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We present the explicit expressions of different pseudogauge transformations for Dirac and Proca fields
considering a general interaction term. The particular case of the interaction of Dirac and Proca fields with a
background electromagnetic field is also studied. Starting from the quantum kinetic theory with collisions
derived from the Wigner-function formalism for massive spin-1/2 and spin-1 particles, we establish a
connection between different pseudogauges and relativistic spin hydrodynamics. The physical implications
of the various decompositions of orbital and spin angular momentum are discussed.

DOI: 10.1103/PhysRevD.105.116026

I. INTRODUCTION

The derivation of relativistic spin hydrodynamics, i.e.,
the theory of relativistic hydrodynamics when spin degrees
of freedom are dynamical variables, has recently been the
subject of intense research [1-37]. Such effort is mainly
motivated by the phenomenology of noncentral heavy-ion
collisions, where the vorticity of the hot and dense matter
induces hadron spin polarization of the final state [38—41].
Polarization phenomena for spin-1/2 particles have been
observed in the case of Lambda hyperons in Refs. [42-44].
The polarization of A-hyperons along the global angular
momentum, i.e., the global polarization, was found to be in
good agreement with hydrodynamic models assuming
local thermodynamic equilibrium [41,45-51]. However,
the same models cannot describe the momentum depend-
ence of the polarization along the beam direction, i.e., the
longitudinal polarization [52]. This mismatch between
experimental data and theoretical calculations is often
referred to as the “polarization sign problem” and triggered
many important developments (see, e.g., [52-64]).
Recently, promising progress toward a restoration of the
agreement between theory and experiments has been made
in Refs. [65-69]. Nevertheless, the polarization sign
problem remains an open question. Furthermore, measure-
ments of polarization observables have also been carried
out for vector particles. In particular, the global spin
alignment has been measured for ¢ and K*° mesons
[70,71]. Interestingly, the experimental results for the
magnitude of the spin alignment turns out to be much
larger compared to the theoretical predictions based
on the assumption of local equilibrium of spin degrees
of freedom [72-77].

2470-0010/2022/105(11)/116026(18)

116026-1

In order to resolve the disagreements between theory
and experiments, it has been proposed to consider out-
of-equilibrium spin effects in kinetic theory and include
spin degrees of freedom as new dynamical variables in the
hydrodynamic description of the hot and dense matter. In
relativistic spin hydrodynamics, together with the conser-
vation of the energy-momentum tensor 7%, one also solves
the conservation of the total angular momentum tensor

JAHY = xHTH — XV TH 4 hSAHY (1)
where S** is the so-called spin tensor. The macroscopic
hydrodynamic quantities are given by the expectation
values of the quantum operators over some (not neces-
sarily equilibrium) state, i.e., 7 = (:7*:) and §** =
(: Shw ), where the colon denotes normal ordering. Thus,
the equations of motion for relativistic spin hydrody-
namics read

9,T" =0, (2a)
10 SHY = T — TH., (2b)

Over the past few years, such a theory has been developed
from many different perspectives: kinetic theory [1-21],
an effective action [22-26], an entropy-current analysis
[27-33], holographic duality [34-36], and linear-response
theory [24,37]. An important issue concerning the relativ-
istic decomposition of the total angular momentum into an
orbital and spin part is that the definition of the energy-
momentum and spin tensors is not unique. In fact, one can
perform a so-called pseudogauge transformation which is a
redefinition of the densities of the form [78]
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N

Siw/

o = M — DM g 71 (3b)

where ®*** and 2% are arbitrary differentiable tensors

such that @ = —@ ¥ and ZHW = 7w — _ZHvpi,
. . . A . .
For convenience, in this work T, and Sp3” will always be

constructed starting from the canonical tensors. The pseu-
dogauge transformations have the properties to leave
invariant the form of Egs. (2), the global energy and
momentum P*, and the global total angular momentum
JH defined as

P = / dz, T, (4a)

= / dz,JH, (4b)

where d%; denotes the integration over a spacelike hyper-
surface. Note that the global spin defined as

S = / dx, SH (5)

transforms as a rank-2 tensor if and only if the antisymmetric
part of the energy-momentum tensor vanishes and the spin
tensor is conserved [9]. Recently, different choices of
pseudogauges and their possible physical implications have
been discussed in different contexts [9,28,29,33,79-85].
However, this topic still remains highly debated. While
for free spin-1/2 particles pseudogauge transformations
have been discussed in depth in the literature (see,
e.g., Ref. [9]), only a little work has been devoted to
studying pseudogauges for spin-1 particles and interacting
spin-1/2 or spin-1 particles. In this paper, we aim at filling
this gap.

In previous works [7,14,20], relativistic dissipative spin
hydrodynamics was derived from quantum kinetic theory
for massive spin-1/2 particles with nonlocal collisions in
the so-called Hilgevoord-Wouthuysen pseudogauge. In this
paper, we provide a detailed derivation of the various sets of
tensors (including the Hilgevoord-Wouthuysen ones used in
[7,14,20]) by generalizing the pseudogauge transformations
of free Dirac fields to the case of nonlocal interactions.
Furthermore, we present for the first time the pseudogauge
transformations for Proca fields, considering both the free
and the interacting cases. We find a form of the spin tensor
analogous to the Hilgevoord-Wouthuysen one for spin-1/2
particles, which is conserved for free fields, but not in
the presence of nonlocal collisions. Finally, we discuss
pseudogauge transformations in the presence of electro-
magnetic fields for both massive spin-1/2 and spin-1
particles, obtaining a gauge-invariant splitting of the total

angular-momentum tensor. This angular-momentum
decomposition is such that the spin tensor is not conserved,
but follows equations of motion analogous to the classical
spin precession in electromagnetic fields [86,87].

This paper is organized as follows. In Sec. II, we briefly
review the quantum kinetic theory for Dirac particles [7,9]
and perform the pseudogauge transformations for Dirac
fields interacting through a nonlocal collision term. In
Sec. III, we introduce the energy-momentum and spin
tensors for free Proca fields in various pseudogauges. As
a next step, we generalize these pseudogauge transforma-
tions to the interacting case in Sec. IV. In Sec. V, we provide
the equations of motion for relativistic spin hydrodynamics
in the Hilgevoord-Wouthuysen pseudogauge. Such equa-
tions of motion are formally identical for spin-1 and spin-
1/2 fields. Finally, in Sec. VI, we discuss the particular case
of the pseudogauge transformations in the presence of a
background electromagnetic field.

