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Fast neutrino flavor conversion can occur in core-collapse supernovae or compact binary merger
remnants when nonforward collisions are also at play, and neutrinos are not fully decoupled from matter.
This work aims to shed light on the conditions under which fast flavor conversion is enhanced or
suppressed by collisions. By relying on a neutrino toy model with three angular bins in the absence of
spatial inhomogeneities, we consider two angular configurations: The first one with angular distributions of
νe and ν̄e that are almost isotropic as expected before complete neutrino decoupling and showing little
flavor conversion when collisions are absent. The second one with angular distributions of νe and ν̄e that
are forward peaked as expected in the free-streaming regime and showing significant flavor conversion in
the absence of collisions. By including angle-independent, direction-changing collisions, we find that
collisions are responsible for an overall enhancement (damping) of flavor conversion in the former (latter)
angular configuration. These opposite outcomes are due to the nontrivial interplay between collisions,
flavor conversion, and the initial angular distributions of the electron type neutrinos. The enhancement in
neutrino flavor conversion is found to be anticorrelated with the magnitude of flavor conversions in the
absence of collisions.
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I. INTRODUCTION

The physics linked to neutrino flavor evolution in dense
astrophysical environments remains full of mysteries
despite intense theoretical work [1–4]. One of the main
complications is related to the modeling of neutrino flavor
evolution in the presence of coherent forward scattering
of neutrinos among themselves. In addition, the flavor
evolution history may be affected by collisions with the
background medium [5,6], possibly leading to loss of
coherence in the flavor evolution when the mean-free-path
of neutrinos is much smaller than the typical length scale
associated with neutrino flavor evolution.
In core-collapse supernovae, neutrino flavor transforma-

tion among the active flavors was first expected to occur at
large distances from the proto-neutron star, where neutrinos
are in the free streaming regime [3,4]. In such a scenario,
collisions with the background medium were considered to
be negligible, except for the occasional direction-changing
scatterings with the matter envelope, leading to the for-
mation of a “neutrino halo” [7]. The latter results in a
broadening of the neutrino angular distribution, potentially
affecting ν–ν refraction at distances larger thanOð100Þ km

from the supernova core. Reference [8] reported multiangle
matter suppression of flavor conversion due to the neutrino
halo by employing the linear stability analysis, while other
attempts [9–12] to model the impact of the neutrino halo on
flavor conversion involve various approximations. Hence, a
robust assessment on the relevance of the neutrino halo for
flavor conversion is still lacking.
The interplay between collisions and flavor conversion

has been revisited recently in the context of fast flavor
conversions triggered by the pairwise scattering of neu-
trinos at high densities, deep in the core of compact objects
[1,13]. Fast flavor conversions, as the name suggests,
develop over characteristic time scales that are very small
as dictated by the neutrino-neutrino interaction strength.
Also, unlike other collective neutrino oscillation phenom-
ena, fast flavor conversions can develop in the limit of
vanishing vacuum frequency [14]. Fast flavor conversion is
triggered by the presence of crossings in the angular
distribution of the electron lepton number (ELN) [15–17].
The fact that ELN crossings have been found to occur in the
decoupling region, see, e.g., Refs. [18–24] and that their
occurrence is favored when the number densities of the
electron flavors are comparable [18], hints that collisions
may have a crucial impact [18,25], while also affecting the
development of flavor conversion [26–31].
In the region where the decoupling of neutrinos begins

and the self-interaction potential is of Oð105Þ km−1, the
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typical frequency associated with fast flavor conversions is
a few orders of magnitude smaller, i.e., Oð102–103Þ km−1.
In the supernova neutrino decoupling region, Ref. [29]
pointed out that collisions strongly affect the flavor
evolution, enhancing flavor conversion; while the classi-
cally predicted collisional damping of flavor conversion
only occurs for much larger collisional strengths. This
counterintuitive result is in agreement with the findings of
Ref. [30]. In contrast, Ref. [31], considering a substantially
different system, pointed out that fast conversion is damped
by collisions.
This work aims to shed light on the impact of collisions

on flavor evolution found in Refs. [29,31]. In order to do
so, similar to Ref. [30], we rely on polarization vector
formalism. However, we expand on it as we consider two
discrete ELN distributions in angle; one approximately
uniform and the other one strongly forward peaked. We
explore the interplay between flavor conversion and colli-
sions occurring in these two scenarios. By relying on the
normal mode analysis [32,33], we analytically compute the
growth rate and initial precession frequency and demon-
strate how the enhancement of flavor conversions, in the
presence of collisions, can be explained as an “adiabatic”
enhancement.
This paper is organized as follows: In Sec. II we

introduce the three bin model and outline our assumptions.
Subsequently, fast flavor conversions without collisions
are analyzed in Sec. III for our three bin model, where we
present the full solution and a linear stability analysis.
Collisions are introduced in Sec. IV, where the full solution
is presented and interpreted using our knowledge on the
initial linear regime. Finally, discussion and conclusions are
found in Secs. V and VI.

