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Time-delay interferometry (TDI) is a data processing technique for LISA designed to suppress the
otherwise overwhelming laser noise by several orders of magnitude. It is widely believed that TDI can only
be applied once all phase or frequency measurements from each spacecraft have been synchronized to a
common time frame. We demonstrate analytically, using as an example the commonly used Michelson
combination X, that TDI can be computed using the raw, unsynchronized data, thereby avoiding the need
for an initial synchronization processing step and significantly simplifying the initial noise reduction
pipeline. Furthermore, the raw data are free of any potential artifacts introduced by clock synchronization
and reference frame transformation algorithms, which allow one to operate directly on the megahertz
beatnotes. As a consequence, in-band clock noise is directly suppressed as part of TDI, in contrast to the
approach previously proposed in the literature (in which large trends in the beatnotes are removed before
the main laser-noise reduction step, and clock noise is suppressed in an extra processing step). We validate
our algorithm with full-scale numerical simulations that use LISA INSTRUMENT and PYTDI and show that we
reach the same performance levels as the previously proposed methods, ultimately limited by the clock
sideband stability.
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I. INTRODUCTION

The first gravitational-wave detection of a binary black-
hole merger [1] opened the era of gravitational astronomy
and its many promises. Gravitational waves carry crucial
information about dense astrophysical systems, and their
detection will bring answers to many questions ranging
from the formation of the most massive objects to tests of
the general theory of relativity. As of today, many more
gravitational-wave events have been confirmed by ground-
based detectors [2–4]. Unfortunately these ground-based
detectors are limited to signals above tens of hertz, leaving
out a large part of the gravitational-wave spectrum. Space-
borne detectors, on the contrary, will be able to measure
megahertz gravitational-wave signals originating from
various types of sources, such as supermassive black-hole

binaries, Galactic black-hole or neutron star binaries, or
cosmological defects from the early universe.
The Laser Interferometer Space Antenna (LISA) is one

such mission led by the European Space Agency (ESA),
with an expected launch date in 2034 [5]. Three spacecraft
in a nearly equilateral triangular formation will trail the
Earth on its heliocentric orbit. Each spacecraft will host two
free-falling test masses and monitor their relative motion
using laser interferometry. We expect that various noises of
instrumental origin will enter the measurements at levels
that violate the requirements. To reduce these noises to
acceptable levels, a number of data processing algorithms
are being developed as part of the multistep initial noise
reduction pipeline (INReP). As an example, each spacecraft
hosts an onboard clock that drives the sampling of the
measurements. Because these clocks are not actively
synchronized, they will jitter and drift with respect to each
other and to a common timescale [6]. One step of INReP is
to estimate these drifts and ultimately synchronize all
measurements to a common timescale to prepare for the
science analyses. Another crucial part of INReP is a data
processing algorithm called time-delay interferometry
(TDI), which combines time-shifted measurements to
reduce the otherwise overwhelming laser frequency noise
by more than 8 orders of magnitude [7,8].
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The standard procedure for carrying out TDI relies
on measurements that have previously all been synchron-
ized to a common timescale [9]. The synchronization is
achieved using auxiliary data measured on board the
spacecraft [10], as well as the on-ground spacecraft
tracking data. Given the uncertainties in those auxiliary
measurements, some additional processing steps are
required in INReP, such as the removal of large phase
ramps and clock-noise correction [11].
In this paper, we demonstrate that TDI with full laser

noise reduction can be achieved without preliminary clock
synchronization and without relying on ground data from
spacecraft tracking. The underlying reason for this is that
TDI does not fundamentally require the choice of any
reference frame, as already pointed out in [12]. Additional
processing steps (removal of large phase ramps and clock-
noise correction) in INReP are avoided, significantly
simplifying the procedure.
We present here an in-depth study of this alternative

algorithm and show algebraically as well as with numerical
simulations that, indeed, TDI reduces laser noise to
required levels when used with raw data.
This paper is organized as follows. In Sec. II, we review

the standard TDI algorithms and then show analytically that
an alternative pipeline also produces laser noise-free data.
In Sec. III, we describe the instrumental setup we used in
our numerical simulations; the results are presented and
discussed in Sec. IV. We conclude in Sec. V.

II. THEORETICAL DESCRIPTION

In this section, we consider a simplified model of our
instrument, illustrated in Fig. 1. The spacecraft are labeled
1, 2, and 3 clockwise when looking down at their solar
panels. Each spacecraft i hosts a single laser source1 locked
to a cavity.2

We use three different timescales to describe the LISA
measurements and the associated data processing. The
Barycentric Coordinate Time (TCB), denoted by t, is the
coordinate time associated with the barycentric celestial
reference system (BCRS). It is used to describe Solar
System–scale phenomena, such as the spacecraft orbits
[14]. The three spacecraft proper times, denoted by τi, are
used to describe the physics inside each of these spacecraft.
They depend on the spacecraft orbits because of relativistic
effects. Their evolution with respect to the TCB includes a
drift of about 0.4 s=yr and annual oscillations of the order

of 0.8 ms [6]. Lastly, the three onboard clock times are
denoted by τ̂i. They define the times measured by the actual
clocks onboard the spacecraft and are the only timescales
directly accessible from the measurements. In particular,
they are used for timestamping and for generating the laser
sidebands and the pseudorandom noise (PRN) code used
for ranging [10]. The onboard clock times differ from the
spacecraft proper times by jitters and drifts of the clocks,
both of instrumental origin. The transformation between t
and τ̂i will be denoted3 by

τ̂tiðτÞ ¼ τ þ δτ̂tiðτÞ; ð1Þ

and includes the relativistic effects relating t and τi, as well
as the instrumental effects relating τi and τ̂i. The inverse
operation, giving the TCB time as a function of the clock
time of spacecraft i, is given as

tτ̂iðτÞ ¼ τ þ δtτ̂iðτÞ: ð2Þ

A. Review of standard TDI

TDI is designed to strongly suppress the overwhelming
laser frequency noise terms appearing in the LISA mea-
surements. TDI uses the fact that the same laser noise terms
appear in different measurements, evaluated at different
times, such that we can form linear combinations of these
measurements in which all noise terms cancel. The appro-
priate time-shifts to apply relate the reception and emission
events of the laser light exchanged between the spacecraft,

FIG. 1. Simplified model of the instrument, as seen when
looking down at the solar panels, with a total of three laser
sources.

1In reality, each spacecraft carries two laser sources. However,
auxiliary interferometers measure their local phase difference,
and it is thus possible to combine the measurements to reduce the
problem to a total of three lasers [13]. We consider this more
complex model for the numerical simulations described in
Sec. III.

2In reality, laser sources are locked to each other, and
ultimately to a single resonant cavity. For simplicity, we ignore
this in our description and assume that all lasers are independent.