We use the following notation and conventions:
a-b=d"b,, ayb,=a,b,—-ab,, ay,b,=a,b,+a,b,
G = diag(+,—,—,-), € = —€g123 = 1, and repeated
indices are summed over. Furthermore, we indicate oper-
ators by a hat, except for spinor and vector-field operators
which are denoted by y and V¥, respectively. Throughout
the paper, in order to distinguish quantities for Dirac and
Proca fields, we will use the index D or P, respectively.

II. INTERACTING DIRAC FIELDS

A. Quantum transport for Dirac fields

In this section we will briefly summarize the Wigner-
function formalism derived in Refs. [7,14] (see related
work in Refs. [88-94]). The Wigner function for spin-1/2
particles is defined as [95-97]

Woule.p) = [ G Ciglan ). ©

with x;, = x £ y/2 and w(x) being the spinor field. The
Lagrangian density for Dirac fields is given by

<>

_(in
£D=w<27‘0—m>l//+£1, (7)

with 0 =0-0 and L; being a general interaction
Lagrangian, assumed to be a function only of spinors
and their adjoints, but not of their derivatives,
L; = L;(w,). The equations of motion derived from
the Lagrangian (7) read

(ihy -0 — m)y(x) = hp(x), (8a)

g (x)(ihy - 0+ m) = —hp(x), (8b)

116026-2



PSEUDOGAUGES AND RELATIVISTIC SPIN HYDRODYNAMICS ...

PHYS. REV. D 105, 116026 (2022)

where p = —(1/h)0L;/ow. From Egs. (8) one obtains the
transport equation for the Wigner function [95],

{7' <p+%0)—m}WD=hCa ©)

Cy= | (;fr—;ye-%w<:wﬂ<xl>pa<xz>:>. (10)

where

We decompose the Wigner function in terms of a basis of
the generators of the Clifford algebra

! 1
Wp = <;f+ iy57>+y-v+y57-«4+§0"”5w) (11)

and substitute it into Eq. (9) to obtain the equations of
motion for the coefficient functions [7]. From the real part
we find

p-V—mF =hDyg, (12a)
h
50-A+mP:—th, (12b)
u h o s u H
p J’:—EdyS —mW = hDy, (12c)
h ! ze 1z #H
—5()”7)4—56 p,,Sa/;—I—m.A :_hDA’ (12d)
P gyl — et A — mSm = DI 12
) — €T P Ag — M = S (12e)
and from the imaginary part
ho-V =2nCyg, (13a)
p-A=nCp, (13b)
h u
56"]—'—!— p,S™H = h(), (13c)
Hp h mwapg,S —h(", 13d
p + 4€ afp — A ( )
h
pvd 4 2eﬂm/fa Ay = —hC% . (13e)
Here we defined D; = ReTr(F C), C; = ImTr(F C),

l_f-,PVAS F]:—l Fp——lj/S, Fv—]/” FA_
, FS = o". The equations of motion (12) and (13)
are solved employing an 7#-gradient expansion [5,14].
In quantum kinetic theory, it is convenient to introduce
the phase-space spin variable 8 and define the distribution
function as [7]

1

f(x,p.8) =5[F(x,p)

5 — hsV(x, p)

—8-Alx,p)l. (14

where 0V is determined by
D, = p'sV + O(h). (15)

Equation (15) holds if spin effects are considered to be of
order O(h) (see Refs. [7,14] for details). Using the proper-
ties of the g#-integration

/dSzZ,

/ dS8'g’ = —2Pw, (16)

with  P* =g% —ptp*/p®> and dS=(\/p*/\/37)
d*35(8 -8 +3)5(p - 8), one can prove that the functions
F, 6V, and A* are given by

/de:f—hav, /dSé”f:A”. (17)

The equation of motion for the distribution function has
the form of a Boltzmann equation

p-of = €[, (18)

where the collision term € contains both local and nonlocal
contributions [7,14]. In general, the distribution function f
is not on-shell. However, it was shown in Refs. [7,14] that
off-shell terms cancel on both sides of the Boltzmann
equation (18), and one is left with

8(p? —m*)p - of = 5(p* — m*)G|f], (19)

where f is defined through

f=ms(p* — M), (20)

with M being an effective mass containing interaction
contributions.

In order to solve the equations of motion (12) and (13),
we employ an expansion in powers of 7 for the functions
F, P, V¢, A*, S* and the collision terms D;, C; (see, e.g.,
Refs. [5,7,90,91]), e.g., for the scalar part

F=FO 4 pFD) 1 O(n2). (21)

Since gradients are always accompanied by factors of 7,
this is effectively a gradient expansion.

B. Canonical currents

The so-called canonical energy-momentum and spin
tensors are obtained from the interacting Dirac Lagrangian
in Eq. (7) using Noether’s theorem [9]. The canonical tensors
are on the operator level given by
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Ay ih_  <v )
The= ?y/y“a w— gL, (22a)
v _h_ y
hSpe = wir'. oty
h Apva,s,
= =5 WAy sy (22b)
The normal-ordered ensemble averages
v AU Ay __ /. QA
TIZ),C = (:Thct) SDl,lc = <-SDflc-> (23)

can be expressed in terms of the Wigner function as [9]

T’KC = /d“pp”V”, (24a)

1
s = —yer [ atp, (24b)

Plugging Eq. (12e) into Eq. (12c¢) and then Eq. (12c¢) into
Eq. (24a) we obtain, after considering spin effects to be of

O(h) [7,14],
g s n? u
The= [ dU'p® p+22 0,1+ 6(6”[7 —d'pH)

hZ
< flp8)+ o [ @Dl 0. (250)
/1 v
=" [l

where we performed an expansion in # and defined dI" =
d*ps(p? — m?)dS as well as the dipole-moment tensor

(P'Z + pzs + p*=¥) f(x. p. ),

(25b)

1
Zgy = _Zeﬂvaﬂpagﬂ' (26)

Note that Eq. (25b) is exact at any order in the Planck
constant." With the help of Eq. (18), we derive the
following equations of motion:

0,7 . = / dTp Glf] + O(R) = 0, (27a)

'In Egs. (25) we do not take into account mass-shell correc-
tions or the term proportional to ¢*¥ in the energy-momentum
tensor. In general, such contributions can be nonvanishing in the
presence of interactions; however, they can be neglected under
the assumption of low density [95], which is employed in this
work.

ho, Sy = / AR (Gl + o, (e p.8)) = THL.
(27b)

One can see from Eq. (27a) that the fact that p# is a
collisional invariant leads to the conservation of the energy-
momentum tensor. Using Eq. (27a) in Eq. (25a), we can
express the canonical energy-momentum tensor as

™ :/de” P 1—h—202 +EZ’”0,1
D.C 4m2 2 3
hZ
< fp g+ [ dpprol* o). (28)

Taking the antisymmetric part of Eq. (28) and inserting it
into Eq. (27b), one can see that 5" is not conserved in a
collision if and only if the interaction term D%, is nonzero.
However, it can be seen from Eq. (27b) that the canonical
spin tensor is not conserved even if X;° is a collisional
invariant, and even if there are no interactions. Furthermore,
in the case of rigidly rotating global equilibrium, the
canonical energy-momentum tensor is not symmetric either
[9]; cf. Sec. V. Therefore, the canonical spin tensor does not
have a clear interpretation as a spin density, since the latter, in
a physical picture, should change only through particle
scatterings until the system is globally equilibrated. At this
point, we note that one can make use of the pseudogauge
freedom in Eq. (3) to obtain a set of energy-momentum
and spin tensors with a clearer physical interpretation than
the canonical ones. In the next sections, we will derive the
so-called Hilgevoord-Wouthuysen, de Groot—van Leeuwen—
van Weert, and alternative Klein-Gordon currents, respec-
tively, in the presence of a general interaction term.