II. THREE BIN NEUTRINO MODEL

In order to understand the conditions under which
collisions lead to enhancement or suppression of fast flavor
conversions, we consider a simple model consisting of
neutrinos distributed along three angle bins. This allows
us to easily track the evolution of each angle bin. In the
following, we describe the system used in this work,
introduce its equations of motion, and set up the notation.

A. Equations of motion

For the sake of simplicity, we use the two flavor
approximation along with the assumption of a single
neutrino energy. In the two flavor basis, (νe, νx), where
νx represents a linear combination of νμ and ντ, the flavor
content of an homogeneous neutrino ensemble can be
expressed in terms of a 2 × 2 density matrices

ρ ¼
�
ρee ρex

ρxe ρxx

�
; ρ̄ ¼

�
ρ̄ee ρ̄ex

ρ̄xe ρ̄xx

�
ð1Þ

at each point in phase space. It should be noted that in the
context of fast flavor conversion, the two flavor approxi-
mation is not justified in the nonlinear regime; however, the
two flavor approximation is insightful due to its simplicity
[34–36]. The evolution of this system is described by the
quantum kinetic equations [37–39]:

_ρðx⃗; p⃗Þ ¼ −i½Hννðx⃗; p⃗Þ; ρðx⃗; p⃗Þ� þ Cðρ; ρ̄Þ; ð2Þ

where x⃗ indicates the location of the neutrino field and p⃗ its
momentum. In dense environments, the Hamiltonian for a

neutrino with momentum p⃗ is Hννðp⃗Þ ¼ μ
R
dp⃗0½ρðx⃗; p⃗0Þ−

ρ̄ðx⃗; p⃗0Þ�ð1 − v⃗ · v⃗0Þ, where μ is the self-interaction poten-
tial, which is proportional to the neutrino number density.
The velocity vectors for the neutrino under consideration
and the neutrinos in the medium are represented by v⃗ ¼
p⃗=jp⃗j and v⃗0 ¼ p⃗0=jp⃗0j, respectively. Since we intend to
focus on fast flavor conversion, we neglect the vacuum
term in the Hamiltonian for simplicity, albeit fast flavor
conversion can be affected by a nonvanishing vacuum
frequency [40].
For the sake of simplicity, we assume homogeneity of

the neutrino gas, azimuthal symmetry (hence the neutrino
field is characterized by the polar angle, θ), as well as
monoenergetic neutrinos. However, see Refs. [34,40–44]
for dedicated work exploring the impact of the simplifying
assumptions adopted here.
The local isomorphism between the SU(2) and SO(3)

groups allows us to represent the 2 × 2 density matrices
as three-dimensional Bloch vectors called “polarization
vectors” [45]:

ρ ¼ 1

2
ðP0 þ P · σÞ; ð3Þ

where σ ¼ ðσx; σy; σzÞT is the vector of Pauli matrices.
Similarly, the density matrix for antineutrinos is expressed
as a function of the polarization vector P̄. The Hamiltonian
can be written in terms of the “potential vector” by means
of the following relation:

Hνν ¼
1

2
ðVνν;0 þ Vνν · σÞ: ð4Þ

The equations of motion for flavor evolution introduced in
Eq. (2) can be rewritten by using Eq. (3) and Eq. (4):

_PðuiÞ ¼ VννðuiÞ × PðuiÞ;
_̄PðuiÞ ¼ VννðuiÞ × P̄ðuiÞ; ð5Þ

where ui ¼ cos θi. It should be noted that the angle bins ui
are not equally spaced and do not have the same bin-widths.
We use Δui to denote the bin-width of the ith bin. The part
of Vνν that is independent of ui can be removed by going to
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a rotating frame (RF) [46,47]. After summing over j, one
obtains

VRF
νν ðuiÞ ¼ −μuiDRF

1 ; ð6Þ

where DRF
1 is the first moment of the difference between

neutrino and antineutrino polarization vectors. In general:

Dn ¼
X
j

½PðujÞ − P̄ðujÞ�unjΔuj: ð7Þ

It is also useful to express the equations of motion through
the sums and differences of the polarization vectors:

SðuiÞ ¼ PðuiÞ þ P̄ðuiÞ; DðuiÞ ¼ PðuiÞ − P̄ðuiÞ: ð8Þ

Hence, in the rotating frame, Eq. (5) gives:

_SRFðuiÞ ¼ μuiSRFðuiÞ ×DRF
1 ;

_DRFðuiÞ ¼ μuiDRFðuiÞ ×DRF
1 ; ð9Þ

highlighting that DRFðuiÞ evolves independently of
SRFðuiÞ [33].

