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We present the explicit expressions of different pseudogauge transformations for Dirac and Proca fields
considering a general interaction term. The particular case of the interaction of Dirac and Proca fields with a
background electromagnetic field is also studied. Starting from the quantum kinetic theory with collisions
derived from the Wigner-function formalism for massive spin-1=2 and spin-1 particles, we establish a
connection between different pseudogauges and relativistic spin hydrodynamics. The physical implications
of the various decompositions of orbital and spin angular momentum are discussed.
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I. INTRODUCTION

The derivation of relativistic spin hydrodynamics, i.e.,
the theory of relativistic hydrodynamics when spin degrees
of freedom are dynamical variables, has recently been the
subject of intense research [1–37]. Such effort is mainly
motivated by the phenomenology of noncentral heavy-ion
collisions, where the vorticity of the hot and dense matter
induces hadron spin polarization of the final state [38–41].
Polarization phenomena for spin-1=2 particles have been
observed in the case of Lambda hyperons in Refs. [42–44].
The polarization of Λ-hyperons along the global angular
momentum, i.e., the global polarization, was found to be in
good agreement with hydrodynamic models assuming
local thermodynamic equilibrium [41,45–51]. However,
the same models cannot describe the momentum depend-
ence of the polarization along the beam direction, i.e., the
longitudinal polarization [52]. This mismatch between
experimental data and theoretical calculations is often
referred to as the “polarization sign problem” and triggered
many important developments (see, e.g., [52–64]).
Recently, promising progress toward a restoration of the
agreement between theory and experiments has been made
in Refs. [65–69]. Nevertheless, the polarization sign
problem remains an open question. Furthermore, measure-
ments of polarization observables have also been carried
out for vector particles. In particular, the global spin
alignment has been measured for ϕ and K⋆0 mesons
[70,71]. Interestingly, the experimental results for the
magnitude of the spin alignment turns out to be much
larger compared to the theoretical predictions based
on the assumption of local equilibrium of spin degrees
of freedom [72–77].

In order to resolve the disagreements between theory
and experiments, it has been proposed to consider out-
of-equilibrium spin effects in kinetic theory and include
spin degrees of freedom as new dynamical variables in the
hydrodynamic description of the hot and dense matter. In
relativistic spin hydrodynamics, together with the conser-
vation of the energy-momentum tensor Tμν, one also solves
the conservation of the total angular momentum tensor

Jλ;μν ≡ xμTλν − xνTλμ þ ℏSλ;μν; ð1Þ

where Sλ;μν is the so-called spin tensor. The macroscopic
hydrodynamic quantities are given by the expectation
values of the quantum operators over some (not neces-
sarily equilibrium) state, i.e., Tμν ¼ h∶T̂μν∶i and Sλ;μν ¼
h∶Ŝλ;μν∶i, where the colon denotes normal ordering. Thus,
the equations of motion for relativistic spin hydrody-
namics read

∂μTμν ¼ 0; ð2aÞ

ℏ∂λSλ;μν ¼ Tνμ − Tμν: ð2bÞ

Over the past few years, such a theory has been developed
from many different perspectives: kinetic theory [1–21],
an effective action [22–26], an entropy-current analysis
[27–33], holographic duality [34–36], and linear-response
theory [24,37]. An important issue concerning the relativ-
istic decomposition of the total angular momentum into an
orbital and spin part is that the definition of the energy-
momentum and spin tensors is not unique. In fact, one can
perform a so-called pseudogauge transformation which is a
redefinition of the densities of the form [78]
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T̂μν
pgt ¼ T̂μν þ ℏ

2
∂λðΦ̂λ;μν þ Φ̂ν;μλ þ Φ̂μ;νλÞ; ð3aÞ

Ŝλ;μνpgt ¼ Ŝλ;μν − Φ̂λ;μν þ ℏ∂ρẐ
μνλρ; ð3bÞ

where Φ̂λ;μν and Ẑμνλρ are arbitrary differentiable tensors
such that Φ̂λ;μν ¼ −Φ̂λ;νμ and Ẑμν;λρ ¼ −Ẑνμ;λρ ¼ −Ẑμν;ρλ.
For convenience, in this work T̂μν

pgt and Ŝλ;μνpgt will always be
constructed starting from the canonical tensors. The pseu-
dogauge transformations have the properties to leave
invariant the form of Eqs. (2), the global energy and
momentum P̂μ, and the global total angular momentum
Ĵμν defined as

P̂μ ≡
Z

dΣλT̂
λμ; ð4aÞ

Ĵμν ≡
Z

dΣλĴ
λ;μν; ð4bÞ

where dΣλ denotes the integration over a spacelike hyper-
surface. Note that the global spin defined as

Ŝμν ≡
Z

dΣλŜ
λ;μν ð5Þ

transforms as a rank-2 tensor if and only if the antisymmetric
part of the energy-momentum tensor vanishes and the spin
tensor is conserved [9]. Recently, different choices of
pseudogauges and their possible physical implications have
been discussed in different contexts [9,28,29,33,79–85].
However, this topic still remains highly debated. While
for free spin-1=2 particles pseudogauge transformations
have been discussed in depth in the literature (see,
e.g., Ref. [9]), only a little work has been devoted to
studying pseudogauges for spin-1 particles and interacting
spin-1=2 or spin-1 particles. In this paper, we aim at filling
this gap.
In previous works [7,14,20], relativistic dissipative spin

hydrodynamics was derived from quantum kinetic theory
for massive spin-1=2 particles with nonlocal collisions in
the so-called Hilgevoord-Wouthuysen pseudogauge. In this
paper, we provide a detailed derivation of the various sets of
tensors (including the Hilgevoord-Wouthuysen ones used in
[7,14,20]) by generalizing the pseudogauge transformations
of free Dirac fields to the case of nonlocal interactions.
Furthermore, we present for the first time the pseudogauge
transformations for Proca fields, considering both the free
and the interacting cases. We find a form of the spin tensor
analogous to the Hilgevoord-Wouthuysen one for spin-1=2
particles, which is conserved for free fields, but not in
the presence of nonlocal collisions. Finally, we discuss
pseudogauge transformations in the presence of electro-
magnetic fields for both massive spin-1=2 and spin-1
particles, obtaining a gauge-invariant splitting of the total

angular-momentum tensor. This angular-momentum
decomposition is such that the spin tensor is not conserved,
but follows equations of motion analogous to the classical
spin precession in electromagnetic fields [86,87].
This paper is organized as follows. In Sec. II, we briefly

review the quantum kinetic theory for Dirac particles [7,9]
and perform the pseudogauge transformations for Dirac
fields interacting through a nonlocal collision term. In
Sec. III, we introduce the energy-momentum and spin
tensors for free Proca fields in various pseudogauges. As
a next step, we generalize these pseudogauge transforma-
tions to the interacting case in Sec. IV. In Sec. V, we provide
the equations of motion for relativistic spin hydrodynamics
in the Hilgevoord-Wouthuysen pseudogauge. Such equa-
tions of motion are formally identical for spin-1 and spin-
1=2 fields. Finally, in Sec. VI, we discuss the particular case
of the pseudogauge transformations in the presence of a
background electromagnetic field.
We use the following notation and conventions:

a ·b≡aμbμ, a½μbν� ≡ aμbν − aνbμ, aðμbνÞ ≡ aμbν þ aνbμ,
gμν ¼ diagðþ;−;−;−Þ, ϵ0123 ¼ −ϵ0123 ¼ 1, and repeated
indices are summed over. Furthermore, we indicate oper-
ators by a hat, except for spinor and vector-field operators
which are denoted by ψ and Vμ, respectively. Throughout
the paper, in order to distinguish quantities for Dirac and
Proca fields, we will use the index D or P, respectively.

II. INTERACTING DIRAC FIELDS

A. Quantum transport for Dirac fields

In this section we will briefly summarize the Wigner-
function formalism derived in Refs. [7,14] (see related
work in Refs. [88–94]). The Wigner function for spin-1=2
particles is defined as [95–97]

WD;αβðx; pÞ ¼
Z

d4y
ð2πℏÞ4 e

− i
ℏp·yh∶ψ̄βðx1Þψαðx2Þ∶i; ð6Þ

with x1;2 ¼ x� y=2 and ψðxÞ being the spinor field. The
Lagrangian density for Dirac fields is given by

LD ¼ ψ̄

�
iℏ
2
γ · ∂

↔
−m

�
ψ þ LI; ð7Þ

with ∂

↔ ≡ ∂⃗ − ∂⃖ and LI being a general interaction
Lagrangian, assumed to be a function only of spinors
and their adjoints, but not of their derivatives,
LI ¼ LIðψ ; ψ̄Þ. The equations of motion derived from
the Lagrangian (7) read

ðiℏγ · ∂ −mÞψðxÞ ¼ ℏρðxÞ; ð8aÞ

ψ̄ðxÞðiℏγ · ∂⃖þmÞ ¼ −ℏρ̄ðxÞ; ð8bÞ
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where ρ≡ −ð1=ℏÞ∂LI=∂ψ̄ . From Eqs. (8) one obtains the
transport equation for the Wigner function [95],

