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In the SUð3ÞF symmetry limit, using two- and three-particle distribution amplitudes of B�-meson for Bs,
the transition form factors of semileptonic Bs → K�

0ð1430Þ decays are calculated in the framework of the
light-cone sum rules. The two-particle distribution amplitudes, φþðωÞ and φ−ðωÞ have the most important
contribution in estimation of the form factors fþðq2Þ, f−ðq2Þ, and fTðq2Þ. The knowledge of the behavior
of φþðωÞ is still rather limited. Therefore, we consider three different parametrizations for the shapes of
φþðωÞ that are derived from the phenomenological models. Using the form factors fþ, f−, and fT , the
semileptonic Bs → K�

0ð1430Þlν̄l and Bs → K�
0ð1430Þll̄=νν̄, l ¼ e, μ, τ decays are analyzed. The branching

fractions for the aforementioned decays, in addition the longitudinal lepton polarization asymmetries are
calculated. A comparison between our results with predictions of other approaches is provided.

DOI: 10.1103/PhysRevD.105.116027

I. INTRODUCTION

The scalar meson is a meson with total spin 0 and even
parity. They are often produced in proton-antiproton
annihilation, decays of heavy flavor mesons, meson-meson
scattering, and radiative decays of vector mesons. Among
the scalar mesons, study of the light scalar mesons up to
1.5 GeV is important because their quark content is still a
common problem for high energy physics and may be
explained in a number of different ways, for example,
considering as a meson-meson molecules state [1] or as a
tetraquark multiplet [2].
According to the quark model, the scalar mesons

about 1 GeV are arranged into two SUð3Þ nonets, in two
scenarios:
Scenario 1 (S1): the light scalar mesons are assumed to

compose from two quarks. The nonet mesons below 1 GeV
are treated as the lowest lying states, and the nonet mesons
near 1.5 GeV are the excited states corresponding to the
lowest lying states.
Scenario 2 (S2): the nonet mesons below 1 GeV may be

considered as four-quark bound states, and the other nonet
mesons are composed from two quarks and viewed as the
lowest lying states.
Both scenarios in quark model agree that K�

0ð1430Þ with
the mass of greater than 1 GeV is a scalar meson with two

quarks dominated by the sū or sd̄ state. However in S1, it is
regarded as an excited state, and in S2, it is seen as a ground
state. In the framework of the light-cone sum rules (LCSR),
differences between K�

0ð1430Þ states in the two scenarios
are applied through different distribution amplitudes (DA’s)
and decay constants [3].
In this paper, our aim is to consider the semileptonic

transitions of Bs to K�
0ð1430Þ in the LCSR using the

Bs-meson DA’s. In usual, the LCSR method is applied to
calculate the form factors of the heavy-to-light decays by
utilizing the light meson DA’s. For this purpose, two-point
correlation function is written based on the light meson.
Therefore, light-cone distribution amplitudes (LCDA’s)
of the light meson appear in theoretical calculations of
the correlation function [4–12]. The LCDA’s of the light
mesons are related to the dynamics of partons in long
distance. Still, there is very limited knowledge of the
nonperturbative parameters determining these LCDA’s.
In the case of the light scalar mesons, including
K�

0ð1430Þ, this problem is twofold because their internal
structures are basically unknown. For this reason, it is
necessary to use a method of calculation that is independent
of the DA’s of the scalar mesons.
In a new approach to the LCSR method related to the

semileptonic B decays, it was proposed to insert the
correlation function between vacuum and B-meson [13].
In this technique the so-called soft or endpoint, the
correlation function is expanded in terms of the DA’s of
B-meson, near the light-cone region [14,15]. Therefore, the
transition form factors for exclusive decays of B to light
mesons are connected to the DA’s that depend on the
dynamical information of B-meson. Two-particle DA of
B-meson, φþðωÞ plays a particularly prominent role in this
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new approach to exclusive semileptonic decays. The
knowledge of the behavior of φþðωÞ is still rather limited
due to the poor understanding of nonperturbative QCD
dynamics (for instance, see Refs. [16–19]). So far, several
models for the shape of φþðωÞ have been proposed based
on the QCD sum rules (QCDSR) [20,21], the LCSR
[22–28], and the QCD factorization [29]. Also, the func-
tional form of the three-particle B-meson DA’s have been
estimated in several models [14,29,30].
In this work, the form factors of the semileptonic Bs →

K�
0ð1430Þ transitions are investigated in the new approach

of the LCSR with the two- and three-particle DA’s of
Bs-meson in the SUð3ÞF symmetry limit. Utilizing these
form factors, the semileptonic Bs → K�

0ð1430Þlν̄l and
Bs → K�

0ð1430Þll̄=νν̄, l ¼ e, μ, τ decays are analyzed. In
the standard model (SM), the rare semileptonic Bs →
K�

0ð1430Þll̄ decays occur at loop level instead of tree level,
by electroweak penguin and weak box diagrams via the
flavor changing neutral current (FCNC) transitions of
b → dlþl− at quark level. In particle physics, reliable
considering of the FCNC decays of B-meson is very
important since they are sensitive to new physics (NP)
contributions to penguin operators. So, to test the SM and
look for NP, we need to determine the SM predictions for
FCNC decays and compare these results to the correspond-
ing experimental values.
This work is organized as follows: In Sec. II, according

to the effective weak Hamiltonian of the FCNC transition
b → dlþl−, the form factors of the semileptonic Bs → K�

0

decays are calculated with the LCSR model using the
Bs-meson DA’s. These form factors are basic parameters in
studying the forward-backward asymmetry, longitudinal
lepton polarization asymmetry and branching fraction of
semileptonic decays. Our numerical and analytical results
and their comparison with the predictions of other
approaches are presented in Sec. III. The last section is
dedicated to conclusion. Future experimental measurement
can give valuable information about these aforesaid decays
and the nature of the scalar meson K�

0ð1430Þ.

II. Bs → K�
0l

+ l − FORM FACTORSWITH THE LCSR

According to the effective weak Hamiltonian of the
b → dlþl− transition presented in Appendix, the matrix
element for the FCNC decay b → d can be written as:

M ¼ GFα

2
ffiffiffi
2

p
π
VtbV�

td

�
Ceff
9 d̄γμð1 − γ5Þbl̄γμl

þ C10d̄γμð1 − γ5Þbl̄γμγ5l

− 2Ceff
7

mb

q2
d̄iσμνqνð1þ γ5Þbl̄γμl

�
; ð1Þ

where GF is the Fermi constant, α is the fine structure
constant at Z mass scale, and Vij are elements of

the Cabbibo- Kobayashi-Maskawa (CKM) matrix.
d̄γμð1 − γ5Þb and d̄σμνqνð1þ γ5Þb are the transition cur-
rents denoted with JV−Aμ and JTμ , respectively. This decay
amplitude also contains two effective Wilson coefficients
Ceff
7 and Ceff

9 , where Ceff
7 ¼ C7 − C5=3 − C6 and Ceff

9 is
explained in Appendix.
To investigate the form factors of Bs → K�

0l
þl− decays

via the LCSR, the two-point correlation functions are

constructed from the transition currents JV−AðTÞμ , and
interpolating current JK

�
0 of the scalar meson K�

0, inserted
between vacuum and Bs-meson as follows:

ΠV−AðTÞ
μ ðp0; qÞ

¼ i
Z

d4xeip
0:xh0jTfJK�

0ðxÞJV−AðTÞμ ð0ÞgjBsðpÞi; ð2Þ

where T is the time ordering operator, JK
�
0 ¼ s̄ðxÞdðxÞ and

q ¼ p − p0. The external momenta p0 and q are related to

the interpolating and transition currents, JK
�
0 and JV−AðTÞμ

respectively, so that p2 ¼ ðp0 þ qÞ2 ¼ m2
B. The leading-

order diagram for Bs → K�
0l

þl− decays is depicted
in Fig. 1.
The correlation functions in Eq. (2) are complex

quantities and have two aspects: phenomenological and
theoretical. Hadronic parameters like form factors appear
in the phenomenological or physical representation of the
correlation functions. The theoretical or QCD side of the
correlation functions is obtained in terms of the DA’s of
Bs-meson. Equating coefficients of the corresponding
lorentz structures from both representations through the
dispersion relation,

Πμðp0; qÞ ¼ 1

π

Z
∞

0

ds
ImΠμðsÞ
s − p02 ; ð3Þ

and applying Borel transformation to suppress the con-
tributions of the higher states and continuum, the form
factors are calculated from the LCSR.
Inserting a complete set of intermediate states with the

same quantum number as the interpolating current JK
�
0 , in

Eq. (2), and isolating the pole term of the lowest scalar
meson K�

0, and then applying Fourier transformation, the
phenomenological representations of the correlation func-
tions are obtained, as follows:

b

d

s

q

’p

B
s
(p)

FIG. 1. Leading-order diagram for Bs → K�
0l

þl− decays.
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ΠV−AðTÞ
μ ðp0; qÞ ¼ 1

m2
K�

0
− p02 h0jJK

�
0ðp0ÞjK�

0ðp0ÞihK�
0ðp0ÞjJV−AðTÞμ jBsðpÞi

þ
X
h

1

m2
h − p02 h0jJK

�
0ðp0Þjhðp0Þihhðp0ÞjJV−AðTÞμ jBsðpÞi: ð4Þ

To continue, we define the spectral density functions of higher resonances and the continuum of states as

ρh;V−AðTÞμ ðsÞ≡ π
X
h

h0jJK�
0ðp0Þjhðp0Þihhðp0ÞjJV−AðTÞμ jBsðpÞiδðs −m2

hÞ: ð5Þ

Inserting the spectral density functions in Eq. (4), the correlation functions are obtained as

ΠV−AðTÞ
μ ðp0; qÞ ¼ 1

m2
K�

0
− p02 h0jJK

�
0ðp0ÞjK�

0ðp0ÞihK�
0ðp0ÞjJV−AðTÞμ jBsðpÞi þ

1

π

Z
∞

s0

ds
ρh;V−AðTÞμ ðsÞ
s − p02 ; ð6Þ

where s0 is the continuum threshold of K�
0 meson. The matrix element, h0jJK�

0 jK�
0i ¼ fK�

0
mK�

0
, where fK�

0
is the leptonic

decay constant of the scalar meson K�
0. Considering parity and using Lorentz invariance, the transition matrix elements,

hK�
0ðp0ÞjJV−AðTÞμ jBsðpÞi, can be parametrized as:

hK�
0ðp0ÞjJV−Aμ jBsðpÞi ¼ i½Pμfþðq2Þ þ qμf−ðq2Þ�;

hK�
0ðp0ÞjJTμ jBsðpÞi ¼ −

1

mBs
þmK�

0

½Pμq2 − qμðm2
Bs
−m2

K�
0
Þ�fTðq2Þ; ð7Þ

where fþðq2Þ, f−ðq2Þ and fTðq2Þ are the transition form factors, which only depend on the momentum transfer squared q2,
Pμ ¼ ðp0 þ pÞμ, and qμ ¼ ðp − p0Þμ. Substituting Eq. (7) in Eq. (6), we obtain

ΠV−A
μ ðp0; qÞ ¼ ifK�

0
mK�

0

�
Pμfþðq2Þ þ qμf−ðq2Þ

m2
K�

0
− p02

�
þ 1

π

Z
∞

s0

ds
ρh;V−Aμ ðsÞ
s − p02 ;

ΠT
μ ðp0; qÞ ¼ −

fK�
0
mK�

0

mBs
þmK�

0

�Pμq2 − qμðm2
Bs
−m2

K�
0
Þ

m2
K�

0
− p02

�
fTðq2Þ þ

1

π

Z
∞

s0

ds
ρh;Tμ ðsÞ
s − p02 : ð8Þ

To extract the theoretical or QCD side, the correlation functions in Eq. (2) are expanded in the limit of large mb in heavy
quark effective theory (HQET). In the HQET, the relation between the momentum and four-velocity of Bs-meson is as:
p ¼ mbvþ k, where k is the residual momentum. Using the relation p ¼ qþ p0 and p ¼ mbvþ k, the four-momentum
transfer q̃ is defined as: k − p0 ¼ q −mbv≡ q̃, where q̃ is called static part of q. Up to 1=mb corrections, the Bs-meson state

can be estimated by the relativistic normalization of it jBsðpÞi ¼ jBsðvÞi, and the correlation functions ΠV−AðTÞ
μ ðp0; qÞ can be

approximated to Π̃V−AðTÞ
μ ðp0; q̃Þ,

ΠV−AðTÞ
μ ðp0; qÞ ¼ Π̃V−AðTÞ

μ ðp0; q̃Þ þOð1=mbÞ: ð9Þ

Also, the b-quark field is substituted by the effective field as bðxÞ ¼ e−imbvxhvðxÞ. Therefore, the correlation functions in the
heavy quark limit, (mb → ∞), become [14]:

Π̃V−A
μ ðp0; q̃Þ ¼ i

Z
d4xeip

0:xh0jTfs̄ðxÞSdðxÞγμð1 − γ5Þhvð0ÞgjBsðvÞi;

Π̃T
μ ðp0; q̃Þ ¼ i

Z
d4xeip

0:xh0jTfs̄ðxÞSdðxÞσμνqνð1þ γ5Þhvð0ÞgjBsðvÞi: ð10Þ

The full-quark propagator, SdðxÞ of a massless quark in the external gluon field in the Fock-Schwinger gauge is as follows [31]:

SEMILEPTONIC BS → K�
0ð1430Þ … PHYS. REV. D 105, 116027 (2022)

