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Nonlinear field theories produce unstable but long-lived configurations known as oscillons. These
structures have been studied with asymmetric and symmetric double-well potentials and extended to other
forms of potentials. In the present work, we examine the consequences of considering higher-order field
theories, where we have used a generalization of the symmetric double-well potential and a ϕ6 potential.
Consequently, we have found 3þ 1 spherically symmetric oscillons with significantly large lifetimes
without parameter fine-tuning.
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I. INTRODUCTION

The nonlinear aspect present in the equations governing
some field theories poses immense challenges for inves-
tigating their physical consequences. As a relevant illus-
trative example, we mention a nonlinear wave equation
arising from the Klein-Gordon equation with a single real
scalar field with a symmetrical double-well potential of the
ϕ4 model. The simple case of 1þ 1 dimensions reveals a
nontrivial nonstatic solution known as boosted topological
defects or boosted kinks [1,2]. The dynamics of the
collision of a kink and an antikink discloses complex
dynamics from which the initial velocity kinks’ velocity
plays a crucial role for outcomes [3–5].
We can go a step further in considering the case of 3þ 1

spherically symmetric Klein-Gordon equation in the ϕ4

model. In this case, the Derrick theorem prevents the
existence of static solutions [6]. Nevertheless, further
studies of the scalar field dynamics uncovered unstable
oscillating but long-lived structures known as oscillons
[7,8]. These structures can be relevant in distinct areas of
physics varying from optics to cosmology [9,10], with the
caveat that the duration of oscillons be greater than the
dynamic scales of these systems.
One of the main aspects that make oscillons attractive is

their long duration. It is a phase achieved after the scalar
field collapse, releases a large amount of its energy, and
then starts to oscillate almost without radiating energy
away. By using an innovative numerical treatment, Honda
and Choptuik [11] have shown evidence that oscillons can
live forever. Like most current oscillation simulations, they

considered an initial Gaussian scalar field profile with a
free radial parameter r0. Depending on the value of r0, the
oscillon phase can live longer. More interestingly, there are
resonant peaks in the oscillon lifetime when viewed in the
function of r0. It means that by fine-tuning r0, it is possible
to generate oscillons with arbitrarily long lifetimes. The
resonant mountain, as referred to by Gleiser and Krackow
[12], was later confirmed by them [13].
In the present paper, we investigate the existence of

long-lived oscillons considering potentials that can be
viewed as direct generalizations of the double-well
potential [8,11,14,15]. Nevertheless, we mention the
existence of highly long-lived oscillons associated with
other potentials such as the sine-Gordon and some classes
of convex potentials [16,17] and monodromy potentials
(see Ref. [18] and references therein).
The first potential is a generalization of the ϕ4 symmetric

double-well potential given by

VðϕÞ ¼ 1

4
ðϕ2n

vac − ϕ2nÞ2; ð1Þ

where ϕvac is the asymptotic vacuum value of the scalar
field, n ≥ 1 is a integer number with n ¼ 1 recovering the
potential of the ϕ4 model. This potential describes a
generalization of the (1þ 1)-dimensional kinks known
as the compactons [19]. The collision of compactons
was studied by Bazeia et al. [20] exhibiting a wide variety
of outcomes. The formation of long-lived oscillatory
structures at rest or moving appears not to be limited to
small impact velocities. The second potential we have
chosen belong to the Christ-Lee model [21] or the para-
metric ϕ6 model [22]:
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VðϕÞ ¼ 1

8ð1þ ϵ2Þ ðϵ
2 þ ϕ2Þðϕ2

vac − ϕ2Þ2; ð2Þ

where ϵ is a free parameter.
We organize the paper as follows. In Sec. II, we present

the Klein-Gordon equation briefly and describe the numeri-
cal method we have adopted. It is based on the Galerkin-
collocation method [23] that consists in adopting features
of both Galerkin and collocation methods. In particular, we
have defined a set of basis functions that satisfy exactly the
boundary conditions where we consider the whole radial
domain. We present the code validation in Sec. III with
the convergence of the scalar field total energy and the
reproduction of the oscillon phase already established [24].
In Sec. IV, we perform numerical simulations with the
potentials (1) and (2). We have found convincing numerical
evidence of extremely long-lived oscillons in both cases.
Finally, in Sec. V we conclude.