�
γ ·

�
pþ iℏ

2
∂

�
−m

�
WD ¼ ℏC; ð9Þ

where

Cαβ ≡
Z

d4y
ð2πℏÞ4 e

− i
ℏp·yh∶ψ̄βðx1Þραðx2Þ∶i: ð10Þ

We decompose the Wigner function in terms of a basis of
the generators of the Clifford algebra

WD ¼ 1

4

�
F þ iγ5P þ γ · V þ γ5γ ·Aþ 1

2
σμνSμν

�
ð11Þ

and substitute it into Eq. (9) to obtain the equations of
motion for the coefficient functions [7]. From the real part
we find

p · V −mF ¼ ℏDF ; ð12aÞ

ℏ
2
∂ ·AþmP ¼ −ℏDP; ð12bÞ

pμF −
ℏ
2
∂νSνμ −mVμ ¼ ℏDμ

V ; ð12cÞ

−
ℏ
2
∂
μP þ 1

2
ϵμναβpνSαβ þmAμ ¼ −ℏDμ

A; ð12dÞ

ℏ
2
∂
½μVν� − ϵμναβpαAβ −mSμν ¼ ℏDμν

S ; ð12eÞ

and from the imaginary part

ℏ∂ · V ¼ 2ℏCF ; ð13aÞ

p ·A ¼ ℏCP ; ð13bÞ

ℏ
2
∂
μF þ pνSνμ ¼ ℏCμ

V ; ð13cÞ

pμP þ ℏ
4
ϵμναβ∂νSαβ ¼ −ℏCμ

A; ð13dÞ

p½μVν� þ ℏ
2
ϵμναβ∂αAβ ¼ −ℏCμν

S : ð13eÞ

Here we defined Di ¼ ReTrðΓ̃iCÞ, Ci ¼ ImTrðΓ̃iCÞ,
i ¼ F ;P;V;A;S, Γ̃F ¼ 1, Γ̃P ¼ −iγ5, Γ̃V ¼ γμ, Γ̃A ¼
γμγ5, Γ̃S ¼ σμν. The equations of motion (12) and (13)
are solved employing an ℏ-gradient expansion [5,14].
In quantum kinetic theory, it is convenient to introduce

the phase-space spin variable sμ and define the distribution
function as [7]

fðx; p; sÞ≡ 1

2
½F ðx; pÞ − ℏδVðx; pÞ − s ·Aðx; pÞ�; ð14Þ

where δV is determined by

Dμ
V ¼ pμδV þOðℏÞ: ð15Þ

Equation (15) holds if spin effects are considered to be of
order OðℏÞ (see Refs. [7,14] for details). Using the proper-
ties of the sμ-integration

Z
dS ¼ 2;

Z
dSsμsν ¼ −2Pμν; ð16Þ

with Pμν ≡ gμν − pμpν=p2 and dS≡ ð
ffiffiffiffiffi
p2

p
=

ffiffiffi
3

p
πÞ

d4sδðs · sþ 3Þδðp · sÞ, one can prove that the functions
F , δV, and Aμ are given by

Z
dSf ¼ F − ℏδV;

Z
dSsμf ¼ Aμ: ð17Þ

The equation of motion for the distribution function has
the form of a Boltzmann equation

p · ∂f ¼ C½f�; ð18Þ

where the collision term C contains both local and nonlocal
contributions [7,14]. In general, the distribution function f
is not on-shell. However, it was shown in Refs. [7,14] that
off-shell terms cancel on both sides of the Boltzmann
equation (18), and one is left with

δðp2 −m2Þp · ∂f ¼ δðp2 −m2ÞC½f�; ð19Þ

where f is defined through

f ¼ mδðp2 −M2Þf; ð20Þ

with M being an effective mass containing interaction
contributions.
In order to solve the equations of motion (12) and (13),

we employ an expansion in powers of ℏ for the functions
F ;P;Vμ;Aμ;Sμν and the collision terms Di, Ci (see, e.g.,
Refs. [5,7,90,91]), e.g., for the scalar part

F ¼ F ð0Þ þ ℏF ð1Þ þOðℏ2Þ: ð21Þ

Since gradients are always accompanied by factors of ℏ,
this is effectively a gradient expansion.

B. Canonical currents

The so-called canonical energy-momentum and spin
tensors are obtained from the interacting Dirac Lagrangian
in Eq. (7) using Noether’s theorem [9]. The canonical tensors
are on the operator level given by
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T̂μν
D;C ¼ iℏ

2
ψ̄γμ ∂

↔ν
ψ − gμνLD; ð22aÞ

ℏŜλ;μνD;C ¼ ℏ
4
ψ̄fγλ; σμνgψ

¼ −
ℏ
2
ϵλμναψ̄γαγ5ψ : ð22bÞ

The normal-ordered ensemble averages

Tμν
D;C ≡ h∶T̂μν

D;C∶i; Sλ;μνD;C ≡ h∶Ŝλ;μνD;C∶i ð23Þ

can be expressed in terms of the Wigner function as [9]

Tμν
D;C ¼

Z
d4ppνVμ; ð24aÞ

Sλ;μνD;C ¼ −
1

2
ϵλμνα

Z
d4pAα: ð24bÞ

Plugging Eq. (12e) into Eq. (12c) and then Eq. (12c) into
Eq. (24a) we obtain, after considering spin effects to be of
OðℏÞ [7,14],

Tμν
D;C ¼

Z
dΓpν

�
pμ þ ℏ

2
Σμλ
s ∂λ þ

ℏ2

4m2
∂λð∂μpλ − ∂

λpμÞ
�

× fðx; p; sÞ þ ℏ2

m

Z
d4ppνDð1Þμ

V þOðℏ3Þ; ð25aÞ

Sλ;μνD;C ¼ m2

2

Z
dΓ

1

p2
ðpλΣμν

s þ pμΣνλ
s þ pνΣλμ

s Þfðx; p; sÞ;

ð25bÞ

where we performed an expansion in ℏ and defined dΓ≡
d4pδðp2 −m2ÞdS as well as the dipole-moment tensor

Σμν
s ≡ −

1

m
ϵμναβpαsβ: ð26Þ

Note that Eq. (25b) is exact at any order in the Planck
constant.1 With the help of Eq. (18), we derive the
following equations of motion:

∂μT
μν
D;C ¼

Z
dΓpνC½f� þOðℏ2Þ ¼ 0; ð27aÞ

ℏ∂λS
λ;μν
D;C¼

Z
dΓ

ℏ
2
fΣμν

s C½f�þp½μΣν�λ
s ∂λfðx;p;sÞg¼T ½νμ�

D;C:

ð27bÞ

One can see from Eq. (27a) that the fact that pμ is a
collisional invariant leads to the conservation of the energy-
momentum tensor. Using Eq. (27a) in Eq. (25a), we can
express the canonical energy-momentum tensor as

Tμν
D;C ¼

Z
dΓpν

�
pμ

�
1 −

ℏ2

4m2
∂
2

�
þ ℏ

2
Σμλ
s ∂λ

�

× fðx; p; sÞ þ ℏ2

m

Z
d4ppνDð1Þμ

V þOðℏ3Þ: ð28Þ

Taking the antisymmetric part of Eq. (28) and inserting it
into Eq. (27b), one can see that Σμν

s is not conserved in a
collision if and only if the interaction term Dμ

V is nonzero.
However, it can be seen from Eq. (27b) that the canonical
spin tensor is not conserved even if Σμν

s is a collisional
invariant, and even if there are no interactions. Furthermore,
in the case of rigidly rotating global equilibrium, the
canonical energy-momentum tensor is not symmetric either
[9]; cf. Sec. V. Therefore, the canonical spin tensor does not
have a clear interpretation as a spin density, since the latter, in
a physical picture, should change only through particle
scatterings until the system is globally equilibrated. At this
point, we note that one can make use of the pseudogauge
freedom in Eq. (3) to obtain a set of energy-momentum
and spin tensors with a clearer physical interpretation than
the canonical ones. In the next sections, we will derive the
so-called Hilgevoord-Wouthuysen, de Groot–van Leeuwen–
van Weert, and alternative Klein-Gordon currents, respec-
tively, in the presence of a general interaction term.