B. System setup

For an azimuthally symmetric system, the angular
distribution can be described in terms of u ¼ cos θ. We
represent the angular distribution by means of three bins:
one bin in the backward direction (u1) and two bins in the
forward direction (u2 and u3). We consider two cases: case
A represents a relatively uniform angular distribution; it
resembles the one previously adopted in Ref. [29] and is
shown in the left panel of Fig. 1. The second benchmark
distribution (“case B”) is more forward peaked than case A
and mimics the angular distribution adopted in Ref. [31].

It is shown in the right panel of Fig. 1. The angular
distributions are reported in Table I, where ui and Δui are
also listed.
The three bins in Fig. 1 exhibit a crossing in the forward

direction for both case A and B. Furthermore, it has been
demonstrated that in the absence of collisions, three angular
bins are sufficient to characterize the evolution of fast flavor
conversions in the homogeneous case [33]. As we will later
demonstrate, also with collisions, three bins qualitatively
reproduce the results from continuous distributions for the
benchmark cases we consider.

III. FAST FLAVOR CONVERSION IN THE
ABSENCE OF COLLISIONS

In this section, we compare the flavor evolution in the
nonlinear regime for cases A and B in the absence of
collisions. We then introduce the linearized equations of
motion and compare the full solutions to the eigenvalues
and eigenvectors computed through the linear normal mode
analysis.

FIG. 1. Three mode angular distributions of νe (dashed lines) and ν̄e (solid lines) for case A and case B (see also Table I).

TABLE I. Initial angular distributions for the electron flavors
for cases A and B. ρxxðuiÞ ¼ ρ̄xxðuiÞ ¼ 0 initially for all ui in
both cases.

Bin u1 u2 u3

ui −0.50 0.25 0.75
Δui 1.00 0.50 0.50

Case A
ρeeðuiÞ 0.500 0.500 0.500
ρ̄eeðuiÞ 0.475 0.498 0.517

Case B
ρeeðuiÞ 0.058 0.609 1.220
ρ̄eeðuiÞ 0.025 0.509 1.239
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A. Nonlinear flavor evolution

We assume μ ¼ 105 km−1. In order to trigger flavor
conversion, we take the first component of the polarization
vector to be Pxðui; t ¼ 0Þ ¼ 10−8. In order to quantify the
amount of flavor conversion, we compute the conversion
probability

Pex ¼
1

2

�
1 −

P
iΔuiPzðuiÞP
iΔuiP0ðuiÞ

�
; ð10Þ

which is unchanged by going to the rotating frame. In the
absence of collisions, P0 is constant and determined from
the initial conditions.
The top panels of Fig. 2 show the conversion probability

Pex as a function of the distance (time) for cases A (on the
left) and B (on the right). As for case A, the maximal
conversion probability is larger in the three bin model than
in the case with continuous distributions (see Fig. 2 of
Ref. [29]), and the conversions start earlier, but the
qualitative behavior is similar despite the significant
simplification of using three bins only. As for case B,
the top right panel of Fig. 2 shows that the time scale of
flavor conversion is approximately ten times faster than
for case A (see the right panels of Fig. 3 in [48] for
comparison). In addition, the maximal flavor conversion in

case B is much larger than in case A. Apart from this, the
behavior of cases A and B is qualitatively similar.

B. Insights from the linearized equations of motion

The initial flavor evolution during the linear phase can be
explored through a linearized set of equations [32]. In this
context, the stability of the system can be addressed by
calculating the growth rate, and the associated normal
modes give valuable information regarding the character-
istics of the flavor instability [15,33].
The initial flavor state consists of almost pure νe and ν̄e.

Hence the off-diagonal parts of the density matrices are
small, and we can follow the initial evolution by expanding
the equations in terms of these off-diagonal parts. As
demonstrated in Eq. (9), DRFðuiÞ decouples from SRFðuiÞ,
and for this reason we use DRFðuiÞ and SRFðuiÞ as a basis
for the stability analysis. In order to follow the initial onset
of flavor conversion, we introduce the following linear
combinations:

ϵS;i ¼ SRFx ðuiÞ− iSRFy ðuiÞ; ϵD;i ¼DRF
x ðuiÞ− iDRF

y ðuiÞ:
ð11Þ

When linearizing Eq. (9), we only keep the terms linear in
ϵS;i and ϵD;i. Writing the small perturbation in terms of two

FIG. 2. Fast flavor conversion for the three bin neutrino model for cases A (left panels) and B (right panels) in the absence of
collisions. Top panels: conversion probability [see Eq. (10)] as a function of the distance. Case A shows overall less flavor conversion
than case B, moreover the timescale over which flavor conversion occurs is different in the two cases. Bottom panels: components of ϵS;i
and ϵD;i [see Eq. (11)] as functions of the distance and for each of the three angular bins compared to the growth rate and eigenvector
from linear stability analysis [Eqs. (17) and (20)]. It should be noted that an overall offset in the results of the linear stability analysis
(gray lines) has been introduced for the sake of readability. Note that the imaginary part of the eigenvalue for case B is larger than the one
of case A. The full solution and the eigenvectors are in good agreement for cases A and B. In the lower right panel, the curves for jϵD;2j
and jϵD;3j are both on top of jϵS;1j.
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vectors, ϵS ¼ ðϵS;1; ϵS;2; ϵS;3ÞT and ϵD ¼ ðϵD;1; ϵD;2; ϵD;3ÞT ,
we can express the linearization as a matrix equation:

�
_ϵS

_ϵD

�
¼ −iM

�
ϵS

ϵD

�
¼ −i

�
MSS MSD

MDS MDD

��
ϵS

ϵD

�
: ð12Þ

HereMDS is zero, and the other three matrices are given by

MSS;ij ¼ −μDRF
1;zuiδij; ð13Þ

MSD;ij ¼ μuiSRFz ðuiÞujΔuj; ð14Þ

MDD;ij ¼ −μDRF
1;zuiδij þ μuiDRF

z ðuiÞujΔuj; ð15Þ

with δij being the Kronecker delta.
The solution of these equations is known to be collective

in nature, hence we apply the following ansatz:

ϵSðtÞ ¼ ϵSð0Þ expð−iΩtÞ; ϵDðtÞ ¼ ϵDð0Þ expð−iΩtÞ:
ð16Þ

Through the ansatz above, the time derivative in Eq. (12)
can be evaluated, and the resulting equation can be recast
as a homogeneous equation. This equation has a solution
if and only if detðM −ΩÞ ¼ 0. The imaginary part of the
eigenvalue Ω will lead to exponentially growing or
decaying solutions, while the real part corresponds to
oscillations of ϵS=D in the complex plane. Hence, a solution
for Ω that has a positive imaginary component implies a
flavor instability, which can lead to significant flavor
transformation.
The eigenvalues can be determined analytically since

MDS ¼ 0. The eigenvalues fromMSS are all real, and since
exponentially growing solutions have complex eigenval-
ues, we focus on MDD. Here we find the solution:

Ω ¼ −
μ

2

�X
i

uiDRF
1;z −DRF

2;z

�

� i
μ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u1u2u3DRF

0;zD
RF
1;z −

�X
i

uiDRF
1;z −DRF

2;z

�
2

s
;

ð17Þ

which is a complex conjugate pair if the argument in the
square root is positive. The moments DRF

n;z are defined
according to Eq. (7). The exponentially growing solution
dominates over all other solutions within a short time span,
and hence the eigenvalue with the largest imaginary part
determines the degree of instability.
The following eigenvalues are obtained for cases A and

B (see Table I):

ΩA ≈ ð536� 88iÞ km−1; ð18Þ

ΩB ≈ ð653� 1361iÞ km−1: ð19Þ

The imaginary part of the eigenvalue for case B is more
than ten times larger than for case A, as also reflected in the
different time scales in the left and right panels of Fig. 2.
The vectors ϵSð0Þ and ϵDð0Þ, the normal modes, are

given by the eigenvector corresponding to the eigenvalue
and can be determined from Eqs. (12) to (15):

�
ϵSð0Þ
ϵDð0Þ

�
∝

ui
Ωþ μuiDRF

1;z

�
SRFz ðuiÞ
DRF

z ðuiÞ

�
; ð20Þ

where SRFz ðuiÞ and DRF
z ðuiÞ are vectors in i. The initial

conditions given in Secs. II B and III A determine how each
normal mode is populated.
The results from the linearized equations are compared

to the full solution in the lower panels of Fig. 2 for cases
A and B. For case A and ct < 0.02 km (left panel), a few
oscillations are visible before the exponentially growing
solution starts to dominate. For 0.02 < ct < 0.14, there is
an excellent agreement between the full solution (colored
lines) and the growth rate determined from the stability
analysis (gray lines, offset for readability) since the slopes
of the lines agree very well. In addition, the ratios between
the different lines in the full solution are reproduced nicely
by the eigenvectors from the stability analysis, thus con-
firming that the expected normal modes are dominating.
The results for case B (right lower panel of Fig. 2) show

a similarly good agreement between the full solution and
the eigenvectors. In this case, the exponentially growing
solution dominates for 0.002 km < ct < 0.011 km.
The eigenvector also captures well the angular depend-

ence of the neutrino flavor conversions in the nonlinear
regime for both cases, as it is evident from the comparison
between the results of the linear stability analysis and the
full solution. For case B, the conversion probability
becomes so large that jϵS;ij and jϵD;ij show a small dip
at ct ¼ 0.0125 km in the lower right panel of Fig. 2. It
should be noted that in Fig. 2, the number of neutrinos is
conserved for each angle bin independently. As we will see
in the following, the conservation of neutrino number for
each angle bin is broken when momentum changing
collisions are included in the computation; however, the
total number of neutrinos is still conserved in our simplified
model of collisions.