116027-3



SdðxÞ ¼ i
Z

d4k
ð2πÞ4 e

−ik:x
�
=k
k2

þ
Z

1

0

duGλρðuxÞ
�
1

k2
uxλγρ −

1

2k4
=kσλρ

��
: ð11Þ

When the full-quark propagator SdðxÞ in Eq. (11) is replaced in Eq. (10), operators between vacuum mode and BsðvÞ-state
create the nonzero matrix elements as h0js̄αðxÞhvβð0ÞjBsðvÞi and h0js̄αðxÞGλρðuxÞhvβð0ÞjBsðvÞi. These matrix elements are
obtained in terms of two- and three-particle DA’s of Bs-meson, as [14]

h0js̄αðxÞhvβð0ÞjBsðvÞi ¼ −
ifBmB

4

Z
∞

0

dωe−iωv:x
�
ð1þ =vÞ

�
φþðωÞ −

=x
2v:x

ðφþðωÞ − φ−ðωÞÞ
�
γ5

�
βα

;

h0js̄αðxÞGλρðuxÞhvβð0ÞjBsðvÞi ¼
fBmB

4

Z
∞

0

dω
Z

∞

0

dξe−iðωþuξÞv:x
�
ð1þ =vÞ

�
ðvλγρ − vργλÞðΨAðω; ξÞ −ΨVðω; ξÞÞ

− iσλρΨVðω; ξÞ −
xλvρ − xρvλ

v:x
XAðω; ξÞ þ

xλγρ − xργλ
v:x

YAðω; ξÞ
�
γ5

�
βα

; ð12Þ

where φþ and φ− are the two-particle DA’s and ΨA, ΨV ,
XA, and YA are four independent three-particle DA’s of
Bs-meson.
To calculate the correlation functions in terms of

the two- and three-particle DA’s, we substitute Eq. (12)
in the matrix elements h0js̄αðxÞhvβð0ÞjBsðvÞi and
h0js̄αðxÞGλρðuxÞhvβð0ÞjBsðvÞi that appear in the correla-
tion functions and then the integrals are investigated.
Generally, the results of the calculations can be arranged
in the following form:

Π̃V−A
μ ðp0; q̃Þ ¼ i½Π̃þðp0; q̃ÞPμ þ Π̃−ðp0; q̃Þqμ�;
Π̃T

μ ðp0; q̃Þ ¼ Π̃Tðp0; q̃ÞPμ þ � � � ; ð13Þ

and Π̃þ, Π̃−, and Π̃T are presented as follows:

Π̃jðp0; q̃Þ ¼ 1

π

Z
∞

0

dσ
sðσÞ − p02 gjðσÞ; ð14Þ

where j ¼ þ;−; T. In this representation of the theoreti-
cal part of the correlation functions, σ ¼ ω=mBs

is the
integration variable, gjðσÞ is a function of σ in terms of the
Bs-meson DA’s, and sðσÞ is defined as

sðσÞ ¼ σm2
Bs
−
σ

σ̄
q2; ð15Þ

where σ̄ ¼ 1 − σ.
On the other hand, using the dispersion relation, the

theoretical part of the correlation functions Π̃j can be
related to its imaginary part as

Π̃jðp0; q̃Þ ¼ 1

π

Z
∞

0

ds
ImΠ̃jðsÞ
s − p02 : ð16Þ

At large spacelike p02, the quark-hadron duality approxi-
mation is employed as:

1

π

Z
∞

s0

ds
ρjðsÞ
s − p02 ≃

1

π

Z
∞

s0

ds
ImΠ̃jðsÞ
s − p02 ; ð17Þ

where ρjðsÞ is the functional part of the tensor ρhμ so that an
expression similar to Eq. (13) can be written for it. Using
Eqs. (16) and (17) in Eq. (8), and equating the coefficients
of the Lorentz structures Pμ and qμ, leads to the following
result.

1

π

Z
s0

0

ds
ImΠ̃�ðsÞ
s − p02 ¼ fK�

0
mK�

0

m2
K�

0
− p02 f�ðq2Þ;

1

π

Z
s0

0

ds
ImΠ̃TðsÞ
s − p02 ¼ −

fK�
0
mK�

0

mBs
þmK�

0

q2fTðq2Þ
m2

K�
0
− p02 : ð18Þ

Finally, according to Eq. (14) and Eq. (16), it can be
concluded that

1

π

Z
σ0

0

dσ
sðσÞ − p02 g�ðσÞ ¼

fK�
0
mK�

0

m2
K�

0
− p02 f�ðq2Þ;

1

π

Z
σ0

0

dσ
sðσÞ − p02 gTðσÞ ¼ −

fK�
0
mK�

0

m2
K�

0
− p02

q2fTðq2Þ
mBs

þmK�
0

: ð19Þ

To determine the effective threshold σ0, the continuum
threshold of K�

0 meson s0 is replaced in Eq. (15) instead
of s. A quadratic equation is created based on the variable
σ. By solving this equation, the value of σ0 is determined as
follows:

σ0 ¼
s0 þm2

Bs
− q2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 þm2

Bs
− q2Þ2 − 4s0m2

Bs

q
2m2

Bs

: ð20Þ

Applying Borel transformation with respect to the
variable p02 as:
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Bp02ðM2Þ
�

1

p02 −m2

�
n
¼ ð−1Þn

ΓðnÞ
e−

m2

M2

ðM2Þn ; ð21Þ

in Eq. (19) in order to suppress the contributions of the higher states, the form factors are obtained via the LCSR in terms of
the two- and three-particle DA’s of Bs-meson. Our results for fþðq2Þ, f−ðq2Þ, and fTðq2Þ are presented as:

fþðq2Þ ¼
fBs

m2
Bs

2fK�
0
mK�

0

e

m2
K�
0

M2

Z
σ0

0

dσe−
sðσÞ
M2

�
φþðσmBs

Þ− φ̃þðσmBs
Þ− φ̃−ðσmBs

Þ
σ̄mBs

þ
Z

σmBs

0

dω
Z

∞

σmBs−ω

dξ
ξ

��
ð2uþ 2Þ

�
q2 − σ̄2m2

Bs

σ̄3M2
þ 1

σ̄2

�
þ ð2uþ 1Þm2

Bs

σ̄M2

�
ΨAðω;ξÞ−ΨVðω; ξÞ

m2
Bs

þ 6u
σ̄M2

ΨVðω; ξÞ þ
�
ð2u− 1Þ

�
q2 − σ̄2m2

Bs

σ̄3M4
þ 1

σ̄2M2

�
þ 3

σ̄2M2

�
X̃Aðω; ξÞ
mBs

−
4ðuþ 3Þ
σ̄2M2

ỸAðω; ξÞ
mBs

��
;

f−ðq2Þ ¼ −
fBs

m2
Bs

2fK�
0
mK�

0

e

m2
K�
0

M2

Z
σ0

0

dσe−
sðσÞ
M2

�ð1þ σÞ
σ̄

φþðσmBs
Þ þ φ̃þðσmBs

Þ− φ̃−ðσmBs
Þ

σ̄mBs

−
Z

σmBs

0

dω
Z

∞

σmBs−ω

dξ
ξ

��
ð2uþ 2Þ

�
q2 − σ̄2m2

Bs

σ̄3M2
þ 1

σ̄2

�
−
ð2uþ 1Þð1þ σÞm2

Bs
Þ

σ̄2M2

�
ΨAðω; ξÞ−ΨVðω; ξÞ

m2
Bs

þ 6uð1þ σÞ
σ̄2M2

ΨVðω; ξÞ þ
�ð2u− 1Þð1þ σÞ

σ̄

�
q2 − σ̄2m2

Bs

σ̄3M4
þ 1

σ̄2M2

�
þ 4ðuþ σ̄Þ

σ̄3M2

�
X̃Aðω;ξÞ
mBs

þ 4ðuþ 3Þ
σ̄2M2

ỸAðω; ξÞ
mBs

��
;

fTðq2Þ ¼
fBs

mBs
ðmBs

þmK�
0
Þ

2fK�
0
mK�

0

e

m2
K�
0

M2

Z
σ0

0

dσe−
sðσÞ
M2

�
φþðσmBs

Þ
σ̄

þ
Z

σmBs

0

dω
Z

∞

σmBs−ω

dξ
ξ

��
6u

σ̄2M2

�
ΨVðω; ξÞ

þ
�
2uþ 1

σ̄2M2

�
ðΨAðω; ξÞ−ΨVðω;ξÞÞ−

�
q2 − σ̄2m2

Bs

σ̄4M4
þ 2

�
X̃A

mBs

��
; ð22Þ

where:

u¼ σmBs
−ω

ξ
; φ̃�ðσmBs

Þ ¼
Z

σmBs

0

dτφ�ðτÞ;