II. THE NUMERICAL METHOD:
BRIEF DESCRIPTION

The action for a self-interacting scalar field in 3þ 1
dimensions is

S½ϕ� ¼
Z

d4x

�
1

2
∂μϕ∂

μϕ − VðϕÞ
�
; ð3Þ

where VðϕÞ is the potential. We can derive the nonlinear
Klein-Gordon equation straightforwardly from the above
action and present it in the following useful form:

ϕ;t ¼ Π; ð4Þ

Π;t ¼
2

r
ϕ;r þ ϕ;rr −

∂VðϕÞ
∂ϕ

; ð5Þ

whereΠ ¼ Πðt; rÞ and ϕ ¼ ϕðt; rÞ. Here, we shall consider
the dynamics generated by the compact and the Chris-Lee
potentials given by Eqs. (1) and (2), respectively, but the
numerical method described in the sequence is valid for any
potential function.
We briefly describe the numerical spectral method

employed to integrate the wave equation expressed by
Eqs. (4) and (5). There are two issues in this wave equation
that are decisive for implementing the numerical algorithm.
The first is the 1=r term that must be regular when
calculated at the origin, and the second is that the scalar
field is an even parity with respect to r. Then, the expansion
of the scalar field near the origin reads as

ϕðt; rÞ ¼ ϕ0ðtÞ þ ϕ2ðtÞr2 þOðr4Þ: ð6Þ

Also, for r → ∞, the scalar field assumes its vacuum value,
i.e., ϕ∞ ¼ ϕvac. To guarantee the finiteness of the scalar
field energy, it is necessary that, asymptotically,

ϕðt; rÞ − ϕvac ≤ Oðr−2Þ: ð7Þ

Similar conditions are valid for the field Πðt; rÞ.
The next step is to establish spectral approximations

for the scalar field ϕ and the function Π to satisfy the
conditions above. Then, we can write

ϕNðt; rÞ ¼ ϕvac þ
XN
k¼0

ϕ̂2kðtÞψ2kðrÞ; ð8Þ

ΠNðt; rÞ ¼
XN
k¼0

Π̂2kðtÞψ2kðrÞ; ð9Þ

where N is the truncation order that dictates the number of
unknown modes ϕ̂2kðtÞ and Π̂2kðtÞ related to the fields ϕ
and Π, respectively. We demand that the basis functions
ψ2kðrÞ; k ¼ 0; 1; ::N have even parity functions with
respect to the origin and decay according to the
relation (7). We establish the basis functions with the
polynomials SBkðrÞ defined in Boyd’s book [25]

SBkðrÞ ¼ sin

�
ðkþ 1Þarcot

�
r
L0

��
; ð10Þ

where L0 is the map parameter. The above polynomials
were employed for spectral codes to generate Brill wave
initial data [26] and later in Refs. [27,28] for dynamical
problems in general relativity. The even polynomials have
the even parity about the origin, and by requiring the
appropriate asymptotic behavior we define

ψ2kðrÞ ¼
ð2kþ 1Þ
2kþ 3

SB2kþ2ðrÞ − SB2kðrÞ; ð11Þ

for all k ¼ 0; 1;…; N, and one may show that
ψ2kðrÞ ∼Oðr−3Þ.
We substitute the spectral approximations (8) and (9)

into Eqs. (4) and (5) to form the corresponding residual
equations given by

Resϕðt; rÞ ¼ ϕN;t − ΠN; ð12Þ

ResΠðt; rÞ ¼ ΠN;t − ϕN;rr −
2

r
ϕN;r þ

∂VðϕÞ
∂ϕ

: ð13Þ

The above residual equations do not vanish due to the
assumed approximations. According to the collocation
method, we impose the residual equation to vanish at a
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specific set of N þ 1 collocation points designated by rj,
with j ¼ 1; 2.:; N þ 1. In this case, the residual equations
become the following dynamical system