IV. FLAVOR CONVERSION IN THE PRESENCE
OF COLLISIONS

In this section, we explore how flavor conversion is
affected by collisions in cases A and B. First, we explore
the overall nonlinear flavor evolution, and then we focus on
information carried by the linearized equations of motion.
In this section, we use the vectors P and P̄ to distinguish
between neutrinos and antineutrinos.
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A. Nonlinear flavor evolution

Recently, it has been pointed out that nonforward colli-
sions may enhance as well as suppress fast pairwise mixing
[29–31]. Before we proceed, we would like to clarify what
we mean by enhancement of flavor mixing. We consider the
enhancement of the asymptotic conversion probability with
respect to the maximal conversion probability encountered
when collisions are absent. This convention has the advan-
tage of being independent of the initial condition (taking, for
example, the average conversion probability over timewould
introduce a significant dependence on the plateaus between
conversions and hence on the size of the initial perturbation).
In addition, we wish to be conservative in claiming enhance-
ment; hence, using the maximal conversion allows to achieve
this goal. The mechanism responsible for the suppression is
explained by two effects. First, frequent incoherent oscil-
lations destroy coherence; second, the incoherent collisions
tend to smear out the ELN crossings necessary for flavor
conversion to occur [16]. As we demonstrate in this section,
the enhancement can also be understood by relying on
similar arguments.
The full collision term, C in Eq. (2), is computationally

expensive to evaluate. In the spirit of simplicity, we adopt
the approximation used in Ref. [29], which only focused on
direction changing collisions. For neutrinos, the following
collision term is added to Eq. (5)

C
2

�X
j

PðujÞΔuj − 2PðuiÞ
�
: ð21Þ

A similar expression for the collision term holds for
antineutrinos, and it is also valid in the rotating frame.

We use the scripted C in Eq. (2) to denote the collision term
and the unscripted C to denote the parameter that encap-
sulates the strength of the collision term.
The left panel of Fig. 3 shows the conversion probability

for case A as a function of the distance. A clear enhance-
ment of flavor conversion is visible for moderate values of
C. Note that, comparing the solution with C ¼ 1 km−1 to
the results of Fig. 2 of Ref. [29], our results are in good
qualitative agreement, but quantitatively they are not
directly comparable because of the three bin model adopted
in this paper. For larger values of C, the enhancement of
flavor conversion occurs on shorter timescales; for
C≳ 4.5 km−1, flavor conversion is suppressed.
On the contrary, there is no enhancement of flavor

conversion for case B shown in the right panel of
Fig. 3. For this configuration, even the lowest value of
C gives a suppression of the initial flavor conversion
probability; as C is gradually increased to 30 km−1, the
asymptotic value of the conversion probability decreases
gradually. As C increases, the conversion probability
reaches a steady configuration at smaller distances.
In order to investigate the origin of the opposite

effect of collisions on the survival probability for cases
A and B, we show in the Fig. 4 the conversion probability
in each of the three angular bins for cases A (left) and B
(right):

PexðuiÞ ¼
1

2

�
1 −

PzðuiÞ
P0ðuiÞ

�
; ð22Þ

where P0ðuiÞ as a function of time is given by

FIG. 3. Fast flavor conversion for the three bin neutrino model for cases A (left panel) and B (right panel) in the presence of collisions.
The conversion probability is shown for C ¼ 1, 3, and 10 km−1 for case A and C ¼ 1, 3, 10 and 30 km−1 for case B. For both
configurations, the no-collision case (C ¼ 0 km−1) is plotted in gray to guide the eye. For case A, intermediate values of C lead to an
enhancement of flavor conversion and larger values of C are responsible for suppressing flavor conversion. On the other hand, all
configurations with C ≠ 0 show a suppression of flavor conversion for case B.
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P0ðui; tÞ ¼ P0ðui; 0Þe−Ct þ ð1 − e−CtÞ
P

jP0ðuj; 0ÞΔujP
kΔuk

:

ð23Þ

A similar definition holds in the rotating frame.
The enhancement of the flavor conversion probability in

case A is due to the fact that flavor conversion sweeps from
one part of the angular distribution to another, as shown in
the left panel of Fig. 4. Flavor conversion initially takes
place in the bin centered on u2 ¼ 0.25 and then gradually
moves to the bin centered on u3 ¼ 0.75. The u3 bin reaches
its enhanced maximal value at ct ∼ 0.45 km, where the
total flavor conversion probability also reaches its maximal
and asymptotic value (see also the left panel of Fig. 3).
Finally, at ct > 0.5 km, conversions cease and collisions
start to dominate, equilibrating all angular bins. A similar
trend is observed in Refs. [29,30] for continuous angular
distributions.
For case B, the right panel of Fig. 4 shows that flavor

conversion is the largest in the bin centered on u3 ¼ 0.75
throughout the simulation duration, and the conversion
probability of u3 is the largest at ct ∼ 0 km before
collisions have had an impact. Beyond ct ¼ 1 km, flavor
oscillation occurs with smaller amplitude, and collisions
tend to drive all bins toward the same Pex;S. Although it is
clear that flavor conversion does not remain localized to
one angular bin in case A, the mechanism responsible for
this effect is not immediately obvious. One would expect
that flavor conversion primarily occurs close to the ELN
crossing [1] and, as the ELN crossing sweeps through the
angular distribution because of collisions, flavor conversion
could move along.