C. Hilgevoord-Wouthuysen currents

A pseudogauge in which the energy-momentum tensor is
symmetric for free fields, implying the conservation of the
spin tensor, has been introduced by Hilgevoord and
Wouthuysen (HW) in Refs. [98,99]. The main idea of
those works is to apply Noether’s theorem to the Klein-
Gordon Lagrangian for spinors, and then to impose the
Dirac equation as a subsidiary condition. The pseudogauge
potentials for the HW tensors in the free case read [9]

DU e = WV — glbr? (29a)
leflu\i/pfree = - _lp(gﬂyaﬂﬂ + 6/1/)0/11/)1// (ng)
where
R ih <l
M = ——yo" 0 . 30
e (30)
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For the interacting case, we consider the modifications of
the potentials in Eqgs. (29) as follow:

Sy = M — gl e+ O (31a)
A0 = — (0" + o)y, (31b)
with
. h h
MUE__—/{;W - Ml’/l. 2
) L PYO W = oty (32)

In order to compute the interacting HW energy-momentum
tensor 7%y from Eq. (3), we first consider the following
part:

The— ho, (M

n
= / d'ppV' - / d*po,(p*S* + gV SWp,)

+ M)

:_/d4 [ (pHF — hD")Jrh ¥ (O F —2C%)
- Zg””(azf —20- CV)} : (33)

where Egs. (12¢) and (13c) were inserted. The contribution
due to the tensor Q** to the energy-momentum tensor is
given by

a/{(QA;w + Qyﬂﬂ + Q/u//l)
h
= = - 0(: [pQighy! + eMayy
+ g (=2ighy + eMveydy ) pl )
h _ n _
= —— 0, M Im(cyylp:) + 5= oRe(yarp:)
m 2m

A 1
= ——/ d4p (g"”a -Cy — a”CI{; ) IwaagDAUt)’ (34)
m

where we used the relation y'o = igtty! 4 erydy .
Summing up Eqgs. (33) and (34) we find

2

h
T =" / dﬂ (P'F = hDY) + 7 (0" = g 0) F

+T A””“a,lDA]+(’)(h3). (35)

We note that the antisymmetric part of the HW energy-
momentum tensor arises solely from interactions.
Considering Eq. (15), one can see that this antisymmetric
part is of second order in . This implies that the HW spin
tensor is conserved in the absence of interactions.

We now give the explicit form of the HW spin tensor.
Making use of the relation y*y* = ¢ — ic*, we can write
the interacting Dirac equation and its adjoint (8) in the
following form:

ihdy = —ho™ 0,y + my*y + hy'p, (36a)

—ihoy = —hd, o™ + mpy* + hpy*.  (36b)

With the help of Egs. (36) we obtain a generalization of
the Gordon decomposition [100] in the presence of a
general interaction term, i.e.,

B ih  _<u
pry =5 (50" — i(Fro™ 0, + 3o y)]

ho _ _
=5, @r'p +pr'y). (37)

The HW spin tensor is then found by applying a pseu-
dogauge transformation with the potentials in Eq. (31) to
the canonical spin tensor (22b) and using Eq. (37),

w1 ) ih <, votlo g
Sw :Z‘/’{VA’UM }W+E(V/0[ oy — g o' 9 ,y)
n _ _ v -
— 0 (0, c™ — pr*)ot“w + e (6% 0,y — y'p)]
o e
+%V/[Uﬂ 70/1/]0/‘/’
in <A

=o' 0 y, 38
a7 0w (38)

where also the identity

[g/w’o.lp] — 21.(9”/)6” + gwlaﬂ/) _ gﬂﬁav/l _ gzzpaﬂ/l) (39)

was used. Performing the ensemble average and expressing
the result in terms of the Wigner function we have

y 1
Slll)”,le = % / d4PP15” Y. (40)

Putting everything together, we arrive at the HW tensors
used in Ref. [7], which read up to first order in 7

Touw = / drp"pf(x, p.8) + O(h?), (41a)

Stw /drp <22”” oo 2p[f‘d"]>f(x p.8) + O(h?),
(41b)

where, in order to get Eq. (41b), we made use of Eq. (12e).
As shown in Refs. [7,14], the HW spin tensor is not
conserved only in the presence of nonlocal particle
scatterings.
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D. de Groot-van Leeuwen—van Weert and alternative
Klein-Gordon currents

The energy-momentum and spin tensors used by de
Groot, van Leeuwen, and van Weert (GLW) in Ref. [95] are
equivalent to the HW currents up to first order in 7. They
are derived from the canonical currents in the fully
interacting case using a pseudogauge transformation with

o1
Py = . / d*ppSA, (42a)

Uvlp
Zgiw = 0.

(42b)

Following similar steps as in the HW case, we obtain
from Eq. (3)

n
Thoiw = /d4ppy <V” +§0,18”’1>

1
=— / d*pp*(p*F — hD%), (43a)
m

) 1 1
Slll)'P.lGLW =73 iﬂm/d“l’Aa —%/6141’710[”5”]'1

1 4 A Qu Al 1
v __ v | _D
=3 /d p{pS he 20,,77 A

(43b)

k)

where in the last equality we used Eq. (12d). We see that,
since P and D9 have contributions starting at first order in
7 [7], the HW and GLW currents differ only at second and
higher orders in 7. Note that, unlike in the HW spin tensor
(40), the GLW spin tensor is not expressed only by the flux
of S*. Furthermore, the term with 0,P is separately
conserved and hence does not enter the equation of motion
for the spin tensor. Modifying the GLW pseudogauge
transformations (42) by only adding

1
ZR = e / d*pP (44)

to Eq. (42b), we can remove the term containing d,P from
the GLW spin tensor without affecting the GLW energy-
momentum tensor (43a) [alternatively, we could also add
—n/(2m)e* 9, P to ®*]. In this case, we obtain the
currents corresponding to the alternative Klein-Gordon
(KG) pseudogauge [9] with the spin tensor given by

ih o n _
Stk =7 -wo™ 0w +5 " Rey,rp,  (45)

which can be expressed in terms of the components of the
Wigner function as

AU 1 v v,
SDf'KG =5 d*p(p*S* + het ”DA/)). (46)

III. FREE PROCA FIELDS

In contrast to the case of spin-1/2 particles, there has
been only little work on the spin tensor for Proca fields up
to now. For this reason, we start with a general discussion
of different pseudogauges for free, massive spin-1 fields,
pointing out the analogies to Dirac fields.