ϕj;t ¼ Πj; ð14Þ

Πj;t ¼ðϕ;rrÞj þ 2

�
ϕ;r

r

�
j
−
�
∂VðϕÞ
∂ϕ

�
j
: ð15Þ

The subscript j indicates that the quantities are evaluated
at the collocation points rj. For instance, the values of the
scalar field ϕjðtÞ

ϕjðtÞ ¼ ϕNðt; rjÞ ¼ ϕvac þ
XN
k¼0

ϕ̂2kðtÞψ2kðrjÞ; ð16Þ

for all j ¼ 1; 2;…; N þ 1. As a consequence, the values
ϕjðtÞ are related to the corresponding modes ϕ̂2kðtÞ. Both
sets of values and modes constitute the physical and the
spectral representations of the scalar field. In particular, we
use the spectral representation to calculate the 1=r term on
the rhs of Eq. (15) at the origin. We obtain similar relations
for the values present in Eqs. (14) and (15) as

Πj ¼ ΠNðt; rjÞ; ðϕ;rrÞj ¼
�
∂
2ϕN

∂r2

�
rj

;

and so forth.
We define now the set of N þ 1 collocation points rj.

First, we introduce a computational domain spanned by
−1 ≤ x ≤ 1 such that

r ¼ L0xffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p : ð17Þ

It means that we have extended the physical domain to
include negative values of r or −∞ < r < ∞. In the
sequence, we choose the Chebyshev-Gauss-Lobatto points
xj as

xj ¼ cos

�
πj

2ðN þ 1Þ
�
; ð18Þ

where j ¼ 0; 1;…; 2ðN þ 1Þ. From these points, we select
N þ 1 collocation points in the region 0 ≤ r < ∞ by
setting j ¼ 1; 2;…; N þ 1. Notice that the point rNþ1

corresponds to the origin.
The scheme of integration is described as follows. From

the initial data ϕð0; tÞ ¼ ϕ0ðrÞ and Πð0; tÞ ¼ Π0ðrÞ, we
determine the initial values ϕjð0Þ, Πjð0Þ as well the initial
modes ϕ̂kð0Þ. In the sequence, we calculate the initial
values of ϕj;t andΠj;t from Eqs. (14) and (15), respectively,
allowing the determination of the values ϕj, Πj in the next
time step. We repeat the process and providing the scalar

field evolution. We remark that, in the specific numerical
investigation of oscillons, it is necessary to perform
integration for long times, typically until t≳ 104. It
requires the introduction of some sort of dissipation to
absorb the scalar field radiation at large distances. We have
added the dissipation term −γ0ðrÞΠ on the rhs of Eq. (5)
with the coefficient γ0 given by

γ0ðrÞ ¼
1

2
K2

0½1þ tanhðr − rabsÞ�; ð19Þ

where rabs indicates the starting point of the damping term.
As we are going to see next, rabs has to be larger than the
bubble’s core.

III. VALIDATING THE CODE

In all numerical tests, we have considered the initial data
Π0 ¼ Πð0; rÞ ¼ 0, and ϕ0ðrÞ ¼ ϕð0; rÞ as a Gaussian-
shaped function used for most of the works on oscillons:

ϕ0ðrÞ ¼ ðϕc − ϕvacÞe−r2=r20 þ ϕvac; ð20Þ

where ϕc and ϕvac are scalar field values at the bubble’s
core and the global vacuum; r0 is a control parameter.
By fixing ϕc and ϕvac, the long-lived oscillons emerge
in the interval Rmin ≤ r0 ≤ Rmax depending on the poten-
tial VðϕÞ under consideration. In what follows, we have
fixed ϕc ¼ 1 and ϕvac ¼ −1 and performed all numerical
experiments with the Cash-Karp adaptive step size
integrator [29].
The first numerical test is to verify the balance of the

scalar field energy due to the presence of the dissipative
term. The total energy of the scalar field is