B. Flavor evolution in the eigenframe

The eigenvalue that dominates the solution is a complex
number whose imaginary part determines the growth rate in
the linear regime, while the real part gives rise to oscil-
lations in Px and Py. Such overall oscillations do not
directly affect the flavor conversion seen in Fig. 4, and can
be removed by going to a frame rotating with angular
frequency ReðΩÞ [46,47], which we will call the “eigen-
frame” (EF). The potential vector in the eigenframe is

VEF
νν ðuiÞ ¼ −μuiDEF

1 − ð0; 0;ReðΩÞÞT; ð24Þ

and the polarization vector in the eigenframe evolves
according to

_PEFðuiÞ ¼ VEF
νν ðuiÞ × PEFðuiÞ

þ C
2

�X
j

PEFðujÞΔuj − 2PEFðuiÞ
�
;

_̄P
EFðuiÞ ¼ VEF

νν ðuiÞ × P̄EFðuiÞ

þ C
2

�X
j

P̄EFðujÞΔuj − 2P̄EFðuiÞ
�
; ð25Þ

corresponding to Eqs. (5) and (21).
The evolution of the flavor conversion for each angular

bin in the eigenframe is displayed in Fig. 5 for case A (see
also the left panel of Fig. 7 for the evolution of VEF

νν;z and
the Supplemental Material [49]). The polarization vector
for all bins rotates around the z-axis with a frequency of
Oð1 km−1Þ. This is to be compared to ReðΩÞ=2π∼
Oð100 km−1Þ. Hence, to a good approximation, the rota-
tion frequency of the polarization vector continues to be

FIG. 4. The transition probability [see Eq. (22)] due to fast flavor conversion and collisions for each of the three angular bins for cases
A (left) and B (right) in the presence of collisions (C ¼ 3 km−1). In case A, flavor conversion sweeps from u2 to u3 and significantly
develops in u3 until ct > 0.5 km. On the other hand, in case B, flavor conversion starts in u3 and predominantly occurs in this angular
bin, only slightly affecting flavor in the bins centered on u1 and u2. Collisions dominate at ct > 0.7 in both cases.
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dictated by the eigenvalue even in the nonlinear regime
(i.e., no rotation in the eigenframe). The polarization vector
associated with the first bin (u1 ¼ −0.5) shows very little
evolution as a function of time, precessing around the
z-axis with small amplitude; similar to the potential vector,
although pointing in the opposite direction. At late times,
the polarization vector relaxes toward the average over
the three bins due to collisions. The polarization vector
corresponding to the second bin (u2 ¼ 0.25) initially
precesses but also settles in the z-direction and relaxes
toward the bin-averaged value as time passes. The corre-
sponding potential vector starts out in the positive
z-direction and very quickly swaps to negative values,
where it stays without much change for the rest of the time
of evolution. The polarization vector linked to the third bin
(u3 ¼ 0.75) starts out precessing and is gradually rotated
from positive to negative z along with the potential vector.
Towards the end of the considered temporal frame, the
polarization vector detaches from the potential vector and
relaxes toward the bin-averaged value like for the other
bins. Note that while PEFðuiÞ and VEF

νν ðuiÞ are aligned for
the third bin, they are antialigned for the first two bins. This
means that PEFðuiÞ and VEF

νν ðuiÞ for i ¼ 1, 2 follow each
other when the orange and blue tracks in the upper panels
are rotated by 180° with respect to each other. The total
polarization vector (rightmost panels of Fig. 5) shows a
steady decrease from the initial value toward the final

position, averaging out the differences between the three
bins. The total potential (not shown) is not very good for
characterizing the system and points toward the negative z
direction for the entire evolution. Hence it does not suggest
that any flavor conversion should be present.
The evolution in the eigenframe for case B is shown in

Fig. 6 (see also the right panel of Fig. 7 for the evolution of
Vz and the Supplemental Material [49] for an animation of
Fig. 6). The polarization vector of the first bin (u1 ¼ −0.5)
starts out in the positive z direction and stays in that
hemisphere. VEF

νν ðu1Þ similarly starts out in the negative z
direction and remains in that hemisphere. Although the u1
polarization vector and VEF

νν ðu1Þ start out being anti-
parallel, they quickly break that configuration and evolve
quite differently. In the second bin, both PEFðu2Þ and
VEF

νν ðu2Þ start out in the positive z direction. However,
VEF

νν ðu2Þ rotates to negative z in the very beginning and
stays there. As for the first bin, the two vectors are neither
aligned nor antialigned except for the initial configuration.
The third bin shows large amplitude oscillations, where
both PEFðu3Þ and VEF