X̃Aðω; ξÞ ¼
Z

ω

0

dτXAðτ;ξÞ; ỸAðω; ξÞ ¼
Z

ω

0

dτYAðτ; ξÞ:

III. NUMERICAL ANALYSIS

In this section, our numerical analysis of the form
factors fþ, f− and fT is presented for the semileptonic
Bs → K�

0 decays. The values are chosen for masses in GeV
as: mBs

¼ 5.37, mK�
0
¼ ð1.43� 0.05Þ, mτ ¼ 1.78, and

mμ ¼ 0.11 [32]. The leptonic decay constants are taken
as: fK�

0
¼ ð427� 85Þ MeV [33], and fBs

¼ ð230.3�
1.3Þ MeV [34]. Moreover, the continuum threshold of
K�

0 meson, s0 is equal to ð4.4� 0.4Þ GeV2 [33]. The

values of the parameters λ2E and λ2H of the Bs-meson
DA’s are chosen as: λ2E ¼ ð0.01� 0.01Þ GeV2 and λ2H ¼
ð0.15� 0.05Þ GeV2 [35].
The two-particle DA’s of Bs-meson, φþðωÞ and φ−ðωÞ

have the most important contribution in estimation of
the form factors fþ, f−, and fT . The knowledge of the
behavior of φþðωÞ is still rather limited. However, the
evolution effects shows that for sufficiently large values
of μ, the DA φþðωÞ satisfies the condition φþðωÞ ∼ ω as
ω → 0 and falls off slower than 1=ω for ω → ∞, which
implies that the normalization integral of the φþ is
ultraviolet divergent. Without considering the radiative
OðαsÞ corrections, the ultraviolet behavior of the φþ plays
no role at the leading order (LO) [36]. Also, the next-to-
leading order (NLO) effects have already been taken into
account in more elaborated models of φþ based on the
HQET sum rules [21]. In this work, we use three
phenomenological models for the shape of the DA φþ
as [28]:
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Model I∶ φþðωÞ ¼
�
ð1 − aÞ þ aω

2ω0

�
ω

ω2
0

e−ω=ω0 ; 0 ≤ a ≤ 1

Model II∶ φþðωÞ ¼
1

Γð2þ bÞ
ω1þb

ω2þb
0

e−ω=ω0 ; −0.5 < b < 1

Model III∶ φþðωÞ ¼
ffiffiffi
π

p
2Γð3=2þ cÞ

ω

ω2
0

e−ω=ω0Uðc; 3=2 − c;ω=ω0Þ; 0 < c < 0.5 ð23Þ

where Uðα; β; zÞ is the confluent hypergeometric function
of the second kind. In our calculations, we take the upper
limiting values for two parameters a and c, hence a ¼ 1,
c ¼ 0.5. It is remarkable that for b ¼ 1, the shape of φþ in
model II become the same as that in model I for a ¼ 1,
therefore we take b ¼ 0.5. The corresponding expression of
φ−ðωÞ for each model is determined by the equation-of-
motion constraint in the absence of contributions from the
three-particle DA’s as [37]:

φ−ðωÞ ¼
Z

1

0

dτ
τ
φþðω=τÞ: ð24Þ

The shape parameter ω0, that is a parameter of Bs-meson,
can be converted to λBðμ ¼ 1 GeVÞ that is the inverse
moment of φþðω; μÞ [36]. Prediction of the λB value is
varied in different models, for example λB ¼ ð460�
110Þ MeV calculated using the two-point QCD sum rules
[21], λB ¼ ð460� 160Þ MeV estimated via the LCSR
approach [13], λB ¼ ð350� 150Þ MeV adopted in the
QCD factorization approach [38], and λB ¼ ð360�
110Þ MeV inferred from analyzing the B̄u → γl−ν̄ decay
by the LCSR [39]. In addition, a central value λB >
238 MeV has been provided by the BELLE collaboration
at 90% credibility level [40]. The values of λB discussed
here, are valid just for B�-meson and are applicable for Bs

only in the SUð3ÞF symmetry limit. Recently, the inverse
moment of the Bs-meson distribution amplitude has been
predicted from the QCD sum rules (QCDSR) as λBs

¼
ð438� 150Þ MeV [41]. This value is a reasonable choice
for the numerical analysis of the semileptonic Bs → K�

0

form factors. In this work, we take ω0 ¼ λBs
and use the

value ð438� 150Þ MeV for it. The dependence of the two-
particle DA’s with respect to ω is shown in Fig. 2 for the
three models in Eq. (23).
Comparing to the two-particle DA’s, the contribution of

the three-particle DA’s is less than 10% in calculations of
the form factors. The three-particle DA’s are related to a
basis of DA’s such as ϕ3;ϕ4;ψ4 and ψ5 with definite twist,
as follows [29]:

ΨAðω; ξÞ ¼
1

2
½ϕ3ðω; ξÞ þϕ4ðω; ξÞ�;

ΨVðω; ξÞ ¼
1

2
½−ϕ3ðω; ξÞ þϕ4ðω; ξÞ�;

XAðω; ξÞ ¼
1

2
½−ϕ3ðω; ξÞ−ϕ4ðω; ξÞ þ 2ψ4ðω; ξÞ�;

YAðω; ξÞ ¼
1

2
½−ϕ3ðω; ξÞ−ϕ4ðω; ξÞ þψ4ðω; ξÞ− ψ5ðω;ξÞ�:

ð25Þ

FIG. 2. The dependence of φþðωÞ and φ−ðωÞ on ω for the three models.
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So far, several models have been proposed for the shape
of ϕ3, ϕ4, ψ4, and ψ5. Since the structure of φþ in three
models in Eq. (23) is the exponential form, we choose the
exponential model for the functions ϕ3, ϕ4, ψ4, and ψ5,
presented as [29,30]:

ϕ3ðω;ξÞ ¼
λ2E− λ2H
6ω5

0

ωξ2e−
ωþξ
ω0 ; ϕ4ðω;ξÞ ¼

λ2Eþ λ2H
6ω4

0

ξ2e−
ωþξ
ω0 ;