3The notation xyðτÞ indicates a quantity x expressed in the time
frame y. For example, τ̂tiðτÞ has its argument (muted variable) τ
expressed in the TCB time t.
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as these are the events at which the laser noise enters our
measurements. This idea was developed in [15] into geo-
metric TDI, where TDI combinations are interpreted as the
interference of two (or more) virtual laser beams, which are
aligned in time such that laser noise is canceled at all
reception and emission events. This is illustrated in the
spacetime diagram in Fig. 2.
We call standard TDI the realization of TDI that one

can find in most of the literature (see, e.g., [9], and
references therein). It assumes that all measurements are
synchronized to some common time frame, which is also
the baseline implementation as part of the LISA ground
segment. This common time frame is often taken4 as the
TCB, such that all quantities appearing in the standard
TDI formulation are implicitly expressed as functions of
the TCB.
The total phase5 ΦiðtÞ of the light originating from a

laser source is given in the TCB as

ΦiðtÞ ¼ ωitþ ϕiðtÞ; ð3Þ

where ωi is the laser frequency and ϕiðtÞ is the laser phase
fluctuation, both expressed in BCRS coordinates.
The phase difference ηijðtÞ, for i, j ¼ 1, 2, 3, measures

the interference between the laser light received from
spacecraft j and the local laser on spacecraft i, as a function
of the TCB. Formally,

ηijðtÞ ¼ Φjðt − dijðtÞÞ −ΦiðtÞ: ð4Þ

Here, we define the six light travel times (LTTs) dijðtÞ
such that

t − dijðtÞ ð5Þ

is the emission time of the light emitted by spacecraft j,
which is received on spacecraft i at time t, where both times
are expressed in the TCB.
We introduce the delay operator Dij defined in terms of

LTTs, which acts on any function fðtÞ as

DijfðtÞ ¼ fðt − dijðtÞÞ: ð6Þ

Equation (4) now reads

ηijðtÞ ¼ DijΦjðtÞ −ΦiðtÞ: ð7Þ

We define the usual shorthand notation for chained delay
operators,6

Di1i2���in ¼ Di1i2Di2i3 � � �Din−1in ; ð8Þ

which we use to write the first-generation TDI Michelson
combination X1 [8] as

X1ðtÞ ¼ ð1 −D121Þðη13ðtÞ þ D13η31ðtÞÞ
− ð1 −D131Þðη12ðtÞ þ D12η21ðtÞÞ: ð9Þ

Here, all measurements are expressed in terms of the
TCB and all delay operators are defined in terms of
LTTs. The two other Michelson combinations Y1 and Z1

can be deduced by circular permutation of the indices.
Inserting Eq. (7) into Eq. (9) yields the residual in X1 that

can be expressed in terms of the commutator of delay
operators [20],

X1ðtÞ ¼ D13121Φ1ðtÞ −D12131Φ1ðtÞ: ð10Þ

In the case of a static constellation, the delay operators
commute, such that laser noise cancels exactly in X1.
Accounting for the flexing of the constellation, the

overall delays applied by D13121 and D12131 differ by a
small time interval ΔtX1

, which physically corresponds to
the mismatch in the emission times of the two interfering
virtual laser beams (here expressed in the TCB). We can
approximate its value by assuming our travel times to be
linear functions of the form dijðtÞ ¼ d̄þ δdij þ _dijt, with

d̄ ≈ 8.3 s as the average arm length and δdij, _dij as small

FIG. 2. TCB spacetime diagram illustrating the geometrical
interpretation of TDI, as described in [12,15]. The dashed lines
represent the world lines of the three spacecraft, while the blue
and red lines display the paths of the two synthesized laser beams
making up the first-generation Michelson combination X1, before
they finally interfere on board spacecraft 1. The black dots mark
the events of reception and emission of the laser beams.

4Some references indeed state that synchronization to an
inertial reference frame, such as the BCRS, is required to
perform TDI (e.g., [6,16]), while others suggest to synchronize
all data to a virtual constellation time, for example given by one
of the spacecraft clocks (e.g., [9,17]).

5The formulation of TDI in total phase is not standard in the
literature, which typically assumes large phase trends are re-
moved from the data before processing (e.g., [9,13,18,19]).

6For two delays, we getDijk ¼ DijDjk, which can be expanded
to DijkfðtÞ ¼ fðt − dijðtÞ − djkðt − dijðtÞÞÞ.
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constants, and expanding Eq. (10) to first order in δdij and
_dij. This gives

7

ΔtX1
≈ 2d̄ð _d13 þ _d31 − _d12 − _d21Þ: ð11Þ

This evaluates to ΔtX1
≈ 10−7 s (see also, e.g., [12]) and

varies on annual timescales that are related to the orbital
motion of the constellation around the Sun. We can assume
thatΔtX1

remains constant for the purpose of estimating the
residual noise in a TDI combination that involves time
intervals of order 4d̄ ≈ 33 s.
We expand Eq. (10) to first order in ΔtX1

,

X1ðtÞ ≈D12131ΔtX1
_Φ1ðtÞ ð12aÞ

≈ΔtX1
ω1 þD12131ΔtX1

_ϕ1ðtÞ: ð12bÞ

The first term ΔtX1
ω1 is outside the LISA measurement

band (>10−5 Hz) and we neglect it. The second term is
the residual laser frequency noise in X1, which is above
requirements [16].
Therefore, one has to rely on the second-generation

Michelson combinations X2 for all practical purposes
[16,22], which has been shown to suppress laser noise
to the required levels [20],

X2ðtÞ ¼ ð1 −D13121Þ½η12ðtÞ þ D12η21ðtÞ
þ D121ðη13ðtÞ þ D13η31ðtÞÞ�
− ð1 −D12131Þ½η13ðtÞ þD13η31ðtÞ
þ D131ðη12ðtÞ þ D12η21ðtÞÞ�: ð13Þ

For reference, the residual in X2 reads

X2ðtÞ ¼ D121313121Φ1ðtÞ −D131212131Φ1ðtÞ: ð14Þ

The residual corresponds again to a small delay difference
ΔtX2

. To estimate it, we now have to also consider higher
order terms, and assume our LTT to be given as dijðtÞ ¼
d̄þ δdij þ _dijtþ d̈ijt2=2. Expanding to leading orders
now gives

ΔtX2
≈ 2d̄½ð _d12 þ _d21Þ2 − ð _d13 þ _d31Þ2
þ 4d̄ðd̈12 þ d̈21 − d̈13 − d̈31Þ�; ð15Þ

which evaluates to ΔtX2
≈ 10−12 s, as also verified by the

numerical calculations in [12]. We again expand the

residual in X2 in this small time interval, which yields
improved laser noise suppression compared to X1, suffi-
cient to fulfill the LISA requirements.