νν ðu3Þ oscillate between positive and
negative values of z. Again the two vectors show no
alignment except for the initial state, and VEF

νν ðu3Þ rotates
very quickly in the opposite direction of PEFðu3Þ.
Since the original angular distribution for case B is

strongly forward peaked (see Fig. 1), the overall evolution
of the polarization vector is dominated by PEFðu3Þ, while

FIG. 5. Evolution of the polarization vectors (solid lines with orange hues) and normalized potential vectors (dashed lines with blue
hues) linked to the three angular bins (first three columns from left) and the total polarization vector (panels on the right) for case A in the
eigenframe and with C ¼ 3 km−1. The total polarization vector is calculated by integrating over the angular distribution and dividing by
2 for improved readability. The temporal evolution is represented by the color gradient, which becomes lighter as time increases. The top
panels show a projection in the x–y plane (top view), while the bottom panels show a projection in the x–z plane (side view). PEF and
VEF

νν are parallel or anti-parallel for most of the evolution in all three bins. This “adiabatic” evolution explains the flavor conversion
enhancement. An animated version of this figure is found in the Supplemental Material [49].
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the other two polarization vectors corresponding to the
remaining angular bins have much smaller initial values.
The effect of collisions is to damp flavor conversion and
push all three polarization vectors toward isotropy, which in
this case is very close to PEF ¼ 0.

C. Adiabaticity and alignment

The fact that the PEFðu3Þ very closely tracks the potential
vector in case A suggests that the flavor conversion physics

can be described as being adiabatic [50]. On the contrary,
case B shows no such tracking and the evolution appears to
be nonadiabatic. In order to gauge the degree of adiaba-
ticity, we introduce the following parameter measuring the
alignment between PEFðuiÞ and VEF

νν ðuiÞ:

aiðtÞ ¼
PEFðui; tÞ · VEF

νν ðui; tÞ
jPEFðui; tÞjjVEF

νν ðui; tÞj
; ð26Þ

FIG. 7. Evolution of the z component of the potential in the eigenframe for the three angular bins in case A (left) and case B (right).
The colored thin lines give the full solution, while the thick gray lines represent simple relaxation which is the evolution in the absence of
flavor conversion [see Eq. (27)]. The full solution for VEF

νν;z in case A is well approximated by the simple relaxation, while the full
solution in case B is very different.

FIG. 6. Same as Fig. 5, but for case B. The evolution of PEF and VEF
νν is very different, and the evolution is not “adiabatic” as in Fig. 5.

Also, there is no enhancement of flavor conversion. An animated version of this figure which focuses on the initial phase is found in the
Supplemental Material [49].
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where the time dependence is indicated explicitly. For
aiðtÞ ¼ 1, the vectors PEFðui; tÞ and VEF

νν ðui; tÞ are aligned,
while they are anti-aligned for aiðtÞ ¼ −1. The values of
jaij averaged over time are seen in Table II, where we
indeed find values very close to 1 for case A and smaller
than 1 for case B.
The importance of the C → 0 limit can be understood by

looking at the asymptotic conversion probability in the left
panel of Fig. 3. They show very little dependence onC until
it reaches the threshold where conversions are entirely
suppressed. This implies that even a very small value of C
would show the same enhancement as C ¼ 3 km−1 given
large enough t. Similarly, the adiabaticity of the solution
can be addressed in the C → 0 limit.
Comparing the values for C ¼ 3 km−1 and C ¼ 0 km−1

in Table II, the pattern is similar for most bins as expected.
However, there is one notable exception: The second bin
(hja2ji) for case A shows significantly more alignment for
C ¼ 3 km−1 than for C ¼ 0 km−1. The reason is that
VEF
νν;zðu2Þ flips from positive to negative values at t ∼ 0

for C ¼ 3 km−1, thus changing the dynamics for the
polarization vector of that angular bin. Before addressing
this, we will look at an approximation for VEF

νν;z.
In case A, the evolution of VEF

νν;z can be approximated
very well by neglecting the oscillation term in Eq. (25). The
result is an exponentially decaying solution:

VEF
νν;zðui; tÞ ¼ VEF

νν;zðui; 0Þe−Ct

þ ð1 − e−CtÞ
P

jV
EF
νν;zðuj; 0ÞΔujP

kΔuk
: ð27Þ

It is indicated by the thick gray lines in Fig. 7. The full
solutions are shown with colored lines.
Based on the alignment values in Table II for C ¼

0 km−1 and the inferred adiabaticity, we can make pre-
dictions for the behavior for the different bins in case A. By
combining adiabaticity with our approximate VEF

νν;zðui; tÞ
from Eq. (27) (the thick gray lines in Fig. 7), the behavior of
the adiabatic bins can be predicted: PEFðu1; tÞ will not
change direction because VEF

νν;zðu1; tÞ stays negative, and

PEFðu3; tÞ will change direction following VEF
νν;zðu3; tÞ.