E ¼ 4π

Z
∞

0

�
1

2
Π2 þ 1

2
ϕ2
;r þ VðϕÞ

�
r2dr: ð21Þ

Here, we assume that VðϕÞ is the symmetric double-well
potential given by

VðϕÞ ¼ 1

4
ðϕ2 − ϕ2

vacÞ2: ð22Þ

By considering the dissipative term (19), the total energy
E is no longer conserved but satisfies the following exact
balance equation

CðtÞ≡ dE
dt

þ 4π

Z
∞

0

γ0ðrÞΠ2r2dr ¼ 0; ð23Þ

where we introduce the function CðtÞ to indicate the error
of the numerical solution. We proceed by calculating both
terms arising from the spectral algorithm with increasing
resolution and selecting the maximum deviation jCmaxj.
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In the Appendix, we present the details of the approxima-
tions for calculating the total energy E and the integral
involving the dissipative term.
For the sake of illustration, we present in Fig. 1(a) the

plots of dEdt and the integral of the dissipative term present in
Eq. (22). We have fixed the following parameters: r0 ¼ 2.5,
K0 ¼ 0.5, rabs ¼ 30, map parameter L0 ¼ 30, and the
truncation order N ¼ 200 with the integration until
t ¼ 2; 000. Figure 1(b) shows a clear exponential decay
of the maximum deviation jCmaxj with the increase of the
resolution characterized by the truncation order N. Notice
that we have obtained a maximum deviation of order of
Oð10−9Þ for N ¼ 350.
The remaining tests are qualitative in the sense of

reproducing some of the results found in the Copeland,
Gleiser, and Muller (CGM) [24] paper using the present
numerical algorithm. In all numerical experiments, we have
set a resolution of N ¼ 250, map parameter L0 ¼ 15, and
introduced the dissipation γ0ðrÞ given by Eq. (19).

As pointed out by CGM [24], the Gaussian bubbles are
sensitive to the value of r0 with fixed ϕc ¼ −ϕvac ¼ 1 to
achieve the stage of oscillon. Accordingly, in the interval,
2.4≲ r0 ≲ 4.5, the scalar field undergoes a stage of the
oscillatory, long-lived stability period with almost no
energy radiated away. This oscillatory stage is known as
the oscillon stage and has a duration of about 103–104. The
range of r0 depends on the initial profile of the bubble, but
the subsequent oscillatory stage, or the generated oscillon,
is the same.
We present in Fig. 2 the bubble’s total energy defined by

EbðtÞ ¼ 4π

Z
rs

0

�
1

2
Π2 þ 1

2
ϕ2
;r þ VðϕÞ

�
r2dr; ð24Þ

for several values of r0, and taking into account an
additional initial data ϕ0ðrÞ ¼ − tanhðr − r0Þ. Here,
rs ≫ r0, and by following CGM [24] we have set
rs ¼ 10 and 15 for the Gaussian and tanh bubbles,
respectively. It is remarkable to notice that after the bubbles
released a fraction of their energy, the oscillon stage
emerges with nearly constant energy regardless of the
initial configuration and the initial radius r0. In the panels

FIG. 1. Upper panel: samples of dE=dt < 0 and the integral of
the dissipation term given by the second term on the rhs Eq. (22).
Lower panel: log-plot of the maximal devitation, jCmaxj, versus
the truncation order N showing a clear exponential decay. We
have set r0 ¼ 2.5 and map parameter L0 ¼ 30. The final time of
integration is tf ¼ 2000.

FIG. 2. Plots of the bubbles’ energy versus time for several
values of r0. The continuous and dashed lines correspond to the
Gaussian and tanh initial configurations, respectively.