B. TDI with pseudoranges and raw measurements

In a more realistic picture of the instrument, each
spacecraft is equipped with its own clock, which we label
after the hosting spacecraft. Because the clocks are not
synchronized to each other or to a common time frame,
they will drift and jitter due to instrumental imperfections
and relativistic effects. In the following, we call the time
difference between the clocks and TCB clock deviations
[see Eq. (1)].
Because one cannot access the TCB timescale on board

the spacecraft, one cannot directly measure the LTTs.
Instead, phase modulations of the lasers allow onboard
measurements of the pseudoranges dτ̂iijðτÞ. These are
defined as the difference between the times of emission
and reception of the laser light as given by the receiver and
emitter spacecraft clocks, respectively. The pseudoranges
are functions of the reception time τ on the receiving
spacecraft, such that

τ − dτ̂iijðτÞ ð16Þ

is the time shown on clock j when the beam was emitted
from spacecraft j. Expressed in a global frame, the
pseudorange is a combination of the associated LTT
dijðtÞ and the clock deviations i and j. In practice, the
pseudoranges are measured by the optical metrology
system of LISA, which introduces additional ranging noise.
In this section, we neglect this noise and discuss its effect in
Appendix C.
Because the pseudorange dτ̂iijðτÞ is measured on space-

craft i, it is expressed as a function of the receiver clock i, as
indicated by the superscript τ̂i.
Similarly, phase differences are measured according to

the onboard clocks, such that they are given as functions of
three different timescales τ̂i, for i ¼ 1, 2, 3. We denote
them ητ̂iijðτÞ.
The approach documented in the literature to account for

these effects is depicted in Fig. 3. It uses a Kalman-like
filter to separate the LTTs from the clock errors, given the
pseudoranges, the ground-based estimates of the spacecraft
positions, and the clock desynchronizations [17,23]. The
clock error estimates are then used to synchronize all
measurements to the TCB. Finally, the resynchronized
measurements are used with the deduced LTTs to perform
the standard TDI described in Sec. II A. This approach also
includes the removal of megahertz phase ramps and an
additional step to correct for the residual clock noise [11].
We show in this section that TDI actually reduces laser

noise to acceptable levels without the need to synchronize
measurements to a common timescale (i.e., directly using

7This expression is sometimes found in the literature simplified
to 4d̄ð _d13 − _d12Þ (e.g., [21]), assuming _dij ¼ _dji. While this
approximation is valid for the LTT in the TCB, it is not valid for
the pseudoranges considered in the next section, in which
potentially large clock errors enter with opposite sign in _dij
and _dji.
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the raw measurements) and without the need to separate
LTTs and clock errors (i.e., directly using the measured
pseudoranges). Furthermore, we show that this approach
requires neither the removal of large trends from the
beatnotes nor the associated additional clock correction
step at the end of the pipeline. This is summarized in the
bottom panel of Fig. 3.
Let us reexpress the interference between light received

from spacecraft j and the local laser on spacecraft i,
introduced in Eq. (4), according to clock i,

ητ̂iijðτÞ ¼ Φτ̂j
j ðτ − dτ̂iijðτÞÞ −Φτ̂i

i ðτÞ; ð17Þ

where the laser source phases Φτ̂i
i ðτÞ and Φτ̂j

j ðτÞ are now
functions of the clock times i and j, respectively. Note that
the value of τ in the previous equation is given in the clock
time frame τ̂i, and thus, when expressed in a global frame,
includes the same clock drift and jitter that enter to the
pseudorange dτ̂iijðτÞ.
Let us define a new delay operator Dτ̂i

ij in terms of the

pseudorange dτ̂iij such that, applied to a quantity f
τ̂jðτÞ taken

at a time measured on clock i, it yields the same quantity
evaluated at the time of emission by spacecraft j. Formally,

Dτ̂i
ijf

τ̂jðτÞ ¼ fτ̂jðτ − dτ̂iijðτÞÞ; ð18Þ

for any function fτ̂jðτÞ.
Note that the pseudorange delay operator Dτ̂i

ij takes as
input a function of the clock time indicated by the right
index j and turns it into a function of the clock time
corresponding to the left index i. As a consequence, the
pseudorange delay operator now performs two actions: it
computes the time of emission of light as a function of the
time of reception, expressed in different time frames, and
also includes the time frame transformation between clock

times τ̂j and τ̂i we use to describe the laser phases at these
events.
These pseudorange delay operators can be chained using

the usual shorthand notation; e.g., with two delays,

Dτ̂i
ijk ¼ Dτ̂i

ijD
τ̂j
jk; ð19Þ

which can be expanded to

Dτ̂i
ijkf

τ̂kðτÞ ¼ fτ̂kðτ − dτ̂iijðτÞ − d
τ̂j
jkðτ − dτ̂iijðτÞÞÞ: ð20Þ

The frame transformation rule still applies, as Dτ̂i
ijkf

τ̂k is
expressed in terms of clock time i while fτ̂k is a function of
clock time k. More generally, chained delay operators
convert clock time frames from their rightmost index to
their leftmost index.
With this in mind, rewriting Eq. (17) using pseudorange

delay operators makes it clearer that all quantities are
measured in the frame of clock i,

ητ̂iijðτÞ ¼ Dτ̂i
ijΦ

τ̂j
j ðτÞ −Φτ̂i

i ðτÞ: ð21Þ

Similarly, Michelson TDI combinations can be rewritten
using pseudorange delay operators and measurements
taken according to their respective clocks,

Xτ̂1
1 ðτÞ ¼ ð1 −Dτ̂1

121Þðητ̂113ðτÞ þ Dτ̂1
13η

τ̂3
31ðτÞÞ

− ð1 − Dτ̂1
131Þðητ̂112ðτÞ þDτ̂1

12η
τ̂2
21ðτÞÞ: ð22Þ

Note that all quantities appearing in X1 are functions of
clock time 1, such that the entire combination is a function
of the same time frame. The TDI variable X1 therefore
bears the superscript τ̂1.
Equations (21) and (22) have the same algebraic struc-

ture as the standard TDI Eqs. (7) and (9). Therefore, the
same algebraic results hold, and we get a residual term in
Xτ̂1
1 that is the commutator of pseudorange delay operators

similar to Eq. (10),

Xτ̂1
1 ðτÞ ¼ Dτ̂1

13121Φ
τ̂1
1 ðτÞ − Dτ̂1

12131Φ
τ̂1
1 ðτÞ: ð23Þ

The physical interpretation of this equation is identical to
that of Eq. (10), as the time interval Δtτ̂1X1

between the

delays applied by Dτ̂1
13121 and D

τ̂1
12131 still corresponds to the

mismatch in the emission times of the two virtual beams
that make up the interferometric measurement, now
expressed according to clock 1. The residual X1 corre-
sponds to the accumulated phase noise of the laser on
spacecraft 1 between the two emission events. As such, it is
invariant with respect to the time frame used to express it.
In other words,

FIG. 3. Comparison of the standard noise reduction pipeline
known from the literature and the alternative presented in this
paper. We omit other noise suppression steps, such as the removal
of spacecraft jitters.
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Xτ̂1
1 ðτÞ ¼ Xt

1ðtτ̂1ðτÞÞ: ð24Þ

The full demonstration8 can be found in Appendix A. We
conclude that laser noise is suppressed to the same level as
in Sec. II A.
The same argument applies identically to the second-

generation Xτ̂1
2 , where we immediately recover

Xτ̂1
2 ðτÞ ¼ Dτ̂1

121313121Φ
τ̂1
1 ðτÞ −Dτ̂1

131212131Φ
τ̂1
1 ðτÞ: ð25Þ

We conclude that Xτ̂1
2 reduces laser noise to required levels,

as well as the circular permutations Y τ̂2
2 and Zτ̂3

2 . This is also
demonstrated numerically in Sec. IV.
Note, however, that Xτ̂1

2 , Y
τ̂2
2 , and Zτ̂3

2 are still defined
according to different clocks. They may need to be
synchronized to a global time frame, such as TCB before
they can be used for further scientific analysis. Since
laser noise is already suppressed, the required timing
precision for this final synchronization is now driven only
by the needs of the astrophysical data analysis, much less
stringent [24].