C. Hilgevoord-Wouthuysen currents

A pseudogauge in which the energy-momentum tensor is
symmetric for free fields, implying the conservation of the
spin tensor, has been introduced by Hilgevoord and
Wouthuysen (HW) in Refs. [98,99]. The main idea of
those works is to apply Noether’s theorem to the Klein-
Gordon Lagrangian for spinors, and then to impose the
Dirac equation as a subsidiary condition. The pseudogauge
potentials for the HW tensors in the free case read [9]

Φ̂λ;μν
HW;free ¼ M̂½μν�λ − gλ½μM̂ν�ρ

ρ ; ð29aÞ

Ẑμνλρ
HW;free ¼ −

1

8m
ψ̄ðσμνσλρ þ σλρσμνÞψ ; ð29bÞ

where

M̂λμν ≡ iℏ
4m

ψ̄σμν ∂
↔λ

ψ : ð30Þ

1In Eqs. (25) we do not take into account mass-shell correc-
tions or the term proportional to gμν in the energy-momentum
tensor. In general, such contributions can be nonvanishing in the
presence of interactions; however, they can be neglected under
the assumption of low density [95], which is employed in this
work.
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For the interacting case, we consider the modifications of
the potentials in Eqs. (29) as follow:

Φ̂λ;μν
HW ¼ M̂½μν�λ − gλ½μM̂ρ

ν�ρ þ Q̂λμν; ð31aÞ

Ẑμνλρ
HW ¼ −

1

8m
ψ̄ðσμνσλρ þ σλρσμνÞψ ; ð31bÞ

with

Q̂λμν ≡ −
ℏ
4m

ρ̄γλσμνψ −
ℏ
4m

ψ̄σμνγλρ: ð32Þ

In order to compute the interacting HWenergy-momentum
tensor Tμν

D;HW from Eq. (3), we first consider the following
part:

Tμν
D;C − ℏ∂λðMνμλ þ gν½μMρ

ν�ρÞ

¼
Z

d4ppνVμ −
ℏ
2m

Z
d4p∂λðpνSμλ þ gν½μSλ�ρpρÞ

¼ 1

m

Z
d4p

�
pνðpμF − ℏDμ

VÞ þ
ℏ2

4
∂
νð∂μF − 2Cμ

VÞ

−
ℏ2

4
gμνð∂2F − 2∂ · CVÞ

�
; ð33Þ

where Eqs. (12c) and (13c) were inserted. The contribution
due to the tensor Qλμν to the energy-momentum tensor is
given by

∂λðQλμν þQνμλ þQμνλÞ

¼ −
ℏ
4m

∂λh∶½ρ̄ð2igν½μγλ� þ ϵλμναγ5γαÞψ
þ ψ̄ð−2igν½μγλ� þ ϵλμναγ5γαÞρ�∶i

¼ −
ℏ
m
∂λgν½μImh∶ψ̄γλ�ρ∶i þ ℏ

2m
ϵλμνα∂λReh∶ψ̄γαγ5ρ∶i

¼ −
ℏ
m

Z
d4p

�
gμν∂ · CV − ∂

νCμ
V −

1

2
ϵλμνα∂λDAα

�
; ð34Þ

where we used the relation γλσμν ¼ igλ½μγν� þ ϵλμνργ5γρ.
Summing up Eqs. (33) and (34) we find

Tμν
D;HW ¼ 1

m

Z
d4p

�
pνðpμF − ℏDμ

VÞ þ
ℏ2

4
ð∂ν∂μ − gμν∂2ÞF

þ ℏ2

4
ϵλμνα∂λDAα

�
þOðℏ3Þ: ð35Þ

We note that the antisymmetric part of the HW energy-
momentum tensor arises solely from interactions.
Considering Eq. (15), one can see that this antisymmetric
part is of second order in ℏ. This implies that the HW spin
tensor is conserved in the absence of interactions.

We now give the explicit form of the HW spin tensor.
Making use of the relation γλγμ ¼ gλμ − iσλμ, we can write
the interacting Dirac equation and its adjoint (8) in the
following form:

iℏ∂λψ ¼ −ℏσλμ∂μψ þmγλψ þ ℏγλρ; ð36aÞ

−iℏ∂λψ̄ ¼ −ℏ∂μψ̄σλμ þmψ̄γλ þ ℏρ̄γλ: ð36bÞ

With the help of Eqs. (36) we obtain a generalization of
the Gordon decomposition [100] in the presence of a
general interaction term, i.e.,

ψ̄γμψ ¼ iℏ
2m

½ψ̄ ∂

↔μ
ψ − iðψ̄σμν∂νψ þ ∂νψ̄σ

μνψÞ�

−
ℏ
2m

ðψ̄γλρþ ρ̄γλψÞ: ð37Þ

The HW spin tensor is then found by applying a pseu-
dogauge transformation with the potentials in Eq. (31) to
the canonical spin tensor (22b) and using Eq. (37),

Ŝλ;μνD;HW ¼ 1

4
ψ̄fγλ;σμνgψ þ iℏ

4m
ðψ̄ ∂

↔½νσμ�λψ − gλ½νσμ�ρ ∂
↔

ρψÞ

−
ℏ
4m

½ð∂ρψ̄σλρ − ρ̄γλÞσμνψ þ ψ̄σμνðσλρ∂ρψ − γλρÞ�

þ ℏ
8m

ψ̄ ½σμν;σλρ�∂↔ρψ

¼ iℏ
4m

ψ̄σμν ∂
↔λ

ψ ; ð38Þ

where also the identity

½σμν; σλρ� ¼ 2iðgμρσνλ þ gνλσμρ − gμλσνρ − gνρσμλÞ ð39Þ

was used. Performing the ensemble average and expressing
the result in terms of the Wigner function we have

Sλ;μνD;HW ¼ 1

2m

Z
d4ppλSμν: ð40Þ

Putting everything together, we arrive at the HW tensors
used in Ref. [7], which read up to first order in ℏ

Tμν
D;HW ¼

Z
dΓpμpνfðx; p; sÞ þOðℏ2Þ; ð41aÞ

Sλ;μνD;HW ¼
Z

dΓpλ

�
1

2
Σμν
s −

ℏ
4m2

p½μ
∂
ν�
�
fðx;p;sÞ þOðℏ2Þ;

ð41bÞ

where, in order to get Eq. (41b), we made use of Eq. (12e).
As shown in Refs. [7,14], the HW spin tensor is not
conserved only in the presence of nonlocal particle
scatterings.
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D. de Groot–van Leeuwen–van Weert and alternative
Klein-Gordon currents

The energy-momentum and spin tensors used by de
Groot, van Leeuwen, and van Weert (GLW) in Ref. [95] are
equivalent to the HW currents up to first order in ℏ. They
are derived from the canonical currents in the fully
interacting case using a pseudogauge transformation with

Φλ;μν
GLW ¼ 1

2m

Z
d4pp½μSν�λ; ð42aÞ

Zμνλρ
GLW ¼ 0: ð42bÞ

Following similar steps as in the HW case, we obtain
from Eq. (3)

Tμν
D;GLW ¼

Z
d4ppν

�
Vμ þ ℏ

2
∂λSμλ

�

¼ 1

m

Z
d4ppνðpμF − ℏDμ

VÞ; ð43aÞ

Sλ;μνD;GLW ¼ −
1

2
ϵλμνα

Z
d4pAα −

1

2m

Z
d4pp½νSμ�λ

¼ 1

2m

Z
d4p

�
pλSμν − ℏϵλμνα

�
1

2
∂αP −DAα

��
;

ð43bÞ

where in the last equality we used Eq. (12d). We see that,
since P and Dα

A have contributions starting at first order in
ℏ [7], the HW and GLW currents differ only at second and
higher orders in ℏ. Note that, unlike in the HW spin tensor
(40), the GLW spin tensor is not expressed only by the flux
of Sμν. Furthermore, the term with ∂αP is separately
conserved and hence does not enter the equation of motion
for the spin tensor. Modifying the GLW pseudogauge
transformations (42) by only adding

Zμνλρ
KG ¼ 1

4m
ϵμνλρ

Z
d4pP ð44Þ

to Eq. (42b), we can remove the term containing ∂αP from
the GLW spin tensor without affecting the GLW energy-
momentum tensor (43a) [alternatively, we could also add
−ℏ=ð2mÞϵλμνα∂αP to Φλ;μν]. In this case, we obtain the
currents corresponding to the alternative Klein-Gordon
(KG) pseudogauge [9] with the spin tensor given by

Ŝλ;μνD;KG ¼ iℏ
4m

ψ̄σμν ∂
↔λ

ψ þ ℏ
2m

ϵλμνρReψ̄γργ5ρ; ð45Þ

which can be expressed in terms of the components of the
Wigner function as

Sλ;μνD;KG ¼ 1

2m

Z
d4pðpλSμν þ ℏϵλμνρDAρÞ: ð46Þ

III. FREE PROCA FIELDS

In contrast to the case of spin-1=2 particles, there has
been only little work on the spin tensor for Proca fields up
to now. For this reason, we start with a general discussion
of different pseudogauges for free, massive spin-1 fields,
pointing out the analogies to Dirac fields.