T. S. MENDONÇA and H. P. DE OLIVEIRA PHYS. REV. D 105, 116028 (2022)

116028-4



of Fig. 2, the continuous and dashed lines correspond to the
Gaussian and tanh bubbles, respectively.
Figure 3 shows another qualitative validation of our

numerical approach. We exhibit in Fig. 3(a) the evolution of
the scalar field at the origin, ϕð0; tÞ, during the oscillon
stage with r0 ¼ 2.7. In Fig. 3(b), we have a sequence of
snapshots of the oscillon with r0 ¼ 2.5. These figures are in
agreement with Fig. 4 found in Ref. [24].
An advantageous way of visualizing the evolution of

the oscillon at the origin r ¼ 0 is using the phase portrait
as shown in Fig. 4. We have considered the time interval
Δt ¼ 1.0 and r0 ¼ 3.0 according to Ref. [24]. At the end
of evolution, the spiraling indicates the collapse of the
oscillon into ϕvac ¼ −1. The total time of integration was
tf ¼ 6000.

IV. (VERY) LONG LIVED OSCILLONS

In this section we have performed numerical simulations
to achieve the oscillon phase starting from the initial
Gaussian profile (19) with ϕc ¼ −ϕvac ¼ 1 leaving r0 as
a free parameter, but with the new potentials (1) and (2).
We have set the minimum and maximal resolutions

characterized by N ¼ 600 and 1000, respectively, map
parameter L0 ¼ 20, and the dissipation factor γ0ðrÞ given
by Eq. (19), where K0 ¼ 0.15 and rabs ≥ 10r0. In all
simulations, we have monitored the error in the energy
balance measured by CðtÞ [cf. Eq. (23)] such that the
maximal deviation is of order Oð10−4Þ. We have noticed
that, by increasing n in the potential (1), we increase the
order of the nonlinear terms, which requires a better
resolution to achieve the maximal deviation in the energy
balance.
In the sequence, we have focused on characterizing the

long-lived oscillon states mainly through the plots of the
bubble energy given by Eq. (24), where rs ¼ 15 in all
numerical experiments.
We start with the compacton potential (1). Figures 5

and 6 show the plots of the bubble energy for n ¼ 2 and
n ¼ 3, respectively, with the respective values of the radius

t=501.3

t=503.9

FIG. 3. Upper panel: time evolution of the scalar field at the
origin or the bubble’s core during the oscillon stage for the
Gaussian initial configuration with r0 ¼ 2.7. Lower panel: snap-
shots of the oscillon with r0 ¼ 2.5. As in Ref. [24], the snapshots
are Δt ¼ 0.2 apart.

FIG. 4. Phase space portrait of an oscillon stage for r0 ¼ 3.0.
The sampling is taken at each Δt ¼ 1.

FIG. 5. Time evolution of the bubble energy,EbðtÞ [cf. Eq. (24)],
for the compacton potential (1) for n ¼ 2 and distinct values of
the bubble’s radius r0. We have used the resolution N ¼ 600 and
rabs ¼ 30.
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r0 indicated. We noticed the three typical stages consistent
with the emergence of oscillons in the case n ¼ 1. In the
first stage, the bubble releases most of its energy. It is
followed by a stage of approximately constant energy
represented by a plateau with the scalar field undergoing
oscillations in a finite region. During the last stage of
evolution, the scalar field has its amplitude decreasing, and
eventually the oscillon radiates away its remaining energy.
Apart from these features that effectively attest to oscillon
configurations’ existence, we highlight two distinct
aspects. The first aspect is a large amount of bubbles’
energy released in the first stage, increasing with n. More
precisely, for n ¼ 2, we have about 29.78% of the initial
bubble energy in the oscillon configuration, while for
n ¼ 3, the oscillon configuration has only about 17.76%.
For reference, we have considered evaluating the bubble
initial energy corresponding to the value of r0 that produces
the longest living oscillon phase and summarized the
results in Table I. For the sake of illustration, we present
in Fig. 7 the phase diagram for the oscillon with n ¼ 2 and
r0 ¼ 94. There are indications of the time duration of each
phase of the oscillon evolution.
The second and more significant feature is the