For the second bin, PEFðu2; tÞ is expected to be non-
adiabatic, so although VEF

νν;zðu2; tÞ changes direction at
t ∼ 0, PEFðu2; tÞ cannot be expected to change direction
as well. This is in agreement with the behavior we find for
C ¼ 3 km−1. For case B, all three bins are nonadiabatic for
C ¼ 0 km−1, and PEFðui; tÞ cannot be expected to follow
VEFðui; tÞ. Furthermore, it is clear from the right panel of
Fig. 7 that with case B, the full solution for VEF

νν;zðui; tÞ
shows large deviations from the simple solution in Eq. (27)
indicated by thick gray lines. This is a nonadiabatic case
without alignment; while we find that the conversion
probability is suppressed in this case, in principle there
could exist nonadiabatic cases with enhancement according
to the interplay between flavor mixing, collisions and the
shape of the angular distributions of neutrinos. Despite the
simplifications intrinsic to this approach, the analysis gives
qualitative understanding as well as quantitative predictions
of fast flavor evolution in the presence of collisions.
To summarize, the overall behavior is that in case A an

overall enhancement of flavor conversion is found. Such an
enhancement is due to the combination of two effects due to
collisions and can be explained by invoking adiabaticity:
Collisions gradually change the direction of VEF

νν in the
eigenframe as shown in Fig. 7 and tend to isotropize
the angular distributions. This implies that only some of the
bins can flip their direction. The opposite situation arises
for case B where the evolution is nonadiabatic; the initial
conversion probability in the absence of conversions is very
large, and due to the effect of collisions, the conversion
probability is suppressed as the value of C is increased.

V. DISCUSSION

Our results are in good agreement with existing literature
on fast flavor conversion in the presence of collisions
[29–31]. We accommodate the apparently contradicting
results showing enhancement due to collisions [29,30] or
suppression [31]. Different initial angular distributions
result in different flavor outcomes due to the nontrivial
interplay of collisions and flavor conversion. Some cases
allow for an enhancement (such as case A) while others
only show suppression (such as case B).
We empirically find that the enhancement of flavor

conversion takes place as an effect of the isotropization
of the angular distributions (because of collisions) when
otherwise the angular distributions would have been such to
induce little flavor conversion in the absence of collisions
(e.g., conversion probability Pex ≲ 0.3). When in the
absence of collisions, the conversion probability would
have been large (e.g., conversion probability Pex ≳ 0.3),
then we would expect an overall suppression of flavor
conversion resulting from the isotropization of the angular
distributions as a result of collisions. Moreover, in case A,
collisions sweep flavor conversion across the angular

TABLE II. Alignment parameters jaij averaged from ct ¼
0 km through 1 km for C ¼ 3 km−1 and C ¼ 0 km−1. Values
close to 1 indicate a high degree of adiabaticity, and hjaiji > 0.99
are indicated in bold.

hja1ji hja2ji hja3ji
C ¼ 3 km−1

Case A 1.000 0.998 0.994
Case B 0.895 0.760 0.738

C ¼ 0 km−1

Case A 1.000 0.891 1.000
Case B 0.976 0.892 0.942
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distribution gradually, while conversions remain localized
in case B where flavor conversion is overall suppressed by
collisions.
The detailed analysis we perform of the flavor conversion

can be directly compared to that of Ref. [30]. Their analysis
focuses to a very large extent on the phase differences of P
and V, δ. In place of going to an eigenframe, Ref. [30]
somewhat equivalently focuses on the alignment of the x and
y components. In addition, it is found that the different
angular bins evolve in a synchronized manner, which is also
what we see when we transform to the eigenframe and all
angular modes oscillate very slowly around the z axis. One
key point where the approach of Ref. [30] and ours differ is
in the explanation of the enhancement of flavor conversion.
Reference [30] focuses on an imbalance between the positive
and negative values of δ induced by the collision term, which
accumulates and leads to the enhancement. In this work, we
find the enhancement is due to adiabatic evolution and the
gradual relaxation of VEF

νν;z.

VI. CONCLUSIONS

In this paper, we investigate the apparent contradictory
outcome of the interplay between fast flavor conversion and
collisions observed in Refs. [29–31]. We point out that
direction-changing collisions may both enhance and

suppress neutrino flavor conversion according to the initial
angular distributions of the electron flavors. In order to do
so, we have adopted two simple three bin neutrino models
where the eigenvalues and eigenvectors of the linearized
equations can be determined analytically; one (correspond-
ing to almost uniform angular distributions) leading to an
enhancement of flavor conversion, and the other one (with
forward peaked angular distributions) showing suppression
of flavor conversion in the presence of collisions. Our
findings are, of course, limited in scope because of the
approximations intrinsic to our model and a different
choice of the angular distributions could lead to a different
outcome; however the mechanism of collisions gradually
moving the region of flavor conversion across angular bins
is expected to provide general insight into the nontrivial
interplay between flavor conversion and collisions.
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