ψ4ðω;ξÞ ¼
λ2E
3ω4

0

ωξe−
ωþξ
ω0 ; ψ5ðω;ξÞ ¼−

λ2E
3ω3

0

ξe−
ωþξ
ω0 : ð26Þ

To analyze the form factors fþ, f−, and fT , the value of
the Borel parameterM2 must also be determined. The Borel
parameter M2 is not physical quantity, so the physical
quantities, form factors, should be independent of it. The
working region for M2 is determined by requiring that the
contributions of the higher states and continuum are
effectively suppressed. The dependence of the form factors
fþ, f− and fT on the Borel parameter M2 is shown in

Fig. 3, for the three models in ω0 ¼ 438 MeV, and
q2 ¼ 0 GeV2. This figure shows a good stability of the
form factors with respect to the Borel parameter in the
interval: 2.5 GeV2 ≤ M2 ≤ 3.5 GeV2. We take M2 ¼
3 GeV2 in our calculations. Uncertainties originated from
the Borel parameter M2 in this region are about 5%.
Having all these input values and parameters, we

proceed to carry out numerical calculations. Inserting the
values of the masses, leptonic decay constants, continuum
threshold, Borel mass, the parameters of the Bs-meson
DA’s such as ω0 and other quantities that appear in the form
factors in Eq. (22), we can calculate the form factors of the
semileptonic Bs → K�

0 transitions at zero momentum trans-
fer, q2 ¼ 0 GeV2. Table I shows central values of the form
factors for the three models as well as sources of error and
also uncertainties caused by them, separately. As can be
seen ω0 and fK�

0
are the most significant sources of theory

uncertainties.
Taking into account all the uncertainty values except

ω0, the numerical values of the form factors fþ, f− and fT

FIG. 3. The dependence of the form factors fþ, f− and fT on the Borel parameter M2 for the three models in ω0 ¼ 438 MeV, and
q2 ¼ 0 GeV2.

TABLE I. Central values of the form factors for the three models, as well as sources of error and also uncertainties of the form factors.
The uncertainties Δ caused by the variations of the input parameters (δω0 ¼ �0.150 GeV, δfK�

0
¼ �0.085 GeV, δs0 ¼ �0.4 GeV2,

δmK�
0
¼ �0.05 GeV, δfBs

¼ �0.001 GeV, δλ2E ¼ �0.01 GeV2, δλ2H ¼ �0.05 GeV2, δM2 ¼ �0.5 GeV2).

Model Form factor Central value Δðω0Þ ΔðfK�
0
Þ Δðs0Þ ΔðmK�

0
Þ ΔðfBs

Þ Δðλ2EÞ Δðλ2HÞ ΔðM2Þ
I fþð0Þ þ0.283 þ0.252

−0.114
þ0.070
−0.047

þ0.024
−0.027

þ0.004
−0.003

þ0.002
−0.003

þ0.000
−0.000

þ0.004
−0.004

þ0.006
−0.007

f−ð0Þ −0.228 þ0.114
−0.262

þ0.038
−0.056

þ0.027
−0.024

þ0.003
−0.003

þ0.002
−0.002

þ0.002
−0.002

þ0.002
−0.001

þ0.011
−0.008

fTð0Þ þ0.324 þ0.326
−0.145

þ0.080
−0.054

þ0.030
−0.034

þ0.007
−0.006

þ0.003
−0.003

þ0.000
−0.001

þ0.001
−0.002

þ0.009
−0.012

II fþð0Þ þ0.412 þ0.279
−0.145

þ0.102
−0.069

þ0.025
−0.030

þ0.006
−0.005

þ0.003
−0.004

þ0.000
−0.000

þ0.003
−0.004

þ0.005
−0.005

f−ð0Þ −0.369 þ0.149
−0.293

þ0.061
−0.092

þ0.029
−0.027

þ0.004
−0.006

þ0.003
−0.004

þ0.001
−0.001

þ0.001
−0.002

þ0.009
−0.009

fTð0Þ þ0.495 þ0.363
−0.186

þ0.123
−0.082

þ0.033
−0.038

þ0.011
−0.009

þ0.004
−0.004

þ0.001
−0.001

þ0.002
−0.001

þ0.009
−0.009

III fþð0Þ þ0.511 þ0.195
−0.124

þ0.127
−0.085

þ0.015
−0.018

þ0.008
−0.005

þ0.005
−0.004

þ0.000
−0.000

þ0.004
−0.003

þ0.013
−0.007

f−ð0Þ −0.506 þ0.127
−0.188

þ0.084
−0.125

þ0.019
−0.014

þ0.006
−0.007

þ0.005
−0.004

þ0.001
−0.001

þ0.002
−0.001

þ0.005
−0.008

fTð0Þ þ0.644 þ0.243
−0.158

þ0.161
−0.107

þ0.019
−0.023

þ0.014
−0.011

þ0.006
−0.005

þ0.001
−0.000

þ0.002
−0.001

þ0.013
−0.007
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in q2 ¼ 0 GeV2 are presented in Table II for the three
models. This table also includes a comparison of our
results with the predictions of other approaches such as
the LCSR with the light-meson DA’s [42–44], perturbative
QCD (PQCD) [45] and QCDSR method [46,47]. As can
be seen, there is a very good agreement between our
results in model II and predictions of the conventional
LCSR with the light-meson DA’s in S2 [42]. As a result,
our calculations confirm scenario 2 for describing the
scalar meson K�

0.
Due to the presence of cutoff in the QCD calculations, we

look for a parametrization of the form factors to extend our
results to the full physical region, 0 ≤ q2 ≤ ðmBs

−mK�
0
Þ2.

Through fitting the results of the LCSR among the region
0 < q2 < 8 GeV2, we extrapolate them with the pole model
parametrization

fiðq2Þ ¼
fið0Þ

1 − αðq2=m2
Bs
Þ þ βðq2=m2

Bs
Þ2 ; ð27Þ

with the constants α and β determined from the fitting
procedure. The values of the parameters α and β are
presented in Table III for the three models. The values of
parameter fið0Þ expressed the form factor results at q2 ¼
0 GeV2 were listed in Table II, before.
The dependence of the form factors fþ, f− and fT on q2,

for the three models, is shown in Fig. 4. In this work, the
form factors are estimated in the LCSR approach up to the
three-particle DA’s of the Bs-meson. Our calculations show
that the most contributions comes from the two-particle
functions φ� for all form factors, so that the contributions
of the three-particle DA’s are less than 10% of the total. The
contributions of the two- and three-particle DA’s in the
form factors depict in Fig. 5 for model II, separately.
The form factors at large recoil should satisfy the

following relations [48]:

fTðq2Þ ¼
mBs

þmK�
0

mBs

fþðq2Þ ¼ −
mb

mBs
−mK�

0

f−ðq2Þ: ð28Þ

Figure 6 shows that the computed form factors from the
LCSR with the Bs-meson DA’s for the three models satisfy
the relations in Eq. (28), by considering the errors.
With the derived transition form factors, one can proceed

to perform the calculations on some interesting observables
in phenomenology, such as decay rate, polarization asym-
metry, and forward-backward asymmetry. Note that the
forward-backward asymmetry for the decay mode Bs →
K�

0l
þl− is exactly equal to zero in the SM [49].
The effective Hamiltonian for b → ulν̄l transition is