III. SIMULATION MODEL AND TDI
VARIABLE CONSTRUCTION

A. Interferometric measurements

To validate the alternative algorithm proposed in this
paper and check that one can reach the required noise levels
using the raw unsynchronized data, we rely on numerical
simulations. These simulations are performed with the
latest versions of LISA INSTRUMENT [25] and PYTDI [26].
In contrast with the theoretical description of Sec. II, which
describes the model in terms of phase, the actual simu-
lations are performed in frequency.
A detailed description of the model implemented in

LISA INSTRUMENT is given in [21,27]. Note that LISA

INSTRUMENT uses two separate quantities to describe large
out-of-band drifts and small in-band fluctuations. Here, we
provide a simplified model that is directly formulated in
terms of total frequency and only includes the instrumental
effects relevant for this study.
On each spacecraft, we consider two laser sources9 (see

Fig. 4) producing a total of six laser beams. For each beam,
we model separately the total carrier frequency ντ̂iijðτÞ and
the upper sideband frequency ντ̂iij;sbðτÞ, where the indices ij

refer to the movable optical subassembly (MOSA) from
which the beam is emitted. The carrier frequency of
each beam is within a few megahertz of the central
frequency, defined as 281.6 THz. The sidebands are
generated by modulating the carrier with a clock-derived
signal at either νm ¼ 2.4 GHz or νm ¼ 2.401 GHz for the
left- and right-hand side optical benches, respectively. In
the end, we have

ντ̂iij;sbðτÞ ¼ ντ̂iijðτÞ þ νmð1þMτ̂i
ijðτÞÞ: ð26Þ

Here,Mτ̂i
ijðτÞ is a noise term accounting for imperfections

in the modulation.10 Since we model these signals in their
respective clock frames, Mτ̂i

ijðτÞ does not contain any
imperfections of the clocks themselves.
Each spacecraft carries two optical benches, on each of

which beams are combined in three different interferom-
eters. One of these interferometers is responsible for the
test-mass readout and is not relevant in this study. We
include it in the following for completeness.11

The interspacecraft interferometers yield the following
carrier and sideband beatnotes:

isiτ̂iijðτÞ ¼ _Dτ̂i
ijν

τ̂j
jiðτÞ − ντ̂iijðτÞ þ Nisi

ij ðτÞ; ð27aÞ

FIG. 4. Model of the instrument as seen when looking down at
the solar panels, with a total of six laser sources.

8The previous equation is exact when one considers phase
measurements. In the case of frequency measurements, there is
formally an additional scale factor of the order ð1þ 10−7Þ due to
the derivative of the clock deviations, which does not signifi-
cantly impact the residual noise level.

9So far, we have considered only one laser per spacecraft for
simplicity, but without loss of generality. The simulations are
performed using a more realistic instrumental setup with two
lasers per spacecraft.

10The optical sidebands are generated from the megahertz
clock tones by electrically up-converting them to 2.4 GHz and
2.401 GHz before modulating them onto the beams. Following
[28], we expect the 2.4 GHz sidebands to be dominated by noise
due to fiber amplifiers, while the 2.401 GHz sidebands are
expected to be limited by the noisier electrical frequency
conversion chain.

11However, for clarity, we do not include the frequency shifts
due to the spacecraft motion, which are suppressed using the test-
mass interferometer.

OLAF HARTWIG et al. PHYS. REV. D 105, 122008 (2022)

122008-6



isiτ̂iij;sbðτÞ ¼ _Dτ̂i
ijν

τ̂j
ji;sbðτÞ − ντ̂iij;sbðτÞ þ Nisi;sb

ij ðτÞ: ð27bÞ

The reference interferometer beatnotes read

rfiτ̂iijðτÞ ¼ ντ̂iikðτÞ − ντ̂iijðτÞ þ Nrfi
ij ðτÞ; ð28aÞ

rfiτ̂iij;sbðτÞ ¼ ντ̂iik;sbðτÞ − ντ̂iij;sbðτÞ þ Nrfi;sb
ij ðτÞ; ð28bÞ

while those of the test-mass interferometer beatnotes are
given as

tmiτ̂iijðτÞ ¼ ντ̂iikðτÞ − ντ̂iijðτÞ þ Ntmi
ij ðτÞ − 2Nδ

ijðτÞ: ð29Þ

Here, the indices i, j, k are to be chosen from the set
f1; 2; 3g, with i ≠ j ≠ k. The Nisi

ij ðτÞ, Nrfi
ij ðτÞ, and Ntmi

ij ðτÞ
terms denote an uncorrelated readout noise in each inter-
ferometer, while Nδ

ijðτÞ is the frequency shift due to
test-mass displacement. We define the Doppler-delay
[29] _Dτ̂i

ij as

_Dτ̂i
ijfðτÞ ¼ ð1 − _dτ̂iijðτÞÞfðτ − dτ̂iijðτÞÞ: ð30Þ

In addition to the gigahertz sidebands, each laser beam is
modulated with a PRN code, which allows an absolute
measurement of the pseudoranges. We model this as a
direct measurement of the clock time difference

PRNτ̂i
ijðτÞ ¼ dτ̂iijðτÞ þ NPRN

ij ðτÞ þ Bij: ð31Þ

Note that this PRN measurement carries a relatively large
ranging noise NPRN

ij , which we assume to have zero mean.
We include the term Bij to account for a potential constant
bias in each pseudorange measurement.

B. TDI combinations

We perform TDI processing using frequency data fol-
lowing the prescriptions of [29], using only Doppler delay
operators.
However, neither the pseudorange dτ̂iijðτÞ nor its deriva-

tive _dτ̂iijðτÞ is known exactly. Therefore, they must be
estimated from the onboard measurements. We apply these
Doppler delays on total frequency data measured in the
different interferometers, which are of large magnitude
(around 10 MHz), but carry only small frequency fluctua-
tions (laser frequency noise around 30 HzHz−0.5). As such,
the Doppler factor _dτ̂iijðτÞ in Eq. (30) needs to be known at a
much higher precision than the actual delay dτ̂iijðτÞ. We

discuss how to estimate both _dτ̂iijðτÞ and dτ̂iijðτÞ from the raw
measurements in Appendix B, and will denote these two

separate estimates as d̃τ̂iijðτÞ and _̄d
τ̂i
ijðτÞ, respectively. For

now, we simply define the estimated Doppler delay

_̄D
τ̂i
ijfðτÞ ¼ ð1 − _̄d

τ̂i
ijðτÞÞfðτ − d̃τ̂iijðτÞÞ: ð32Þ

Using these estimates, we follow the standard procedure
to construct intermediary TDI variables known from the
literature. The first step removes spacecraft motion from
the measurements (not included in our simulations, but
described here for completeness),

ξτ̂iijðtÞ ¼ isiτ̂iijðtÞþ
rfiτ̂iijðtÞ− tmiτ̂iijðtÞ

2
þ _̄D

τ̂i
ij

rfi
τ̂j
jiðtÞ− tmi

τ̂j
jiðtÞ

2
:

ð33Þ

This correction only uses the difference between reference
and test-mass interferometers on board the same spacecraft,
which are nominally at the same frequency. Therefore, it
does not significantly impact the analytical models for
noise couplings described in Appendix C.
Then, we remove the frequency fluctuations of the right-

hand side lasers by constructing the intermediary variables
ηij, given by

ητ̂112ðtÞ ¼ ξτ̂112ðtÞ þ _̄D
τ̂1
12

rfiτ̂221ðtÞ − rfiτ̂223ðtÞ
2

; ð34aÞ

ητ̂113ðtÞ ¼ ξτ̂113ðtÞ þ
rfiτ̂112ðtÞ − rfiτ̂113ðtÞ

2
; ð34bÞ

while the remaining ones can be computed by cyclic
permutations of the spacecraft indices.
Last, we construct the Michelson variable Xτ̂1

2 using the
following factorized form, particularly suited for numerical
efficiency and stability:

_Xτ̂1
2 ðtÞ ¼ ð1 − _̄D

τ̂1
13121Þ½ητ̂112ðtÞ þ _̄D

τ̂1
12η

τ̂2
21ðtÞ

þ _̄D
τ̂1
121ðητ̂113ðtÞ þ _̄D

τ̂1
13η

τ̂3
31ðtÞÞ�

− ð1 − _̄D
τ̂1
12131Þ½ητ̂113ðtÞ þ _̄D

τ̂1
13η

τ̂3
31ðtÞ

þ _̄D
τ̂1
131ðητ̂112ðtÞ þ _̄D

τ̂1
12η

τ̂2
21ðtÞÞ�: ð35Þ

IV. RESULTS AND DISCUSSION

In this section, we present the results of the alterna-
tive noise reduction pipeline described in Sec. III B.
Pseudoranges used in the pipeline are computed as given
in Appendix B, while the input data are simulated follow-
ing Sec. III A.
All simulations have a duration of 4 × 105 s, and use

orbits provided by ESA [30,31]. We perform three simu-
lations that include different noise sources and show that
the results are in good agreement with the analytical models
derived in Appendix C in all cases, across most of the
frequency band. We perform a fourth simulation with all
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noises disabled to evaluate the numerical limits of our
simulations.

A. Noise levels

The laser noise power spectral density (PSD) is given by

SνðfÞ ¼ ð30 HzHz−0.5Þ2: ð36Þ

Instrumental clock errors between the onboard clock
times τ̂i and the spacecraft proper times τi are modeled as

τ̂τii ðτÞ ¼ τ þ xi;0 þ yiτ þ
_yi
2
τ2 þ ÿi

3
τ3 þ

Z
τ

τ0

yϵi ðτ0Þdτ0;

ð37Þ

where yϵi ðτÞ is a fractional frequency fluctuation with PSD
(we only keep the low frequency part of the more complete
model detailed in Appendix D),

Sy ¼ ð6.32 × 10−14 Hz−0.5Þ2
�

f
Hz

�
−1
: ð38Þ

xi;0 is a randomly determined constant deterministic clock
offset around 1 ms, and yi, _yi, ÿi are constant deterministic
clock drifts with (conservative) orders of magnitude

yi ≈ 5 × 10−7; ð39aÞ

_yi ≈ 1.4 × 10−14 s; ð39bÞ

ÿi ≈ 9 × 10−23 s−2: ð39cÞ

The ranging noise in the PRN measurements is given by

SPRN ¼ ð3 × 10−9 sÞ2 Hz; ð40Þ

and a randomly determined deterministic bias in each arm
with order of magnitude

Bij ≈ 3 × 10−9 s: ð41Þ

We assume that the modulation noise level has a PSD of

SMðfÞ ¼ ð5.2 × 10−14 Hz−0.5Þ2
�

f
Hz

�
2=3

ð42Þ

for left-hand sidebands and

SMðfÞ ¼ ð5.2 × 10−13 Hz−0.5Þ2
�

f
Hz

�
2=3

ð43Þ

for right-hand sidebands (accounting for footnote 10).
Last, we include nonsuppressed secondary noises in the

form of test-mass acceleration noise with a PSD of

STMðfÞ ¼ ð2.4 fm s−2Hz−0.5Þ2
�
1þ

�
0.4 mHz

f

�
2
�
; ð44Þ

and interferometric readout noises with the noise shape

SOMSðfÞ ¼ Sifo ×

�
1þ

�
2 mHz

f

�
4
�
; ð45Þ

where the noise levels Sifo in the different interferometers
are taken as

Sisiifo ¼ ð6.35 pmHz−0.5Þ2; ð46aÞ

Sisi;sbifo ¼ ð12.5 pmHz−0.5Þ2; ð46bÞ

Srfiifo ¼ ð3.32 pmHz−0.5Þ2; ð46cÞ

Srfi;sbifo ¼ ð7.90 pmHz−0.5Þ2; ð46dÞ

Stmi
ifo ¼ ð1.42 pmHz−0.5Þ2: ð46eÞ

B. Simulation results

We show in Fig. 5 the amplitude spectral density (ASD)
of our simulated _Xτ̂1

2 data, estimated using the logarithmi-
cally scaled PSD method [32].
The solid blue line is the result of a simulation containing

all effects and noise sources described in Sec. IVA. The
noise level is well explained by the analytical model (upper
dashed gray line) of the two main nonsuppressed noise
sources (test-mass and readout noises) coupling into TDI,
as described in the literature [21]. This result demonstrates
that all other noise sources included in our simulation are
successfully suppressed below the required levels.
To reveal the effects that limit the clock and laser noise

suppression, we show the results of two additional simu-
lations. We first disable the test-mass and readout noises to
obtain the orange line; this proves that modulation noise is
the main limiting noise, and its level is well explained by
the model given in Appendix C and shown in the center
dashed gray line.
For the green curve, we further disable modulation noise.

This shows that the model for the residual laser noise
coupling to a deterministic ranging bias (also given in
Appendix C, and shown in the lower dashed gray line)
accurately predicts the remaining residual noise for
frequencies above 5 mHz. Below these frequencies, we
are limited by numerical effects, which we estimate by
running a simulation with all noises disabled. This is
illustrated by the solid black line, which is computed from
the average ASD of the noise-free simulation between
0.1 mHz and 1 mHz. We do not show the full noise-free
simulation results, for visual clarity of the plot, but remark
that they also contain the structure visible in the green curve
between 1 mHz and 5 mHz, which deviates from the
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analytical model. We conclude that this discrepancy from
the expected value (lower dashed gray line) is explained by
numerical artifacts. Note that these numerical effects are
significantly below the limiting secondary noise sources
that make up the blue curve.
To make sure that the model and results we present here

are not affected by the millisecond clock offsets, we have
run additional simulations with conservative clock offsets
around 1 s. We find that the results are similar to those
presented in Fig. 5 and still match closely our model, which
does not include clock offsets and drifts.
As a final remark, let us note that all three analytic

models given by the gray dashed lines are not specific to
the alternative pipeline proposed in this paper, but are
equally valid for the standard implementation found in the
literature.