A. Canonical currents

We consider the Lagrangian of a free complex Proca
field Vμ given as

LP0 ¼ ℏ

�
−
1

2
V†μνVμν þ

m2

ℏ2
V†μVμ

�
; ð47Þ

where Vμν ≡ ∂
½μVν� is the field-strength tensor. This

Lagrangian generates the following equations of motion
for the Proca fields:

ℏ2
∂μVμν þm2Vν ¼ 0; ð48Þ

from which the constraint equation

∂ · V ¼ 0 ð49Þ

follows by taking the divergence.
The invariance of the action associated with the

Lagrangian (47) under spacetime translations and
Lorentz transformations implies the conservation of the
canonical energy-momentum and total angular momentum
tensors T̂μν

P;C and Ĵλ;μνP;C , respectively. These quantities read

T̂μν
P;C ¼ −ℏðV†μρ

∂
νVρ þ Vμρ

∂
νV†

ρÞ − gμνLP0; ð50aÞ

Ĵλ;μνP;C ¼ xμT̂λν
P;C − xνT̂λμ

P;C þ ℏŜλ;μνP;C ; ð50bÞ

with

Ŝλ;μνP;C ≡ V†λ½νVμ� þ Vλ½νV†μ�: ð51Þ

As for the spin-1=2 case, the canonical spin tensor for free
spin-1 particles is not conserved, as the energy-momentum
tensor (50a) is not symmetric, leading to the same problems
as discussed above.
Following Refs. [97,101–104], we define the massive

spin-1 Wigner function as
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Wμν
P ðx;pÞ≡−

2

ℏð2πℏÞ4

×
Z

d4ve−ip·v=ℏ
�
∶V†μ

�
xþv

2

�
Vν

�
x−

v
2

�
∶
�
:

ð52Þ

In terms of the Wigner function (52) we can express
Eqs. (50) as

Tμν
P;C ¼

Z
d4p

��
pμpν þ ℏ2

4
∂
μ
∂
ν

�
TrWP

−
�
pνpρ þ

ℏ2

4
∂
ν
∂ρ

�
Wρμ

P;S −
iℏ
2
p½ν

∂ρ�W
ρμ
P;A

�

− gμνh∶LP0∶i; ð53Þ

Sλ;μνP;C ¼ i
Z

d4p

�
2pλWμν

P;A þp½μWν�λ
P;A −

iℏ
2
∂
½νWμ�λ

P;S

�
; ð54Þ

where we defined the symmetric partWμν
P;S ≡ ð1=2ÞWðμνÞ

P as

well as the antisymmetric part Wμν
P;A ≡ ð1=2ÞW½μν�

P of the
Wigner function.

Using the Proca equation (48) and the constraints on the
Wigner function

pμW
μν
P;S −

iℏ
2
∂μW

μν
P;A ¼ pμW

μν
P;A −

iℏ
2
∂μW

μν
P;S ¼ 0; ð55Þ

which follow from Eq. (49), one can rewrite the canonical
energy-momentum as

Tμν
P;C ¼

Z
d4p

��
pμpνþℏ2

4
∂
μ
∂
ν

�
TrWP −ℏ2

1

2
∂
ν
∂ρW

ρμ
P;S

− iℏpν
∂ρW

ρμ
P;A − gμν

ℏ2

4
ð∂2TrWP− ∂λ∂ρW

λρ
P Þ

�
: ð56Þ

As expected, Tμν
P;C approaches the classical symmetric form

in the limit ℏ → 0.
The definition of the energy-momentum and spin tensors

can be changed by applying the pseudogauge transforma-
tions (3). For instance, applying a Belinfante pseudogauge
transformation [105] with Φλ;μν

B ¼ Sλ;μνP;C ; Z
μνλρ
B ¼ 0 yields

Tμν
P;B ¼ ℏ

�
∶
�
VμρV†ν

ρ þ V†μρVν
ρ þ

m2c2

ℏ2
ðV†μVν þ VμV†νÞ

�
∶
�
− gμνh∶LP0∶i

¼
Z

d4p

��
pμpν þ ℏ2

4
∂
μ
∂
ν

�
TrWP − ℏ2

1

2
∂
ðν
∂ρW

μÞρ
P;S þ iℏpðν

∂ρW
μÞρ
P;A þ

1

2
ℏ2
∂
2Wμν

P;S

− gμν
ℏ2

4
ð∂2TrWP − ∂λ∂ρW

λρ
P Þ

�
; ð57aÞ

Sλ;μνP;B ¼ 0; ð57bÞ

where we also made use of the equations of motion.

B. Hilgevoord-Wouthuysen currents

Following the idea by Hilgevoord and Wouthuysen [98],
we find a set of symmetric energy-momentum tensor and
conserved spin tensor for free fields by deriving the
conserved currents from the Lagrangian

L0
P ≡ −ℏ

�
ð∂μV†

νÞ∂μVν − ð∂ · V†Þ∂ · V −
m2

ℏ2
V†μVμ

�
; ð58Þ

which differs fromLP0 by a total divergence and thus yields
the same equations of motion. Applying Noether’s theorem
to the Lagrangian (58) we obtain

T̂μν
P;HW ¼ −ℏ½ð∂μVλÞ∂νV†

λ þ ð∂μV†λÞ∂νVλ� − gμνL0
P; ð59aÞ

Ŝλ;μνP;HW ¼ −½ð∂λV†½μÞVν� þ ð∂λV ½μÞV†ν��: ð59bÞ

The spin tensor Ŝλ;μνP;HW is conserved since the energy-
momentum tensor is symmetric, implying that the global
spin ŜμνP;HW transforms as a tensor [9].
In analogy to the spin-1=2 case, we can relate the HW

currents to the pseudogauge transformation

Φ̂λμν
HW;free ¼ M̂½μν�λ − gλ½μM̂ν�ρ

ρ ; ð60aÞ

Ẑμν;λρ
HW;free ¼ −

1

2
ðV†½μgν�½λVρ� þ H:c:Þ; ð60bÞ

where H.c. stands for the Hermitian conjugate and
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M̂λμν ≡ 1

2
ðV†μ

∂

↔λ
Vν þ H:c:Þ

¼ 1

2
ðV†μ

∂
λVν − V†ν

∂
λVμ þ H:c:Þ: ð61Þ

When performing the pseudogauge transformation, one
also makes use of the equations of motion.
The HW currents in terms of the Wigner function are

given by

Tμν
P;HW ¼

Z
d4p

�
pμpν þ ℏ2

4
ð∂μ∂ν − gμν∂2Þ

�
TrWP; ð62aÞ

Sλ;μνP;HW ¼ i
Z

d4ppλW½μν�
P : ð62bÞ

Identifying TrWP with the scalar distribution F and

W½μν�
P with the dipole moment Sμν, these expressions are

formally equivalent to the HW currents in terms of the
Wigner function for spin-1=2 in the free case [9]
[cf. Eqs. (35) and (40)].

C. Alternative Klein-Gordon currents

One can also obtain a set of symmetric energy-momentum
tensor and conserved spin tensor considering the alternative
Klein-Gordon Lagrangian analogous to the case of spin-1=2
particles,

L0
P;KG ¼ −ℏ

�
−
1

2
ðVμ

∂
2V†

μ þ V†
μ∂

2VμÞ

− ð∂ · V†Þ∂ · V −
m2

ℏ2
V†μVμ

�
; ð63Þ

which differs from Eq. (58) by a total divergence and hence
also yields the same equations of motion. The resulting set of
tensors reads

T̂μν
P;KG ¼ ℏ

2
Vλ

∂

↔μ
∂

↔ν
V†
λ ; ð64aÞ

Ŝλ;μνP;KG ¼ Ŝλ;μνP;HW; ð64bÞ

where we used L0
P;KG ¼ 0 after imposing the equations of

motion. One can obtain these currents from the canonical
ones by employing a pseudogauge transformation with

Φ̂λ;μν
KG;free ¼ gλ½νVμ�ρV†

ρ − V†λVμν − V†½μ
∂
ν�Vλ þ H:c:; ð65aÞ

Ẑμνλρ
KG;free ¼ −

1

2

�
V†½μgν�½λVρ� þ H:c:þ 1

2
V†βVβg

½ν
α gμ�½λgρ�α

�

ð65bÞ

and using the equations of motion. We can express the KG
energy-momentum tensor in terms of theWigner function as

Tμν
P;KG ¼

Z
d4ppμpνTrWP: ð66Þ

Thus, we have found a pair of spin and energy-momentum
tensors that can be represented as moments of the scalar
distribution function TrWP and the antisymmetric part

W½μν�
P , closely mimicking the Klein-Gordon currents in

the spin-1=2 theory (see Sec. II D and Ref. [9]).