extended amount of duration of the oscillon, which are

tmax ∼ 1.8 × 105 and tmax ∼ 3.0 × 105, for n ¼ 2, 3, respec-
tively. Notice that these values are much larger than the
longest-lived oscillon of the ϕ4 model (n ¼ 1),
tmax ∼ 9.9 × 103. For comparative purposes, we can see
from Table I that for n ¼ 1 nearly 52.33% of the initial
bubble energy is stored in the oscillon phase.
The numerical simulations indicate clearly that the

increase of n can produce an oscillon configuration settled
with a smaller fraction of the initial bubble energy.
We show in Fig. 8 the time evolution of the bubble energy
for n ¼ 4, where the oscillon phase has retained approx-
imately 7.75% of the bubble’s initial energy. In this case,
tmax ∼ 2.5 × 105 for r0 ¼ 0.7.
We further remark that in all cases, n ¼ 2; 3; 4, there

exists a minimum value of the bubble radius for the scalar

FIG. 7. Phase space portrait of the oscillon evolution for n ¼ 2
[cf. Eq. (1)] and r0 ¼ 0.94. For clarity, we have depicted phases
with approximately the same time interval in distinct colors. We
also assumed the sampling at every Δt ¼ 10.

FIG. 6. Time evolution of the bubble energy, EbðtÞ
[cf. Eq. (24)], for the compacton potential (1) for n ¼ 3 and
distinct values of the bubble’s radius r0. We have used the
resolution N ¼ 700 and rabs ¼ 40.

TABLE I. Approximate amount of energy stored in the oscillon
phase for n ¼ 1; 2; 3, and 4 for the compacton potential (1).

n
Eb
Einit

× 100ð%Þ
1 (ϕ4 model) 52.33
2 29.78
3 17.76
4 7.75

FIG. 8. Time evolution of the bubble energy, EbðtÞ
[cf. Eq. (24)], for the compacton potential (1) for n ¼ 4 and
distinct values of the bubble’s radius r0. We have used the
resolution N ¼ 750 and rabs ¼ 15.

T. S. MENDONÇA and H. P. DE OLIVEIRA PHYS. REV. D 105, 116028 (2022)

116028-6



field to undergo in the oscillon configuration. However, we
have not searched for the expected maximum radius as
expected, but it seems to encompass relatively large values
compared with the ϕ4 oscillons.
Another long-lived oscillon phase is obtained with the

modified ϕ6 model potential [cf. Eq. (2)], where we have
fixed ϵ ¼ 1. We depict in Fig. 9 the time evolution of the
bubbles’ energies for several values of r0. The plots reveal a
long oscillon phase with about 54% of the initial bubble
energy lasting to tmax ∼ 1.7 × 105. For the sake of com-
pleteness, we present in Fig. 10 the scalar field at the origin
or the bubble’s core and the evolution of the phase diagram
for the oscillon with r0 ¼ 4 and starting at t ∼ 1.7 × 105.
The colors indicate distinct oscillon’s radius during its
lifetime.

V. SUMMARY AND CONCLUSIONS

This paper presents convincing numerical evidence
of very long-living 3þ 1 spherically symmetric oscillons.
We have focused on two different potentials instead of the
traditional double-well potential of the ϕ4 model. The first
is the compacton potential [cf. Eq. (1)], which describes
(1þ 1)-dimensional topological defects with compact sup-
port as a generalization of the kinks of the ϕ4 model. The
second is a modified or parametric ϕ6 potential proposed
originally in Ref. [21]. Both potentials belong to higher-
order field theories. However, for highly long-lived oscil-
lons belonging to different potentials, see Refs. [16–18].
We have implemented a Galerkin-collocation spectral

code to evolve the Klein-Gordon equation for extended
time intervals. The novelty here is to use a set of basis
functions in which each component satisfies the even parity
condition about the origin. The algorithm proved to be
exponentially convergent, and, as a qualitative validation
test, we reproduced most of the results of Ref. [24].
The main result, however, is to show the existence of

oscillon phases with highly long lifetimes about t ∼Oð105Þ
without fine-tuning the parameter r0 [cf. Eq. (20)]. We
observed that by increasing n present in the compacton
potential, more energy is radiated away before the oscillon
phase begins, as indicated in Table I. On the other hand,
oscillons generated with the ϕ6 potential retain about 54%
of the initial bubble energy. It is approximately the same as
the oscillons of the ϕ4 model.
We indicate some directions related to the present work.