V. CONCLUSION

The standard procedure to compute laser noise-
suppressing TDI combinations found in the literature
requires an initial processing step to synchronize the

beatnote measurements (initially recorded according to
different clocks) to a common time frame, usually the
TCB, in which the scientific analysis can be carried out. In
this paper, we highlighted the fact that the same laser noise
reduction can be achieved without prior synchronization of
the raw data streams, significantly simplifying the noise
reduction pipeline and making it free of any potential
artifacts introduced by clock synchronization and reference
frame transformations. One must still transform the result-
ing laser-noise free combinations to express them in a
time coordinate frame relevant for the scientific analysis.
However, the required timing precision is much less
stringent (∼1 ms) than the one required for laser noise
reduction (∼10 ns) or clock-noise reduction (∼1 ps root
mean square (RMS)).
We formulated TDI directly in the time frames of the

onboard clocks, such that the usual light travel times that
appear in the TDI combinations are replaced by pseudor-
anges. These pseudoranges can be directly recovered from
the onboard measurements, at a precision limited by the
stability of the gigahertz sidebands. Since we only rely
on local measurements, the required processing steps are

FIG. 5. Residual noise levels in _Xτ̂1
2 using the alternative version of the noise reduction pipeline presented in this paper. All simulations

include laser frequency noise, PRN noise, as well as clock offsets, drifts, and jitters. The blue curve additionally includes test-mass
acceleration, readout, and modulation noises, as well as a deterministic bias in the PRN. Its level is well explained by the analytical
model of the coupling of test-mass and readout noise into TDI [21]. The orange curve contains just the modulation noise and
deterministic bias, while the green curve is generated with just the bias. Both are well explained by the analytical models presented in
Appendix C for most of the frequency band. At low frequencies, we hit a numerical noise floor, which we estimated by running another
simulation with all noises disabled (not shown). This noise-free simulation also contains the deviation from the analytical model and the
small peak in the green curve slightly above 10−3 Hz. Therefore, we conclude that this deviation is a numerical artifact.
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much simpler than the previously suggested ranging
processing [17,23]. Furthermore, this new approach oper-
ates directly on the megahertz beatnotes given as the raw
data, in contrast to the usual assumption that TDI should be
performed on some form of phase or frequency fluctuations
around those beatnotes. This circumvents an additional
clock-noise correction step, further simplifying the noise
reduction pipeline.
This approach of reducing laser and clock noise in the

same processing step has also recently been demonstrated
in an experimental test bed [33], such that we are confident
that it will be applicable to the real LISA data.
We showed analytically and numerically that both laser

and clock noises are successfully reduced to acceptable
levels. The dominant limiting effect is due to errors in the
sideband, often called modulation noise, which is also the
case in the standard pipeline. We showed numerically that
the impact of this limiting noise is indeed equivalent to the
levels one can achieve with the standard algorithm, which
uses phase or frequency fluctuations only, and requires an
extra clock-noise reduction step.
While we only demonstrated this method for the widely

used Michelson combinations, we expect it to be applicable
to any geometric combination, such as those found in
[12,15]. Combinations of these geometric combinations,
such as the quasiorthogonal A, E, and T channels [34], will
require a prior synchronization of the base variables used to
construct them, but again, with much looser timing require-
ments than those required for laser-noise suppression.
As a continuation of the presented study, one could

quantify the required accuracy of the final synchronization
step in future work, both for the construction of variables
such as A, E, and T as well as for the scientific exploitation
of the data. In addition, a direct quantitative comparison
between the standard INReP pipeline and our proposed
alternative would be of interest for future studies. Other
follow-up works could include other noise-reduction steps
envisioned for the LISAmission, such as the suppression of
noise induced by longitudinal and angular spacecraft jitters.
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APPENDIX A: PROOF OF EQUIVALENCE
OF TDI PROCESSING IN TCB

AND CLOCK FRAME

Let us demonstrate Eq. (24) analytically; i.e., the
formulation of TDI using desynchronized measurements
and pseudoranges is equivalent to formulating it in TCB,
with the exception that the final result is expressed in the
local clock frame.
Let us recall that the LTT dij is the TCB time taken by

light to propagate from spacecraft j to spacecraft i (see
[35]). It is expressed as a function of the receiver time. In
other words, t − dijðtÞ is the TCB at the emission of the
signal, as a function of t, the TCB at reception.
The pseudoranges dτ̂iij correspond to the same quantities

but expressed in terms of clock time τ̂i. More precisely
τ − dτ̂iijðτÞ is the clock time of spacecraft j at the instant of
emission of the signal as a function of τ, the clock time of
spacecraft i at the reception of the signal. We can formally
express this emission time using the LTT as

τ − dτ̂iijðτÞ ¼ τ̂tjðti − dijðtiÞÞ; ðA1Þ

where we used the relationship between τ̂i and t defined in
Sec. II and introduced the shorthand notation

ti ¼ tτ̂iðτÞ: ðA2Þ

Let us now consider Fτ̂iðτÞ ¼ Dτ̂i
ijf

τ̂jðτÞ, where f is a
function that characterizes an observable (i.e., an invariant
quantity). Using the definition of the delay operator
introduced in Eq. (18) and Eq. (A2),

Fτ̂iðτÞ ¼ fτ̂jðτ − dτ̂iijðτÞÞ;
¼ fτ̂jðτ̂tjðti − dijðtiÞÞÞ;
¼ ftðti − dijðtiÞÞ;
¼ ½DijfðtÞ�t¼tτ̂i ðτÞ: ðA3Þ

This shows that

Dτ̂i
ijf

τ̂jðτÞ ¼ Dijfðtτ̂iðτÞÞ: ðA4Þ

Applying this result iteratively leads to Eq. (24).
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APPENDIX B: RANGING PROCESSING

Let us describe how the Doppler factor _̄d
τ̂i
ijðτÞ and the

delay d̃τ̂iijðτÞ in Eq. (32) can be estimated.
To obtain the first estimate of the Doppler factor, which

we note _̄d
τ̂i
ijðτÞ, we combine the sideband and carrier

beatnotes as follows:

_̄d
τ̂1
12ðτÞ ¼

isiτ̂112ðτÞ − isiτ̂112;sbðτÞ þ 1 MHz

2.401 GHz
; ðB1aÞ

_̄d
τ̂1
13ðτÞ ¼

isiτ̂113ðτÞ − isiτ̂113;sbðτÞ − 1 MHz

2.4 GHz
; ðB1bÞ

for the left- and right-hand optical benches, respectively.
Inserting the expressions of the interspacecraft beatnotes
from Eqs. (27a) and (27b) in those expressions yields