IV. INTERACTING PROCA FIELDS

A. Quantum transport for Proca fields

In the interacting case, we consider a Lagrangian which
is given as the sum of the free Proca Lagrangian (47) and a
general interaction term Lint, which we assume to be
independent of the derivatives of the Proca field,

LP ¼ −ℏ
�
1

2
V†μνVμν −

m2

ℏ2
V†μVμ

�
þ Lint: ð67Þ

The equations of motion now read

�
∂
2 þm2

ℏ2

�
Vμ − ∂

μ
∂ · V ¼ ρμ; ð68Þ

where we defined ρμ ≡ −ð1=ℏÞ∂Lint=∂V
†
μ. Taking the

divergence of Eq. (68) we obtain the new constraint
equation

∂ · V ¼ ℏ2

m2
∂ · ρ: ð69Þ

In this section, we consider a general interaction which
does not involve gauge fields so that we can stick to the
definition of the Wigner function in Eq. (68). In the case
where the massive vector particles interact with an electro-
magnetic field the Wigner function has to be defined in a
gauge-invariant way (see Sec. VI). The equations of motion
take the form

�
p2−m2−

ℏ2

4
∂
2þ iℏp · ∂

�
Wμν

P

−
ℏ
m2

�
pνpα −

ℏ2

4
∂
ν
∂αþ

iℏ
2
pðν

∂αÞ

�
Cμα ¼−ℏCμν; ð70Þ

while from Eq. (69) we derive the constraint equations

�
pμ þ

iℏ
2
∂μ

�
Wνμ

P ¼ ℏ
m2

�
pμ þ

iℏ
2
∂μ

�
Cνμ; ð71aÞ

�
pμ −

iℏ
2
∂μ

�
Wμν

P ¼ ℏ
m2

�
pμ −

iℏ
2
∂μ

�
C�νμ: ð71bÞ
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Here we employed the relations

�
pμ þ iℏ

2
∂
μ

�
Wαβ

P ðx; pÞ

¼ −2i
1

ð2πℏÞ4
Z

d4ve−ip·v=ℏh∶V†αðx1Þ∂μVβðx2Þ∶i; ð72aÞ

�
pμ −

iℏ
2
∂
μ

�
Wαβ

P ðx; pÞ

¼ 2i
1

ð2πℏÞ4
Z

d4ve−ip·v=ℏh∶½∂μV†αðx1Þ�Vβðx2Þ∶i; ð72bÞ

used the fact that the Wigner function is Hermitian, and
defined

Cμν ≡ −
2

ð2πℏÞ4
Z

d4ye−ip·y=ℏh∶V†μðx1Þρνðx2Þ∶i: ð73Þ

Similarly, we define the Hermitian objects

δMμν≡−
1

2
ðCμνþC�νμÞ; Cμν≡ i

2
ðCμν−C�νμÞ: ð74Þ

Splitting both the Wigner function Wμν
P and the collision

terms δMμν; Cμν into symmetric and antisymmetric parts,
we can add and subtract the constraint equations (71) to
obtain

pμW
μν
P;S −

iℏ
2
∂μW

μν
P;A

¼ ℏ
m2

�
pμðiCμνA − δMμν

S Þ þ ℏ
2
∂μðCμνS þ iδMμν

A Þ
�
; ð75aÞ

pμW
μν
P;A −

iℏ
2
∂μW

μν
P;S

¼ ℏ
m2

�
pμðiCμνS − δMμν

A Þ þ ℏ
2
∂μðCμνA þ iδMμν

S Þ
�
: ð75bÞ

It should be noted that the symmetric parts of δMμν and
Cμν are real, while their antisymmetric parts are imaginary.
Furthermore, from Eq. (70) we derive the Boltzmann-like
equation for the Wigner function

p · ∂Wμν
P ¼ Cμν −

1

2m2

��
pνpα −

ℏ2

4
∂
ν
∂α

þ iℏ
2
pðν

∂αÞ

�
ðCμα − iδMμαÞ þ H:c:

�
: ð76Þ

Splitting into symmetric and antisymmetric parts, we find

p · ∂Wμν
P;S ¼ CμνS −

1

2m2

��
pαpðμ−

ℏ2

4
∂α∂

ðμ
�
ðCνÞαS − iδMνÞα

A Þ

þℏ
2
ðpα∂

ðμþ ∂αpðμÞðiCνÞαA þ δMνÞα
S Þ

�
; ð77aÞ

p · ∂Wμν
P;A ¼ CμνA −

1

2m2

��
pαp½μ −

ℏ2

4
∂α∂

½μ
�
ðiδMν�α

S − Cν�αA Þ

−
ℏ
2
ðpα∂

½μ þ ∂αp½μÞðiCν�αS þ δMν�α
A Þ

�
: ð77bÞ

In the following we decompose the Wigner function and
all related quantities with respect to the four-momentum pμ:

Wμν
P;S ¼ EμνfE þ pðμ

2p
FνÞ
S þ Fμν

P þ PμνfP; ð78aÞ

Wμν
P;A ¼ i

p½μ

2p
Fν�
A þ iϵμναβ

pα

m
Gβ; ð78bÞ

CμνS ¼ EμνCE þ pðμ

2
CνÞS þ CμνP þ PμνCP; ð78cÞ

CμνA ¼ i
p½μ

2p
Cν�A þ iϵμναβ

pα

m
CG;β; ð78dÞ

δMμν
S ¼ EμνDE þ pðμ

2p
DνÞ

S þDμν
P þ PμνDP; ð78eÞ

δMμν
A ¼ i

p½μ

2p
Dν�

A þ iϵμναβ
pα

m
DG;β; ð78fÞ

with p≡ ffiffiffiffiffi
p2

p
, Eμν ≡ pμpν=p2, and FS · p ¼ FA · p ¼

G · p ¼ 0, Fμν
P pν ¼ 0, with Fμν

P symmetric and traceless.
Analogous properties hold for the components of the
collision terms Cμν and δMμν. The constraint equations (75)
then determine the Wigner-function components fE, F

μ
S,

and Fμ
A in terms of fP, F

μν
P , and Gμ. Using the definition of

the collision term (73) and the constraint (69), we obtain

�
pμ−

iℏ
2
∂μ

�
Cμν ¼OðℏÞ;

�
pμþ

iℏ
2
∂μ

�
C�μν ¼OðℏÞ;

ð79Þ

from which it follows that Cð0ÞE ¼ Dð0Þ
E ¼ 0. As done in the

spin-1=2 case, we consider a situation in which polarization
effects arise only at first or higher order in ℏ. This implies
that we do not have any vector or tensor anisotropy at zeroth

order, i.e., Gð0Þ
μ ¼ 0 and Fð0Þμν

P ¼ 0. Following the same
logic as explained in Ref. [7] and considering the quantum
numbers, vectors, and tensors at our disposal, we conclude

Cð0ÞμS ¼ Cð0ÞμA ¼ Dð0Þμ
S ¼ Dð0Þμ

A ¼ 0. Under this assumption,
we obtain from the real parts of Eqs. (75)
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fE ¼ ℏ2

4p2
Pαβ

∂α∂βf
ð0Þ
P −

ℏ
m2

DE þOðℏ3Þ; ð80aÞ

Fν
S ¼ Oðℏ2Þ; ð80bÞ

pFν
A ¼ ℏPνμ

∂μf
ð0Þ
P þOðℏ2Þ: ð80cÞ

Furthermore, we derive from Eq. (76) the following
Boltzmann-like equations of motion for the independent
components,

p · ∂fP ¼ CP þOðℏ2Þ; ð81aÞ

p · ∂Fμν
P ¼ CμνP þOðℏ2Þ; ð81bÞ

p · ∂Gμ ¼ CμG þOðℏ2Þ: ð81cÞ

Analogous to the distribution function (14) in extended
phase space for spin-1=2 particles, we define the spin-1
distribution function as

fðx; p; sÞ≡ fP − s ·Gþ 5

4
sμsνFP;μν: ð82Þ

We note that for massive spin-1 particles, the number of
degrees of freedom determining the spin state is larger
than that for spin-1=2 particles. In fact, in addition to the
usual vector polarization, we also have spin degrees of
freedom which are called tensor polarization [106]. The
last term in Eq. (82), which is absent for Dirac particles,
precisely describes the additional degrees of freedom due
to tensor polarization [106]. In the spin-1 case, it is
convenient to define the measure in spin space as dS≡
ð3

ffiffiffiffiffi
p2

p
=2

ffiffiffi
2

p
πÞd4sδðs · sþ 2Þδðp · sÞ, such that

Z
dS ¼ 3;

Z
dSsμsν ¼ −2Pμν;

Z
dSPμν

ρσsρsσsαsβ ¼
8

5
Pμν
αβ; ð83Þ

where we defined Pμν
αβ ≡ ½ð1=2ÞPðμ

α P
νÞ
β − ð1=3ÞPμνPαβ�;

cf. the spin-1=2 case in Eq. (16). Using Eq. (83), we
obtain the independent components of the Wigner func-
tion from the distribution function as

Z
dSf¼3fP;

Z
dSsμf¼2Gμ;

Z
dSPμν

αβs
αsβf¼2Fμν

P :

ð84Þ

Making use of Eqs. (81), we find the Boltzmann equation
for the spin-1 Wigner function to be

p · ∂f ¼ C½f�; ð85Þ

where

C½f�≡ CP − s · CG þ 5

4
sμsνC

μν
P : ð86Þ

In the presence of interactions, Eq. (70) implies that the
Wigner function is not on-shell. However, as in the spin-
1=2 case, one can show that only the on-shell parts
contribute to the Boltzmann equation, so that we can
write it in the form of Eq. (19) with f formally given by
Eq. (20). This will be shown in a forthcoming publication
[107]. The explicit form of the mass-shell correction of the
spin-1 Wigner function does not play any role in the
following discussion, since we will neglect off-shell effects
in the conserved currents, as we did in Sec. III.