Heffðb→ ulν̄lÞ ¼
GFffiffiffi
2

p Vubūγμð1− γ5Þbl̄γμð1− γ5Þνl: ð29Þ

With this Hamiltonian, the q2 dependant decay width dΓ
dq2

can be expressed as [44]

dΓ
dq2

ðBs → K�
0lν̄lÞ ¼

G2
FjVubj2

384π3m3
Bs

ðq2 −m2
l Þ2

ðq2Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Bs
−m2

K�
0
− q2Þ2 − 4q2m2

K�
0

q �
ðm2

l þ 2q2Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Bs
−m2

K�
0
− q2Þ2 − 4q2m2

K�
0

q
f2þðq2Þ þ 3m2

l ðm2
Bs
−m2

K�
0
Þ2
�
fþðq2Þ þ

q2

m2
Bs
−m2

K�
0

f−ðq2Þ
�
2
�
; ð30Þ

where Vub ¼ ð3.82� 0.24Þ × 10−3, andml is the mass of the lepton. Integrating Eq. (30) over q2 in the whole physical region
m2

l ≤ q2 ≤ ðmBs
−mK�

0
Þ2, and using the total mean lifetime τBs

¼ ð1.509� 0.004Þ ps [32], we present the branching ratio

TABLE II. The form factors of the semileptonic Bs → K�
0

transitions at zero momentum transfer from the three models
and different approaches.

Method fþð0Þ f−ð0Þ fTð0Þ
This work (I) þ0.28þ0.11

−0.09 −0.10þ0.09
−0.19 þ0.32þ0.13

−0.11
This work (II) þ0.41þ0.14

−0.12 −0.37þ0.11
−0.14 þ0.50þ0.18

−0.14
This work (III) þ0.51þ0.16

−0.12 −0.51þ0.12
−0.16 þ0.64þ0.22

−0.15
LCSR(S2) [42] þ0.42þ0.13

−0.08 −0.34þ0.10
−0.10 þ0.52þ0.18

−0.08
LCSR(S2) [43] þ0.39þ0.04

−0.04 −0.25þ0.05
−0.05 þ0.41þ0.04

−0.04
LCSR(S2) [44] þ0.44 −0.44 � � �
PQCD(S2) [45] þ0.56þ0.16

−0.13 � � � þ0.72þ0.27
−0.17

LCSR(S1) [44] þ0.10 −0.10 � � �
PQCD(S1) [45] −0.32þ0.06

−0.07 � � � −0.41þ0.08
−0.09

QCDSR [46] þ0.24� 0.10 � � � � � �
QCDSR [47] þ0.25� 0.05 −0.17� 0.04 þ0.21� 0.04

TABLE III. The parameters α and β obtained for the form factors of the semileptonic B → K�
0 transitions for the three models.

fþðq2Þ f−ðq2Þ fTðq2Þ
Form factor model I II III I II III I II III

α −0.14 −0.24 −0.49 þ0.09 þ0.19 þ0.46 −0.14 −0.27 −0.60
β þ0.26 þ0.63 þ3.89 −0.14 −0.45 −3.76 þ0.25 þ0.69 þ5.00
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values of semileptonic decays Bs → K�
0lν̄l, (l ¼ μ, τ) in

Table IV, for the three models. Here, we should also stress
that the results obtained for the electron are very close to the
results of the muon, and for this reason, we only present the

branching ratios for the muon in our table. This table contains
the results estimated via the conventional LCSR with the
light-meson DA’s [42] and PQCD [45] through S2 as well as
QCDSR [46] approaches. Considering the range of errors, the

FIG. 5. The contributions of the two-particle DA’s (2P DA’s) and three-particle DA’s (3P DA’s) in the form factors fþðq2Þ, f−ðq2Þ and
fTðq2Þ for model II.

FIG. 6. The dependence of the form factors fþðq2Þ, −f−ðq2Þ and fTðq2Þ on q2 via the LCSR with the Bs-meson DA’s for the three
models.

FIG. 4. The dependence of the form factors fþðq2Þ, f−ðq2Þ, and fTðq2Þ of the semileptonic Bs → K�
0 transitions on q2 for the three

models.
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values obtained in this work are in a logical agreement with
the LCSR and PQCD results. Especially, the obtained values
of model II are in a good agreement with the conventional
LCSR. As can be seen in this table, uncertainties in the values
obtained for the branching ratios of the semileptonic decays
Bs → K�

0lν̄l are very large. The main source of errors comes
from the form factor fþðq2Þ. We show the dependency of the

differential branching ratios of Bs → K�
0lν̄l, (l ¼ μ, τ) decays

on q2 for the three models in Fig. 7.
The semileptonic decays Bs → K�

0l
þl−=νν̄ are induced

by the FCNC (Appendix). Using the parametrization of
these transitions in terms of the form factors, the differential
decay width in the rest frame of Bs-meson can be written
as:

dΓ
dq2

ðBs → K�
0νν̄Þ ¼

G2
FjVtdV�

tbj2m3
Bs
α2

28π5
jDνðxtÞj2
sin4θW

ϕ3=2ð1; r̂; ŝÞjfþðq2Þj2;

dΓ
dq2

ðBs → K�
0l

þl−Þ ¼ G2
FjVtdV�

tbj2m3
Bs
α2

3 × 29π5
vϕ1=2ð1; r̂; ŝÞ

��
1þ 2l̂

ŝ

�
ϕð1; r̂; ŝÞα1 þ 12l̂β1

�
; ð31Þ

where r̂, ŝ, l̂, xt and m̂b and the functions v, ϕð1; r̂; ŝÞ, DνðxtÞ, α1, and β1 are defined as:

r̂ ¼
m2

K�
0

m2
Bs

; ŝ ¼ q2

m2
Bs

; l̂ ¼ m2
l

m2
Bs

; xt ¼
m2

t

m2
W
; m̂b ¼

mb

mBs

; v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4l̂
ŝ

s
;

DνðxtÞ ¼
xt
8

�
2þ xt
xt − 1

þ 3xt − 6

ðxt − 1Þ2 ln xt
�
; ϕð1; r̂; ŝÞ ¼ 1þ r̂2 þ ŝ2 − 2r̂ − 2ŝ − 2r̂ ŝ;

α1 ¼
				Ceff

9 fþðq2Þ þ
2m̂bCeff

7 fTðq2Þ
1þ ffiffiffî

r
p

				2 þ jC10fþðq2Þj2;

β1 ¼ jC10j2
��

1þ r̂ −
ŝ
2

�
jfþðq2Þj2 þ ð1 − r̂ÞReðfþðq2Þf�−ðq2ÞÞ þ

1

2
ŝjf−ðq2Þj2

�
: ð32Þ

TABLE IV. The branching ratio values of Bs → K�
0lν̄l for the three models and different approaches.