A. Canonical currents

We consider the Lagrangian of a free complex Proca
field V# given as

1 Ty m T
ﬁp():h —EV VW—F?V Vﬂ . (47)

where VA = ¥V is the field-strength tensor. This
Lagrangian generates the following equations of motion
for the Proca fields:

fﬂa,,w” +m?VY =0, (48)
from which the constraint equation
0-V=0 (49)

follows by taking the divergence.

The invariance of the action associated with the
Lagrangian (47) under spacetime translations and
Lorentz transformations implies the conservation of the
canonical energy-momentum and total angular momentum
tensors TA“’;,”,C and jﬁ;f’ ¢ respectively. These quantities read

e =—h(VFV, + VPV — ¢ Lpg.  (50a)
Tt = wie— T+ nSje. (50b)

with
Syt = vitbyul 4 yilbytal, (51)

As for the spin-1/2 case, the canonical spin tensor for free
spin-1 particles is not conserved, as the energy-momentum
tensor (50a) is not symmetric, leading to the same problems
as discussed above.

Following Refs. [97,101-104], we define the massive
spin-1 Wigner function as

116026-6
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2
n(2nh)

4, —ipo/h] Yoo VY.
x/dve <.V <x+2>V <x 2>>

(52)

Wy (x,p) =~

In terms of the Wigner function (52) we can express
Egs. (50) as

h2
T";,ljc = /d4p[(p”p”+Zﬁﬂﬁ”>Ter

h? ih
- (ro,+ o0, )W =T oo,
=g (:Lpo:), (53)

v v Ja iR
sﬁ,ﬂczl/d“ <2p’1W’;)A+p["WM EdﬁW’,‘J@), (54)

where we defined the symmetric part Wh's = (1/2) w¥ » ) as
well as the antisymmetric part W', = (1/ 2)W[é"' of the

Wigner function.

2.2
Ty = h<: {Vﬂﬂ Vi + vieyy

Using the Proca equation (48) and the constraints on the
Wigner function

in

ih
5 — oW =0,  (55)

p/l Wl;"ljs - 2

0, W/;JTA = Pu Wiy

which follow from Eq. (49), one can rewrite the canonical
energy-momentum as

n? 1
Tie= [ @p| (oo ST o, wis

2

h
—ihp“o, W', g’”’ ((32Ter—6,16W )]. (56)

As expected, T%  approaches the classical symmetric form
in the limit 2 — 0.

The definition of the energy-momentum and spin tensors
can be changed by applying the pseudogauge transforma-
tions (3). For instance, applymg a Belinfante pseudogauge
transformation [105] with d> M= Sp”g L Zh v — () yields

+ —C(V“‘V” + V"V*”)} :> — " {(:Lpy:)

h? 1 1 )
- / d*p Kpﬂ P+ Zaw) W — h2§a<va,)w’;,{§ + ihpa, Wi, + 5 PPW

2

h
A (PTtWp — 9,0, W’}!’)}

AV
SP,B =0,

where we also made use of the equations of motion.

B. Hilgevoord-Wouthuysen currents

Following the idea by Hilgevoord and Wouthuysen [98],
we find a set of symmetric energy-momentum tensor and
conserved spin tensor for free fields by deriving the
conserved currents from the Lagrangian

2
L =—h (a”VZ)d"V”—(a-V1)6-V—ﬁV“‘Vﬂ . (58)

which differs from £p by a total divergence and thus yields
the same equations of motion. Applying Noether’s theorem
to the Lagrangian (58) we obtain

Thuw = =Rl V)PV + (VI V)] — ¢ Lp,  (59)

(57a)

(57b)

Spiey = =@ ViV 4 (@Avikyv ), (59b)

The spin tensor Sﬁ;{gw is conserved since the energy-
momentum tensor is symmetric, implying that the global
spin S w transforms as a tensor [9].

In analogy to the spin-1/2 case, we can relate the HW
currents to the pseudogauge transformation

éﬁl\l’(’,free = M[’w gﬂ[ﬂMU]pa (608.)
v, L, .,
Zitilhee = =5 (Vg WPl £ He). (60b)

where H.c. stands for the Hermitian conjugate and

116026-7
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N <A
M* =_(V*9 V¥ + H.c.)

N = N —

(Virg*vy — VYo' Vi + H.c.). (61)
When performing the pseudogauge transformation, one
also makes use of the equations of motion.

The HW currents in terms of the Wigner function are
given by

v n?
TP}l’,HW = /d4p [P"P” + 1 (040" — ¢“0%) | TtWp, (62a)

Skiw = i / d'ppwi. (62b)

Identifying TrWp with the scalar distribution F and

WE’,”] with the dipole moment S*, these expressions are
formally equivalent to the HW currents in terms of the
Wigner function for spin-1/2 in the free case [9]
[cf. Egs. (35) and (40)].

C. Alternative Klein-Gordon currents

One can also obtain a set of symmetric energy-momentum
tensor and conserved spin tensor considering the alternative
Klein-Gordon Lagrangian analogous to the case of spin-1/2
particles,

1 .
g = —h —E(V”az\/,', + V5io*vH)
m2
—(0-V"o- V—WV“‘VM , (63)

which differs from Eq. (58) by a total divergence and hence
also yields the same equations of motion. The resulting set of
tensors reads

o n_ o ouov .

e =3V d" o Vi, (64a)
Ay SAuv

SPftKG = SPf;—[W’ (64b)

where we used L}« = 0 after imposing the equations of
motion. One can obtain these currents from the canonical
ones by employing a pseudogauge transformation with

Dl e = VIRV — VIV — VIR@IVE 4 He., (65a)

- 1 | ) )
Z’éé’pﬁee = —5 (Vﬂllg”][iv/)] +H.c + EVT/}V/}QL gﬂ][/lga] )

(65b)

and using the equations of motion. We can express the KG
energy-momentum tensor in terms of the Wigner function as

Tokg = / d*pp* p*TrWp. (66)

Thus, we have found a pair of spin and energy-momentum
tensors that can be represented as moments of the scalar
distribution function TrWp and the antisymmetric part

Wl[,’f"], closely mimicking the Klein-Gordon currents in
the spin-1/2 theory (see Sec. II D and Ref. [9]).