B. Canonical currents

Since we assume that Lint does not depend on derivatives
of the fields, the canonical currents in the interacting case
are formally still given by Eqs. (54). Using the constraint
equations (80) and relations (84) we can write them in
terms of the distribution function as

Tμν
P;C ¼

Z
dΓpμpνf þOðℏ2Þ; ð87aÞ

SλμνP;C¼
Z

dΓ
�
pλ

�
Σμν
s −

ℏ
6m2

p½μ
∂
ν�
�

þ1

2
p½μΣν�λ

s þℏ
6
Pλ½μ

∂
ν�
�
f: ð87bÞ

The canonical spin tensor for Proca fields is hence not
formally equivalent to the one for Dirac fields in Eq. (24b).
In particular, as expected, it is not totally antisymmetric.

C. Hilgevoord-Wouthuysen currents

In order to obtain the HW pseudogauge transformations
in the interacting case, we modify Eqs. (60) as

Φ̂λ;μν
HW ¼ M̂½μν�λ − gλ½μM̂ν�ρ

ρ þ ℏ2

m2
gλ½μðVν�

∂ · ρ†þH:c:Þ; ð88aÞ

Ẑμνλρ
HW ¼ −

1

2
ðV†½μgν�½λVρ� þ H:c:Þ: ð88bÞ

In terms of the Wigner function, these pseudogauge
potentials read

Φλ;μν
HW ¼

Z
d4p

�
ℏ
2
∂ρW

ρ½μ
P;Sg

ν�λ þ ip½μWν�λ
P;A

�
; ð89aÞ

Zμνλρ
HW ¼ 1

2

Z
d4pðgν½λWρ�μ

P;S − gμ½λWρ�ν
P;SÞ; ð89bÞ

WEICKGENANNT, WAGNER, and SPERANZA PHYS. REV. D 105, 116026 (2022)

116026-10



where we have made use of the constraint equations (71).
Note that the dependence of the pseudogauge potentials on
the Wigner function in Eq. (89) is identical to the non-
interacting case. Equations (89) imply the following
relations:

ℏ∂ρZ
μνλρ
HW ¼ 1

2

Z
d4pðℏ∂ρWρ½μ

P;Sg
ν�λ þ ℏ∂½μWν�λ

S Þ; ð90aÞ

Φλ;μν
HWþΦμ;νλ

HWþΦν;μλ
HW ¼2

Z
d4p

�
ℏ
2
∂ρW

ρ½μ
P;Sg

λ�νþ ipνWλμ
P;A

�
;

ð90bÞ

from which, after using the equations of motion, the
HW energy-momentum tensor in the interacting case is
obtained as

Tμν
P;HW ¼

Z
d4p

��
pμpν þ ℏ2

4
∂
μ
∂
ν

�
TrWP −

�
pρpν −

ℏ2

4
∂ρ∂

ν

�
Wρμ

P;S þ
iℏ
2
pðν

∂ρÞW
ρμ
P;A

�

þ ℏgμνh∶½ð∂αV†
βÞ∂αVβ −

m2

ℏ2
V†αVα�∶i: ð91Þ

Making use of the constraint equations (75), Eq. (91) becomes

Tμν
P;HW ¼

Z
d4p

��
pμpν þ ℏ2

4
∂
μ
∂
ν

�
TrWP − pν ℏ

2m2

	
−pCμA − pDμ

S − 2pμDE þ ℏ∂αPαμCP þ ℏ∂αEμνCE



−
gμν

2

�
p2 −m2 þ ℏ2

4
∂
2

�
TrWP

�
þOðℏ3Þ

¼
Z

d4p

�
pμpν

�
3fP þ ℏ2

4m2
Pαβ

∂α∂βf
ð0Þ
P

�
þ 3ℏ2

4
∂
μ
∂
νfð0ÞP þ pν ℏ2

2m2

	
pCð1ÞμA þ pDð1Þμ

S þ ∂αPαμCð0ÞP




−
gμν

2

�
p2 −m2 þ ℏ2

4
∂
2

�
3fP

�
þOðℏ3Þ; ð92Þ

where we used Cð0ÞE ¼ Dð0Þ
E ¼ 0 (see Sec. IVA). Up to first

order in ℏ, the energy-momentum tensor is symmetric and
formally equivalent to Eq. (41a),

Tμν
P;HW ¼

Z
dΓpμpνfðx; p; sÞ þOðℏ2Þ: ð93Þ

Furthermore, the spin tensor up to first order is obtained by
using Eq. (80c) as

Sλ;μνP;HW ¼ 2i
Z

d4ppλWμν
P;A

¼
Z

dΓpλ

�
Σμν
s −

ℏ
6m2

p½μ
∂
ν�
�
fðx; p; sÞ þOðℏ2Þ:

ð94Þ

Note that the HW spin tensor for Proca fields has the same
structure as the one for Dirac fields in Eq. (41b). The
difference in the factors of the last terms of Eqs. (41b) and
(94), respectively, is due to the different normalizations of
the phase-space volume. After performing the integrations
over dS the factor in both expressions will be 1=2. At

second order in ℏ, the energy-momentum tensor acquires
an antisymmetric contribution due to interactions,

T ½μν�
P;HW ¼ ℏ2

Z
d4p

p½ν

2m2
ðpCð1Þμ�A þ pDð1Þμ�

S þ ∂
μ�Cð0ÞP Þ

þOðℏ3Þ; ð95Þ
leading to the nonconservation of the spin tensor (94).

D. Alternative Klein-Gordon currents

In the interacting case, we modify the KG pseudogauge
transformations in Eqs. (65) according to

Φ̂λ;μν
KG ¼ M̂½μν�λ − gλ½μM̂ν�ρ

ρ þ ℏ2

m2
gλ½μðVν�

∂ · ρ† þ H:c:Þ

−
1

2
gλ½μ∂ν�V†βVβ; ð96aÞ

Ẑμνλρ
KG ¼ −

1

2
ðV†½μgν�½λVρ� þ H:c:Þ

−
1

4
δ½να gμ�½λgρ�αV†βVβ: ð96bÞ
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These pseudogauge potentials differ from Eqs. (88) by the addition of the last terms in each equation.
The KG energy-momentum tensor in the interacting case will consequently be given by

Tμν
P;KG ¼

Z
d4p

�
pμpνTrWP −

�
pρpν −

ℏ2

4
∂ρ∂

ν

�
Wρμ

P;S þ
iℏ
2
pðν

∂ρÞW
ρμ
P;A

�

−
ℏgμν

2

�
∶
�
V†
α

�
∂
2 þm2

ℏ2

�
Vα þ H:c:

�
∶
�
: ð97Þ

Using the constraint equations (75), Eq. (97) becomes

Tμν
P;KG ¼

Z
d4p

�
pμpν

�
3fP þ ℏ2

4m2
Pαβ

∂α∂βf
ð0Þ
P

�
þ pν ℏ2

2m2
ðpCð1ÞμA þ pDð1Þμ

S þ ∂αPαμCð0ÞP Þ

−
gμν

2

�
p2 −m2 −

ℏ2

4
∂
2

�
3fP

�
þOðℏ3Þ; ð98Þ

which is manifestly symmetric up to order OðℏÞ. As in the
free case, Sλ;μνP;KG ¼ Sλ;μνP;HW at any order in ℏ. Consequently,
the antisymmetric part of the KG energy-momentum tensor
takes on the same form as in the HW pseudogauge (95).

V. EQUATIONS OF MOTION

Since the HW and KG energy-momentum and spin
tensors for spin-1=2 and spin-1 particles are given by
the same expressions, they formally follow the same
equations of motion, although the explicit forms of the
distribution functions and collision terms differ between the
two cases [14,107]. Using the Boltzmann equation (19) we
obtain the equations of motion presented in Ref. [7],

∂μT
μν
HW ¼

Z
dΓpνC½f� ¼ 0; ð99aÞ

ℏ∂λS
λ;μν
HW ¼

Z
dΓℏσΣμν

s C½f� ¼ T ½νμ�
HW; ð99bÞ

where σ ¼ 1=2 or σ ¼ 1 for spin-1=2 and spin-1 particles,
respectively. As pointed out in Ref. [7], the energy-
momentum tensor is conserved as pμ is a collisional
invariant, while in general the spin tensor is not conserved
due to the mutual conversion between spin and orbital
angular momentum in nonlocal collisions. In the presence
of nonlocal collisions, the HW spin tensor is conserved
only in global equilibrium, when the process of aligning
spin with vorticity has stopped and the collision term
vanishes. In global equilibrium the distribution function up
to first order in ℏ is given by

feqðx;p;sÞ ¼
1

ð2πℏÞ3 exp
�
−βðxÞ ·pþℏ

2
σϖμνΣ

μν
s

�
; ð100Þ

where βμ ≡ uμ=T, with uμ being the fluid velocity and T
the temperature, and ϖμν ≡ −ð1=2Þ∂½μβν� [1,4,81]. For a

derivation of an exact solution for the Wigner function in
global equilibrium see Ref. [108]. Note that βμ satisfies the
Killing condition ∂ðμβνÞ ¼ 0. The equilibrium distribution
function (100) is obtained from the requirement that the
collision term vanishes [7,14]. Inserting Eq. (100) into
Eqs. (41b) or (94) we obtain the expression for the HW spin
tensor in equilibrium to leading order in ℏ,

Sλ;μνHW;eq ¼
ℏ
g
σnð0Þuλϖμν; ð101Þ

where nð0Þ ≡ g
R
dPp · ufð0Þeq ðx; pÞ is the zeroth-order par-

ticle density and g≡ R
dS is the number of internal degrees

of freedom. The spin tensor (101) has the same form as that
used in the formulation of relativistic spin hydrodynamics
in Ref. [1].
In contrast to the physical interpretation of Eq. (99b),

which relates the divergence of the spin tensor directly to
the nonconservation of Σμν

s in collisions and vanishes in
global equilibrium, the equations of motion for the canoni-
cal spin tensor acquire additional terms. In particular, the
canonical spin tensor is not conserved even in global
equilibrium. Using Eq. (100) in Eq. (25b), or Eq. (100)
in Eq. (87b), respectively, we obtain (cf. Ref. [9])

∂λS
λ;μν
C;eq ¼

1

ð2πℏÞ3 ℏσ
Z

dPp½μϖν�λpρϖλρe−β·p þOðℏ2Þ;

ð102Þ

where it has been used that C½feq� ¼ 0.