This work

Mode I II III LCSR (S2) [42] PQCD (S2) [45] QCDSR [46]

BrðBs → K�
0μνμÞ × 104 0.99þ0.89

−0.37 1.67þ1.32
−0.53 1.90þ1.48

−0.63 1.30þ1.30
−0.40 2.45þ1.77

−1.05 0.36þ0.38
−0.24

BrðBs → K�
0τντÞ × 104 0.49þ0.33

−0.17 0.71þ0.57
−0.26 0.65þ0.55

−0.24 0.52þ0.57
−0.18 1.09þ0.82

−0.47 � � �

FIG. 7. Differential branching ratios of the semileptonic B → K�
0lνl decays on q2 for the three models.
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These expressions contain the Wilson coefficients
Ceff
7 ¼ −0.313, Ceff

9 (see Appendix) and C10 ¼ −4.669,
the CKM matrix elements jVtdV�

tbj ¼ 0.008, the form
factors related to the fit functions, series of functions
and constants. Integrating Eq. (31) over q2 in the physical
region 4m2

l ≤ q2 ≤ ðmBs
−mK�

0
Þ2, and using τBs

, the
branching ratio results of the Bs → K�

0l
þl−=νν̄ are

obtained for the three models as presented in Table V.
In this table, we show only the values obtained by
considering the short distance (SD) effects contributing
to the Wilson coefficient Ceff

9 for charged lepton case.
Predictions by the QCDSR [47], are smaller than those
obtained in this work, because of their estimated form
factors are smaller than ours (see Table II).
It should be noted that we have computed the branching

ratio values of Bs → K�
0l

þl− decays in the naive factori-
zation approximation using the factorizable LO quark-loop,
i.e., diagrams (a) and (b) in Fig. 8. In this method,
contributions of the O1−6 operators have the same form
factor dependence as C9 which can be absorbed into an
effective Wilson coefficient Ceff

9 .
For a complete analysis of the branching ratio values of

Bs → K�
0l

þl− decays at the LO, the contributions of the
weak annihilation amplitude of diagram (c) must be added
to the form factor amplitude related to diagrams (a) and
(b) in Fig. 8. Diagram (c) is related to the nonfactorizable
effects at the LO. They arise from electromagnetic
corrections to the matrix elements of purely hadronic
operators in the weak effective Hamiltonian. Since the
matrix elements of the semileptonic operatorsO9;10 can be
expressed through Bs → K�

0 form factors, nonfactorizable
corrections contribute to the decay amplitude only

through the production of a virtual photon, which then
decays into the lepton pair [50,51]. These contributions
for Bs → K�

0ð1430Þ decays are actually suppressed by
small Wilson coefficients of the penguin operators and can
therefore be neglected in the current analysis. In addition
to the factorizable and nonfactorizable LO diagrams
in Fig. 8, there are factorizable NLO quark-loop and
nonfactorizable NLO hard-scattering and soft-gluon con-
tributions in the FCNC b → s and b → d transitions and
the effects of them must be taken into account [52].
Considering the large current uncertainties due to the form
factors, the NLO effects can also be ignored in our
calculations.
In this part, the branching ratios including LD effects are

presented. In the range of 4m2
l ≤ q2 ≤ ðmBs

−mK�
0
Þ2, there

are two charm-resonances J=ψ and ψð2SÞ used in our
calculations. We introduce some cuts around the resonances
of J=ψ and ψð2SÞ and study the following three regions for
muon:

Region-1∶
ffiffiffiffiffiffiffiffi
q2min

q
≤

ffiffiffiffiffi
q2

q
≤ MJ=ψ − 0.20;

Region-2∶ MJ=ψ þ 0.04 ≤
ffiffiffiffiffi
q2

q
≤ Mψð2SÞ − 0.10;

Region-3∶ Mψð2SÞ þ 0.02 ≤
ffiffiffiffiffi
q2

q
≤ mBs

−mK�
0
; ð33Þ

and for tau:

Region-2∶
ffiffiffiffiffiffiffiffi
q2min

q
≤

ffiffiffiffiffi
q2

q
≤ Mψð2SÞ − 0.02;

Region-3∶ Mψð2SÞ þ 0.02 ≤
ffiffiffiffiffi
q2

q
≤ mBs

−mK�
0
; ð34Þ

where
ffiffiffiffiffiffiffiffi
q2min

p
¼ 2ml. The branching ratio values for muon

and tau for the three models with LD effects are listed in
Table VI. After numerical analysis, the dependency of the
differential branching ratios for Bs → K�

0l
þl−=νν̄ on q2 for

model II, with and without LD effects is shown in Fig. 9.
Finally, we want to calculate the longitudinal lepton

polarization asymmetries for the considered decays. The
longitudinal lepton polarization asymmetry formula for
Bs → K�

0l
þl− is given as:

TABLE V. The branching ratios of the semileptonic Bs → K�
0l

þl−=νν̄ decays for the three models, including only
the SD effects.

This work

Mode I II III QCDSR [47]

BrðBs → K�
0νν̄Þ × 107 0.98þ0.55

−0.27 1.66þ0.95
−0.46 1.89þ1.07

−0.52 0.25� 0.12
BrðBs → K�

0μ
þμ−Þ × 108 1.32þ0.75

−0.36 2.21þ1.24
−0.62 2.48þ1.38

−0.69 0.71� 0.29
BrðBs → K�

0τ
þτ−Þ × 109 0.61þ0.34

−0.17 0.63þ0.35
−0.17 0.45þ0.25

−0.12 0.35� 0.16

(a) (b) (c)

FIG. 8. Factorizable and nonfactorizable contributions in the
LO. The circled cross marks the possible insertions of the virtual
photon line.
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PL ¼ 2v

ð1þ 2l̂
ŝ Þϕð1; r̂; ŝÞα1 þ 12l̂β1

Re

�
ϕð1; r̂; ŝÞ

�
Ceff
9 fþðq2Þ −

2C7fTðq2Þ
1þ ffiffiffî

r
p

�
ðC10fþðq2ÞÞ�

�
; ð35Þ

where v; l̂; r̂; ŝ;ϕð1; r̂; ŝÞ; α1, and β1 were defined before. The dependence of the longitudinal lepton polarization
asymmetries for the Bs → K�

0l
þl−; ðl ¼ μ; τÞ decays on the transferred momentum square q2 for model II, with and without

LD effects is plotted in Fig. 10. The averaged values of the lepton polarization asymmetries of these decays for the three
models, without the LD contributions are obtained and presented in Table VII. These polarization asymmetries provide
valuable information on the flavor changing loop effects in the SM.

TABLE VI. The branching ratios of the semileptonic Bs → K�
0l

þl− decays for the three models including LD effects.

Region-1 Region-2 Region-3 Total

Mode I II III I II III I II III I II III

BrðBs → K�
0μ

þμ−Þ × 108 0.94 1.73 2.14 0.20 0.27 0.21 0.02 0.02 0.01 1.16 2.02 2.36
BrðBs → K�

0τ
þτ−Þ × 109 � � � � � � � � � 0.21 0.24 0.17 0.31 0.30 0.22 0.52 0.54 0.39

FIG. 9. The differential branching ratios of the semileptonic Bs → K�
0l

þl−=νν̄ decays (l ¼ μ, τ) on q2 for model II. The solid and
dotted lines show the results without and with the LD effects, respectively.