IV. INTERACTING PROCA FIELDS

A. Quantum transport for Proca fields

In the interacting case, we consider a Lagrangian which
is given as the sum of the free Proca Lagrangian (47) and a
general interaction term L;,, which we assume to be
independent of the derivatives of the Proca field,

1 Tuv m’ 1,
Ep:—h EV” VW—FV”V” +£int' (67)

The equations of motion now read

2

<az+%)w—aﬂa- V=, (68)

where we defined p* = —(1/h)0L;,/0V}. Taking the
divergence of Eq. (68) we obtain the new constraint
equation

hZ
0-V="50-p. (69)

In this section, we consider a general interaction which
does not involve gauge fields so that we can stick to the
definition of the Wigner function in Eq. (68). In the case
where the massive vector particles interact with an electro-
magnetic field the Wigner function has to be defined in a
gauge-invariant way (see Sec. VI). The equations of motion
take the form

hZ
<p2 —m? —Zdz +ihp- d) W
h n? ih
- (P”pa VARl %P“daw) e =—nc,  (70)
m

while from Eq. (69) we derive the constraint equations

ih N\ B i\ L,
pﬂ+30” WP :W pll_'—?all C s (713)

in , h in .
<Pﬂ_70ﬂ>wpfl’ :W<pﬂ_?aﬂ>c = (71b)
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Here we employed the relations

in
(pﬂ + %a"> Wi (x.p)

_ -zi(zﬂLW / drem P (Vi (x )V (xy)), (T2)
(pﬂ ——haﬂ)w (x.)
- 21'@ / dve=i/h (Vi) VA (xy) ), (72b)

used the fact that the Wigner function is Hermitian, and
defined

2
(2zh)*

W — _

[ avemmeynp ). (03)

Similarly, we define the Hermitian objects

| .
5M/’”——§(C””—|-C*W>, CWE%(C/”’—C*W). (74)

Splitting both the Wigner function W%~ and the collision
terms SM*,CH* into symmetric and antisymmetric parts,
we can add and subtract the constraint equations (71) to
obtain

inh
Pu WI;’IjS ) 0, W’;’IiA

_ T |:pﬂ(CW M"”)+h0 (C"”—l—zéM"”)], (75a)

ih
P = 0

h v v h v . v
=— [pﬂ(icg — oMY + Edﬂ(C’Z + iSM )} ) (75b)

It should be noted that the symmetric parts of 6M** and
CH are real, while their antisymmetric parts are imaginary.
Furthermore, from Eq. (70) we derive the Boltzmann-like
equation for the Wigner function

p- oWy =

1 h2
o —— T,
2m? [(p Pa =7

2 va(,>(cw isM*e) + He.|. (76)

Splitting into symmetric and antisymmetric parts, we find

v v 1 hz L) . v)a
p-OWh = Ch —W[<pap(”—zaaa(”> (€Y — isM¥)")

n "
+§(paa< + 0, p¥) (iCY ‘+5M) )} (77a)

v v hz via 12104
p-owy, =C, —WK%W—Z%W)(@M] -

h | v
S opics L amin).

In the following we decompose the Wigner function and
all related quantities with respect to the four-momentum p*:

pl
Wis = B*fp 5 S A FE 4 PRfp (78
W — P[” Fv] - vaf paG 78b
P’A—15A+le O (78b)
v p(ﬂ V) v
Y = E"Cp + TCS + Cp + P*Cp, (78¢)
C/w = Z—C €lwaﬁ Pa CG B (78d)
p(ﬂ V) v
5M’;~y = FE"Dp + 57)3 + D’;; + P*Dp, (786)
Hy p[ﬂ vl L pvaf Pa
MY = lEDA + ie EDGﬁ, (78f)

with p = \/? Ev=ptp*/p?, and Fg-p=F,-p=
G-p=0, Fip, =0, with F} symmetric and traceless.
Analogous properties hold for the components of the
collision terms C** and 6M**. The constraint equations (75)
then determine the Wigner-function components fp, F,
and F', in terms of fp, F%y', and G¥. Using the deﬁmtlon of
the collision term (73) and the constraint (69), we obtain

ih ih
(m=50.)c=om. (n+5a,)cm—om,
(79)

from which it follows that C\ = D) = 0. As done in the
spin-1/2 case, we consider a situation in which polarization
effects arise only at first or higher order in £. This implies
that we do not have any vector or tensor anisotropy at zeroth

order, i.e., G,(,O) =0 and F 1(1?)” “ = 0. Following the same
logic as explained in Ref. [7] and considering the quantum
numbers, vectors, and tensors at our disposal, we conclude
e = ¢ — DO — D% — . Under this assumption,
we obtain from the real parts of Egs. (75)
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n2 A
fp= pye P%0,0,f\ — D+ o), (80a)
F% = O(R?), (80b)
pFY = hP%9, [ + O(R?). (80c)

Furthermore, we derive from Eq. (76) the following
Boltzmann-like equations of motion for the independent
components,

p-3fe =Cp+O(R?), (81a)
p-OFY =C% 4+ O(n?), (81b)
p-GH = C' + O(R2). (81c)

Analogous to the distribution function (14) in extended
phase space for spin-1/2 particles, we define the spin-1
distribution function as

f(x,p,8)=fpr—8-G +§§”§”FP’W. (82)
We note that for massive spin-1 particles, the number of
degrees of freedom determining the spin state is larger
than that for spin-1/2 particles. In fact, in addition to the
usual vector polarization, we also have spin degrees of
freedom which are called tensor polarization [106]. The
last term in Eq. (82), which is absent for Dirac particles,
precisely describes the additional degrees of freedom due
to tensor polarization [106]. In the spin-1 case, it is
convenient to define the measure in spin space as dS=

(3y/p2/2V27)d*85(8 - 8 +2)8(p - 8), such that

/dS:3,

/ dSP3/378,3, =

/ dSe's” = —2Pr,

8
gPﬁ,}, (83)

where we defined P/ = [(1/2)P¥PY) — (1/3) PPl
cf. the spin-1/2 case in Eq. (16). Using Eq. (83), we
obtain the independent components of the Wigner func-
tion from the distribution function as

/ dSt=3fp. / dSerj=2G", / dSPly8°8/f=2FY .
(84)

Making use of Egs. (81), we find the Boltzmann equation
for the spin-1 Wigner function to be

p - of = CIf], (85)

where

2 3,8,00. (86)

Clfl=Cp 2

—8-Co+2>

In the presence of interactions, Eq. (70) implies that the
Wigner function is not on-shell. However, as in the spin-
1/2 case, one can show that only the on-shell parts
contribute to the Boltzmann equation, so that we can
write it in the form of Eq. (19) with f formally given by
Eq. (20). This will be shown in a forthcoming publication
[107]. The explicit form of the mass-shell correction of the
spin-1 Wigner function does not play any role in the
following discussion, since we will neglect off-shell effects
in the conserved currents, as we did in Sec. III.