VI. INCLUDING ELECTROMAGNETIC FIELDS

So far, we have discussed the effects of a general
collision term on the conserved currents without consid-
ering the interaction with gauge fields. In this section, we
include electromagnetic fields and study their impact on
the energy-momentum and spin tensors. In this case, a
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further complication arises since gauge invariance of the
theory has to be guaranteed. The relativistic decomposition
of orbital and spin angular momentum in the presence of
gauge fields is a long-standing problem with consequences
in different fields such as hadron and chiral physics (see,
e.g., Refs. [84,85] for reviews). In the following, we will
introduce a pseudogauge which combines a KG trans-
formation for the matter parts of the currents with a
Belinfante transformation for the electromagnetic parts.
In this way, we obtain a gauge-invariant splitting of the
total angular momentum with a vanishing gauge-field spin
tensor. For the sake of simplicity, we neglect particle
collisions and treat the electromagnetic fields as classical.
Furthermore, we absorb the electromagnetic charge e in
the definition of the gauge potential. The currents and
equations of motion derived in this section provide the
starting point for the formulation of spin magnetohydro-
dynamics for Dirac and Proca particles.

A. Dirac fields

The gauge-invariant Wigner function for fermions
interacting with the electromagnetic potential AμðxÞ is
defined as [96,97]

WD;αβðx;pÞ ¼
Z

d4y
ð2πℏÞ4 e

− i
ℏp·yh∶ψ̄βðx1ÞUðx1; x2Þψαðx2Þ∶i;

ð103Þ

where the gauge link

Uðx1; x2Þ≡ exp

�
−
i
ℏ
yμ

Z
1=2

−1=2
dtAμðxþ tyÞ

�
ð104Þ

ensures gauge invariance of the Wigner function. The
equations of motion read

�
γ ·

�
Πþ iℏ

2
∇
�
−m

�
WD ¼ 0; ð105Þ

with

∇μ ≡ ∂
μ − j0

�
ℏ
2
∂ · ∂p

�
Fμν

∂pν ð106Þ

and

Πμ ≡ pμ −
ℏ
2
j1

�
ℏ
2
∂ · ∂p

�
Fμν

∂pν; ð107Þ

where j0ðxÞ≡ sin x=x and j1ðxÞ≡ ðsin x − x cos xÞ=x2 are
spherical Bessel functions and Fμν ≡ ∂

½μAν� is the electro-
magnetic field-strength tensor. The spacetime derivatives in
the arguments of the spherical Bessel functions act only on
the field-strength tensor, but not on the Wigner function.

The equations of motion for the Wigner-function compo-
nents can be found in Refs. [5,97]. Here, we only display
those which will be used in the following, namely

ΠμF −
1

2
ℏ∇νSνμ −mVμ ¼ 0; ð108aÞ

−
1

2
ℏ∇μP þ 1

2
ϵμβνσΠβSνσ þmAμ ¼ 0; ð108bÞ

1

2
ℏð∇μVν −∇νVμÞ − ϵμναβΠαAβ −mSμν ¼ 0; ð108cÞ

1

2
ℏ∇μF þ ΠνSνμ ¼ 0: ð108dÞ

The canonical energy-momentum and spin tensors of
both matter and gauge fields were found to be [5]

Tμν
D;C ¼

Z
d4pVμðpν þAνÞ − Fμλ

∂
νAλ þ

1

4
gμνFαβFαβ;

ð109aÞ

Sλ;μνD;C ¼ −
1

2
ϵλμνρ

Z
d4pAρ −

1

ℏ
Fλ½μAν�; ð109bÞ

which are gauge-dependent quantities. In the following, we
will perform a pseudogauge transformation which leads to
a gauge-invariant splitting between spin and orbital angular
momentum of the matter and gauge-field parts. This is
achieved by generalizing the KG transformation for spin-
1=2 particles which leads to formally the same pseu-
dogauge potentials in terms of the Wigner function as in
the free case. Furthermore, we use a Belinfante pseu-
dogauge transformation for the gauge fields in order to
obtain a gauge-invariant result [85]. The pseudogauge
potentials for such a transformation read

Φλ;μν
KG;B ¼ 1

2m

Z
d4pp½μSν�λ −

1

ℏ
Fλ½μAν�; ð110aÞ

Zμνλρ
KG;B ¼ 1

4m
ϵμνλρ

Z
d4pP: ð110bÞ

Therefore, the spin tensor is given by

Sλ;μνD;KG ¼ 1

2m
ϵλμνρ

Z
d4p

�
1

2
ϵραβγΠαSβγ −

ℏ
2
∇ρP

�

−
1

2m

Z
d4pSλ½μpν� þ ℏ

4m
ϵμνλρ∂ρ

Z
d4pP

¼ 1

2m

Z
d4ppλSμν; ð111Þ

where we made use of Eq. (108b) and assumed that
boundary terms vanish. Moreover, we obtain the energy-
momentum tensor
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Tμν
D;KG ¼

Z
d4pVμðpν þAνÞ − Fμλ

∂
νAλ þ

1

4
gμνFαβFαβ þ

ℏ
2
∂λ

�
1

2m

Z
d4pSλ½μpν� −

1

ℏ
Fλ½μAν�

þ 1

2m

Z
d4pSν½μpλ� −

1

ℏ
Fν½μAλ� þ 1

2m

Z
d4pSμ½νpλ� −

1

ℏ
Fμ½νAλ�

�

¼ 1

m

Z
d4p

�
pμpνF þ ℏ

2
Fν
λS

λμ

�
− FμλFν

λ þ
1

4
gμνFαβFαβ ð112Þ

with the antisymmetric part

T ½μν�
D;KG ¼ ℏ

2m

Z
d4pSλ½μFν�

λ: ð113Þ

When deriving Eq. (112), we inserted Eq. (108a) and the
Maxwell equation ∂μFμν ¼ Jν, where

Jμ ≡
Z

d4pVμ ð114Þ

is the charge current, and again made use of the assumption
of vanishing boundary terms. We see that both the energy-
momentum and spin tensors are gauge invariant.
The above currents are now separated into fluid and

electromagnetic parts according to

Tμν
D;f ¼

1

m

Z
d4p

�
pμpνF þ ℏ

2
Fν

λSλμ

�
;

Tμν
em ¼ −FμλFν

λ þ
1

4
gμνFαβFαβ;

Sλ;μνD;f ¼ 1

2m

Z
d4ppλSμν;

Sλ;μνem ¼ 0: ð115Þ

In this case, the spin tensor for the electromagnetic fields
vanishes and only fermionic spin degrees of freedom are
treated as dynamical, while the electromagnetic ones are
absorbed into the orbital angular momentum from the
energy-momentum tensor. We find the following equation
of motion for the fluid energy-momentum tensor:

∂μT
μν
D;f ¼

1

m

Z
d4ppμpνFμλ∂

λ
pF

þ ℏ
6m

Z
d4ppμpνð∂αFρλÞ∂pλ∂pαSρμ

þ ℏ
2m

ð∂μFν
λÞ
Z

d4pSλμ þ ℏ
2m

Z
d4pFν

λ∂μSλμ

¼ −FμνJμ; ð116Þ

where we used Eqs. (108d), (108a), and the Maxwell
relation ∂

μFνλ þ ∂
νFλμ þ ∂

λFμν ¼ 0. Since

∂μT
μν
em ¼ FμνJμ ¼ −∂μT

μν
D;f; ð117Þ

the total energy-momentum tensor is conserved. On the
other hand, the spin tensor is not conserved but follows the
equations of motion

ℏ∂λS
λ;μν
D;f ¼ −

ℏ
2m

Z
d4pSλ½μFν�

λ ¼ T ½νμ�
D;f: ð118Þ

We remark that the results of this section are similar to
those of Ref. [109] for fluids with polarization when
identifying Sμν with the dipole moment [5], although the
former are exact in ℏ and the latter purely classical. In
particular, as can be seen from Eq. (118), the equations of
motion for sμνHW, defined through

Z
dΣλS

λ;μν
D;HW ¼

Z
d4psμνD;HW; ð119Þ

where dΣλ denotes the integration over a spacelike hyper-
surface, are the Matthison-Papapetrou-Dixon (MPD) equa-
tions [87,109]

m
d
dτ

sμνD;HW ¼ 1

2m

Z
dΣλpλpρ

∂ρSμν

¼ −
1

2m

Z
dΣλpλSρ½μFν�

ρ

¼ −sρ½μD;HWF
ν�
ρ; ð120Þ

where τ≡ x · p=m is the proper time.