It is clear the relation between the radial parameter r0
and the life span of the oscillon phase. We believe in the
existence of a resonant structure as described in Ref. [11],
albeit not investigate it thoroughly. Therefore, we can find
oscillons with a more significant duration. Another feature

FIG. 9. Time evolution of the bubble energy,EbðtÞ [cf. Eq. (24)],
for the potential (2) for ϵ ¼ 1 and distinct values of the
bubble’s radius r0. We have used the resolution N ¼ 600 and
rabs ¼ 30.

(a) (b)

FIG. 10. (a) Time evolution of the scalar field at the origin or the bubble’s core for the parametric potential ϕ6 with ϵ ¼ 1, r0 ¼ 4 and
L0 ¼ 20. (b) Phase space portrait depicting phases with approximately the same time interval in distinct colors. We assumed the
sampling at every Δt ¼ 1.
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of interest is the virialization [24] associated with the
longer lifetime of the oscillon. The 2d oscillons is another
possibility worth investigating, where we have prelimi-
narily examined the potential (1) with n ¼ 2 with the
oscillon phase lasting more than t ∼ 106 for a suitable value
of r0. Finally, the study of oscillons in curved spacetimes
with the new potentials (1) and (2) would be an interesting
generalization of the study of Ref. [30].
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APPENDIX: SCALAR FIELD ENERGY

We present the procedure to calculate the scalar field
energy given by Eq. (20), the integration with the dis-
sipative term that appears in the energy balance equa-
tion (21) and the bubble’s energy [cf. Eq. (25)].
We employ the Curtis-Clenshaw formula to approximate

all integrals. The first step is to map the integration over
the entire spatial domain 0 ≤ r < ∞ into a computational
domain labeled by −1 ≤ ξ ≤ 1 using the algebraic map

r ¼ L0

ð1þ ξÞ
1 − ξ

;

where L0 is the map parameter. Then, it follows that

E ¼ 4π

Z
1

−1

�
1

2
Π2 þ 1

2
ϕ2
;x

�
∂x
∂r

�
2

þ VðϕÞ
�
rðξÞ2 dr

dξ
dξ

≈
XNq

k¼0

ð…Þkwk: ðA1Þ

Here Nq ¼ 2N is the quadrature truncation order, ð…Þk
means the integrand evaluated at the quadrature
Chebyshev-Gauss-Lobatto collocation points ξk given by

ξk ¼ cos

�
πk
Nq

�
;

for all k ¼ 0; 1;…; Nq. The weights are

w0 ¼ wNq
¼ 1

N2
q − 1

; ðA2Þ

wk ¼
4

Nq

XNq=2

j¼0

cos

�
2πjk
Nq

�
1

cjð1 − 4j2Þ ; ðA3Þ

where c0¼cNq=2¼2 and cj ¼ 1 for j ¼ 1; 2;…; Nq=2 − 1.
With the values of energy evaluated at each instant from

Eq. (A1), we can calculate its time derivative using finite
differences:

�
dE
dt

�
tj

¼ 1

2δtj
½Eðtj þ δtjÞ − Eðtj − δtjÞ�; ðA4Þ

where δtj ¼ tjþ1 − tj is the step size.
For the evaluation of the bubble’s energy, we have first

mapped the integration interval 0 ≤ r < rs into −1 ≤ ξ ≤ 1
with a linear map, r ¼ rsð1þ ξÞ=2, and applied the Curtis-
Clenshaw formula straight forwardly as presented.
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