B. Canonical currents

Since we assume that £;,, does not depend on derivatives
of the fields, the canonical currents in the interacting case
are formally still given by Eqgs. (54). Using the constraint
equations (80) and relations (84) we can write them in
terms of the distribution function as

The = [ arpps + o) (872)
il
+3 p[ﬂzghgpwaﬂ] f. (87b)

The canonical spin tensor for Proca fields is hence not
formally equivalent to the one for Dirac fields in Eq. (24b).
In particular, as expected, it is not totally antisymmetric.

C. Hilgevoord-Wouthuysen currents

In order to obtain the HW pseudogauge transformations
in the interacting case, we modify Eqgs. (60) as

v v hz
iy — jpilt — gl e WQAU‘(V”}O-,OT—FH.C.), (88a)
. 1
i — -3 (Vikgllyel 4 He.). (88b)

In terms of the Wigner function, these pseudogauge
potentials read

y h
oife = [ (Gowiien - iwfy). s

vAp 1 v olv
Zi = §/d4P(g HW/;J_”S - g"“Wﬁ.@]’S), (89b)
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where we have made use of the constraint equations (71).
Note that the dependence of the pseudogauge potentials on
the Wigner function in Eq. (89) is identical to the non-
interacting case. Equations (89) imply the following
relations:

v. 1 0 7Y
m%ﬁiJMMMW%W+wW%,@w

v ?
Touw = /d4p Kpﬂp” +Za”0”)TrWP -

2
+ hg"(:[(9,V})o VP —%vmva}:>.

DY 4 Dl — /d“ ( 0, Whlsg +ip* )
(90b)
from which, after using the equations of motion, the

HW energy-momentum tensor in the interacting case is
obtained as

v hZ PH in (u PH
PpP — 4‘36” WPS+ 99 Wra

o1

Making use of the constraint equations (75), Eq. (91) becomes

2 A
Thnw = / d'p [(p"p” + —6”0”> TiWp = p' 5 (—pCQ — pD: — 2p* Dy + 7o, P¥Cp + haaE’““CE)

g;’“ (p -m +f; 02)Ter] + O(h?)

) R sy 5 0 3
=/d4p [p”p <3fp+WP P0u0pfp |+

v

2
_ 9”7 <p2 —m?+ %az) 3fp] + O(R?),

where we used c§§’> = Dg)) = 0 (see Sec. IVA). Up to first
order in 7, the energy-momentum tensor is symmetric and
formally equivalent to Eq. (41a),

T = [ dOpp (2 p.8) + O (93)

Furthermore, the spin tensor up to first order is obtained by
using Eq. (80c) as

Apv
SP,HW -

2i / d*pp*Wh',

= [y (22 = ) )+ O,
(9

Note that the HW spin tensor for Proca fields has the same
structure as the one for Dirac fields in Eq. (41b). The
difference in the factors of the last terms of Egs. (41b) and
(94), respectively, is due to the different normalizations of
the phase-space volume. After performing the integrations
over dS the factor in both expressions will be 1/2. At

2
ayavf&?) + — (pc,(Al )z + ppgl)ﬂ + aapaﬂcg)))

2m

(92)

[

second order in 7, the energy-momentum tensor acquires
an antisymmetric contribution due to interactions,

T =1 [ dp s

+O(R?),

(pC —|—pD( )”]—i—a”]C())
(95)
leading to the nonconservation of the spin tensor (94).
D. Alternative Klein-Gordon currents

In the interacting case, we modify the KG pseudogauge
transformations in Eqs. (65) according to

BL — il g‘["M,) + gﬂlﬂ Vi pt +H.c.)

_ Eg/l[uav] Vv, (96a)
2 =~ 2 (Vi Tyl L Hc)

_ %g{jgu][ﬂgo]avfﬁ V. (96b)
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These pseudogauge potentials differ from Egs. (88) by the addition of the last terms in each equation.
The KG energy-momentum tensor in the interacting case will consequently be given by

Thxe = / d*p [P"p”TrWP - (ppp” -

n? in
4 aﬂay> Wlly.ls + 5 p (yaﬂ) Wl;’{[A

_%< {VT<02 h)V“+Hc] > (97)

Using the constraint equations (75), Eq. (97) becomes

uv 4 v hz aff (0) v h2
Tpxc = [ d'p|P'P 3fP+—2P 0u0pfp | +p i

gﬂll
2

which is manifestly symmetric up to order O(%). As in the
free case, S = Sy at any order in 4. Consequently,
the antisymmetric part of the KG energy-momentum tensor

takes on the same form as in the HW pseudogauge (95).

V. EQUATIONS OF MOTION

Since the HW and KG energy-momentum and spin
tensors for spin-1/2 and spin-1 particles are given by
the same expressions, they formally follow the same
equations of motion, although the explicit forms of the
distribution functions and collision terms differ between the
two cases [14,107]. Using the Boltzmann equation (19) we
obtain the equations of motion presented in Ref. [7],

0Ty = [ drpsif)=o. (99)

noysify = [ arnoxiil) = T (99b)
where 6 = 1/2 or 6 = 1 for spin-1/2 and spin-1 particles,
respectively. As pointed out in Ref. [7], the energy-
momentum tensor is conserved as p* is a collisional
invariant, while in general the spin tensor is not conserved
due to the mutual conversion between spin and orbital
angular momentum in nonlocal collisions. In the presence
of nonlocal collisions, the HW spin tensor is conserved
only in global equilibrium, when the process of aligning
spin with vorticity has stopped and the collision term
vanishes. In global equilibrium the distribution function up
to first order in 7 is given by

n
exp | —f(x)-p+-ow, 25|, (100)

Fegloop.9) = .

1
(27h)3

where p# = u# /T, with u* being the fluid velocity and T
the temperature, and w,, = —(I/Z)OU,ﬂ,,] [1,4,81]. For a

(pCXW + ngl)” -+ daP"’”Cl(!?))