_̄d
τ̂1
12ðτÞ ¼ _dτ̂112ðτÞþ

2.4 GHz
2.401 GHz

Mτ̂1
12ðτÞ− _Dτ̂1

12M
τ̂2
21ðτÞ; ðB2aÞ

_̄d
τ̂1
13ðτÞ ¼ _dτ̂113ðτÞþ

2.401 GHz
2.4 GHz

Mτ̂1
13ðτÞ− _Dτ̂1

13M
τ̂3
31ðτÞ: ðB2bÞ

These combinations contain the desired delay derivative
_dτ̂iijðτÞ, but have additional contributions due to modulation
errors. As mentioned in footnote 10, we expect the
2.401 GHz sidebands to have a higher modulation noise
level. We shall see below that we can further reduce the
noise coming from these sidebands.
To start with, let us write down the delay d̃τ̂iijðτÞ as the

sum of a constant part dij;0 and a time-varying part dij;vðτÞ,

d̃τ̂iijðτÞ ¼ dij;0 þ dij;vðτÞ: ðB3Þ

We can compute dij;vðτÞ by integrating _dτ̂iijðτÞ as given in
Eq. (B2),

d̃τ̂iij;vðτÞ ¼
Z

τ

τ0

_̄d
τ̂1
ij ðτ0Þdτ0

≈ dτ̂iijðτÞ − dτ̂iijðτ0Þ þ
Z

τ

τ0

½Mτ̂i
ijðτ0Þ − _Dτ̂i

ijM
τ̂j
jiðτ0Þ�dτ0:

ðB4Þ

The dominant noise in this expression comes from the
integrated 2.401 GHz sideband modulation noises,12 whose
noise level can be computed from Eq. (43) to be

SR MðfÞ ¼ ð8.3 × 10−14 s Hz−0.5Þ2
�

f
Hz

�
−4=3

; ðB5Þ

which is far below the noise level of the PRN and is
sufficient for our purposes. Note that d̃τ̂iij;vðτÞ is only known
relative to the initial value dτ̂iijðτ0Þ. We can estimate this
offset by computing the time averaged

d̃τ̂iij;0 ¼ avg½PRNτ̂i
ijðτÞ − d̃τ̂iij;vðτÞ�

≈ dijðτ0Þ þ Bij þ avg½NPRN
ij �; ðB6Þ

where we have used Eqs. (31) and (B4) and have ignored
the subdominant modulation noise terms in the second line
for clarity. The constant terms dijðτ0Þ and Bij are unaffected
by the averaging, and the latter remains as a systematic bias
on our estimate. However, the noise term NPRN

ij is strongly
suppressed, leaving an error that we estimate as

std½NPRN
ij �=

ffiffiffiffiffiffi
Ns

p
; ðB7Þ

where std½NPRN
ij � is the standard deviation of the ranging

noise and Ns is the number of samples we average
over. Assuming the same PRN noise as in Sec. IV
(std½NPRN

ij � ≈ 3 ns) and knowing that a 3 ns bias is already
below specifications (see Fig. 5), averaging over only a few
PRN measurements is sufficient.
Overall, the dominant contributions to the left- and right-

hand sided estimates are given by

d̃τ̂112ðτÞ ≈ dτ̂112ðτÞ þ B12 −
Z

τ

τ0

_D12M
τ̂2
21ðτ0Þdτ0; ðB8aÞ

d̃τ̂113ðτÞ ≈ dτ̂113ðτÞ þ B13 þ
Z

τ

τ0

Mτ̂1
13ðτ0Þdτ0: ðB8bÞ

While this is sufficient for the delay part of the Doppler-
delay operator, we still need to suppress the 2.401 GHz
sidebands modulation noise in the signal combinations in
Eq. (B2) used as multiplicative factors. We can remove
them by adapting the signal combination proposed in [11]
to include the additional 1 MHz offset between the side-
bands. Let us define

ΔM1 ¼
rfiτ̂113;sb − rfiτ̂113 þ 1 MHz

2
−
rfiτ̂112;sb − rfiτ̂112 − 1 MHz

2

ðB9Þ

and cyclic forΔM2 andΔM3. We can use these expressions
to correct our previous estimate,

_̄d
τ̂1
12;cðτÞ ¼ _̄d

τ̂1
12ðτÞ −

_̄D
τ̂1
12ΔM2

2.401 GHz
; ðB10aÞ

12For clarity, we neglect the gigahertz frequency ratio scaling
factor from Eq. (B2a), since it does not significantly change the
noise level.
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_̄d
τ̂1
13;cðτÞ ¼ _̄d

τ̂1
13ðτÞ þ

ΔM1

2.4 GHz
; ðB10bÞ

where the quantities _̄d
τ̂1
ij ðτÞ are given in Eq. (B2). Note that

the Doppler delays in Eq. (B10) have to be computed using
the uncorrected Doppler factor given in Eq. (B2a), and the
previously estimated delays from Eq. (B3), both of which
still contain the higher modulation noise. The procedure
described here could also be applied iteratively to get a
better estimate. However, we believe that a single iteration
is sufficient, as ΔMi is already a small enough correction
such that second order terms are negligible.
Substituting the expressions of the reference beatnotes

into Eq. (B9), and using the resulting expressions in
Eqs. (B10a) and (B10b), we find the approximate expres-
sions

_̄d
τ̂1
12;cðτÞ ≈ _dτ̂112ðτÞ þ

2.4 GHz
2.401 GHz

ðMτ̂1
12 − _Dτ̂1

12M
τ̂2
23Þ; ðB11aÞ

_̄d
τ̂1
13;cðτÞ ≈ _dτ̂113ðτÞ þMτ̂1

12 − _Dτ̂1
13M

τ̂3
31; ðB11bÞ

where we have assumed that _̄D
τ̂1
12ΔM2 ≃ _Dτ̂1

12ΔM2. From
these expressions, we see that the modulation noise terms
from the 2.401 GHz sidebands have been removed.

APPENDIX C: PSEUDORANGE MEASUREMENT
UNCERTAINTY

We discuss here how errors in the pseudoranges couple
into the final TDI variable. We consider two effects. First,
the 2.4 GHz sideband modulation noise terms Mτ̂i

ij appear-
ing in Eq. (B11) are the dominating noise terms in our final
estimate of the Doppler factor. Second, the ranging bias Bij

is the most significant contribution in our estimate of the
delay as given in Eq. (B8).

1. Modulation noise coupling

The Doppler factor applied by each estimated delay _̄Dij

introduces modulation errors, as described in Eq. (B11).
The dominant coupling of these error terms is due to the
large megahertz beatnote frequencies the Doppler shifts are
applied to. To estimate this coupling, we can assume the
beatnote frequencies to be constant,

isiτ̂1ij ðτÞ ¼ aij; rfiτ̂1ij ðτÞ ¼ bij: ðC1Þ
Furthermore, to estimate the contribution of modulation
noise from each estimated delay operator, we use Eqs. (32)
and (B11) to define

_̄D
M
12fðτÞ ¼ ð1 −M

τ̂j
12 þ DMτ̂2

23Þ ×DfðτÞ; ðC2aÞ
_̄D
M
13fðτÞ ¼ ð1 −Mτ̂3

12 þ DMτ̂2
31Þ ×DfðτÞ; ðC2bÞ

and cyclic, with DfðτÞ ¼ fðτ − d̄Þ applying an average
delay of d̄ ≈ 8.3 s. In these expressions, it is sufficient to
approximate D̄ by D, round 2.4 GHz=2.401 GHz to 1, and
neglect _dτ̂iij corrections.
Using Eq. (B11) and cyclic, we can compute the

contributions of the modulation noise to the variables
ηij. They read

ηM12 ¼ a12 − b23ð1 −Mτ̂1
12 þDMτ̂2

23Þ; ðC3Þ

ηM31 ¼ a31 − b12ð1 −Mτ̂3
31 þDMτ̂1

12Þ; ðC4Þ

ηM13 ¼ a13 þ b12; ðC5Þ

ηM21 ¼ a21 þ b23; ðC6Þ

where we have used that bij ¼ −bik. Inserting these
expressions into Eq. (35) and using Eq. (C2), we obtain
the following expression:

_XM
2 ¼ ð1 −D2 −D4 þ D6Þ½a21DMτ̂2

23 − a31DM
τ̂3
31

þ ða12 − a13 þ b12ðD2 − 1ÞÞMτ̂1
12�; ðC7Þ

where second order terms in Mτ̂i
ij have been neglected.