FIG. 10. The dependence of the longitudinal lepton polarization asymmetries on q2 for model II. The solid and dotted lines show the
results without and with the LD effects, respectively.
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IV. CONCLUSION

In summary, the transition form factors of the semi-
leptonic Bs → K0 transitions were calculated via the
LCSR with the Bs-meson DA’s in the SUð3ÞF symmetry
limit. We considered the three different models for the
shapes of the two-particle DA’s, φ�. It was shown that in
estimation of the form factors, the main uncertainties
came from the shape parameter ω0 and the decay constant
of the K�

0-meson. In this work, we used ω0 ¼ λBs
.

Recently, the inverse moment of the Bs-meson distribu-
tion amplitude, λBs

has been predicted from the QCDSR
method as λBs

¼ ð438� 150Þ MeV. There was a very
good agreement between our results for the form factors
at zero momentum transfer in model II and predictions of
the conventional LCSR with the light-meson DA’s in
scenario 2. Therefore, our calculations confirmed sce-
nario 2 for describing the scalar meson K�

0ð1430Þ. Using
the form factors fþðq2Þ, f−ðq2Þ and fTðq2Þ, the branching

ratio values for the semileptonic Bs → K�
0lνl and Bs →

K�
0ll̄=νν̄ (l ¼ e, μ, τ) decays were calculated. It is worth

mentioning that we computed the branching ratio values
of Bs → K�

0l
þl− decays in the naive factorization approxi-

mation. Considering the SD and LD effects, the depend-
ence of the differential branching ratios as well as the
longitudinal lepton polarization asymmetries for Bs →
K�

0ll̄ decays were investigated with respect to q2. Future
experimental measurement can give valuable information
about these aforesaid decays and the nature of the scalar
meson K�

0ð1430Þ.

APPENDIX: THE EFFECTIVE WEAK
HAMILTONIAN OF THE b → dl + l − TRANSITION

The effective weak Hamiltonian of the b → dlþl−
transition has the following form in the SM:

Hb→d
eff ¼ −

GFffiffiffi
2

p
�
VubV�

ud

X2
i¼1

CiðμÞOu
i ðμÞ þ VcbV�

cd

X2
i¼1

CiðμÞOc
i ðμÞ − VtbV�

td

X10
i¼3

CiðμÞOiðμÞ
�
;

where Vjk and CiðμÞ are the CKM matrix elements and Wilson coefficients, respectively. The local operators are current-
current operators Ou;c

1;2, QCD penguin operators O3−6, magnetic penguin operators O7;8, and semileptonic electroweak
penguin operators O9;10. The explicit expressions of these operators for b → dlþl− transition are written as [53]

O1 ¼ ðd̄icjÞV−A; ðc̄jbiÞV−A; O2 ¼ ðd̄cÞV−Aðc̄bÞV−A;
O3 ¼ ðd̄bÞV−A

X
q

ðq̄qÞV−A; O4 ¼ ðd̄ibjÞV−A
X
q

ðq̄jqiÞV−A;

O5 ¼ ðd̄bÞV−A
X
q

ðq̄qÞVþA; O6 ¼ ðd̄ibjÞV−A
X
q

ðq̄jqiÞVþA;

O7 ¼
e
8π2

mbðd̄σμνð1þ γ5ÞbÞFμν; O8 ¼
g
8π2

mbðd̄iσμνð1þ γ5ÞTijbjÞGμν;

O9 ¼
e
8π2

ðd̄bÞV−Aðl̄lÞV; O10 ¼
e
8π2

ðd̄bÞV−Aðl̄lÞA;

where Gμν and Fμν are the gluon and photon field strengths, respectively; Tij are the generators of the SUð3Þ color group; i
and j denote color indices. Labels (V � A) stand for γμð1� γ5Þ. The magnetic and electroweak penguin operators O7, and
O9;10 are responsible for the SD effects in the FCNC b → d transition, but the operators O1−6 involve both SD and LD
contributions in this transition. In the naive factorization approximation, contributions of the O1−6 operators have the same
form factor dependence as C9 which can be absorbed into an effective Wilson coefficient Ceff

9 . The effective Wilson
coefficient Ceff

9 includes both the SD and LD effects as

TABLE VII. Averaged values of the lepton polarization asymmetries of Bs → K�
0l

þl−; ðl ¼ μ; τÞ decays for the
three models, without the LD contributions.

Model I II III

hPLiμ −0.80 −0.88 −0.98
hPLiτ −0.12 −0.13 −0.11
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Ceff
9 ¼ C9 þ YSDðq2Þ þ YLDðq2Þ;

where YSDðq2Þ describes the SD contributions from four-quark operators far away from the resonance regions, which can be
calculated reliably in perturbative theory as [53,54]:

YSDðq2Þ ¼ 0.138ωðsÞ þ hðm̂c; sÞC0 þ λuhðm̂c; sÞð3C1 þ C2Þ −
1

2
hð1; sÞð4C3 þ 4C4 þ 3C5 þ C6Þ

−
1

2
hð0; sÞð2λu½3C1 þ C2� þ C3 þ 3C4Þ þ

2

9
ð3C3 þ C4 þ 3C5 þ C6Þ;

where s ¼ q2=m2
b, m̂c ¼ mc=mb, C0 ¼ 3C1 þ C2 þ 3C3 þ C4 þ 3C5 þ C6, λu ¼ VubV�

ud
VtbV�

td
, and

ωðsÞ ¼ −
2

9
π2 −

4

3
Li2ðsÞ −

2

3
lnðsÞ lnð1 − sÞ − 5þ 4s

3ð1þ 2sÞ lnð1 − sÞ − 2sð1þ sÞð1 − 2sÞ
3ð1 − sÞ2ð1þ 2sÞ lnðsÞ þ

5þ 9s − 6s2

3ð1 − sÞð1þ 2sÞ ;

represents the OðαsÞ correction coming from one gluon exchange in the matrix element of the operator O9 [55], while
hðm̂c; sÞ and hð0; sÞ represent one-loop corrections to the four-quark operators O1−6 [56]. The functional form of the
hðm̂c; sÞ and hð0; sÞ are as:

hðm̂c; sÞ ¼ −
8

9
ln
mb

μ
−
8

9
ln m̂c þ

8

27
þ 4

9
x −

2

9
ð2þ xÞj1 − xj1=2

8><
>:



ln
			 ffiffiffiffiffiffi

1−x
p þ1ffiffiffiffiffiffi
1−x

p
−1

			 − iπ
�
; for x≡ 4m̂2

c
s < 1

2 arctan 1ffiffiffiffiffiffi
x−1

p ; for x≡ 4m̂2
c

s > 1

and

hð0; sÞ ¼ 8

27
−
8

9
ln
mb

μ
−
4

9
ln sþ 4

9
iπ:

The LD contributions, YLDðq2Þ from four-quark operators near the uū, dd̄, and cc̄ resonances cannot be calculated from the
first principles of QCD and are usually parametrized in the form of a phenomenological Breit-Wigner formula as [53,54]:

YLDðq2Þ ¼
3π

α2

�
ðC0 þ λu½3C1 þ C2�Þ

X
Vi¼J=ψ ;ψð2SÞ

ΓðVi → lþl−ÞmVi

m2
Vi
− q2 − imVi

ΓVi

�
:

In the range of 4m2
l ≤ q2 ≤ ðmBs

−mK�
0
Þ2, there are two charm-resonances J=ψð3.097Þ and ψð3.686Þ used in our

calculations.
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