions in connection with it.
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