Assuming the three modulation noises are uncorrelated
with identical PSDs SM and zero mean, the PSD of X2 due
to modulation noise is given as

SM_X2
ðωÞ ¼ 16 sinð2ωd̄Þ2 sinðωd̄Þ2AX2

ðωÞSMðωÞ; ðC8Þ

with

AX2
ðωÞ ¼ ða12 − a13Þ2 þ a221 þ a231

− 4b12ða12 − a13 − b12Þ sin½2�ðωd̄Þ: ðC9Þ

Note that this formula is identical to the modulation
noise coupling described in [11], where it was derived
under the assumption that a clock correction is applied to
the detrended variables, instead of directly using the total
frequency. This result is expected, as the argument devel-
oped in [11] still holds: when expressed in the spacecraft
proper time frames, both modulation and clock noise enter
the measured pseudorange (MPR) identically. This means
that any TDI formulation that suppresses clock noise using
the sidebands will simply replace it with the modulation
noise. As a result, modulation noise has exactly the same
impact in both scenarios, and any prior performance
evaluations in [11] are still valid.

2. Ranging bias impact

We can model the impact of a bias in the delays D̄ij

applied as part of _̄Dij as
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D̄ijfðτÞ ¼ fðτ − dτ̂iijðτÞ − BijÞ ðC10aÞ

≈ fðτ − dτ̂iijðτÞÞ − Bij
_fðτ − dτ̂iijðτÞÞ ðC10bÞ

¼ DijfðτÞ − BijDij
_fðτÞ: ðC10cÞ

A ranging bias couples to the main noise contributions in
the interferometric beatnotes given in Eqs. (27a) and (28a).
This coupling is given by laser frequency noise regardless
of whether synchronization is performed before TDI
processing or not, such that we expect to find the same
results obtained in previous studies. Plugging Eq. (C10c) in
X2 and assuming all six lasers to be uncorrelated and of
equal PSD Sν, the residual noise due to ranging biases can
be computed to be

SN
PRN;bias

_X2
ðωÞ ¼ 16 sin2ðωd̄Þ sin2ð2ωd̄Þω2

× ðB2
12 þ B2

21 þ B2
13 þ B2

31ÞSνðωÞ: ðC11Þ

APPENDIX D: CLOCK MODEL

The satellite clocks are ultrastable oscillators (USOs)
delivering timescales τ̂i that deviate from the local proper
time τi by a time offset xi;0, a stochastic frequency noise
yϵi ðτÞ, and the deterministic frequency drifts _yi, _yi, and ÿi, at
linear, quadratic, and cubic orders, respectively, all of
instrumental origin. Formally, one has

τ̂τii ðτÞ ¼ τþ xi;0þ yiτþ
_yi
2
τ2þ ÿi

3
τ3þ

Z
τ

τ0

yϵi ðτ0Þdτ0: ðD1Þ

We assume that the three clocks are uncorrelated.
Therefore, the deterministic and noise terms are indepen-
dent, but of similar order of magnitude. If one is interested
in the very long term (5 years or more) an additional quartic
frequency drift term can be added to better fit the data.
Here, we work under the assumption that the cubic model is
sufficient.
The offset xi;0 depends on the time at which the clock

was switched on and can in principle take any value. Here,
we assume that it is known and corrected to within about a
millisecond using ESA ground tracking.
The linear term yiτ is usually not specified. Assuming it

is calibrated before launch and that about a year has passed
between the time offset calibration and the switching on
of the clock, one has yi ≈ 5 × 10−7, obtained by integrating
the quadratic term (see below) for a year.
The coefficients of the quadratic and cubic terms are

estimated using the USOs on the Cassini and GRAIL
missions (see, e.g., pages 9 and 23 of [36]), where the
fractional frequency linear and quadratic drifts are of order
4.8 × 10−7=yr and −7.4 × 10−8=yr2, respectively, leading
to the following orders of magnitudes for _yi and ÿi,

j_yij ≈ 1.6 × 10−14 s; ðD2aÞ

jÿij ≈ 9 × 10−23 s−2: ðD2bÞ

The actual values and signs are specific to each clock, and
the clock’s local environment (temperature, magnetic field,
radiation, etc.) can also add additional dependencies to
Eq. (D1). The linear drift and Eq. (D2) can be corrected to
some extent using ESA ground tracking, as for the time
offset, but here we conservatively keep the typical uncor-
rected values in our model in order to reduce our reliance
on any preprocessing of the raw data.
The stochastic noise can be described by the sum of a

flicker frequency noise and a flicker phase noise with an
Allan variance (in fractional frequency) of roughly

σyðτ̄Þ2 ≈ 5 × 10−27 þ 5 × 10−27 s−2=τ̄2; ðD3Þ

where τ̄ is the averaging time in seconds, in the range 0.1 s
to 100 s (again, see [36] where the PSD of phase noise at
higher frequencies is also provided). Combining the two,
the USO noise can be approximated by

Syϵi ðfÞ ≈ ð2π × 10−14 Hz−0.5Þ2
�

f
Hz

þ
�

f
Hz

�
−1
�
; ðD4Þ

valid typically in the 0.01 Hz to 100 Hz region.
This model is compared to actual USO noise measure-

ments in a controlled environment obtained from CNES in
Fig. 6. The USO shown is the flight model that will fly on
the ISS in the ACES/PHARAOmission (launch expected in
early 2024). It is coupled to a 100 MHz VCXO to decrease
the noise at high frequency (hence the PLL “bump” at
around 50 Hz to 100 Hz). One notices the good agreement
with the simple model in Eq. (D4) in the 0.01 Hz to 103 Hz

FIG. 6. Comparison of the measured phase noise of the ACES/
PHARAO USO and the noise model from Eq. (D4), expressed as
fractional frequency fluctuations. The green curve is the esti-
mated noise floor of the measurement device (Agilent 5125A).
Measurement at 100 MHz with the reference frequency provided
by a cryogenic sapphire oscillator (ULISS), with negligible
broadband noise but causing the spurious peaks visible in the
graph.
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region. This agreement is somewhat surprising, given the
different USO types under consideration (NASA-Cassini/
GRAIL vs CNES-PHARAO) and given the poor informa-
tion which the model is based on, but it is also reassuring as
it demonstrates the good representativity of the model. Note

that at low frequency (< 0.01 Hz) there is a discrepancy
between the simple model Eq. (D4) and the PHARAO-
USO measurements. It is not clear whether this is due to an
additional stochastic noise process or a deterministic effect,
but it is of no relevance for this work.
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