B. Proca fields

In order to describe Proca fields interacting with electro-
magnetic fields we use a Lagrangian of the form [110]

LP;em ¼ ℏ

�
−
1

2
V†μνVμν þ

m2

ℏ2
V†μVμ

�

−
1

4
FμνFμν − iFμνVμV†ν; ð121Þ

where in the presence of gauge fields
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Vμν ≡
�
∂
½μ þ i

ℏ
A½μ

�
Vν� ð122Þ

is defined with a covariant instead of a partial derivative.
The Wigner function in this case is given by Eq. (52)
supplemented with a gauge linkUðx1; x2Þwhich is identical
to Eq. (104),

Wμν
P ≡−

2

ℏð2πℏÞ4
Z

d4ve−ip·v=ℏh∶V†μðx1ÞUðx1;x2ÞVνðx2Þ∶i:

ð123Þ

The detailed derivation of the equations of motion in this
case will be presented in a future work [107]. The canonical
energy-momentum tensor reads

T̂μν
P;C ¼ −ℏðVμρ

∂
νV†

ρ þ V†μρ
∂
νVρÞ − Fμρ

∂
νAρ

− iV ½μV†ρ�
∂
νAρ − gμνLP;em; ð124aÞ

Tμν
P;C ¼

Z
d4p

��
pμpνþℏ2

4
∂
μ
∂
ν

�
TrWP

−
�
pνpρþ

ℏ2

4
∂
ν
∂ρ

�
Wρμ

P;S−
iℏ
2
ðp½ν

∂ρ�−Fν
ρÞWρμ

P;A

�

þ jμAνþ iℏ
Z

d4pWρμ
P;A∂

νAρ−Fμρ
∂
νAρ

−gμνh∶LP;em∶i; ð124bÞ

where we dropped boundary terms and defined

jμ ≡
Z

d4p

�
pμTrWP − pαW

αμ
P;S −

iℏ
2
∂αW

αμ
P;A

�
: ð125Þ

Furthermore, the spin tensor is given by

Ŝλ;μνP;C ¼ −ðVλ½μV†ν� þ V†λ½μVν�Þ − 1

ℏ
Fλ½μAν�

− iðVλV†½μ − V†λV ½μÞAν�; ð126aÞ

Sλ;μνP;C ¼ −i
Z

d4p

�
2pλWνμ

A − p½μWν�λ
A þ iℏ

2
∂
½μWν�λ

S

�

þ iA½ν
Z

d4pWμ�λ
P;A −

1

ℏ
Fλ½μAν�: ð126bÞ

Also here the canonical currents are not gauge invariant.
Now we perform a suitable pseudogauge transformation

to obtain Klein-Gordon currents in the interacting case.

Analogous to the previous discussion, we perform a
Belinfante transformation for the gauge-field part and
hence use the following pseudogauge potentials:

Φλ;μν
KG;B ¼

Z
d4p

�
ℏ
2
∂ρW

ρ½μ
P;Sg

ν�λ þ ip½μWν�λ
P;A þ

ℏ
4
∂
½νgμ�λWβ

Pβ

�

−
1

ℏ
Fλ½μAν� − i

Z
d4pWλ½μ

P;AA
ν�; ð127aÞ

Zμνλρ
KG;B ¼ 1

2

Z
d4p

�
gν½λWρ�μ

P;S − gμ½λWρ�ν
P;S

þ 1

2
δ½να gμ�½λgρ�αTrWP

�
: ð127bÞ

Employing

ℏ∂ρZ
μνλρ
KG;B ¼

Z
d4p

�
ℏ
2
∂ρW

ρ½μ
P;Sg

ν�λ þ ℏ
2
∂
½μWν�λ

P;S

þ ℏ
4
∂
½νgμ�λTrWP

�
; ð128Þ

we find for the KG spin tensor

Sλ;μνP;KG ¼ 2i
Z

d4ppλWμν
P;A; ð129Þ

coinciding with our earlier results. In order to obtain the
energy-momentum tensor, we compute

ℏ
2
ðΦλ;μν

KG;B þΦμ;νλ
KG;B þΦν;μλ

KG;BÞ

¼
Z

d4p

�
ℏ2

2
∂ρW

ρ½μ
P;Sg

λ�ν þ iℏpνWλμ
A þ ℏ2

4
∂
½λgμ�νTrWP

�

− FλμAν − iℏ
Z

d4pWλμ
P;AA

ν: ð130Þ

Considering the derivative of the last line of the above
equation, we find

∂λ

�
−FλμAν − iℏ

Z
d4pWλμ

P;AA
ν

�

¼ −jμAν − Fλμ
∂λAν − iℏ

Z
d4pWλμ

P;A∂λA
ν; ð131Þ

where we used Maxwell’s equations

∂λFλμ ¼ jμ þ iℏ∂λ

Z
d4pWμλ

P;A ð132Þ

(see Ref. [107] for details). Putting everything together, we
obtain the KG energy-momentum tensor
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Tμν
P;KG ¼

Z
d4p

�
pμpνTrWP −

�
pνpρ −

ℏ2

4
∂
ν
∂ρ

�
Wρμ

P;S þ
iℏ
2
ðpðν

∂ρÞ þ Fν
ρÞWρμ

P;A

�
þ FμλFλ

ν

þ iℏ
Z

d4pWμλ
P;AFλ

v − gμν
�
h∶LP;em∶i −

ℏ2

4
∂
2

Z
d4pTrWP

�

¼
Z

d4p

�
pμpνTrWP −

ℏ2

m2
pνð∂γFγδÞWδμ

P;S −
iℏ3

m2
ð∂γFγδÞ∂νWδμ

P;A

�
þ FμλFλ

v

þ 2iℏ
Z

d4pWμλ
P;AFλ

ν − gμν
�
h∶LP;em∶i −

ℏ2

4
∂
2

Z
d4pTrWP

�
; ð133Þ

where in the last step we inserted the constraint equations [107]

ΠαW
μα
P;S þ

iℏ
2
∇αW

μα
P;A ¼ ℏ2

m2

�
cos

�
ℏ
2
∂ · ∂p

�
ð∂γFγδÞWδμ

P;S þ i sin

�
ℏ
2
∂ · ∂p

�
ð∂γFγδÞWδμ

P;A

�
; ð134aÞ

iℏ
2
∇αW

μα
P;S þ ΠαW

μα
P;A ¼ ℏ2

m2

�
i sin

�
ℏ
2
∂ · ∂p

�
ð∂γFγδÞWδμ

P;S þ cos

�
ℏ
2
∂ · ∂p

�
ð∂γFγδÞWδμ

P;A

�
; ð134bÞ

integrated by parts and neglected boundary terms. The form of the KG currents resembles the one obtained in the previous
section, where for Proca fields the antisymmetric part of the Wigner function plays the role of the dipole moment. While the
equations of motion for the energy-momentum tensor are equivalent to those for spin-1=2, the equation of motion for the
spin-1 tensor contains additional terms at quantum level, and the MPD equations are recovered only at the leading order,

ℏ∂λS
λ;μν
P;f ¼ 2iℏFλ

½μ
Z

d4pWν�λ
P;A þ

Z
d4p

�
ℏ2

m2
ð∂γFγδÞWδ½μ

P;Sp
ν� −

iℏ3

m2
ð∂γFγδÞ∂½νWμ�δ

P;A

�
: ð135Þ

This result is to be expected, as spin-1 particles possess not
only an intrinsic magnetic dipole moment but also an
electric quadrupole moment, which influences the spin
dynamics at higher order in ℏ.

VII. CONCLUSIONS

In this paper, we provided the explicit expressions of the
pseudogauge transformations for the HW, GLW, and KG
currents for interacting Dirac and Proca fields. For both
spin-1=2 and spin-1 particles the spin tensor in such
pseudogauges is conserved for free fields or for local
interactions, but in general it is not in the presence of
nonlocal collisions. Under a suitable definition of the
enlarged phase space, the form of these currents for
spin-1=2 and spin-1 particles differs only by degeneracy
or spin-magnitude factors. Considering electromagnetic
interactions, we found a gauge-invariant splitting of the
total angular momentum by performing a KG pseudogauge
transformation for the matter fields and a Belinfante

pseudogauge transformation for the gauge fields. The
equations of motion of the spin tensor can then be related
to the MPD equations. The energy-momentum and spin
tensors for interacting systems derived in this work have a
natural physical interpretation and provide the starting
point to formulate spin (magneto)hydrodynamics for
Dirac [7,14,20] and Proca fields.
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