(p e %62) 3fp} + o), (98)

I
derivation of an exact solution for the Wigner function in
global equilibrium see Ref. [108]. Note that $* satisfies the
Killing condition d(,f,) = 0. The equilibrium distribution
function (100) is obtained from the requirement that the
collision term vanishes [7,14]. Inserting Eq. (100) into
Egs. (41b) or (94) we obtain the expression for the HW spin
tensor in equilibrium to leading order in #,

S/l Y

_n
g = —onOuta, (101)

where nl%) =g [dPp - u 79 (x, p) is the zeroth-order par-
ticle density and g = [ dS is the number of internal degrees
of freedom. The spin tensor (101) has the same form as that
used in the formulation of relativistic spin hydrodynamics
in Ref. [1].

In contrast to the physical interpretation of Eq. (99b),
which relates the divergence of the spin tensor directly to
the nonconservation of ¥4 in collisions and vanishes in
global equilibrium, the equations of motion for the canoni-
cal spin tensor acquire additional terms. In particular, the
canonical spin tensor is not conserved even in global
equilibrium. Using Eq. (100) in Eq. (25b), or Eq. (100)
in Eq. (87b), respectively, we obtain (cf. Ref. [9])

1
Sy = 2y ho—/ dPplw pre, e PP + O(R2),
(102)

where it has been used that €[f,,] =0

VI. INCLUDING ELECTROMAGNETIC FIELDS

So far, we have discussed the effects of a general
collision term on the conserved currents without consid-
ering the interaction with gauge fields. In this section, we
include electromagnetic fields and study their impact on
the energy-momentum and spin tensors. In this case, a
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further complication arises since gauge invariance of the
theory has to be guaranteed. The relativistic decomposition
of orbital and spin angular momentum in the presence of
gauge fields is a long-standing problem with consequences
in different fields such as hadron and chiral physics (see,
e.g., Refs. [84,85] for reviews). In the following, we will
introduce a pseudogauge which combines a KG trans-
formation for the matter parts of the currents with a
Belinfante transformation for the electromagnetic parts.
In this way, we obtain a gauge-invariant splitting of the
total angular momentum with a vanishing gauge-field spin
tensor. For the sake of simplicity, we neglect particle
collisions and treat the electromagnetic fields as classical.
Furthermore, we absorb the electromagnetic charge e in
the definition of the gauge potential. The currents and
equations of motion derived in this section provide the
starting point for the formulation of spin magnetohydro-
dynamics for Dirac and Proca particles.

A. Dirac fields

The gauge-invariant Wigner function for fermions
interacting with the electromagnetic potential A*(x) is
defined as [96,97]

dy
Wp.ap(x. p) :/(2622})4 e () U (X1, x0)Wa(x2) 1),

(103)

where the gauge link

172

i
U('XI’XZ) = exXp _gyﬂ

diA, (x + ty)} (104)
-1)2

ensures gauge invariance of the Wigner function. The
equations of motion read

1
[y- <H+%V> —m]tzo, (105)
with
VE=0t - ha d, | F**o 106
= —Jo E “Up pv ( )
and
n.(h
I = p# —511 <§a- a,,>F””a,w, (107)

where j(x) = sinx/x and j, (x) = (sinx — x cos x)/x* are
spherical Bessel functions and F** = gAY is the electro-
magnetic field-strength tensor. The spacetime derivatives in
the arguments of the spherical Bessel functions act only on
the field-strength tensor, but not on the Wigner function.

The equations of motion for the Wigner-function compo-
nents can be found in Refs. [5,97]. Here, we only display
those which will be used in the following, namely

=0, (108a)

"

1
ILF — S hV¥S,, —mV,

1 1
- Ehvﬂp + 56'”/31,01_[‘58”6 + mAM = 0, (108b)

1
Eh(V”VU -V V) = €I AP —mS,, =0, (108c)

1
SV, F IS, = 0. (108d)

The canonical energy-momentum and spin tensors of
both matter and gauge fields were found to be [5]

v 1
T’,‘)’C:/d4pV"(p”—I—A”)—F"@”AA—FZQ"”F“/’FW,

(109a)

Spe = —%e’“‘”ﬂ / d‘pA, - %Fﬂﬂ/w, (109b)
which are gauge-dependent quantities. In the following, we
will perform a pseudogauge transformation which leads to
a gauge-invariant splitting between spin and orbital angular
momentum of the matter and gauge-field parts. This is
achieved by generalizing the KG transformation for spin-
1/2 particles which leads to formally the same pseu-
dogauge potentials in terms of the Wigner function as in
the free case. Furthermore, we use a Belinfante pseu-
dogauge transformation for the gauge fields in order to
obtain a gauge-invariant result [85]. The pseudogauge
potentials for such a transformation read

Y 1 1
DYl = zm/ d*pplrS# —%F’W‘A”], (110a)
1
R, = e / d*pP. (110b)
Therefore, the spin tensor is given by
AV 1 v 1 ° /)
SpxG = %ew ’ [ d'p Eepaﬁyn S~ Evﬂp
_i/cﬂp‘gl[ﬂpv] +i€ﬂl//1/7() /d4pP
2m 4m ’
1
=— [ d*pp’S™, 111
o / pp (111)

where we made use of Eq. (108b) and assumed that
boundary terms vanish. Moreover, we obtain the energy-
momentum tensor
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1
Thixo = [ EpVH (0 + A%) = FROA, 4 g PV +

h 1 1
Z0, | — | d*pSiprl — — FAupY
2 *<2m/ pSUPT =5

1 1 1 1
L[ st~ Lpuan o L / sl — L pua)
T om / PPy Tom ] Gy

1 h 1
== / d*p (p” P'F + EF;SM> — PYFY + 1 ¢ FPFy
m

with the antisymmetric part

ThG :—/d4 Sip, (113)

When deriving Eq. (112), we inserted Eq. (108a) and the
Maxwell equation d,F* = J¥, where

= / d*pV,

is the charge current, and again made use of the assumption
of vanishing boundary terms. We see that both the energy-
momentum and spin tensors are gauge invariant.

The above currents are now separated into fluid and
electromagnetic parts according to

1 h
/d4 <pl‘p”f+§FViS'1/4>’

1
Tem = —F"F*; + ZQ””F“ﬂFaﬁ’

(114)

T, =

1
AU v
Shiw — (115)

In this case, the spin tensor for the electromagnetic fields
vanishes and only fermionic spin degrees of freedom are
treated as dynamical, while the electromagnetic ones are
absorbed into the orbital angular momentum from the
energy-momentum tensor. We find the following equation
of motion for the fluid energy-momentum tensor:

0,Tp r=— / d*pp"p“F ;04 F

+/d4ppﬂ (aaF/M) pﬂap(lS/m

) h
+ % (aﬂF /1) / d4pS2ﬂ + %/ d4pF ,10”8/1"
——PwJ, (116)

where we used Egs. (108d), (108a), and the Maxwell
relation " F** + o F#* 4+ o F* = 0. Since

(112)

T _ A
0y Tem = F*J, = —0,T 4, (117)
the total energy-momentum tensor is conserved. On the
other hand, the spin tensor is not conserved but follows the
equations of motion

1o, Sy = ——/d“pSWFvu =TH. (118

We remark that the results of this section are similar to
those of Ref. [109] for fluids with polarization when
identifying S* with the dipole moment [5], although the
former are exact in # and the latter purely classical. In
particular, as can be seen from Eq. (118), the equations of
motion for sy, defined through

/dEng”flw—/d PSpHw: (119)

where dX, denotes the integration over a spacelike hyper-
surface, are the Matthison-Papapetrou-Dixon (MPD) equa-
tions [87,109]

d 1
m%s’gHw :%/dil,lp‘ppdp&“’

= _L/ dz/lpﬂSP[ﬂF”]p
Pl

= =sp ", (120)

where 7 = x - p/m is the proper time.
B. Proca fields

In order to describe Proca fields interacting with electro-
magnetic fields we use a Lagrangian of the form [110]

ro (= Ltytey Ty
P.em — _E uv+ﬁ H

1 ,
—  PF ., — IF VAV, (121)

where in the presence of gauge fields
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Ve = <aV‘ - hM) v (122)

is defined with a covariant instead of a partial derivative.
The Wigner function in this case is given by Eq. (52)
supplemented with a gauge link U(x;, x,) which is identical
to Eq. (104),

2

W= 2 / eIV (VU () VY (x) ).

h(2zh)*
(123)
The detailed derivation of the equations of motion in this

case will be presented in a future work [107]. The canonical
energy-momentum tensor reads

The = —h(VWV) + VIV ,) — FA,,

— iVEVIIFA, — ¢ Lp o (124a)

hZ
The= / d*p Kp"p” +46"6") TrWp

h w i
~(rop oo, Wi B ok0,- rr W,
+ j*AY +ih / d*pWE A, — FP YA,
_gyy<:£P,em:>’ (124b)

where we dropped boundary terms and defined
w= [ g* u L ap
= P\ PTIWp = pWpis = =0, Wpy ). (125)

Furthermore, the spin tensor is given by

S/I M (V/l[;thu] 4 VT/l[;tVU]) _ %F’l[ﬂAy]
— i(VAVT — iy AL (126a)
S¥¢ = _i/d4p [2plW”" prw 5[”Ws
+ iA[”/d“pW/;]i —%FW‘A”]. (126b)

Also here the canonical currents are not gauge invariant.
Now we perform a suitable pseudogauge transformation
to obtain Klein-Gordon currents in the interacting case.

Analogous to the previous discussion, we perform a
Belinfante transformation for the gauge-field part and
hence use the following pseudogauge potentials:

v et P
q’?é’é,s—/d“ ( 9, Wit psg +zp[/4W,JfA+Za[ gﬂ]/lwg/))

1
— S Fla —i/d“pWﬁ{;A”l, (127a)
st = [ (oot o
I
+5 Sk gﬂl[ﬂg«’laTrWP> . (127b)
Employing
vA h J h V|4
ho,Zxcls = /d4 ( W/P[I:? g Ea[MWP].s
h ]2
Zd”g" TrWp |, (128)
we find for the KG spin tensor
¥k = 2i / d*pp'Wi . (129)

coinciding with our earlier results. In order to obtain the
energy-momentum tensor, we compute

h A, WA A
@+ Dty D)

h2
= / d*p (7 apwf}f‘sgﬂv + iAp W+ — 6[’19”]”TrWP>
— FAY — ih / d*pWi AY. (130)

Considering the derivative of the last line of the above
equation, we find

0, (—FWAV —ih / d* pwf;fAN>

= —jHAY — FH9,AY — ih/d“pWﬁ,’aniA”, (131)
where we used Maxwell’s equations
(132)

0,FH# = j + ihd, / & pwht,

(see Ref. [107] for details). Putting everything together, we
obtain the KG energy-momentum tensor
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n in
Thke = / d*p [p”p”Ter - <p”p,) - Za%,,) Wis + 5 ( pYo,) + F”,,)W’}’fA} Ny o

fl2
+ih/d4ij:,fAFf—gﬂ"<<:£P_gm:> —Zdz/d“pTer)

n? in’
= / d4p |:p'upDTer - Wpy(ayFy(s)WilfS - W (OVF},,;)a”Wi’TA} + F"MFAU

hZ
+ 2ih / d4pW;;,j:AF/1D - g/ll/ <<:£P,em :> - Zaz / d4pTer> s (133)
where in the last step we inserted the constraint equations [107]
ih n? h h
I, Wh's + %VaW’;fj’A = {cos <§6 : 0P> ((37Fy5)W‘;’fS + isin <§0 61,) (0”F},5)W5P’TA} , (134a)
ih h? h h
%V{,W’ﬁfs +,Wh = P {i sin <§a . 0,,) (aVFy,s)Wf,’fS + cos (56‘ a,,) (aVFyﬁ)WEP’fA} . (134b)

integrated by parts and neglected boundary terms. The form of the KG currents resembles the one obtained in the previous
section, where for Proca fields the antisymmetric part of the Wigner function plays the role of the dipole moment. While the
equations of motion for the energy-momentum tensor are equivalent to those for spin-1/2, the equation of motion for the
spin-1 tensor contains additional terms at quantum level, and the MPD equations are recovered only at the leading order,

, B n? in’
10,8y = 2ihF, ¥ / d*pw + / d*p [W (0 F,5) Wk pt —W(aVFy,;)a[”W’;]i].

This result is to be expected, as spin-1 particles possess not
only an intrinsic magnetic dipole moment but also an
electric quadrupole moment, which influences the spin
dynamics at higher order in #.

VII. CONCLUSIONS

In this paper, we provided the explicit expressions of the
pseudogauge transformations for the HW, GLW, and KG
currents for interacting Dirac and Proca fields. For both
spin-1/2 and spin-1 particles the spin tensor in such
pseudogauges is conserved for free fields or for local
interactions, but in general it is not in the presence of
nonlocal collisions. Under a suitable definition of the
enlarged phase space, the form of these currents for
spin-1/2 and spin-1 particles differs only by degeneracy
or spin-magnitude factors. Considering electromagnetic
interactions, we found a gauge-invariant splitting of the
total angular momentum by performing a KG pseudogauge
transformation for the matter fields and a Belinfante

(135)

[

pseudogauge transformation for the gauge fields. The
equations of motion of the spin tensor can then be related
to the MPD equations. The energy-momentum and spin
tensors for interacting systems derived in this work have a
natural physical interpretation and provide the starting
point to formulate spin (magneto)hydrodynamics for
Dirac [7,14,20] and Proca fields.
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